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Highlights this performance year

PRIDE LDRD 
– Parameter Study Analysis/Surrogate Modeling
– Bayesian approach in two major areas: regression analysis 

and multi-fidelity GP analysis
– Robust Design

• ASC V&V Program
– Bayesian approach to calibration

• DAKOTA Capabilities
– Quasi-Monte Carlo Sampling Methods, CVT
– Variance-Based Decomposition (sensitivity analysis)
– Continued support for JEGA and LHS
– Starting Dempster-Shafer Theory of Evidence



PRIDE LDRD

PRIDE:  Penetrator Reliability Investigation and 
Design Exploration

• How can we efficiently optimize an earth penetrator weapon 
design given the uncertainties in delivery conditions, target 
geology and model parameters?

• Develop and implement new optimization under uncertainty 
(OUU) methods using surrogate models in a multi-fidelity 
hierarchy with Bayesian statistics to enable credible and reliable 
penetrator design modeling. 

• This year, my focus was on two areas: 
– Robust design in the spirit of Taguchi
– Bayesian approaches



• Optimization Problem:  
Maximize depth of 
penetration while minimizing 
accelerations. 

• Design  Variables: 
L1, L2, L3

• Constraints: 
Upper & lower bounds on 
Weight, R1

• Uncertainties: 
AoA=Angle of attack
IV =Impact velocity

OS=Offset
CR=Cavity radius
TS=Target strength

Right: Parameterized 
FEM.
Low-fidelity model, 4000 
Elements L2

R1

L1

L3

Low-Fidelity Penetrator Model

Below: Low-fidelity 
simulation, using Presto, 
showing progress through 
penetration shaft created 
by shape charge.



Robust Design

• Renewed interest in the statistical community during the mid-1990s:  
Myers and Kim, Montgomery, Shoemaker and Wu, Welch et al., Box 
and Jones.

• Revision of Taguchi’s work.  Taguchi had the idea that products lack 
high quality because of inconsistency in performance, often the 
result of uncontrollable factors.  Choose a design that is robust to 
environmental or process variations.

• Idea is that one has noise variables (uncontrollable) and control 
(design) variables.  Instead of have separate design of experiments, 
treat both with a combined array.  

• Generate a response model, treating control and noise variables as 
fixed effects (question:  can we do this?  In computer experiments, 
yes)

• Look at the slopes of the response model in the direction of the
noise variables want the slopes to be near zero for robustness



Robust Design

εγβ +Δ++= zxzxy '''

• x are the control variables, z are the noise variables, y is the 
response, ε ~ N(0,σ2), Δ are the dispersion effects created by the 
noise variables

• E(z) = 0
• Var(z) = V

•Can use this to obtain confidence intervals on the location (in x) 
of minimum process variance
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Robust Design:  Displacement Response

• DISPLACEMENT: Will a long or short penetrator be better able to 
compensate for angle of attack, cavity radius, etc. to improve depth 
of penetration? 

• In the low fidelity model, we found no strongly significant interaction 
terms between the noise and the control variables in the regression 
model of the displacement response.  

• Important point:  If there are no interaction terms between the noise and 
control variables, the uncertainty in the noise variables will have a 
constant effect on the displacement and there is no opportunity for 
reducing the process variance by a choice of the design variables.  



Important point:  Acceleration is very strongly influenced by the noise variables, 
especially OS and AoA.  There are some significant interaction terms, namely 
L1*OS.  We can design to reduce the acceleration variance, but we will not be able 
to “design out” the effects of the uncertainty.

Pointy-Nose PenetratorBlunt-Nose Penetrator

Robust Design: Acceleration Response

•Short penetrator nose tip with long 
penetrator aft end results in poor ground 
penetration.

•Long penetrator nose tip with short 
penetrator aft end results in good ground 
penetration.
•Unexpected finding: observed large 
aft axial accelerations – not shown.

Key: Red means high strain in earth material (largest ground deformation)



Bayesian Multi-Fidelity Approach

Assumptions
• Different levels of the same code are correlated in some way. 
• The codes have a degree of smoothness in the sense that 

output values for similar inputs are reasonably close.  
• Prior beliefs each level of code can be modeled using a 

Gaussian process. 

Two papers
• Kennedy, M. C. and A. O’Hagan.  “Predicting the output from 

a complex computer code when fast approximations are 
available.” Biometrika, 87, pp. 1-13.  2000.

• Deng Huang, Theodore T. Allen, William I. Notz, and R. Allen 
Miller, “Sequential Kriging Optimization Using Multiple Fidelity 
Evaluations”, submitted to Structural and Multidisciplinary 
Optimization.



