
Scalability and Performance of a Large Linux Cluster 1

Ron Brightwell and Steve Plimpton

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185-1110,
(505)845-7397, FAX (505)845-7442

E-mail: bright@cs.sandia.gov,sjplimp@cs.sandia.gov

In this paper we present performance results from several parallel bench-

marks and applications on a 400-node Linux cluster at Sandia National

Laboratories. We compare the results on the Linux cluster to performance

obtained on a traditional distributed-memory massively parallel process-

ing machine, the Intel TeraFLOPS. We discuss the characteristics of these

machines that in
uence the performance results and identify the key com-

ponents of the system software that we feel are important to allow for

scalability of commodity-based PC clusters to hundreds and possibly thou-

sands of processors.

Key Words: massively parallel, workstation cluster, message passing

1. INTRODUCTION

The commodity-based personal computer (PC) cluster machine has become an

attractive alternative to traditional supercomputing platforms. The performance

of clusters of PC's is being compared to distributed-memory message-passing su-

percomputers, such as the Intel Paragon, SGI/Cray T3E, and IBM SP-2, as well as

shared-memory supercomputers, such as the SGI/Cray Origin 2000, SUN E10000,

and DEC 8400. For many applications, small-scale PC clusters are able to compete

and even surpass the performance of these traditional supercomputing platforms.

For example, in September of 1999, the Forecast Systems Laboratory division of

the National Oceanographic and Atmospheric Administration awarded a �ve-year

multi-million dollar contract for a machine with a peak performance of four trillion


oating point operations per second (FLOPS) to a vendor that supplies Linux-based

PC clusters. The vendor, High Performance Technologies, Inc., outbid several tradi-

tional supercomputing vendors and platforms by o�ering a PC cluster that provided

comparable performance on a set of FSL-supplied benchmarks for signi�cantly less

cost.

1This work was supported by the United States Department of Energy under Contract DE-
AC04-94AL85000.

1



2 BRIGHTWELL AND PLIMPTON

The ability of a small-scale dedicated cluster of standard desktop PC's to compete

with and sometimes outperform small-scale supercomputers has been demonstrated

[29, 1]. However, very few performance results have been published on clusters with

hundreds of processors. Thus, it is unknown whether PC clusters will be able to

scale up to a comparable level of compute performance on several hundred or thou-

sands of processors to compete with large-scale massively parallel processing (MPP)

machines and clusters of large shared-memory processing (SMP) machines. Tra-

ditional massively parallel computing platforms have bene�ted from many years

of research, development, and experience dedicated to improving their scalability

and performance. The Computational Plant (Cplant) project at Sandia National

Laboratories is a continuation of our research into system software for massively

parallel computing on distributed-memory message-passing machines. We are tran-

sitioning our scalable system software architecture from large-scale MPP machines

to clusters of PC's. In this paper, we hope to show that large-scale PC clusters can

compete with large-scale MPP machines, provided that proper attention is given

to scalability in both hardware and system software.

The following section describes the hardware and software components of a tradi-

tional MPP machine, the Intel TeraFLOPS. In Section 3, we describe the hardware

and software components of the 400-node Cplant cluster. Section 4 presents a com-

parison of the performance of several benchmarks on the two platforms, and Section

5 continues with a performance comparison of several applications. We conclude in

Section 6 with a summary of relevant results and outline our plans for future work

in Section 7.

2. SANDIA/INTEL TERAFLOPS MACHINE

The Sandia/Intel TeraFLOPS machine (TFLOPS) [23] is the Department of En-

ergy's Accelerated Strategic Computing Initiative (ASCI) Option Red machine.

Installed at Sandia in the Spring of 1997, it is the culmination of more than ten

years of research and development in massively parallel distributed-memory com-

puting by both Intel and Sandia. The following describes the hardware and software

components of TFLOPS.

2.1. Hardware

TFLOPS [23] is made up of more than nine thousand 300 MHz Pentium II Xeon

processors connected by a network capable of delivering 400 MB/s unidirectional

communication bandwidth. Each compute node contains two processors and 256

MB of main memory, and the nodes are arranged in a 38x32x2 mesh topology

providing 51.2 GB/s of bisection bandwidth. Each compute node has a network

interface chip (NIC) that resides on the memory bus, allowing for low-latency access

to all of physical memory.

The theoretical peak compute performance of this machine is 3.2 TFLOPS. It

achieved 2.37 TFLOPS on the LINPACK [9] benchmark, placing it at number one

on the November 1999 list of the Top 500 [18] fastest computers in the world.

