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Abstract. This paper presents a fundamental numerical analysis of flow and heat transfer in a vertical
rotating disk reactor. These reactors are commonly used for growing thin films wia chemical vapor
deposition. Under certain conditions, rotating disk reactors have been found to exhibit multiple steady
states, where desirable and undesirable flow patterns co-exist at the same conditions. The focus of this
research is to predict the onset of multiplicity with respect to key system parameters, and thereby give
guidance on reactor design and operation. Using bifurcation analysis algorithms we directly track what
we believe is a global stability limit (the onset of multiple solutions). Results for a model system with
constant physical and transport properties along with the Boussinesq approximation are compared to a
model with actual fluid properties for nitrogen gas coupled with the ideal gas law.

1 INTRODUCTION

This paper represents a fundamental bifurcation analysis of stagnation flows in a vertical rotating-
disk reactor (RDR). The objective is to map out regions of parameter space where a RDR may
exhibit erratic behavior. Since the behavior is caused by multiple steady states or periodic motion
the onset of multiplicity is tracked through bifurcation and stability analysis. Using this data, we
provide a correlation between dimensionless groups that can be used to design reactors that operate
in regions of parameter space where a single steady state exists.

Metalorganic vapor phase epitaxy (MOVPE) has become the method of choice in manufacturing
complex heterostructures for the next generation of optoelectronic devices [1, 2, 3]. Advanced muti-
layered structures such as vertical-cavity surface-emitting lasers (VCSELs) and quantum cascade
lasers require strict control over the growth process [4]. Hundreds of thin layers (on the order of
Angstroms) must be grown one on top of the other with uniform thickness and composition. This
requires a robust process with minimal variation between alternating layers and from run to run.
Vertical RDRs are currently the leading choice for production due to their high throughput, scala-
bility, and versatility. However, improper design and/or operation of RDRs can lead to unreliable
performance and, ultimately, device failure.

The cause of the erratic behavior in RDRs can be traced to bifurcation phenomena. It has
been demonstrated that both multiple steady states and periodic flows can exist in RDRs [5, 6, 7].
When multiple steady states are present, the flow pattern can settle on a steady state very different
from the traditional stagnation flow pattern described by the von Karman similarity solution for a
rotating disk [8]. These flow patterns can generate flow recirculations or temperature oscillations
near the deposition surface. This damages film quality by introducing nonuniform film thickness
and/or composition. A robust reactor design should eliminate the possibility of operating in regions
where multiplicity exits. This paper shows how bifurcation analysis algorithms can be used to
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Momentum: pu-Vu=-VP+ V. [uVu + p(Vu)T = (2/3)ul(V - u)] + pg
Energy: pCp(u-VT) =V - (k,T)

Table 1: Fundamental Conservation Equations

efficiently derive RDR design criteria that demarkate multiplicity in a specific reactors parameter
space.

There are several possible stability limits to the Karman-like flows. Below a critical value of the
Rayleigh number, Ray;,, we expect ths flow to be linearly stable. Calculations indicate that this
flow goes unstable in an oscillatory manner. However, it is possible that this flow could be linearly
stable, but be unstable to large enough disturbances. This sort of behavior could be especially
annoying in a production facility, because it could cause the reactor to run well for long periods
of time, but to occasionally give erratic behavior. We hypothesize that there is a second stability
limit Ragepe such that for Rayleigh numbers below this, the reactor will approach the Karman-like
solution no matter how much it is disturbed. It is very plausible that this global stability limit is the
Rayleigh number, Ra,.;;, at which multiple steady state solutions first appear. Using bifurcation
tracking alogorithms it is possible to track Ram.: (and by our hypothesis Ragopa) as a function of
the Reynolds number.

This analysis uses an axisymmetric 2D flow and heat transfer model of a RDR. A simple
model based on constant physical and transport parameters is first used for elucidating the re-
lationships/scaling laws between various design parameters in terms of dimensionless groups. The
results of a more realistic model typical of that used in simulating MOVPE systems are then
compared against the simple model. The simple model can clearly demonstrate underlying rela-
tionships/scaling laws that the realistic model tends to mask. The resulting diagrams can be applied
to the design and operation of RDRs to point out when multiple steady states are possible, leading
to undesired behavior.

2 MODEL DEFINITION

The models are based on the fundamental conservation equations for momentum and heat transfer
shown in Table 1. Two variations of the model are used, a simple model and a realistic model.
The simple model solves the fundamental equations with constant material properties and applies
the Boussinesq approximation for density variation: the density is constant in the fundamental
equations except for the body force term in the momentum equation, pg, which is replaced with a
first order approximation, p,gBAT. The realistic model solves the fundamental equations in Table
1 with variable material properties and includes the ideal gas law for density variation. The realistic
model is the standard formulation used for modeling MOVPE systems [9].

