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Abstract 
A clustering and ordination algorithm suitable for mining 
extremely large databases, including those produced by 
microarray expression studies, is described and analyzed 
for stability. Data from a yeast cell cycle experiment with 
6000 genes and 18 experimental measurements per gene are 
used to test this algorithm under practical conditions. The 
process of assigning database objects to an X,Y coordinate, 
ordination, is shown to be stable with respect to random 
starting conditions, and with respect to minor perturbations 
in the starting similarity estimates. Careful analysis of the 
way clusters typically co-locate, versus the occasional large 
displacements under different starting conditions are shown 
to be useful in interpreting the data. This extra stability 
information is lost when only a single cluster is reported, 
which is currently the accepted practice. However, it is 
believed that the approaches presented here should become 
a standard part of best practices in analyzing computer 
clustering of large data collections. 

 

1  Introduction.... 

We are interested in finding unexpected relationships in 
extremely large collections of experimental data. 
Unfortunately, it is too easy to see illusory patterns. Our 
minds are constructed to find patterns, and will do so even 
when we know that the perceived patterns are no more than 
random artifacts. The patterns we are interested in finding 
must, therefore, stand some test that shows they would 
necessarily reoccur if we started with another, similar 
dataset, or, perhaps, data randomly perturbed by the addition 
of slight amounts of noise. We use computers to look 
through these large datasets, so it is essential that we have 
confidence that our computational tools are reliable, 
especially since, in our case, they make use of random 
numbers. We want to know that the results are insensitive to 
the particulars of the tool’s internal stochastic processes; 
that is, we want to know that the tool we are using is stable 
from use to use. Of course, we want these tools to be 
practical, to be useful to practicing scientists, who want to 
know that the patterns are real and that they potentially 
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point at some physical fact or important process in the 
world. 

Several centuries of practicing the Scientific Method 
have shown that this last question can only be answered by 
carefully controlled experiments. Here, we must leave the 
testing and interpretation of relationships uncovered by our 
tools to the experimentalists. Our intent is, instead, to 
address the process of uncovering potentially important 
patterns, and the investigation of the reliability of the 
process itself, and the sensitivity of the process to slight 
variations in the starting data. We will report on various 
computational investigations into the reliability and 
sensitivity of one particular data mining tool, VxInsight®1 
used with a medium sized microarray dataset2.  

VxInsight® uses a terrain metaphor3 to describe large 
collections of data, summarizing clusters of similar elements 
by placing them physically close to each other in the terrain. 
The 2-dimensional clusters are visualized as mountains and 
hills separated by valleys and open spaces. The heights of 
the mountains indicate the number of elements clustered 
together under each mountain. The local groupings and 
separations between mountains also carry information about 
the inter-cluster similarities. The data elements in widely 
separated mountains will have less similarity than those in 
neighboring mountains. 

 

 
Figure 1: Continuous-level relationships within VxInsight. 

 
Unlike self-organizing maps4, k-means5, or York’s “Fast 

Divisive Clustering”6,7, our approach requires no a priori 
guess at how many clusters should be created. Further, the 



terrain-like presentation of clusters conveys more 
information than a technique that merely lists data elements 
assigned to clusters. The local structure under a mountain 
reveals finer and finer relationships, which are visible as one 
zooms into the representation of the terrain (Figure 1). The 
data objects are not explicitly members in a particular 
cluster or hierarchy. The positions of the objects are 
determined through the energy minimization of a connected 
graph in 2-dimensional space. The assignment of X, Y 
coordinates to each data element, is a process we call 
‘ordination’.  

The stability of our ordination process is the main subject 
of this paper. Briefly, we report on the stability 
characteristics of the stochastic elements of our force-
directed ordination algorithm. These characteristics were 
studied in a series of experiments that re-ordinated the same 
dataset with different random starting conditions and 
compared (both visually and statistically) the results. As 
described in the Results and Discussion section, the 
ordination algorithm exhibits predictable, understandable 
behavior. 

Having determined that the tool was acceptably stable, 
we investigated the impact of adding noise to the similarity 
relationships, which are the input to the ordination process. 
As expected, with real data, certain clusters are more 
robustly stable than others. Importantly, some clusters retain 
not only the same memberships, but remain physically close 
to each other in the terrain map. Other clusters make large 
movements that can be understood by examining the strong 
similarity linkages extending between clusters in the map.  

In the Results and Discussion section, we describe how 
this analysis suggests important strategies for testing the 
robustness of clustering algorithms.  