2.2. Software

The compute nodes of TFLOPS run a variant of a lightweight kernel, called

Puma [26], that was designed and developed by Sandia and the University of New



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 3

Mexico. The design of this kernel evolved from earlier experiences in providing

a high-performance operating system optimized for distributed-memory message-

passing MPP's [15]. The Puma operating system was originally developed on a

1024-processor nCUBE-2 and later ported to an 1800-node Intel Paragon. Intel

and Sandia worked together to port Puma to the x86 processor architecture for

TFLOPS, at which point it was productized and renamed Cougar by Intel. Cougar

consumes approximately one percent of the total main memory on a node.

A key component of the design of Puma is a high-performance data movement

layer called Portals [25]. Portals are data structures in an application's address

space that determine how the kernel should respond to message-passing events.

Portals allow messages to be delivered directly to the application without any in-

tervention by the application process. In particular, the application process need

not be the currently running process or perform any message selection operations to

process incoming messages. Commodity networking technology has recently begun

to realize the bene�ts of such strategies, with emerging technologies such as the

Virtual Interface Architecture [8], Scheduled Transfer [28], and the newly formed

In�niBand Trade Association. In addition to providing high-performance message

passing, the runtime components of TFLOPS work together to provide a scalable

job launch capability that can allocate processors and start processes on thousands

of nodes in a matter of several seconds.

3. COMPUTATIONAL PLANT

The Computational Plant (Cplant) [24] project at Sandia is a commodity hard-

ware based Linux cluster that combines the bene�ts of commodity cluster comput-

ing with our experience and expertise in designing, developing, using, and main-

taining massively parallel distributed-memory machines. The goal is to provide

a large-scale computing resource that not only meets the level of compute per-

formance required by Sandia's key applications, but that also meets the levels of

usability and reliability of past machines such as TFLOPS. The following sections

describe the initial approach, and the hardware and software components of Cplant.

3.1. Approach

The focus of Cplant is on scalability { in every aspect of the machine. Scalability

in terms of application performance is critical, but scalability in other areas is also

critical. For example, just as TFLOPS does, application launch should happen

in seconds on several thousand nodes. The machine should be able to distribute

system software and boot in tens of minutes. The machine should remain stable

and performance of the runtime environment should not degrade as the number of

interactive users increases.

Our approach to Cplant was to leverage as much as possible from the design of

TFLOPS.We designed a support and diagnostic infrastructure for Cplant analogous

to the Reliability, Availability, and Supportability (RAS) system that Intel devel-

oped. We followed the partition model (service, compute, I/O, etc.) of resource

provision [11] that Intel developed. We decided to leverage the code development

that we had done for Puma to create a scalable runtime environment.

Our experience with the poor performance and scalability of full-featured UNIX

kernels on MPP's, such as OSF on the Paragon, motivated much of the research that



4 BRIGHTWELL AND PLIMPTON

FIG. 1a. Cplant 64-node topology.

FIG. 1b. Cplant 384-node topology.

led to the lightweight kernel design and development. Fundamental to the Cplant

project is the ability to acquire the latest commodity hardware that occupies the

\sweet spot" of the price/performance curve, and make it available to users. The

time required to port and maintain a lightweight kernel on successive generations

of hardware, BIOS's, and PCI chipsets makes this impossible. With Linux, we

hope to leverage its portability and open source model. Linux allows us to have

an operating system that runs well on the very latest commodity hardware, and

the source code availability allows us to manipulate the standard kernel. We hope

to be able to create a Linux-based kernel that exhibits the characteristics of past

lightweight kernels and overcomes the scalability and performance limitations of

previous full-featured UNIX operating systems.

3.2. Hardware

In the Fall of 1998, Digital Equipment Corporation (now Compaq Computer

Corporation) installed a 400-node cluster at Sandia National Laboratories. Each

compute node in this cluster is composed of a 500 MHz Alpha 21164, a 2 MB level-3

cache, and 192 MB of main memory. In addition, each compute node has a 32-bit

33 MHz Myrinet [3] LANai 4 network interface card.

These machines are connected via a 16-port Myrinet SAN/LAN switches in a

modi�ed hypercube topology illustrated in Figures 1a and 1b. Figure 1a illustrates



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 5

the 64-node topology that is used to construct the 384-node topology illustrated

in Figure 1b. We extend this topology to 400 nodes by partially �lling one of the

empty cubes.

