
Cluster Stability and the Use of Noise in Interpretation of Clustering

George S. Davidson, Brian N. Wylie, Kevin W. Boyack
Sandia National Laboratories∗

[gsdavid,bnwylie,kboyack]@sandia.gov

Abstract
A clustering and ordination algorithm suitable for mining
extremely large databases, including those produced by
microarray expression studies, is described and analyzed
for stability. Data from a yeast cell cycle experiment with
6000 genes and 18 experimental measurements per gene are
used to test this algorithm under practical conditions. The
process of assigning database objects to an X,Y coordinate,
ordination, is shown to be stable with respect to random
starting conditions, and with respect to minor perturbations
in the starting similarity estimates. Careful analysis of the
way clusters typically co-locate, versus the occasional large
displacements under different starting conditions are shown
to be useful in interpreting the data. This extra stability
information is lost when only a single cluster is reported,
which is currently the accepted practice. However, it is
believed that the approaches presented here should become
a standard part of best practices in analyzing computer
clustering of large data collections.

1 Introduction....

We are interested in finding unexpected relationships in
extremely large collections of experimental data.
Unfortunately, it is too easy to see illusory patterns. Our
minds are constructed to find patterns, and will do so even
when we know that the perceived patterns are no more than
random artifacts. The patterns we are interested in finding
must, therefore, stand some test that shows they would
necessarily reoccur if we started with another, similar
dataset, or, perhaps, data randomly perturbed by the addition
of slight amounts of noise. We use computers to look
through these large datasets, so it is essential that we have
confidence that our computational tools are reliable,
especially since, in our case, they make use of random
numbers. We want to know that the results are insensitive to
the particulars of the tool’s internal stochastic processes;
that is, we want to know that the tool we are using is stable
from use to use. Of course, we want these tools to be
practical, to be useful to practicing scientists, who want to
know that the patterns are real and that they potentially

.*Sandia is a multi-program laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94Al85000.

point at some physical fact or important process in the
world.

Several centuries of practicing the Scientific Method
have shown that this last question can only be answered by
carefully controlled experiments. Here, we must leave the
testing and interpretation of relationships uncovered by our
tools to the experimentalists. Our intent is, instead, to
address the process of uncovering potentially important
patterns, and the investigation of the reliability of the
process itself, and the sensitivity of the process to slight
variations in the starting data. We will report on various
computational investigations into the reliability and
sensitivity of one particular data mining tool, VxInsight®1
used with a medium sized microarray dataset2.

VxInsight® uses a terrain metaphor3 to describe large
collections of data, summarizing clusters of similar elements
by placing them physically close to each other in the terrain.
The 2-dimensional clusters are visualized as mountains and
hills separated by valleys and open spaces. The heights of
the mountains indicate the number of elements clustered
together under each mountain. The local groupings and
separations between mountains also carry information about
the inter-cluster similarities. The data elements in widely
separated mountains will have less similarity than those in
neighboring mountains.

Figure 1: Continuous-level relationships within VxInsight.

Unlike self-organizing maps4, k-means5, or York’s “Fast

Divisive Clustering”6,7, our approach requires no a priori
guess at how many clusters should be created. Further, the

terrain-like presentation of clusters conveys more
information than a technique that merely lists data elements
assigned to clusters. The local structure under a mountain
reveals finer and finer relationships, which are visible as one
zooms into the representation of the terrain (Figure 1). The
data objects are not explicitly members in a particular
cluster or hierarchy. The positions of the objects are
determined through the energy minimization of a connected
graph in 2-dimensional space. The assignment of X, Y
coordinates to each data element, is a process we call
‘ordination’.

The stability of our ordination process is the main subject
of this paper. Briefly, we report on the stability
characteristics of the stochastic elements of our force-
directed ordination algorithm. These characteristics were
studied in a series of experiments that re-ordinated the same
dataset with different random starting conditions and
compared (both visually and statistically) the results. As
described in the Results and Discussion section, the
ordination algorithm exhibits predictable, understandable
behavior.