 

2  Methods 
2.1  How a VxInsight® map is generated 

Figure 2 shows the general process through which data 
must pass to produce a VxInsight® map. A typical database, 
represented as a spreadsheet in the figure, would consist of a 
few thousand elements (the rows), with one or more 
attributes arranged as tables (the columns). These must be 
processed to compute similarities for each pair of data 
elements, which are then used to construct an abstract graph. 
In this graph of nodes and arcs, the nodes represent 
individual data elements and the arcs are the similarities 
between the elements. The ordination process assigns to 
each data element an X,Y location on the abstract 
visualization surface. Finally, these coordinates are used to 
generate the mountain terrains.  
 
2.2  Choosing a data set 

For our experiments, we chose a readily available dataset 
http://genomewww.stanford.edu/cellcycle/data/rawdata, a 
spreadsheet with about 6000 data elements (the genes in the 
yeast S. cereviseae). We chose a subset of this dataset, 18 

measurements of the relative activity of those genes as the 
cell grows and divides. These data are sufficiently large that 
they offer opportunities for discovery by data mining 
techniques, and are well beyond the ‘toy’ problems often 
used to test clustering approaches. Further, yeast has been 
well studied and certain genes are known to work together, 
and should cluster together as a simple test of our 
algorithms. Finally, studying this data set allowed the 
possibility of important predictions about the function of 
unstudied genes that clustered near those genes with known 
functions. Importantly, these predictions can be verified by 
examining the literature published since these data were 
initially released; much of which is available online, 
indexed by gene name, see, for example, either 
[http://www.proteome.com or the Stanford site http://genome-
www.stanford.edu/cgi-bin/SGD/search]. 

 

 
Figure 2: Data processed into a VxInsight map. 

 
2.3  Computing the gene similarities 

Each column in the spreadsheet recorded the relative 
brightness of 6000 spots on a single microscope slide. 
Various conditions besides the controlled variables will 
systematically vary these measurements. For example, the 
overall brightness of one slide may vary due to different 
amounts of material in the spots, slightly different 
processing conditions, or differences in scanning the light 
intensity. To compensate for these effects, the 
measurements from each slide (a column in the spread 
sheet) were normalized by subtracting the median value for 
that slide, and then divided by the inter-quartile range (the 
difference between the 75th percentile and the 25th percentile 
brightness value). This robust normalization is less sensitive 
to outliers than normalization by subtracting the average and 
dividing by the standard deviation8. Pearson’s correlation 
coefficient9 was used to compute a similarity between each 
pair of the genes. 
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Genes with no similarity will have a value near 0.0, 
while genes that are strongly similar will have a value near 
1.0. Using the raw correlations unduly weights the low 
similarities and does not adequately represent the 
information content contained in a strong similarity. The 
non-linearity of this information, or rareness, is extreme and 
can change the total range of observed similarity weights by 
orders of magnitude. We created all of the clusters reported 
here using gene pair similarities based on the t-statistic of 

http://genomewww.stanford.edu/cellcycle/data/rawdata
http://genome-www.stanford.edu/cgi-bin/SGD/search
http://genome-www.stanford.edu/cgi-bin/SGD/search


the correlation coefficient, not on the correlation coefficient 
itself: 
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This transformation has logical support, works well in 
practice, and is easy to compute. We feel it should, at least 
for microarray experiments, replace the use of straight 
correlation-based similarities in all clustering analyses. 

For this experiment, the twenty strongest positive 
correlations were recorded for each of the 6000 genes. 
Finally, for each of the 6000 genes, the gene name, the 
name of the gene to which it was correlated and the t-
statistic of the correlation were written to a file to be used 
by the ordination program.  

It is important to use a large number of similarities to 
ensure that the fine structure of the ordination is captured. 
However, we have found that visual inspection of the 
placement of genes with the strongest similarities provides a 
valuable tool for evaluating the quality of the ordinations 
and in understanding their structures. For example, in Figure 
3, the strong links suggest that the red cluster can equally 
well be placed on either side of the ridge (as defined by 
yellow, pink and light blue).  

 

 
Figure 3: Two random runs (left, middle) show the red cluster 
switching positions. The strong links (blue lines) suggest either 
ordination could be acceptable. The third image more clearly 
shows the high density of strong links within the ridge. 