The theoretical peak performance of the 32-bit 33 MHz PCI bus interface is the

limiting factor in Myrinet bandwidth capability. The PCI bus limits the possible

performance to 132 MB/s, but in practice most PCI chipset implementations can

only deliver about 100 MB/s.

This machine has a theoretical compute performance peak of 400 gigaFLOPS

(GFLOPS). It achieved 125.2 GFLOPS on the LINPACK [9] benchmark running

on 350 nodes, which would place it at number 71 on the November 1999 list of the

Top 500 [18] fastest computers in the world had the results been submitted.

3.3. Software

The Cplant runtime environment is based on the Portals data movement layer

from the Puma operating system. All of the system software in the runtime envi-

ronment uses Portals for message passing. See Brightwell [4] for a description of

the components of the scalable runtime environment. By implementing Portals in

Linux, we were able to re-use much of the code that had been developed for the

Paragon and TFLOPS. For example, the high-performance implementation [6] of

the Message Passing Interface (MPI) standard [16] that had been validated by Intel

as a product for TFLOPS ported to Cplant with virtually no changes.

Portals in Linux are currently implemented via two kernel modules that work

with a Sandia-developed Myrinet Control Program (MCP) that runs on the LANai

processor on the Myrinet interface card. The Portals module is responsible for

determining how incoming messages are processed. It reads the application pro-

cess' memory and interprets the Portal data structures. The Portals module com-

municates information about message delivery to the RTS/CTS module, which is

responsible for packetization and 
ow control. The RTS/CTS module communi-

cates packet delivery information to the MCP, which is essentially a packet delivery

device.

4. PERFORMANCE BENCHMARKS

The following sections present a comparison of the communication and compu-

tation performance of the Cplant cluster versus TFLOPS. We describe the network

performance of the two machines with a standard ping-pong message-passing bench-

mark. Results of the NAS Parallel Benchmark suite version 2.3 Class B are also

presented to characterize the compute and communication performance of the two

platforms.

4.1. Message-Passing Benchmarks

Figure 2 shows the MPI one-way message-passing bandwidth for Portals in Linux

and Portals in Puma. The asymptotic MPI bandwidth is 311 MB/s for Puma Por-

tals and 54 MB/s for Portals in Linux. The high-performance network on TFLOPS

signi�cantly outperforms the Myrinet.

Figure 3 shows the MPI one-way latency performance. The zero-length MPI la-

tency is 13�sec for Puma Portals and 106�sec for Linux Portals. Not surprisingly,

the highly optimized MPP network with the tightly integrated interface outperforms



6 BRIGHTWELL AND PLIMPTON

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

R
at

e 
(M

B
/s

)

Message Size (bytes)

Portals-Linux
Portals-Puma

FIG. 2. MPI one-way bandwidth on TFLOPS and Cplant.

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

T
im

e 
(m

ic
ro

se
co

nd
s)

Message Size (bytes)

Portals-Linux
Portals-Puma

FIG. 3. MPI one-way latency on TFLOPS and Cplant.



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 7

the Myrinet network with the PCI bus interface. However, the latency performance

of Portals in Linux is signi�cantly less than what other Myrinet software implemen-

tations have been able to achieve [17, 14, 22]. The programmability of Myrinet has

allowed for the development of MCP's and support libraries that can achieve less

than 10�sec for MPI one-way latency. The reasons for such high latency numbers

for Portals can be attributed to several factors.

First, Portals was designed for platforms where the network interface resides on

the memory bus and has access to all of the physical memory on a node. For exam-

ple, the Portals implementation in Puma uses data structures in an application's

address space to describe to the kernel how to respond to incoming messages. This

lack of an explicit API does not allow important data structures to be placed any-

where but in user space. This placement severely limits the performance possible

for the Portals implementation in Linux. Because the Linux kernel does not have

access to all of physical memory, data structures in user space must be copied into

kernel space to be inspected by the Portals module. After inspection, these data

structures are manipulated and then copied back into user space. Crossing these

protection boundaries and moving data back and forth between user and kernel

space is expensive in Linux.

In addition to excessive memory copying, interrupts are used to process incoming

messages. Rather than wasting host processor cycles polling the network or using

a dedicated message co-processor, the MCP generates an interrupt to service the

network. Some Myrinet implementations have even been able to achieve extremely

low latencies by dedicating the host processor to polling the network. While low

latency is desirable, we feel that a message passing implementation that maximizes

the amount of compute cycles delivered to the application, rather than to the

network, is more desirable.