Having determined that the tool was acceptably stable,
we investigated the impact of adding noise to the similarity
relationships, which are the input to the ordination process.
As expected, with real data, certain clusters are more
robustly stable than others. Importantly, some clusters retain
not only the same memberships, but remain physically close
to each other in the terrain map. Other clusters make large
movements that can be understood by examining the strong
similarity linkages extending between clusters in the map.

In the Results and Discussion section, we describe how
this analysis suggests important strategies for testing the
robustness of clustering algorithms.

2 Methods
2.1 How a VxInsight® map is generated

Figure 2 shows the general process through which data
must pass to produce a VxInsight® map. A typical database,
represented as a spreadsheet in the figure, would consist of a
few thousand elements (the rows), with one or more
attributes arranged as tables (the columns). These must be
processed to compute similarities for each pair of data
elements, which are then used to construct an abstract graph.
In this graph of nodes and arcs, the nodes represent
individual data elements and the arcs are the similarities
between the elements. The ordination process assigns to
each data element an X,Y location on the abstract
visualization surface. Finally, these coordinates are used to
generate the mountain terrains.

2.2 Choosing a data set

For our experiments, we chose a readily available dataset
http://genomewww.stanford.edu/cellcycle/data/rawdata, a
spreadsheet with about 6000 data elements (the genes in the
yeast S. cereviseae). We chose a subset of this dataset, 18

measurements of the relative activity of those genes as the
cell grows and divides. These data are sufficiently large that
they offer opportunities for discovery by data mining
techniques, and are well beyond the ‘toy’ problems often
used to test clustering approaches. Further, yeast has been
well studied and certain genes are known to work together,
and should cluster together as a simple test of our
algorithms. Finally, studying this data set allowed the
possibility of important predictions about the function of
unstudied genes that clustered near those genes with known
functions. Importantly, these predictions can be verified by
examining the literature published since these data were
initially released; much of which is available online,
indexed by gene name, see, for example, either
[http://www.proteome.com or the Stanford site http://genome-
www.stanford.edu/cgi-bin/SGD/search].

Figure 2: Data processed into a VxInsight map.

2.3 Computing the gene similarities

Each column in the spreadsheet recorded the relative
brightness of 6000 spots on a single microscope slide.
Various conditions besides the controlled variables will
systematically vary these measurements. For example, the
overall brightness of one slide may vary due to different
amounts of material in the spots, slightly different
processing conditions, or differences in scanning the light
intensity. To compensate for these effects, the
measurements from each slide (a column in the spread
sheet) were normalized by subtracting the median value for
that slide, and then divided by the inter-quartile range (the
difference between the 75th percentile and the 25th percentile
brightness value). This robust normalization is less sensitive
to outliers than normalization by subtracting the average and
dividing by the standard deviation8. Pearson’s correlation
coefficient9 was used to compute a similarity between each
pair of the genes.

∑ ∑

∑

= =

=

−−

−−

=
n

i

n

i
ii

n

i
ii

YYXX

YYXX
r

1 1

22

1

))

))(

((

((1)

Genes with no similarity will have a value near 0.0,
while genes that are strongly similar will have a value near
1.0. Using the raw correlations unduly weights the low
similarities and does not adequately represent the
information content contained in a strong similarity. The
non-linearity of this information, or rareness, is extreme and
can change the total range of observed similarity weights by
orders of magnitude. We created all of the clusters reported
here using gene pair similarities based on the t-statistic of

http://genomewww.stanford.edu/cellcycle/data/rawdata
http://genome-www.stanford.edu/cgi-bin/SGD/search
http://genome-www.stanford.edu/cgi-bin/SGD/search

the correlation coefficient, not on the correlation coefficient
itself:

21
2

r
nrt
−

−= . (2)

This transformation has logical support, works well in
practice, and is easy to compute. We feel it should, at least
for microarray experiments, replace the use of straight
correlation-based similarities in all clustering analyses.