 
Determining an appropriate critical value for identifying 

highly correlated genes is problematic. The common 
practice [Ostel, 1963] for reporting the statistical 
significance of a correlation is to test the hypothesis  

 
Ho: The observed n-sample correlation is consistent with 

observing two processes with a true correlation 0=ρ , 
 

using a t-test with 2−n degrees of freedom and reject the 
hypothesis with some level of confidence α . However, with 
6000 genes we have 18 million pairs of correlations. Even 
using a confidence level of 001.0=α  we would expect some 
36,000 correlations to exceed the critical value by chance 
alone when the true correlation was 0.0.   

To identify the set of highly correlated genes (especially 
when n  is large), a better approach is to do a power 
analysis, which requires the selection of some assumed 
actual correlation, ρ0 , and some acceptable chance of not 
detecting pairs of genes which truly have a correlation of ρ0  

due to variation in the observed values. For instance, we 
selected 9.00 =ρ  as the actual correlation and decided that 
we would not want to miss genes pairs having this sample 
correlation more than one time in twenty (that is 05.0=β ). 

The formula given above for testing Ho is only valid 
when 00 =ρ . When, 00 ≠ρ , an approximation due to 
Fisher10 can be used, which transforms r  into a normally 
distributed Z statistic with mean ρz 0  and variance 
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Hence, the critical value for accepting a pair as being 
strongly correlated, given our specification that we will 
mistakenly reject a correlation as being significant one time 
out of twenty, when the true underlying correlation is 

9.00 =ρ  and when 18=n  is: 
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This critical value corresponds to 0005.0<α . Pairs of 
genes matching this specification were saved for later 
display in VxInsight. 

 
2.4 VxInsight Ordination Routine 

The ordination program determines the spatial location 
for the data objects by considering all of the similarities 
between objects in the entire set. Figure 4 shows that objects 
with many similarity links (edges) are clustered together on 
the map; and objects with little, or no, similarity links are 
separated. 

 
Figure 4:  Layout of a 2000 vertex graph (top), and solutions for 
the well known K5 and Twin K5 (bottom). 

 
An abstract, edge-weighted graph, G = (V, E), is 

generated using a list of nodes and their similarities, where 



the vertices, V, correspond to the data objects, and the 
similarities correspond to the weighted edges, E. An 
extensive literature exists for graph drawing and layout 
algorithms11,12,13,14,15,16,17,18,19. The work of Fruchterman and 
Reingold12 is particularly relevant to our approach.  

In developing and implementing our algorithm we were 
guided by four important principles: 

1. Vertices connected by an edge should be drawn 
near each other. 

2. Non-connected vertices should be forced away 
from each other. 

3. The results should be insensitive to random starting 
conditions. 

4. The complexity of computation should be reduced 
to a minimum. 

These principles are so important that we will address 
each of them in detail. 

 
2.4.1  Principles 1 and 2 

Fruchterman et al. compute a ‘force’ term for both 
attraction and repulsion. These terms are then used to 
generate new positions for the graph vertices. Our algorithm 
combines the attraction and repulsion terms into one 
potential energy equation (Equation 3). The first term, in 
brackets, is due to the attraction between connected vertices; 
the second term is a repulsion term. 
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K i (x,y)  = The energy of a vertex at a specific x, y location 
ni  = The number of edges connected to vertex i 
wi,j  = The edge weight between vertex i and the vertex 

connected   by edge j. 
l2 i,j  = The squared distance between vertex i and the 

vertex at the other end of edge j. 
D x,y  = A force term proportional to the density of vertices 

near x,y. 
 
In our ordinations, Equation 3 is gradually minimized in 

three phases in an iterative fashion. The first phase reduces 
the free energy in the system by expanding vertices toward 
the general area where they will ultimately belong. The next 
phase is similar to the ‘quenching’ step that occurs in 
simulated annealing algorithms, the nodes take smaller and 
smaller random jumps to minimize their energy equations. 
Last is the simmering phase that makes detailed local 
corrections.  

All movements are random; each vertex is allowed to 
‘jump’ from its current position to a new, random location. 
If the move reduces the potential energy for the vertex then 
the vertex is allowed to stay at the new location. Otherwise, 
the vertex remains where it was until the next iteration. 
Other, more complicated techniques, including gradient 
descent and methods with momentum terms, are 
theoretically appealing. However, the energy ‘surface’ for 
thousands of vertices is so chaotic (both spatially and 

temporally), that, in practice, we have found the simpler 
method performs better. Notice that for each vertex only its 
own energy is considered, a characteristic of a ‘greedy’ 
algorithm, which only indirectly leads to a global 
minimization for the entire system. However, the total 
energy of the system, see Equation 4, can still be used as a 
criterion for algorithm termination.  
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The literature11,16,17discusses many other termination 
criteria, some of which do not explicitly follow the total 
energy. Eades11, for example, suggests simply running a 
fixed number of iterations, in their case 100. We have found 
that 800 iterations work well for our more complex graphs. 
We typically deal with graphs having on the order of 10,000 
vertices. The graphs discussed in this paper, which have 
6000 vertices, require 90 seconds to complete 800 iterations 
on a 600MHz Pentium III.  