The limitations with respect to latency of the Portals implementation in Linux

were discovered early in the porting e�ort. However, we also knew from experience

that a critical component of a scalable massively parallel distributed memory ma-

chine is bandwidth performance. The bandwidth performance of Portals is greater

than many other Myrinet implementations, especially those optimized for short

message performance.

Since the entire scalable runtime environment was being layered on Portals, we

continued to develop our code on top of this interface while searching for a new

message-passing layer. We developed a new message-passing interface, Portals 3.0

[5], designed speci�cally to support massively parallel clusters. We expect this new

interface to allow us to overcome the latency performance limitations of the current

generation of Portals in Linux.

4.2. Application Benchmarks

We now describe the performance of several of the NAS Parallel Benchmarks [2]

version 2.3 Class B on Cplant and TFLOPS. The suite is widely used to compare

the performance of all types of parallel computing platforms, since it contains com-

putational kernels that are representative of several di�erent algorithms used in

many real-world applications. The individual codes in the suite are limited in the

number of processors on which they can run, either by requiring a power of two or



8 BRIGHTWELL AND PLIMPTON

1 2 4 8 16 32 64 128 256
100

101

102

103

104

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 4. Total runtime for the EP benchmark on TFLOPS (squares) and Cplant (circles).

a square number of processors, and the size of the problem for each benchmark is

�xed as the number of processors is increased.

Figure 4 shows the total runtime results of the EP benchmark on Cplant and

TFLOPS out to 256 processors. This benchmark is totally computation bound and

performs no message passing. Since there are no communication e�ects on scaling,

this benchmark only characterizes the di�erence in compute performance between

the two platforms.

Figure 5 and Figure 6 show the total runtime for the MG and BT benchmarks

respectively on Cplant and TFLOPS up to 256 processors. The dotted line rep-

resents perfect speedup relative to the runtime on the fewest processors. Both of

these benchmarks are computation bound [30]. Given that the peak theoretical

compute performance is 1 GFLOPS for a Cplant processor and 300 megaFLOPS

(MFLOPS) for a TFLOPS processor, Cplant outperforms TFLOPS all the way out

to 256 processors. However, because the problem size is �xed, each node has less

computation to perform as the number of processors is increased. This allows the

compute performance of TFLOPS to approach that of Cplant on large numbers of

processors.

Figure 7 shows the results of the LU benchmark on Cplant and TFLOPS out to

256 processors. TFLOPS outperforms Cplant on this benchmark, except for the

256 processor case. The LU benchmark uses a �ner-grain communication scheme

than the other benchmarks, making it sensitive to message passing latency [30].

This may explain why TFLOPS is able to outperform Cplant at smaller numbers

of processors. It is unclear why Cplant outperforms TFLOPS for the 256 processor

case.



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 9

1 2 4 8 16 32 64 128 256

100

101

102

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 5. Total runtime for the MG benchmark on TFLOPS (squares) and Cplant (circles).

1 2 4 8 16 32 64 128 256

101

102

103

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 6. Total runtime for the BT benchmark on TFLOPS (squares) and (circles).



10 BRIGHTWELL AND PLIMPTON

1 2 4 8 16 32 64 128 256

101

102

103

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 7. Total runtime for the LU benchmark on TFLOPS (squares) and Cplant (circles).

1 2 4 8 16 32 64 128 256
101

102

103

104

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 8. Total runtime for the SP benchmark on TFLOPS (squares) and Cplant (circles).



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 11

1 2 4 8 16 32 64 128 256

101

102

103

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

FIG. 9. Total runtime for the CG benchmark on TFLOPS (squares) and Cplant (circles).

Figure 8 shows the results of the SP benchmark on Cplant and TFLOPS out to

256 processors. Cplant outperforms TFLOPS to just before 256 processors, at which

point TFLOPS has a faster runtime. For this benchmark, each processor owns a

spatial sub-domain where the surface-to-volume ratio increases with the number

of processors. Since shared surfaces between processors require communication,

superior communication performance of TFLOPS allows it to win out on large

numbers of processors.

Figure 9 shows the results of the CG benchmark on Cplant and TFLOPS out to

256 processors. These results are similar to the previous results on the SP bench-

mark. The crossover point occurs much earlier, at about 70 processors. The com-

munication requirements of this benchmark also favor TFLOPS for large numbers

of processors.