For this experiment, the twenty strongest positive
correlations were recorded for each of the 6000 genes.
Finally, for each of the 6000 genes, the gene name, the
name of the gene to which it was correlated and the t-
statistic of the correlation were written to a file to be used
by the ordination program.

It is important to use a large number of similarities to
ensure that the fine structure of the ordination is captured.
However, we have found that visual inspection of the
placement of genes with the strongest similarities provides a
valuable tool for evaluating the quality of the ordinations
and in understanding their structures. For example, in Figure
3, the strong links suggest that the red cluster can equally
well be placed on either side of the ridge (as defined by
yellow, pink and light blue).

Figure 3: Two random runs (left, middle) show the red cluster
switching positions. The strong links (blue lines) suggest either
ordination could be acceptable. The third image more clearly
shows the high density of strong links within the ridge.

Determining an appropriate critical value for identifying

highly correlated genes is problematic. The common
practice [Ostel, 1963] for reporting the statistical
significance of a correlation is to test the hypothesis

Ho: The observed n-sample correlation is consistent with

observing two processes with a true correlation 0=ρ ,

using a t-test with 2−n degrees of freedom and reject the
hypothesis with some level of confidence α . However, with
6000 genes we have 18 million pairs of correlations. Even
using a confidence level of 001.0=α we would expect some
36,000 correlations to exceed the critical value by chance
alone when the true correlation was 0.0.

To identify the set of highly correlated genes (especially
when n is large), a better approach is to do a power
analysis, which requires the selection of some assumed
actual correlation, ρ0 , and some acceptable chance of not
detecting pairs of genes which truly have a correlation of ρ0

due to variation in the observed values. For instance, we
selected 9.00 =ρ as the actual correlation and decided that
we would not want to miss genes pairs having this sample
correlation more than one time in twenty (that is 05.0=β).

The formula given above for testing Ho is only valid
when 00 =ρ . When, 00 ≠ρ , an approximation due to
Fisher10 can be used, which transforms r into a normally
distributed Z statistic with mean ρz 0 and variance

3
12
−

=
n

σ

r
r

rz −
+= 1

1
2
1 ln . (5)

Hence, the critical value for accepting a pair as being
strongly correlated, given our specification that we will
mistakenly reject a correlation as being significant one time
out of twenty, when the true underlying correlation is

9.00 =ρ and when 18=n is:

64.1
ln

3
1

9.01
9.01

2
1

−≥
−

−

−
+

n

rz
, or when 78.0≥r . (6)

This critical value corresponds to 0005.0<α . Pairs of
genes matching this specification were saved for later
display in VxInsight.

2.4 VxInsight Ordination Routine

The ordination program determines the spatial location
for the data objects by considering all of the similarities
between objects in the entire set. Figure 4 shows that objects
with many similarity links (edges) are clustered together on
the map; and objects with little, or no, similarity links are
separated.

Figure 4: Layout of a 2000 vertex graph (top), and solutions for
the well known K5 and Twin K5 (bottom).

An abstract, edge-weighted graph, G = (V, E), is

generated using a list of nodes and their similarities, where

the vertices, V, correspond to the data objects, and the
similarities correspond to the weighted edges, E. An
extensive literature exists for graph drawing and layout
algorithms11,12,13,14,15,16,17,18,19. The work of Fruchterman and
Reingold12 is particularly relevant to our approach.

In developing and implementing our algorithm we were
guided by four important principles:

1. Vertices connected by an edge should be drawn
near each other.

2. Non-connected vertices should be forced away
from each other.

3. The results should be insensitive to random starting
conditions.

4. The complexity of computation should be reduced
to a minimum.

These principles are so important that we will address
each of them in detail.

