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Highlights this performance year

• ASC V&V Program
– Epistemic Uncertainty Modeling

• First example of weapons application
– Bayesian approaches to validation
– Verification Milestone for LHS

• PRIDE LDRD 
– Parameter Study Analysis/Surrogate Modeling
– Bayesian approach in multi-fidelity GP analysis
– Robust Design

• DAKOTA Capabilities
– Implemented Dempster-Shafer Theory of Evidence
– Implemented Gaussian Process model within Trust-Region 

Optimization
– Continued support for JEGA, LHS, sampling-based SA, and quasi-

MC methods



ASC V&V Epistemic UQ Application

• SNL has focused much effort on methods to quantify epistemic 
uncertainty

• One method that has emerged as a strong candidate is 
Dempster-Shafer Theory of Evidence

• To date, most of the results presented on Dempster-Shafer have 
been on analytic test problems

• We wanted to test the efficacy and usability of Dempster-Shafer 
on a real application
– Examine computational needs
– Get more insight about how to interpret the results and 

what they buy us over traditional probabilistic analysis
– Investigate potential uses for V&V applications

• This is the first application of evidence theory to a weapons 
application

• I am the PI on this, funded through Marty Pilch
• Work in collaboration with Angel Urbina, Bill Oberkampf, and 

Jon Helton



ASC V&V
Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not know enough to 
specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of knowledge 
uncertainty

• For each uncertain input variable, one specifies “basic probability assignment”

for each potential interval where this variable may exist.
• Intervals may be contiguous, overlapping, or have “gaps”
• In Dempster-Shafer theory, belief is a lower bound on the probability that is 

consistent with the evidence
• Plausibility is the upper bound on the probability that is consistent with the 

evidence

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



ASC V&V
Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, one needs 
to find the maximum and minimum value in that box (by sampling or 
optimization)

• Order these beliefs and plausibility to get CDFs
• Draws on the strengths of DAKOTA

– Requires surrogates
– Requires sampling and/or optimization for calculation of plausibility 

and belief within each interval “cell”
– Easily parallelized
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Million sample points 
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surrogate, used to 
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calculate plausibility and 
belief



ASC V&V Thermal Battery Assembly

Min-K:  Epistemic

Foam: Probabilistic

Thermal Battery 
Assembly (TBA)



Thermal Battery Assembly
Epistemic UQ

• Treated the elastic property of min-K as an epistemic variable  with 3 
intervals:  [3.0, 3.2] (3.2,3.4], and (3.4, 3.5] 

• Treated the foam density as a probabilistic variable 

Min K Foam

Probabilistic
• Used a kernel density estimator 
based on actual data
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Probabilistic
• Used a kernel density estimator 
based on actual data
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Thermal Battery Assembly
CCDFs for Belief and Plausibility



Different Representation of 
the Epistemic Uncertainty

CCDFs for the random realizations of foam, 
conditioned on K
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•Idea is to look at the range of the exceedence probability (CCDF value) 
given the epistemic structure on K
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ASC V&V Epistemic UQ
Thermal Battery Application

• The alternate form of presenting the epistemic results presents 
the belief / plausibility of exceeding the CCDF probability

• Each graph is conditional on ONE particular frequency
• As you move along the response values, the belief/plausibility of 

exceeding the CCDF values decrease
• If the effect of the foam variability were larger, we would see 

more granularity in the belief and plausibility curves
• The differences in min-k variation > the differences in the foam 

variation:  this analysis provided valuable sensitivity information 
• Presentation and interpretation of epistemic uncertainty results

is challenging
• This type of analysis can be used for decision support
• IMPACT:  First application of a weapon system application of 

evidence theory, identified computational issues with Dempster-
Shafer implementation, identified interpretation issues with 
presentation of results



PRIDE LDRD
Penetrator Reliability Investigation and Design Exploration

• How can we efficiently optimize an earth penetrator weapon design 
given the uncertainties in delivery conditions, target geology and model 
parameters?

• Develop and implement new optimization under uncertainty (OUU) 
methods using surrogate models in a multi-fidelity hierarchy to enable 
credible and reliable penetrator design modeling. 

• Surrogate is a Gaussian Process
– Idea of spatial covariance
– Bayesian updating is done on parameters that govern the 

covariance
– One big advantage is that a GP allows quantification of 

uncertainty in prediction
• This year, my focus is on implementation of a Bayesian multifidelity

Gaussian process in DAKOTA
• I am the technical lead on PRIDE
• IMPACT:  Develop methods that can be applied to other design 

problems (i.e., MEMS)



• Optimization Problem:  
Maximize depth of 
penetration while minimizing 
accelerations. 

• Design  Variables: 
L1, L2, L3

• Constraints: 
Upper & lower bounds on 
Weight, R1

• Uncertainties: 
AoA=Angle of attack
IV =Impact velocity

OS=Offset
CR=Cavity radius
TS=Target strength

Right: Parameterized 
FEM.
Low-fidelity model, 4000 
Elements L2

R1

L1

L3

Low-Fidelity Penetrator Model

Below: Low-fidelity 
simulation, using Presto, 
showing progress through 
penetration shaft created 
by shape charge.