Clearly, minimizing the potential energy should lead to 
ordinations that are consistent with our first two principles. 
The attraction term rewards movements that minimize the 
edge lengths between strongly weighted vertices. While the 
second term, Dx,y, which is a force based on the local density 
of nearby vertices, is minimized when vertices move to less 
crowded areas. In order to reduce both terms, a vertex must 
be close to its connected vertices and at a distance from non-
connected vertices.  

 
2.4.2  Principle 3 

An ordination process can easily get started in ways that 
prevent smooth transitions to correct answers. That is, the 
algorithm can get trapped in local minima, and is likely to 
be forced toward local minima early in the computation. 
The problem is that an initial configuration can result in 
some vertices that belong near each other being initially 
separated by a large barrier. Various stochastic techniques 
are used to avoid this problem. For instance simulated 
annealing, which involves the probabilistic decision to take 
moves that actually increase the energy associated with the 
node. This technique allows vertices to overcome the 
barriers associated with local minima, in the effort to find 
lower energy states. Upon examination of our energy 
equation it becomes clear that ‘barrier jumping’ can be 
achieved by directly solving for the location that minimizes 
the energy for a single vertex, which can rapidly move a 
node through an energy barrier. We have successfully used 
this analytical approach for avoiding local minima early in 
our algorithm. Achieving a favorable configuration early in 
the process, independent of the starting configuration, is 
essential for efficient ordinations that are consistent with our 
third principle.  

We achieve this result by moving vertices in the 
direction specified by Equation 3 most of the time. 
However, to jump over energy barriers a small fraction of 
the vertices ignore the repulsion term and minimize the 



attraction term analytically. This is accomplished by 
computing a weighted centriod over all connected vertices. 
The vertex then ‘jumps’ to that computed centroid, 
regardless of any possible energy increase, as shown in 
Figure 5. 

 
Figure 5: Barrier jumping by ignoring density term. 

 

 
Figure 6: Two random runs with and without barrier jumping. 
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Figure 7: These histograms demonstrate that without barrier 
jumping local neighborhoods are severely distorted. 

 
Barrier jumping is tied to the cooling schedule, and the 

frequency of barrier jumping linearly declines from 25% to 
10% during the ‘quenching’ period and is not used at all 

during the simmer phase. The high frequency at the 
beginning is required for stability with respect to random 
initial conditions. The poor initial placement or initial bad 
jumps that would otherwise irrevocably change the outcome 
of a purely random algorithm are greatly mitigated by the 
correcting nature of this process. Figure 6 shows images 
from two pair of random runs. Ordinations in the first row 
use barrier jumping, ordinations in the second row do not. 
We can see the excellent repeatability achieved by using the 
barrier jump technique. The second row shows that the 6000 
vertices become hopelessly trapped in a web of local 
minima. The histograms in Figure 7 provide further support 
that barrier jumping improves the repeatability of the 
random iterative solver. For the histograms in this paper we 
wanted to measure the stability of the ordination algorithms 
by counting the number of identical ‘neighbors’ within a 
small population of the map (1%). The maps contain 6000 
genes so for every gene, we measured how many of the 60 
nearest genes remained the same between runs.   
  
2.4.3  Principle 4  

The brute force approach for computing Dx,y is certainly 
not consistent with our fourth principle. Because each vertex 
would have to check its position against all other vertices, 
this unsophisticated approach would take |V| comparisons 
for each determination of Dx,y. As every node must compute 
Dx,y when determining its energy at a specific location x,y, 
the algorithm would require total running time Θ(|V|2). 

For real world problems an Θ(|V|2) algorithm is 
prohibitively expensive. We have developed a grid-based 
method for computing Dx,y that allows each vertex to 
determine an approximate value for this term in constant 
time, Θ(1), thereby reducing the total running time to a 
satisfactory Θ(|V|).  