2.4.1 Principles 1 and 2

Fruchterman et al. compute a ‘force’ term for both
attraction and repulsion. These terms are then used to
generate new positions for the graph vertices. Our algorithm
combines the attraction and repulsion terms into one
potential energy equation (Equation 3). The first term, in
brackets, is due to the attraction between connected vertices;
the second term is a repulsion term.

() () yx

n

j
jijiyxi DlwK

i

,
1

2
,,, +







×= ∑

=
 (3)

K i (x,y) = The energy of a vertex at a specific x, y location
ni = The number of edges connected to vertex i
wi,j = The edge weight between vertex i and the vertex

connected by edge j.
l2 i,j = The squared distance between vertex i and the

vertex at the other end of edge j.
D x,y = A force term proportional to the density of vertices

near x,y.

In our ordinations, Equation 3 is gradually minimized in

three phases in an iterative fashion. The first phase reduces
the free energy in the system by expanding vertices toward
the general area where they will ultimately belong. The next
phase is similar to the ‘quenching’ step that occurs in
simulated annealing algorithms, the nodes take smaller and
smaller random jumps to minimize their energy equations.
Last is the simmering phase that makes detailed local
corrections.

All movements are random; each vertex is allowed to
‘jump’ from its current position to a new, random location.
If the move reduces the potential energy for the vertex then
the vertex is allowed to stay at the new location. Otherwise,
the vertex remains where it was until the next iteration.
Other, more complicated techniques, including gradient
descent and methods with momentum terms, are
theoretically appealing. However, the energy ‘surface’ for
thousands of vertices is so chaotic (both spatially and

temporally), that, in practice, we have found the simpler
method performs better. Notice that for each vertex only its
own energy is considered, a characteristic of a ‘greedy’
algorithm, which only indirectly leads to a global
minimization for the entire system. However, the total
energy of the system, see Equation 4, can still be used as a
criterion for algorithm termination.

∑
=

==
V

i
iKGyTotalEnergEVG

1

)(:),((4)

The literature11,16,17discusses many other termination
criteria, some of which do not explicitly follow the total
energy. Eades11, for example, suggests simply running a
fixed number of iterations, in their case 100. We have found
that 800 iterations work well for our more complex graphs.
We typically deal with graphs having on the order of 10,000
vertices. The graphs discussed in this paper, which have
6000 vertices, require 90 seconds to complete 800 iterations
on a 600MHz Pentium III.

Clearly, minimizing the potential energy should lead to
ordinations that are consistent with our first two principles.
The attraction term rewards movements that minimize the
edge lengths between strongly weighted vertices. While the
second term, Dx,y, which is a force based on the local density
of nearby vertices, is minimized when vertices move to less
crowded areas. In order to reduce both terms, a vertex must
be close to its connected vertices and at a distance from non-
connected vertices.

2.4.2 Principle 3

An ordination process can easily get started in ways that
prevent smooth transitions to correct answers. That is, the
algorithm can get trapped in local minima, and is likely to
be forced toward local minima early in the computation.
The problem is that an initial configuration can result in
some vertices that belong near each other being initially
separated by a large barrier. Various stochastic techniques
are used to avoid this problem. For instance simulated
annealing, which involves the probabilistic decision to take
moves that actually increase the energy associated with the
node. This technique allows vertices to overcome the
barriers associated with local minima, in the effort to find
lower energy states. Upon examination of our energy
equation it becomes clear that ‘barrier jumping’ can be
achieved by directly solving for the location that minimizes
the energy for a single vertex, which can rapidly move a
node through an energy barrier. We have successfully used
this analytical approach for avoiding local minima early in
our algorithm. Achieving a favorable configuration early in
the process, independent of the starting configuration, is
essential for efficient ordinations that are consistent with our
third principle.