5. APPLICATIONS

In this section we present performance results for three full-scale applications

run on both the Cplant and TFLOPS machines. The applications are all di�erent

in nature, both from a scienti�c and computational standpoint. Hence they test

Cplant's capabilities versus a traditional MPP machine in di�erent ways. In each of

the three cases we examine performance trade-o�s for scalability on both �xed-size

and scaled-size problems.

The �rst simulations model the motion of an ensemble of strongly interacting

particles. The second code solves a set of partial-di�erential equations (PDEs)

(Maxwell's equations) on structured grids using �nite-di�erence methods. The



12 BRIGHTWELL AND PLIMPTON

�nal application is for a PDE (Boltzmann radiation transport equation) solved via

directional sweeps on an unstructured grid.

5.1. Particle Simulation

The �rst application is a molecular dynamics (MD) model of a Lennard-Jones

(LJ) liquid. In an MD simulation, Newton's equations of motion are integrated for

a collection of interacting particles. In a LJ system, on a given timestep a particle

interacts in a pairwise fashion with every other particle that is nearby (within some

cuto� distance).

The simulations we discuss here are for a 3-d box of particles, decomposed spa-

tially across processors so that each owns a small 3-d \brick" or subsection of the

global simulation domain. Each processor computes the forces on its atoms and

advances their positions and velocities. This requires each processor to communi-

cate every timestep with neighboring processors to exchange particle information

(coordinates, forces). Periodically, particles are also migrated to new processors as

they di�use through the simulation box.

In these simulations the 
uid density and cuto� distance were set so that each

particle interacts with approximately 55 neighbors every timestep. More details

about the benchmark itself and the algorithms used to eÆciently model such a

system, both from a parallel and serial standpoint, are discussed in Plimpton [19].

This is a model of a simple monotomic 
uid, but the same parallel methodology

and communication routines are used in a variety of more sophisticated codes we

have developed at Sandia for modeling polymeric, biological, and metallic systems

[27, 20, 13]. These simulations are a good test for our purpose here in that they

are a good \stress-test" of interprocessor communication.

The �rst set of results in Figure 10 are for �xed-size simulations of an N = 32000

particle system. This is a modest system size that one might typically wish to simu-

late for very long timescales, e.g. millions of timesteps. A single TFLOPS Pentium

II processor runs this simulation in 0.659 secs/timestep. An Alpha processor on

Cplant is about 2 times faster at 0.344 secs/timestep. In the �gure, one-processor

timings on both machines are shown as 100% eÆcient. Timings on multiple pro-

cessors were scaled to the one-processor time for the respective machine. Thus a

parallel eÆciency of 60% on 16 Cplant processors means the simulation ran 9.6

times faster than it did on one Cplant processor.

As expected, the results show that parallel eÆciency falls o� more quickly on

Cplant than on TFLOPS, due to Cplant's faster processors and slower commu-

nication. Still, in terms of absolute CPU time, Cplant remains competitive with

TFLOPS out to 64 processors, where the CPU time/timestep is 0.0132 and 0.0128

secs for Cplant and TFLOPS respectively.

In Figure 11, we show timing results for a scaled version of the same physical

model. On one processor we run the same 32000-particle simulation as in the

previous �gure. On P processors we simulate a system that is P times larger. Thus

on 300 Cplant processors (rightmost data point in �gure), we are simulating 9.6

million atoms. Perfect eÆciency (100%) now represents a simulation that runs in

the same CPU time/timestep as the one-processor timing (0.344 secs/timestep on

Cplant, 0.659 secs/timestep on TFLOPS).



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 13

1 2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Processors

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

FIG. 10. Parallel eÆciencies for the same molecular dynamics simulation run on varying
numbers of processors on TFLOPS (squares) and Cplant (circles). This is a �xed-size simulation
of 32000 particles.

These timings show Cplant runs this simulation in a reasonably scalable fashion.

Since its processors are twice as fast as TFLOPS processors on this code, Cplant is

running these large simulations 1.7 to 2 times faster than TFLOPS for all processor

counts shown in the �gure.

5.2. Electromagnetics on a Structured Grid

QUICKSILVER is a large particle-in-cell (PIC) electromagnetics code, developed

and parallelized at Sandia over the last several years. It models relativistic charged

particle transport and the evolution of electric and magnetic �elds via solutions

to Maxwell's equations. The �eld computations are performed on one or more

structured grid blocks using a �nite-di�erence time-domain integrator in either an

explicit or implicit formulation. In this section we run QUICKSILVER in a �elds-

only mode where we model the propagation of incident wave pulses across a large

domain containing embedded conductors. We run these calculations in explicit

mode because this maximizes the communication/computation ratio within each

timestep, and thus is again a good \stress-test" of Cplant's performance. More

details about QUICKSILVER and the various algorithms used in its parallelization

can be found in Plimpton [21].