The grid-variant algorithm discussed by Fruchterman8 
uses a binning technique to consider only those vertices 
within a certain neighborhood. An approach that, with a 
uniform distribution of the vertices, will reduce the 
calculation to Θ(|V|). However, a graph will only have a 
uniform distribution if the number of edges is small. Highly 
connected graphs will have dense concentrations of vertices 
in small areas, and the run time is no longer linear with the 
number of vertices. To be effective for all graphs, our 
repulsion term utilizes a ‘non-specific’ density measure. 
Vertices are not repulsed by other specific vertices, but are 
repulsed by a general overcrowding. This minor 
modification to the repulsion criteria allows a dramatic 
reduction in computational complexity. 

This density field algorithm is implemented by having 
each node place an energy footprint onto a two dimensional 
(density field) array. The energy footprint may be any 
function in two-space. Our implementation uses a circle 
with radius r and a function that peaks at the center of the 
circle, while falling off quadratically with increasing 
distance from the center of the circle. The total density field 
is the sum of the contributions of each vertex in the region. 



Given the density field, a node can determine an 
approximate Dx,y  value using a constant time table lookup 
method. This method reduces the computation of the 
repulsion term from Θ(|V|2) to Θ(|V|), and is consistent with 
our fourth principle, an important result for using our 
algorithms with real applications. 

 
2.5  The computational experiments  

To test the stability of the algorithm to random starting 
points, we ran 100 re-ordinations with different seeds; 
visually marked the elements of a cluster in one ordination 
and looked to see if they were visually still clustered 
together in the other ordinations. We then computed the 
neighborhood statistics as described below. 

To determine if small changes or noise in the similarities 
would give small changes in the ordination results we ran 
eighty re-ordinations where we added noise drawn from a 
gaussian distribution with mean zero, and standard 
deviations 0.001, 0.010, 0.050, and 0.100, and recomputed 
the ordinations (these noisy correlations were clipped to 
remain in the valid range of the correlation coefficient [-1.0, 
+1.0]. These different ordinations were compared, visually 
and statistically. 

 
2.6  Evaluation methods 

We compared the various ordinations using a 
neighborhood analysis. When two ordinations are very 
similar it is reasonable to expect that for every gene, the set 
of its nearest, say 60, genes would be almost identical in 
both ordinations. In fact, we would expect the same thing 
for every gene in the entire ordination. On the other hand, if 
the ordinations have almost nothing in common, it should be 
rare to observe a gene that had the same neighbors in both 
ordinations. We computed these neighborhood statistics for 
each gene, in each of the two ordinations. For each gene, we 
first identified the 60 nearest genes, and then counted of the 
number of genes in both neighborhoods. This number was 
used to increment the value in a table, so that in the end, we 
had a histogram showing how many genes had no common 
neighbors in the two ordinations, how many had one 
common neighbor, etc., up to the number of genes with 
exactly the same 60 neighbors in both ordinations, and 
histograms were prepared, as shown in Figure 8. 
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Figure 8: Distribution of neighbors between ordinations with 
random starting conditions, 20 replicates. 

We then visually compared the results of the two 
ordinations by coloring all of the genes in a cluster found in 
the first ordination and seeing where those colored genes 
were placed in the other ordination (so that a similar 
ordination would not break up the group of colored genes, 
but would still have them co-located; see Figures 9 and 10). 

 

 
Figure 9: Ordinations with different random starting conditions. 
 

 
Figure 10: Demonstrates the affect of increasing edge noise on 
cluster stability. 
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Figures 11: Histogram of neighborhood stability with added 
noise (std .001). 
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Figure 12: Histogram of neighborhood stability with added 
noise (std .010). 
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Figure 13: Histogram of neighborhood stability with added 
noise (std .050). 

Neighbor Stability with Added Noise (std .100)

0
5000
10000
15000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

 
Figure 14: Histogram of neighborhood stability with added 
noise (std .100). 

3 Results and Discussion 
The computational experiments revealed two types of 

information. First, we discovered that large-scale structures 
were often very robust to starting with different initial 
conditions. Second, where there were differences, the 
insights about why the cluster positions changed were as 
interesting as the fact that they did change. We present two 
measures of the stability of these structures: a visual 
interpretation, and the results of our neighborhood analysis. 
The visual interpretations are striking in their clarity, but are 
also supported by the numerical results shown in the 
histograms. 