Multi-Fidelity Bayesian Approach

For L levels of a system, suppose that, L = 1, …, m,                              

fL(x) = fL-1(x) + δL (x)
where δL (x) is independent of f1(x), f2(x), …, fL-1(x). 
• δL(x) models the “systematic error” of a lower-fidelity system, 

(L–1), as compared to the next higher-fidelity system, L. 
• fL-1(x) and δL (x) are modeled as Gaussian processes
• A Gaussian process is a stochastic process such that two 

points are distributed as a multivariate normal, with a mean 
that is some type of basis function and a covariance structure

• δL(x) = bL(x)T βL+ ZL (x) + εL

• f2(x) = f1(x) + δ2(x)
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Bayesian Multi-Fidelity Approach
• I took the results of a 13 point orthogonal array penetrator study at 

Low-fidelity and the same 13 point OA study at Mid-fidelity.  I 
used this data to construct the GP emulator for f1(x) and also to 
construct the GP emulator for δ2(x), based on the difference in the 
low and mid level results.

• The emulators were constructed assuming a linear regression 
mean for the GP and maximum likelihood estimation of the 
hyperparameters governing the covariance matrix

• The emulators were then used to predict the value of the mid-
level model at six new points:    

• Independently, I ran the mid-lc penx model at these six points to 
verify the results.
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Design Variables Uncertain Variables
L1 L2 L3 OS AoA TS IV CR
17 7 13 0.50 0.010 2700 12500 5.0
25 10 10 0.75 0.013 2800 12500 4.6
15 10 15 0.90 0.020 2700 12000 4.8
20 5 15 0.20 0.005 2800 14000 4.7
15 10 15 0.20 0.005 2800 14000 4.8
20 5 15 0.90 0.02 2700 12000 4.7



Mid-fidelity estimation
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Comments on the Bayesian Autoregressive Process

• Gaussian process models are good surface fitting emulators, 
especially when we are trying to capture local behavior about a 
delta term between simulations of varying fidelity

• This approach is more accurate than assuming a constant bias 
term between low and high fidelity models

• This approaches offers potential savings in trust region 
optimization, for example, where we can use a low fidelity 
surrogate plus a delta term to approximate a high fidelity model

• Important point:  GPs capture uncertainty in the estimation 
process as well.  We have shown only the point predictions at 
the new points of interest, but variance terms are also available.



Next Steps in the Bayesian Multi-fidelity Approach

• Incorporate a two-level fidelity approach in a trust region method, with automatic
calculation of the variance parameters

• Use an expected improvement function with global optimization methods to 
generate adaptive samples

• The uncertainty estimation gives us a way to determine the points chosen next 
in optimization:  For example, construct an expected improvement function 
which captures the tradeoff between 

– improving the objective and reducing the variance, 
– the reduction in the posterior variance estimate when a surrogate of a 

given level is used, 
– the cost of the different levels.

• One of my contributions has been to model the GP mean with a regression term, 
not as a constant.  My experience has been that the difference between high 
and low fidelity models often has a significant linear trend. I also model the delta 
term mean in the calibration work with a regression model.   



ASC V&V Program:  Bayesian Calibration

• The Gaussian process approach for model calibration is similar to the high/low 
fidelity model presented above, only this time the delta term models the 
difference between experimental data and code runs:     

Experimental data = zi = Code Output + δ(xi) + ei

• I have started using this formulation in V&V “challenge problems” being 
developed by Marty Pilch’s group

• Purpose of these challenge problems are to present the reader with a “real 
world” V&V problem and ask him/her to take experimental data, model data, and 
evaluate the ability of the model to predict what the results are for a new set of 
inputs (extrapolate)

• Variety of uncertain variables, also measurement error and measurement bias, 
and model approximation error (due to incomplete physics)

• I have looked at the thermal challenge problem in detail:  Heat conduction in a 
cylinder

• If extrapolation region is far from existing data, GP reverts to a constant variance 
process:  not as useful



DAKOTA UQ Summary

• We need to improve the UQ capabilities within DAKOTA to address 
user needs:
– Multi-fidelity approaches
– Epistemic uncertainty representation
– More sophisticated methods such as surrogate representations of UQ
– Help users meet their ASC V&V Milestones

• FY05 Areas of interest: Team members:
– Sensitivity Metrics Laura Swiler, PI
– Bayesian Methods Mike Eldred
– 2nd-order Probability
– Reliability Methods
– Evidence Theory

• Future Development Focus
– Incremental LHS
– Importance Sampling
– Bayesian Methods
– Evidence Theory



10 CVT samples in 2-D
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Motivations:
– Surrogates: Data fit, spanning ROM
– UQ

Types:
– Pseudo Monte Carlo: Latin Hypercube Sampling 

(LHS) is a stratified, structured sampling method 
that picks random samples from equal probability 
bins for all 1-D projections. 

– Quasi Monte Carlo: deterministic sequences 
constructed to uniformly cover a unit hypercube 
with low discrepancy. 
E.g., Halton, Hammersley, Sobol

– Centroidal Voronoi Tesselation (CVT): generates 
nearly uniform spacing over arbitrarily shaped 
parameter spaces; originally developed for 
“meshless” mechanics methods.