We achieve this result by moving vertices in the
direction specified by Equation 3 most of the time.
However, to jump over energy barriers a small fraction of
the vertices ignore the repulsion term and minimize the

attraction term analytically. This is accomplished by
computing a weighted centriod over all connected vertices.
The vertex then ‘jumps’ to that computed centroid,
regardless of any possible energy increase, as shown in
Figure 5.

Figure 5: Barrier jumping by ignoring density term.

Figure 6: Two random runs with and without barrier jumping.

Neighborhood stability between ordinations
with barrier jumping

0
100
200
300
400
500

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Neighborhood stability between ordinations

without barrier jumping

0
500
1000
1500
2000
2500

0 6 12 18 24 30 36 42 48 54 60

Identical neighbors between ordinations

N
od

es

Figure 7: These histograms demonstrate that without barrier
jumping local neighborhoods are severely distorted.

Barrier jumping is tied to the cooling schedule, and the

frequency of barrier jumping linearly declines from 25% to
10% during the ‘quenching’ period and is not used at all

during the simmer phase. The high frequency at the
beginning is required for stability with respect to random
initial conditions. The poor initial placement or initial bad
jumps that would otherwise irrevocably change the outcome
of a purely random algorithm are greatly mitigated by the
correcting nature of this process. Figure 6 shows images
from two pair of random runs. Ordinations in the first row
use barrier jumping, ordinations in the second row do not.
We can see the excellent repeatability achieved by using the
barrier jump technique. The second row shows that the 6000
vertices become hopelessly trapped in a web of local
minima. The histograms in Figure 7 provide further support
that barrier jumping improves the repeatability of the
random iterative solver. For the histograms in this paper we
wanted to measure the stability of the ordination algorithms
by counting the number of identical ‘neighbors’ within a
small population of the map (1%). The maps contain 6000
genes so for every gene, we measured how many of the 60
nearest genes remained the same between runs.

2.4.3 Principle 4

The brute force approach for computing Dx,y is certainly
not consistent with our fourth principle. Because each vertex
would have to check its position against all other vertices,
this unsophisticated approach would take |V| comparisons
for each determination of Dx,y. As every node must compute
Dx,y when determining its energy at a specific location x,y,
the algorithm would require total running time Θ(|V|2).

For real world problems an Θ(|V|2) algorithm is
prohibitively expensive. We have developed a grid-based
method for computing Dx,y that allows each vertex to
determine an approximate value for this term in constant
time, Θ(1), thereby reducing the total running time to a
satisfactory Θ(|V|).

The grid-variant algorithm discussed by Fruchterman8
uses a binning technique to consider only those vertices
within a certain neighborhood. An approach that, with a
uniform distribution of the vertices, will reduce the
calculation to Θ(|V|). However, a graph will only have a
uniform distribution if the number of edges is small. Highly
connected graphs will have dense concentrations of vertices
in small areas, and the run time is no longer linear with the
number of vertices. To be effective for all graphs, our
repulsion term utilizes a ‘non-specific’ density measure.
Vertices are not repulsed by other specific vertices, but are
repulsed by a general overcrowding. This minor
modification to the repulsion criteria allows a dramatic
reduction in computational complexity.

This density field algorithm is implemented by having
each node place an energy footprint onto a two dimensional
(density field) array. The energy footprint may be any
function in two-space. Our implementation uses a circle
with radius r and a function that peaks at the center of the
circle, while falling off quadratically with increasing
distance from the center of the circle. The total density field
is the sum of the contributions of each vertex in the region.

Given the density field, a node can determine an
approximate Dx,y value using a constant time table lookup
method. This method reduces the computation of the
repulsion term from Θ(|V|2) to Θ(|V|), and is consistent with
our fourth principle, an important result for using our
algorithms with real applications.

2.5 The computational experiments

To test the stability of the algorithm to random starting
points, we ran 100 re-ordinations with different seeds;
visually marked the elements of a cluster in one ordination
and looked to see if they were visually still clustered
together in the other ordinations. We then computed the
neighborhood statistics as described below.