The histogram numbers can be interpreted as data drawn 
from a binomial distribution. For example, if the two 
ordinations were totally random, then the neighbors of a 
gene in the second ordination would be randomly drawn 
from all the rest of the genes. Given that we had about 6000 
genes, and used a neighborhood size of 60, about 1% of the 
total genes, the probability of exactly k neighbors in the 
intersection would be  
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When the size of the neighborhood is 1% of the total 
number of genes the expected frequency for observing 0 
neighbors is about 0.547; the expected frequency for 
observing 1 neighbor is about 0.332; and the frequency for 
two neighbors is about 0.099, which leaves the expected 
frequency for observing three or more neighbors in common 
to be only 0.022. For 6000 genes, only 132 genes would be 
expected to have more than two neighbors in common 
between two random ordinations, which is more while 
several thousand are actually observed. Hence, the 
histograms and the visual comparisons show that the 
differences between pairs of our ordinations are very far 
from being random.  

Figure 8 shows six typical ordinations from different 
starting conditions. Groups in the first ordination were 
outlined by hand and colored. These same genes were 
followed in the other ordinations to observe how their 
relative positions changed. Two striking patterns emerged. 
In one case the clusters were almost identical to the initial 
cluster despite different random seeds. In the second case 
the resulting clusters are a mirror image of the initial 
clusters. This mirroring is very reasonable, as there is no 
reason to expect any preferred natural placement as long as 
the relative distances are preserved, so rotations and 
reflections should be, and were observed. The histograms 
showed good neighborhood agreements between mirrored 
images.  

Closer attention to the structures does reveal a few large 
changes, for example in Figure 8, where we note that the red 
cluster has flipped from the inside to an outside 
configuration. This red cluster has a few strong similarity 
links tying it to the ridge as shown in Figure 3. As a result, it 
can easily be mirrored with respect to the ridge. Note that 
the neighborhood analysis would only detect a few 
differences along the frontiers of the two clusters.  As 
expected, the histograms show very little difference between 
the two ordinations with respect to the neighborhood 
analysis.  The most encouraging fact is that most groups not 
only maintain their relative positions given different starting 
conditions, but that they maintain similar cluster shapes as 
well, which indicates good interior agreement, which is, 
again, supported by the histograms. These results indicate 
that the ordination tool has robust stability when presented 
with the same dataset. With that information in hand, we 
began the investigation of how small changes in the 
similarity data effected the clustering. 

Ideally, one would want an ordination algorithm that 
responded to slight changes in the similarities by producing 
slight changes in the ordination and that, in some way, 
moved smoothly from well ordered groupings to totally 
unordered, high entropy groupings as the similarities are 
mixed with more and more noise. Figure 10 shows a starting 
cluster based on the actual similarities, together with four 



cases where increasing amounts of noise were added to the 
correlations. Figures 11-14 are the corresponding 
histograms, reflecting the changes associated with the 
increasing noise. Note that several large structures remain 
intact as noise is added, but that some, for example the 
purple and brown clusters become more disordered. They 
essentially melt with increasing noise. Also, note the red and 
green clusters are apparently more resistant to noise. This 
melting metaphor is particularly appropriate, because it 
reflects the internal order that must be ‘randomized’ or 
melted before the cluster can begin to break apart.  

Mixing increasing amounts of noise with the similarities 
allows one to quickly see which clusters are more likely to 
be an artifact; these are the clusters that melt out with the 
smallest amount of noise. This information is so easy to 
obtain that we believe it should be part of every analysis 
based on clustering.  

4  Conclusion 
Understanding, and using stability has been the important 
theme presented here. In particular, it is important: (1) to 
make sure the clustering tools are stable with respect to 
random starting conditions, (2) to ensure that the range for 
the possible numbers of clusters is adequately covered 
(either by systematically searching through a large range of 
choices, or by using a tool that does not require a priori 
determinations of the number of clusters), and (3) to use the 
clustering tool’s response to the gradual addition of noise to 
gain insight into the actual strength of the clusters.  

 The two important analysis strategies presented here 
are: (1) use a probability weighted transformation of the 
correlation coefficients for the similarities, and (2) compute 
a small series of clusters with similarities mixed with 
increasing noise. The first strategy leads to better separation 
of clusters, and the second gives insight into the strength of 
individual clusters. We also showed a helpful visual way to 
track the results of alternate clusters by coloring the genes in 
a base ordination and following the relative movements of 
those colored genes in other ordinations. Finally, we 
suggested a statistical metric based on the intersections of 
local neighbors of genes under different clusterings.  
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