Associated Tools: 
– Volumetric quality, Latinization
– Correlations, Variance-based decomposition

• Global Sensitivity Analysis:  
decompose output variance into 
sum of input variances, requires 
replicated samples

100 CVT Samples in 2-D
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Epistemic UQ

Second-order probability
– Two levels: distributions/intervals on 

distribution parameters
– Outer level can be epistemic (e.g., interval)
– Inner level can be aleatory (probability distrs)
– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
– Basic probability assignment (interval-based)
– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals

New

In
progress



Epistemic UQ

• Draws on the strengths of DAKOTA
– Easily parallelized
– Requires surrogates
– Requires sampling and/or optimization for calculation of 

plausibility and belief within each interval “cell”

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief



Service

• NSF Panel:  Reviewed Engineering Research Center proposals for 
research centers focused on some aspect of critical infrastructures, risk, 
and reliability. (5-year, $17M NSF award)

• Taking on leadership roles in PRIDE LDRD, and ASC V&V community
– Attended two V&V conferences:  Foundations ’04 and Tri-lab
– Technical lead on PRIDE
– Active participant in V&V working group

• Developing collaboration with Sallie Keller-McNulty’s group at LANL 
(Bayesian Statistics)
– Meeting with David Higdon and Charlie Nakleh
– Nozer Singpurwalla’s Bayesian class
– Scott Ferson’s Imprecise probability course

• Asked to participate in prognostics/military initiatives
– Keynote speech at the Prognostics and Health Management (PHM) 

Center of Excellence advisory board meeting in Dec. 04
– Presentation on DAKOTA and surrogate modeling to the Navy’s 

Modeling and Simulation group (NAVSEA and ONR) in April



Service

• Mentoring
– Barron Bichon (Mahadevan’s student in Vanderbilt’s Reliability program) 

• Summer 05: RBDO
– Kay Vugrin (new staff member, Math).  

• Spring/Summer 05: Parameter estimation, covariance of estimators.
– Raisa Slepoy (UNM, Statistics).  

• Summer 04: Sensitivity analysis for JSF SEM model
• Summer 05: Sampling/response surface interactions

– John Eddy(GAs/agents in design).  
• 2004-05: Member of dissertation committee.

– John McFarland (Mahadevan’s student in Vanderbilt’s Reliability 
program)

• Summer 05: Bayesian Belief Networks in calibration, prediction
– Other Interactions

• Gio Kao – C.S. Urbana-Champaign; Pareto optimization
• Dan Briand – Statistics, UNM.  Prognostics; non-uniform time series 

analysis

• Reviewed 7 Papers for AIAA, IEEE, the European Journal of OR, etc.
• Interviewed 8 candidates for 9211, 9133, 9143, and 15243 



Publications

• Penetrator Reliability Investigation and Design Exploration: Low Fidelity Penetrator
Design Studies.  L. P. Swiler, T.G. Trucano, R. Heaphy, M. Chiesa, R. Settgast, P. 
D. Hough, and M. Martinez-Canales.  SAND 2005-XXXX

• Bayesian Approaches to Engineering Design Problems.  L. P. Swiler.  SAND 2005-
3294.

• Error Estimation Approaches for Progressive Response Surfaces.  V.J. Romero, R. 
Slepoy, L.P. Swiler, and A.A. Giunta. Proceedings of the 
AIAA/ASME/ASCE/AHS/ASC 35th Structures, Structural Dynamics, and Materials 
Conference, April 2005. SAND2005-2047C.

• Calibration, Validation, and Sensitivity Analysis:  What’s What.” T.G. Trucano, L.P. 
Swiler, T. Igusa, W.L. Oberkampf, M. Pilch.  Accepted for publication in “Reliability 
Engineering and System Safety” journal.  SAND 2004-6083J.

• Calibration under Uncertainty. L.P. Swiler and T.G. Trucano. SAND 2005-1498 .
• Bayesian Methods in CS&E Models. SAND 2005-0463 C.  Presented at SIAM 

Computational Science and Engineering (CS&E) conference, Orlando FL, 2005.
• Treatment of Model Uncertainty in Model Calibration. L.P. Swiler and T.G. Trucano, 

in ASCE 9th Joint Speciality Conference on Probabilistic Mechanics and Structural 
Reliability Proceedings, PMC 2004.  SAND2004-2317 C 

• Progressive Response Surfaces. V.J. Romero, T. Krishnamurthy, and L.P. Swiler, 
in ASCE 9th Joint Speciality Conference on Probabilistic Mechanics and Structural 
Reliability Proceedings, PMC 2004.

• A User’s Guide to Sandia’s Latin Hypercube Sampling Software:  LHS UNIX 
Library/Standalone Version. L.P. Swiler and G.D. Wyss.  SAND 2004-2439.
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