To determine if small changes or noise in the similarities
would give small changes in the ordination results we ran
eighty re-ordinations where we added noise drawn from a
gaussian distribution with mean zero, and standard
deviations 0.001, 0.010, 0.050, and 0.100, and recomputed
the ordinations (these noisy correlations were clipped to
remain in the valid range of the correlation coefficient [-1.0,
+1.0]. These different ordinations were compared, visually
and statistically.

2.6 Evaluation methods

We compared the various ordinations using a
neighborhood analysis. When two ordinations are very
similar it is reasonable to expect that for every gene, the set
of its nearest, say 60, genes would be almost identical in
both ordinations. In fact, we would expect the same thing
for every gene in the entire ordination. On the other hand, if
the ordinations have almost nothing in common, it should be
rare to observe a gene that had the same neighbors in both
ordinations. We computed these neighborhood statistics for
each gene, in each of the two ordinations. For each gene, we
first identified the 60 nearest genes, and then counted of the
number of genes in both neighborhoods. This number was
used to increment the value in a table, so that in the end, we
had a histogram showing how many genes had no common
neighbors in the two ordinations, how many had one
common neighbor, etc., up to the number of genes with
exactly the same 60 neighbors in both ordinations, and
histograms were prepared, as shown in Figure 8.

Neighbor stability of 20 ordinations

0
2000
4000
6000
8000
10000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Figure 8: Distribution of neighbors between ordinations with
random starting conditions, 20 replicates.

We then visually compared the results of the two
ordinations by coloring all of the genes in a cluster found in
the first ordination and seeing where those colored genes
were placed in the other ordination (so that a similar
ordination would not break up the group of colored genes,
but would still have them co-located; see Figures 9 and 10).

Figure 9: Ordinations with different random starting conditions.

Figure 10: Demonstrates the affect of increasing edge noise on
cluster stability.

Neighbor Stability with Added Noise (std .001)

0

2000

4000

6000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Figures 11: Histogram of neighborhood stability with added
noise (std .001).

Neighbor Stability with Added Noise (std .010)

0
1000
2000
3000
4000
5000
6000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Figure 12: Histogram of neighborhood stability with added
noise (std .010).

Neighbor Stability with Added Noise (std .050)

0
2000
4000
6000
8000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Figure 13: Histogram of neighborhood stability with added
noise (std .050).

Neighbor Stability with Added Noise (std .100)

0
5000
10000
15000

0 5 10 15 20 25 30 35 40 45 50 55 60

Identical neighbors between ordinations

N
od

es

Figure 14: Histogram of neighborhood stability with added
noise (std .100).

3 Results and Discussion
The computational experiments revealed two types of

information. First, we discovered that large-scale structures
were often very robust to starting with different initial
conditions. Second, where there were differences, the
insights about why the cluster positions changed were as
interesting as the fact that they did change. We present two
measures of the stability of these structures: a visual
interpretation, and the results of our neighborhood analysis.
The visual interpretations are striking in their clarity, but are
also supported by the numerical results shown in the
histograms.

The histogram numbers can be interpreted as data drawn
from a binomial distribution. For example, if the two
ordinations were totally random, then the neighbors of a
gene in the second ordination would be randomly drawn
from all the rest of the genes. Given that we had about 6000
genes, and used a neighborhood size of 60, about 1% of the
total genes, the probability of exactly k neighbors in the
intersection would be

() () kk
k

−













60

100
99

100
1

60
 . (7)

When the size of the neighborhood is 1% of the total
number of genes the expected frequency for observing 0
neighbors is about 0.547; the expected frequency for
observing 1 neighbor is about 0.332; and the frequency for
two neighbors is about 0.099, which leaves the expected
frequency for observing three or more neighbors in common
to be only 0.022. For 6000 genes, only 132 genes would be
expected to have more than two neighbors in common
between two random ordinations, which is more while
several thousand are actually observed. Hence, the
histograms and the visual comparisons show that the
differences between pairs of our ordinations are very far
from being random.