The resulting set of coupled PDEs are solved simutaneously using the code MPSalsa devel-
oped by Sandia National Laboratories [10, 11]. MPSalsa was designed to solve low-Mach number
incompressible flows in two- and three-dimensions using a Galerkin/least-squares finite element for-
mulation on massively parallel architectures [12]. The material properties of the fluid in the realistic
model are provided by calls to the TRANFIT [13] and CHEMKIN [14] libraries. The nonlinear prob-
lem is solved directly to steady-state using fully-coupled Newton-Krylov solver [15]. The resulting
linear systems are solved iteratively using domain decomposition preconditioners and the GMRES
method as implemented in the Aztec package [16].

Steady-state solution branches are tracked as a function of a parameter using a pseudo arc-
length continuation algorithm [17]. A turning point (fold) tracking algorithm is used to locate the
bifurcation points by continuing in the first parameter while computing a corresponding second
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Figure 1: 2D Axisymmetric mesh and streamlines for the stable solution branches: Re =92, P = 0.1
atm, Tyysceptor = 373.5 K, Vinrer = 3.55 cm/s. (a) mesh, (b) desired solution, (c) undesired solution

(a)

parameter. The bifurcation points signify the beginning of mulitplicity in this reactor. These
algorithms are implemented in the LOCA library [18] developed by Sandia National Laboratories,
which has been linked to the MPSalsa code.

The reactor in this paper is assumed to be axially symmetric, thus reducing to two dimensions
in cylindrical coordinates. The finite element mesh is shown in Figure 1a. The mesh consists of
5580 bilinear finite elements corresponding to 6075 nodes and 30375 unknowns. The five dependent
variables are the radial, axial and azimuthal velocities and the temperature and hydrodynamic
pressure. Pure nitrogen is used as the carrier gas in the realistic model. The simple model is
solved in dimensionless form and thus needs no carrier gas specification. The gas enters through
the top surface with uniform velocity and temperature profiles. The walls are water cooled and the
susceptor is held at a uniform temperature.

Figure 1b depicts the streamlines in a RDR for the desired stagnation flow pattern that can yield
excellent film uniformities. Figure 1c depicts a second stable steady state at the same operating
conditions with a detrimental flow pattern. A buoyancy-induced flow recirculation forms over the
deposition surface causing steep radial gradients, destroying film uniformity.

3 DIMENSIONAL ANALYSIS

The models are characterized in dimensionless form by the Rayleigh number, Ra, and the rotational
Reynolds number, Re. The dimensionless numbers are defined as:

wR? Ra — gBATS?R; _ gBATR;

14 av ow

Re =

(1)

While these quantities are well-defined in the simple model, there is a choice in the realistic model
as to what temperature is used to evaluate the properties. In this work we evaluate all properties
at the cold inlet temperature because we have found this choice to give the best agreement between
the simple and realistic models.

The parameter space of RDRs is quite large. To reduce the number of parameters we set the
inlet velocity as a function of the rotation rate such that “good” uniformity is maintained. Good
uniformity in this case is for a transport limited deposition system. This condition linking the inlet
velocity to rotation rate yields an acceptable estimate of uniformity but does not represent the best
achivable uniformity. The condition eliminates the need to perform a bifurcation analysis over the
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Figure 2: Bifurcation diagrams depicting the various phenomena observed in a RDR. (a) continuous
transition Re = 38, (b) fold (hysteresis) Re = 92, (c) disconnected branches (horizontal branch and
isola) Re = 610. All three behaviors have been observed in the simple model (solid line) while
continuous transitions and folds have been observed in the realistic model (dashed line) under
typical operating conditions.

entire range of inlet velocities and rotation rates. The inlet velocity correlation to susceptor rotation
rate is based upon the 1D model of a heated, rotating disk developed by Evans and Greif [19] (an
extension to the von Karman similarity solution [8] to include heat transfer). The similarity solution
predicts that the boundary layer above the disk is on the order of § = y/v/w. This type of solution
is highly desirable since the temperature and axial velocity are functions of the axial coordinate
only. This tends to produce uniform deposition across the susceptor. The similarity solution shows
that when an inifinite disk spins at at a frequency w, the axial velocity far from the disk approaches
the value [19]:

Uy = Uy, = 0.8854/w,v (2)

This velocity is referred to as the matched velocity (i.e. matched to the rotation rate to produce
good uniformity over the susceptor). This is the velocity a spinning disk naturally induces far away
from the disk. In using the matched velocity, we assume that the radius of the susceptor and the
distance between gas inlet and susceptor are much larger than 4.