Gaussian Process Status
• GaussProcApproximation class has been added as a derived 

Approximation class type in the DAKOTA hierarchy
• This lets us use the surrogate framework
• Trust region surrogate framework with the GP approximation is 

working 
• Optimization of the maximum likelihood function to obtain covariance 

parameters is working, using Opt++
• Worked with Patty Hough to define the optimization of the covariance 

parameters.  Currently, we perform this optimization once per trust 
region

• Performance of GP is comparable to neural nets, kriging
• Next step is implementing a two-level Bayesian autoregressive model:  

– fH(x) = fL(x) + δ(x) 
• Also will implement the maximization of an “expected improvement”

function, where the objective is a weighting of the performance 
measure plus an estimate of prediction variance obtained by the GP 
prediction

• The goal is to look in parts of the space which have few samples and 
thus high prediction variance



DAKOTA UQ Summary

• We need to improve the UQ capabilities within DAKOTA to address 
user needs:
– Multi-fidelity approaches

• Multi-level Gaussian Process model within Trust-Region Optimization

– Epistemic uncertainty representation
• Implementation of Dempster-Shafer Evidence Theory

– More sophisticated methods such as surrogate representations of UQ
– Help users meet their ASC V&V Milestones

• Future Development Focus
– Incremental LHS
– Importance Sampling
– Efficient Sensitivity Analysis Methods
– Bayesian Methods
– Evidence Theory

Reduce function evaluations

Epistemic uncertainty



UQ Needs for the next 5 years

• MOTIVATION:
– Improving the credibility of predictive simulations

• ASC
– Must be able to use simulation tools to quantify margins under 

uncertainty (QMU)
– Must be willing to state confidence in predictions given by a 

simulation

• Driving Applications
– Stockpile Life Extension programs
– Reliable Replacement Warhead RRW
– MEMS
– Nanotechnology
– Homeland security

• Some of these applications have huge uncertainties.  Many existing 
methods only handle small uncertainties (e.g., 5 or 10% of mean value)



UQ Needs for the next 5 years
• Quantify "extrapolative" confidence

– Requires the use of response surface methods which handle uncertainty
• Sampling for stochastic processes

– Sampling of random fields (in space and/or time, possibly non-stationary 
and non-Gaussian), not just random variables. 

• Intrinsic / Analytic UQ capability 
– Expand the role of expansion methods such as Polynomial chaos
– Many issues remain about the set of points on which to construct the 

basis for different distribution types, the type of integration method, etc.
• Efficient (e.g. surrogate) methods for higher order moments and tail statistics

– Better quantification of surrogate accuracy
• Adaptive Experimental Design

– Importance Sampling, Adaptive OAs
• Efficient sensitivity analysis
• Epistemic UQ

– Capability to combine aleatory and epistemic uncertainty in one analysis
• UQ treatment in multi-fidelity and/or hierarchical models

– Efficiency issue
– More important, dealing with uncertainty at different time or length scales 

across simulations



Service

• Mentoring
– John McFarland (Mahadevan’s student in Vanderbilt’s Reliability program)

• Summer 05 and 06: Bayesian Belief Networks in calibration, prediction 
– Kay Vugrin (new staff member, Math).  

• Summer/Fall 05: Parameter estimation, covariance of estimators.
– Raisa Slepoy (UNM, Statistics).  

• Summer 05: Sampling/response surface interactions
– John Eddy (GAs/agents in multiobjective design).  

• 2004-05: Member of dissertation committee.  Successful defense Dec. 2005.
• Now a member of Dept. 6642.

– Brian Adams
• New dept. member interested in nondeterministic methods, parameter est.

– Dan Briand
• Statistics, UNM.  Prognostics; non-uniform time series analysis

– Gio Kao (UIUC Computer Science)
• Efficient heuristics for pruning large combinatorial problems, Pareto optimization

• Reviewed 7 Papers for AIAA, IEEE, the European Journal of OR, etc.
• Interviewed 4 candidates for 1415 and 6642



Leadership

• SAMSI: NSF Statistical and Applied Mathematical Sciences 
Institute
– 06-07 Program on Assessment and Utilization of Complex 

Computer Models
– Engineering Model Subgroup
– I am the technical lead from Sandia
– Topics include model calibration, validation, extrapolation, 

model hierarchies, DACE
• Leadership roles in ASC V&V community and UQ

– Technical lead on PRIDE
– Active participant in V&V working group, Challenge Problem 

Workshop
– Member of the LANL-SNL Epistemic Uncertainty Working 

Group
– Helping to define V&V Center of Excellence, UQ role for next 5 

years



Publications

• Validation of the Thermal Challenge Problem using Bayesian Belief Networks. J. McFarland and 
L. P. Swiler.  SAND2005-5980.

• Bayesian Approaches to Engineering Design Problems.  L. P. Swiler.  SAND 2005-3294.
• Conference Region Estimation Techniques for Nonlinear Regression: Three Case Studies.  K. 

W. Vugrin, L. P. Swiler, R. M. Roberts, N. Stuckey-Mack, and  S.P. Sullivan.
• Error Estimation Approaches for Progressive Response Surfaces. V.J. Romero, R. Slepoy, L.P. 

Swiler, A.A. Giunta, and T. Krishnamurthy.  Proceedings of the Society of Experimental 
Mechanics IMAC Conference, January 2006.  SAND 2005-7760C.

• Gaussian Process in Response Surface Modeling. L.P. Swiler. Proceedings of the Society of 
Experimental Mechanics IMAC Conference, January 2006.   SAND 2005-6892C.

• Response Surface (Meta-Model) Methods and Applications.  B. M. Rutherford, L.P. Swiler, T. L. 
Paez, and A. Urbina. Proceedings of the Society of Experimental Mechanics IMAC Conference, 
January 2006. 

• Evaluation of Sampling Methods in Constructing Response Surface Approximations 1st AIAA 
Non-Deterministic Approaches Conference (part of 47th AIAA/ASME/ASCE/AHS/ASC SDM 
conf) SAND2005-5283C.

• DAKOTA/LHS Verification for ASC Level 2 Milestone Review Jan. 2006.

• PATENT AWARD:  Patent 7013395, Method and Tool for Network Vulnerability 
Analysis
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