Figure 8 shows six typical ordinations from different
starting conditions. Groups in the first ordination were
outlined by hand and colored. These same genes were
followed in the other ordinations to observe how their
relative positions changed. Two striking patterns emerged.
In one case the clusters were almost identical to the initial
cluster despite different random seeds. In the second case
the resulting clusters are a mirror image of the initial
clusters. This mirroring is very reasonable, as there is no
reason to expect any preferred natural placement as long as
the relative distances are preserved, so rotations and
reflections should be, and were observed. The histograms
showed good neighborhood agreements between mirrored
images.

Closer attention to the structures does reveal a few large
changes, for example in Figure 8, where we note that the red
cluster has flipped from the inside to an outside
configuration. This red cluster has a few strong similarity
links tying it to the ridge as shown in Figure 3. As a result, it
can easily be mirrored with respect to the ridge. Note that
the neighborhood analysis would only detect a few
differences along the frontiers of the two clusters. As
expected, the histograms show very little difference between
the two ordinations with respect to the neighborhood
analysis. The most encouraging fact is that most groups not
only maintain their relative positions given different starting
conditions, but that they maintain similar cluster shapes as
well, which indicates good interior agreement, which is,
again, supported by the histograms. These results indicate
that the ordination tool has robust stability when presented
with the same dataset. With that information in hand, we
began the investigation of how small changes in the
similarity data effected the clustering.

Ideally, one would want an ordination algorithm that
responded to slight changes in the similarities by producing
slight changes in the ordination and that, in some way,
moved smoothly from well ordered groupings to totally
unordered, high entropy groupings as the similarities are
mixed with more and more noise. Figure 10 shows a starting
cluster based on the actual similarities, together with four

cases where increasing amounts of noise were added to the
correlations. Figures 11-14 are the corresponding
histograms, reflecting the changes associated with the
increasing noise. Note that several large structures remain
intact as noise is added, but that some, for example the
purple and brown clusters become more disordered. They
essentially melt with increasing noise. Also, note the red and
green clusters are apparently more resistant to noise. This
melting metaphor is particularly appropriate, because it
reflects the internal order that must be ‘randomized’ or
melted before the cluster can begin to break apart.

Mixing increasing amounts of noise with the similarities
allows one to quickly see which clusters are more likely to
be an artifact; these are the clusters that melt out with the
smallest amount of noise. This information is so easy to
obtain that we believe it should be part of every analysis
based on clustering.

4 Conclusion
Understanding, and using stability has been the important
theme presented here. In particular, it is important: (1) to
make sure the clustering tools are stable with respect to
random starting conditions, (2) to ensure that the range for
the possible numbers of clusters is adequately covered
(either by systematically searching through a large range of
choices, or by using a tool that does not require a priori
determinations of the number of clusters), and (3) to use the
clustering tool’s response to the gradual addition of noise to
gain insight into the actual strength of the clusters.

 The two important analysis strategies presented here
are: (1) use a probability weighted transformation of the
correlation coefficients for the similarities, and (2) compute
a small series of clusters with similarities mixed with
increasing noise. The first strategy leads to better separation
of clusters, and the second gives insight into the strength of
individual clusters. We also showed a helpful visual way to
track the results of alternate clusters by coloring the genes in
a base ordination and following the relative movements of
those colored genes in other ordinations. Finally, we
suggested a statistical metric based on the intersections of
local neighbors of genes under different clusterings.

5 Acknowledgements
We would like to thank Chuck Meyers for starting and

for funding the work in this fruitful area; Margaret Werner-
Washburne, and Stuart Kim for helping make this a useful
tool for microarray analysis; the rest of the development
team including Bruce Hendrickson, David Johnson, and
Helen Koller. We also wish to thank the reviewers for their
useful comments and corrections.