The basic parallel strategy is to break up the global domain into small 3-d sub-

blocks, one (or more) owned by each processor. A single processor performs �eld

updates within its sub-domain(s) and exchanges electric and magnetic �eld com-

ponents with surrounding processors. Because the �eld components are edge- and

face-centered quantities within the grid cells, in these benchmark runs each proces-

sor ends up communicating with 26 neighbor blocks each timestep.



14 BRIGHTWELL AND PLIMPTON

1 2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Processors

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

FIG. 11. Parallel eÆciencies for scaled-size molecular dynamics simulations run on TFLOPS
(squares) and Cplant (circles). The simulation size was 32000 particles/processor. Thus the
leftmost point are simulations of 32000 particles; the rightmost points are simulations of 16.3
million particles on TFLOPS and 9.6 million on Cplant (300 processors).

In Figure 12 we show parallel eÆciencies for a simulation of wave propagation in

a 768,000 grid-cell model. This is a problem size that might typically be run for

tens of thousands of timesteps over many hours on a high-end desktop machine.

As in the previous section, one-processor timings on both machines are normalized

to 100% eÆciency. A Cplant processor is about 2.5 times faster than a TFLOPS

processor on this simulation (0.56 sec/timestep versus 1.38 sec/timestep). Timings

on TFLOPS show super-linear speed-up on 2-8 processors due to cache e�ects when

the �eld arrays can be �t into cache as the problem size (per processor) is reduced.

In Figure 13 a scaled-size problem was run where each processor owned a sub-

block with 27000 grid cells. Thus the largest simulations were roughly 3.5 million

grid cells on Cplant (128 processors) and nearly 7 million cells on TFLOPS (256

processors). Here the results on TFLOPS show excellent scalability (over 90%

eÆcient), while the Cplant scalability degrades about as quickly as it did in previous

plot for �xed-size scaling.

The reason for this is again due to the disparity in computation/communication

ratios for the two machines. The relatively slow communication on Cplant, partic-

ularly the high latencies for the small messages being exchanged (with some of the

26 neighboring processors) imposes a high overhead cost. Also, on this problem

the one-processor timings are more than a factor of 3 di�erent (0.0412 sec/timestep

on TFLOPS versus 0.0129 sec/timestep on Cplant). This corresponds to a 40

MFLOPS versus 120 MFLOPS compute rate on the two machines for the �eld up-

dating. This means that in terms of raw performance on 128 processors, Cplant is

still running this simulation about 1.5 times faster than TFLOPS.



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 15

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Processors

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

FIG. 12. Parallel eÆciencies for the same electromagnetic simulation run on TFLOPS
(squares) and Cplant (circles). This calculation was a production-scale model of a wave pulse
propagating through a structured grid of 768,000 cells for 2000 timesteps.

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Processors

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

FIG. 13. Parallel eÆciencies for scaled-size electromagnetic simulations run on TFLOPS
(squares) and Cplant (circles). The model ran for 10000 timesteps on a grid size of 27000 grid
cells/processor. The 128-processor data points are for simulations on a grid of 3.5 million cells.



16 BRIGHTWELL AND PLIMPTON

5.3. Radiation Transport on an Unstructured Grid

The �nal application we discuss is a radiation transport simulator which computes

the solution to Bolztmann's equation for radiative 
ux on an unstructured grid. The

code computes the energy distribution of the 
ux in six dimensions (3 spatial, 2

angular, and 1 energy) via the method of discrete ordinates which partitions the

angular dependence of the solution over a �nite number of (ordinate) directions

[10, 7]. The solution in any one direction can be computed by a sweep across

the grid where each �nite element (grid cell) solves for its contribution only when

neighboring cells that are \upwind" from it (relative to the sweeping direction)

have already completed their solution. A �nished cell then passes 
ux along to its

\downwind" neighbors.

Our parallel implementation of this algorithm employs a spatial decomposition

of the 3-d unstructured grid across processors (via the CHACO partitioning tool

[12]). As a procesor computes the solution in one of its grid cells it sends 
ux

information to any downwind cells that may be owned by neighboring processors.

This means that a processor owning a sub-region of the global grid that is far

downwind must wait for all upwind processors to complete their computations.