4 CONTINUATION STUDIES

In this section we will present results of pseudo arc-length continuation runs that are used to detect
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Figure 3: Parameter plot of the locus of bifurcation points signaling the onset of multiplic-
ity.Parameter plot comparing the simple model and the realistic model at various pressures.

the onset of multiplicity (i.e. the global stability limit). In all cases, the rotation rate of the disk (as
measured by Re) is held fixed, as is the inlet velocity (specified by Eq. 2) and the reactor geometry.
Steady-state solutions are tracked as a function of the temperature of the susceptor, which controls
the destabilizing buoyancy force (as measured by Ra). The results of the continuation runs for both
the simple and realistic models are shown in Figure 2. The Nusselt number, Nu, at the center of
the disk is used to characterize the solution:

H 0T

= AT oz, ®)

Nu

A convective roll cell such as that seen in Figure 1c results in a decreased value of Nu. The three runs
for the simple model show three qualitatively different behaviors. At Re = 38 the transition from
desirable to undesirable flow occurs continuously at around Ra = 30. At Re = 92, the transition
is discontinuous with the familiar S-shaped curve symbolizing a region of hysteresis. The realistic
model (dashed line) calcaulated at a pressure of 0.1 atm agrees very well with the simplistic model
at low Rayleigh numbers. At Re = 610, the curve is qualitatively different, with the horizontal
branch coexisting with an isola (a closed loop of solution branches). In both the Re = 92 and
Re = 610 cases, one can avoid even the possibility of undesirable recircuations by designing the
reactor to operate where there is no multiplicity. This can be achieved by designing the reactor
to operate at a value of Ra below the turning point, which is marked with the box symbol. (This
conclusion assumes that there are no other solution branches at these low values of Ra, which we
can argue on physical grounds but not prove).

5 PARAMETER TRACKING

In this section we extend the results found in the previous section to large ranges of Re by directly
tracking the turning points that signal the onset of multiplicity. Figure 3a presents the locus of this
turning point for the simple model. The dashed line is a simple curve fit that approximates this
line:

Ra = 1.75Re®(1 + 100/ Re) (4)

Note that for large disk spin rates Re, the onset of multiplicity is independent of any reactor length
scale, only being dependent on the boundary layer thickness 9.
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Figure 4: Variation of bifurcation point in Ra with respect to the relative height and inlet velocity
(compared to the standard values) for various Re.

In Figure 3b the same turning point curve is plotted with turning point calculations for the
realistic model. At low pressure of P = (0.1 atm, the realistic model agrees well with the simple
model up to Re = 700 when the physical properties in the definitions of Re and Ra are evaluated
at the cold inlet temperature. When evaluated at the average temperature between the inlet and
susceptor temperatures, the locus of turning points does not approximate the results of the simple
model. At P = 1.0 atm, where large Ra can be achieved with smaller temperature differences, the
realistic model agrees very well with the simple model. At P = 0.5 and P = 0.2 the fit is close,
but diverges as higher susceptor temperatures are required to attain the corresponding Rayleigh
numbers. Large temperature differences cause the discrepancy between the models due to the
application of the Boussinesq approximation.

To further generalize the results, we investigate the sensitivity of the correlation in Eq. 4 to
two additional parameters: the height of the reactor, H, and the inlet velocity (i.e. sensitivity to
deviations in the matched velocity), u,,. The sensitivity was checked at Re = 100 and Re = 3000,
where different terms in the fundamental equations dominate. The results are shown in Figure 4,
where the Ra of the turning point is shown to vary as a function of H and u,, compared to their
standard values. The results show that at low Re, there is a strong inverse relationship with H and
a weaker positive relationship with u,, . For the large Re case, the turning point is rather insensitive
to the inlet position and velocity.
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Numerical simulation of coupled flow and heat transfer and the use of bifurcation analysis algorithms
have been applied to the rotating disk CVD reactor. Regions of solution multiplicity, where a
desirable von Karman-like solution and an undesirable buoyancy-driven flow solution can coexist,
are found. A line in design space symbolizing the onset of solution multiplicity, and therefore
the possibility of undesirable convective flow cells, is directly calculated. For a simplistic model
of constant physical properties, this line is fit by a two-term scaling law. Comparisons with a
more realistic model, with temperature-dependent physical properties, show that the simple model
holds for moderate temperature variation. Results not shown here also indicate that evaluating
dimensionless quantities at the cold inlet temperatures produced the best results in comparisions
to the simple constant-property model.
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