6 References
[1] Davidson, G.S., Hendrickson, B., Johnson, D.K., Meyers,

C.E. & Wylie, B.N. “Knowledge mining with VxInsight: discovery

through interaction”. Journal of Intelligent Information Systems
11, 1998, 259-285.

[2] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R.,
Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher,
B., “Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray hybridization”,
Mol. Biology of the Cell, 1998, 9:3273-3297.

[3] Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier,
M., Schur, A., & Crow, V. “Visualizing the Non-Visual: Spatial
Analysis and Interaction with Information from Text Documents”,
Proceedings of InfoVis '95, IEEE, 1995, 51-58.

[4] Kohonen, T. “Self-organized formation of topologically
correct feature maps”. Biological Cybernetics, 1982, 43:59-69.

[5] MacQueen, J. “Some methods for classification and analysis
of multivariate observations”. Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability. Volume I:
Statistics,. University of California Press, Berkeley and Los
Angeles, CA, 1967, pages 281-297

[6] York, J., Bohn, S., Pennock, K., & Lantrip, D. “Clustering
and Dimensionality Reduction in SPIRE”. Symp. on Advanced
Intelligence Processing and Analysis, (1995), 73

[7] Wise, J.A. “The ecological approach to text visualization”.
Journal of the American Society for Information Science 50(13),
(1999), 1224-1233.

[8] Wilcox, R.R., “Introduction to Robust Estimation and
Hypothesis Testing”, Academic Press, 1997, ISBN 0-12-751545-3

[9] Ostel, B., “Statistics In Research Basic Concepts and
Techniques for Research Workers”, Iowa State University Press,
Ames, Iowa, USA, 1963

[10] Fisher, R.A., “On the probable error of a coefficient of
correlation deduced from a small sample”. Metron., 1921, 1
(No.4):3.

[11] Eades, P., “A heuristic for graph drawing”, Congressus
Numerantium, 42, 1984, 149-160

[12] Fruchtermann, T. and Rheingold, E. “Graph drawing by
force-directed placement”. Technical Report UIUCDCS-R-90-
1609, Computer Science, Univ. Illinois, Urbana-Champagne, Il.,
1990

[13] Quinn, N. and Breur M., “A force directed component
placement procedure for printed circuit boards”, IEEE Trans on
Circuits and Systems, 1979, CAS-26, (6), 377-388

[14] Otten, R. and van Ginneken, L., “The Annealing
Algorithm”, Kluwer Academic Publishers, Boston MA., 1989

[15] Kamada, T. and Kawai, S., “Automatic display of network
structures for human understanding”, Technical Report 88-007,
Department of Information Science, Tokyo University, 1988

[16] Davidson, R. and Harel, D., “Drawing graphs nicely using
simulated annealing”, Technical Report CS89-13, Department of
Applied Mathematics and Computer Science, The Weizmann
Institute, Rehovot, Israel., 1989

[17] Kamada, T. and Kawai, S., “An algorithm for drawing
general undirected graphs”, Information Processing Letters, 1989,
31, (1), 7-15

[18] Kamada, T. and Kawai, S., “A simple method for
computing general position is displaying three-dimensional
objects”, Computer Vision, Graphics, and Image Processing, 1988,
41, 43-56

[19] Kirkpatrick, S. Gelatt, C.D. and Vecchi, M.P.,
“Optimization by simulated annealing”, Science, 1983, 220,
(4598), 671-680

	1 	Introduction(
	2 Methods
	2.1 How a VxInsight® map is generated
	2.2 Choosing a data set
	2.3 Computing the gene similarities
	2.4	VxInsight Ordination Routine
	2.4.1 Principles 1 and 2
	2.4.2 Principle 3
	2.4.3 Principle 4

	2.5 The computational experiments
	2.6 Evaluation methods

	3	Results and Discussion
	4 Conclusion
	5 Acknowledgements