This natural load-imbalance is (partially) alleviated by working on many dozens or

hundreds of directional solutions simultaneously. As a sweep is computed, the net

e�ect is that a very large number of small messages are sent asynchronously in a

point-to-point fashion between all di�erent pairs of neighboring processors. This

code is thus an excellent test of a cluster's ability to do small-message unstructured

communication.

In Figure 14 we show the results for a �xed-size simulation with 6360 hexahedral

�nite elements, 80 ordinate directions, and 2 energy groups. Despite the small grid

size, due to the 6-dimensionality of the data structures, this is actually a fairly large

one-processor problem. As before, we normalize the one-processor timings on both

platforms as 100% eÆcient to compute the eÆciency results for multiple processors.

In absolute CPU time, a Cplant procesor is a little less than two times faster than a

TFLOPS processor on this calculation (113.7 seconds for a sweep of all 80 ordinates

versus 201.7 seconds). Both machines show reasonable scalability out to large

numbers of processors, especially considering the fact there are only 25 grid/cells

per processor in the 256-processor runs. Note that Cplant takes an immediate

eÆciency hit on two processors as inter-processor communication is required, but

performance degrades more slowly thereafter.

It is diÆcult to construct scaled-size problems of ideal size on unstructured

meshes. Instead, in Figure 15, we show CPU timings for both machines running 3

di�erent sized problems, where N is the number of �nite element grid cells, ranging

from 6360 to nearly 100,000. Because these data are actual timings, the di�erence

in processor speeds between the two machines is now evident. In contrast to the

previous 5 �gures, perfect scalability would now be a sloped line (o�set for each

machine), going through the one-processor data point for that machine. Dotted

reference lines are shown for Cplant on the �gure.

These data again show that Cplant is not scaling as well as TFLOPS. However

the crossover point in raw performance is at about 64-128 processors on the smaller

problems and looks like it will be pushed even further out on larger problems. This



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 17

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Processors

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

FIG. 14. Parallel eÆciencies for the same radiation transport calculation run on TFLOPS
(squares) and Cplant (circles). The radiation equations were solved for 80 ordinate directions and
2 energy groups on a grid of 6360 hexahedral elements.

1 2 4 8 16 32 64 128 256

100

101

102

Processors

C
P

U
 T

im
e 

(s
ec

on
ds

/s
w

ee
p)

N=6360 N=25032 N=99702

FIG. 15. CPU times for a radiation transport simulation on three di�erent grid sizes from
6560 to 99702 elements. Each model size was run on varying numbers of processors on TFLOPS
(squares) and Cplant (circles). The dotted lines represent perfect speed-up on Cplant.



18 BRIGHTWELL AND PLIMPTON

will enable some truly large radiation transport calculations to be done e�ectively

on the Cplant platform.

6. CONCLUSIONS

From a system software point of view, our experiences in porting the TFLOPS

environment to a large Linux cluster have allowed us to better understand the Linux

operating system and its interaction with a high-performance network interface. We

have identi�ed some limitations in hardware, software, and topology that prevent

us from achieving the communication performance that will allow Cplant to scale

out to thousands of nodes. The design of Portals 3.0 will allow us to better utilize

the programmable Myrinet cards. We hope to make modi�cations to the memory

management structures in Linux to allow for physically contiguous regions of mem-

ory, which should simplify and increase the performance of our implementation of

Portals 3.0.

From an application standpoint, we have shown that despite a signi�cant di�er-

ence in the ratio of compute-to-communication performance, a large Linux cluster

can often meet and sometimes exceed the performance of a large MPP up to a few

hundred processors. Our experience with the applications discussed here is typi-

cal of other Cplant users at Sandia who have tested a variety of applications on

the machine over the last six months. These applications include shock hydrody-

namics codes, 
uid dynamics and reacting 
ow simulators, and quantum electronic

structure models, to name a few.

In many cases on our cluster, the key feature that appears to be limiting appli-

cation scalability is message-passing latency. This can sometimes be overcome by

increasing the problem sizes that are simulated, but this is often not a good solu-

tion from the analyst's point of view. Our hope is that the re-design of Portals 3.0

will provide a signi�cant decrease in latency times and thus alleviate many of these

problems. However, we note that our next-generation cluster, which we describe in

the next section, has faster processors. Thus we are again changing the machine's

compute-to-communication ratio in a direction that will degrade overall scalability.

It remains to be seen whether we can achieve scalable performance at the near-1000

processor level that this new machine will o�er.

7. FUTURE WORK

In October of 1999, Compaq Computer Corporation installed a 592-node cluster

at Sandia. Each compute node in this new cluster is composed of a 500 MHz Alpha

21264 processor, 2 MB of level-3 cache, 256 MB of main memory, and a 64-bit

33 MHz Myrinet LANai 7 network interface card. This machine achieved 247.6

GFLOPS on the LINPACK [9] benchmark, which would place it at number 40 on

the November 1999 list of the Top 500 [18] fastest computers in the world had the

results been submitted. Previous results that were submitted placed it at number

44 in the list.

Compared to the 400-node Alpha 21164 cluster, this new machine has increased

compute performance, increased peak memory bandwidth, increased network link

bandwidth, a di�erent topology, and more processors. Our initial experience with

these machines has shown a signi�cant increase in computation performance over



SCALABILITY AND PERFORMANCE OF A LARGE LINUX CLUSTER 19

the Cplant cluster discussed here. We expect to gather results for the benchmarks

and applications presented in this paper on this platform in early 2000 when the

machine is deployed into the Sandia production computing environment. We will

add these results to the �nal version of this paper as it goes through the review

process.

REFERENCES

1. D. A. Bader, A. B. Maccabe, J. R. Mastaler, J. K. McIver III, and P. A. Kovatch. Design and
Analysis of the Alliance / University of New Mexico Roadrunner Linux SMP Super Cluster.
In R. Buyya, M. Baker, K. Hawick, and H. James, editors, Proceedings of the IEEE Computer

Society International Workshop on Cluster Computing, pages 9{18, Melbourne, Austrailia,
December 1999.

2. D. H. Bailey et al. The NAS Parallel Benchmarks. International Journal of Supercomputer

Applications, 5(3):63{73, 1991.

3. N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su.
Myrinet-a gigabit-per-second local-area network. IEEE Micro, 15(1):29{36, February 1995.

4. R. B. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson, M. J. Levenhagen, A. B. Maccabe,
and R. E. Riesen. Massively Parallel Computing Using Commodity Components. Parallel

Computing, 26(2-3):243{266, February 2000.

5. R. B. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E. Riesen. The Portals 3.0 Message
Passing Interface. Technical Report SAND99-2959, Sandia National Laboratories, December
1999.

6. R. B. Brightwell and P. L. Shuler. Design and implementation of MPI on Puma portals. In
Proceedings of the Second MPI Developer's Conference, pages 18{25, July 1996.

7. S. P. Burns. Spatial domain-based parallelism in large scale, participating-media, radiative
transport applications. Technical Report SAND96{2485, Sandia National Laboratories, Albu-
querque, NM, 1996.

8. Compaq, Microsoft, and Intel. Virtual Interface Architecture Speci�cation Version 1.0. Tech-
nical report, Compaq, Microsoft, and Intel, December 1997.

9. J. J. Dongarra. Performance of Various Computers Using Standard Linear Equations Software.
Technical Report CS-89-85, Department of Computer Science, University of Tennessee, 1994.

10. W. A. Fiveland. Three-dimensional radiative heat-transfer solutions by the discrete ordinates
method. J. Thermophysics and Heat Transfer, 2:309{316, 1988.

11. D. S. Greenberg, R. B. Brightwell, L. A. Fisk, A. B. Maccabe, and R. E. Riesen. A System
Software Architecture for High-End Computing. In Proceedings of SC'97, 1997.

12. B. Hendrickson and R. Leland. The Chaco user's guide: Version 2.0. Technical Report
SAND94{2692, Sandia National Labs, Albuquerque, NM, June 1995.

13. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton. Dislocation nucleation and defect structure
during surface indentation. Phys. Rev. B, 58:11085, 1998.

14. M. Lauria, S. Pakin, and A. Chien. EÆcient Layering for High Speed Communication: Fast
Messages 2.x. In Proceedings of the IEEE International Symposium on High Performance

Distributed Computing, 1998.

15. A. B. Maccabe, K. S. McCurley, R. E. Riesen, and S. R. Wheat. SUNMOS for the Intel
Paragon: A brief user's guide. In Proceedings of the Intel Supercomputer Users' Group. 1994

Annual North America Users' Conference., pages 245{251, June 1994.

16. Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The Interna-

tional Journal of Supercomputer Applications and High Performance Computing, 8, 1994.

17. Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.

18. Netlib. Top 500 Supercomputers, 1998. http://www.top500.org.

19. S. J. Plimpton. Fast parallel algorithms for short{range molecular dynamics. J. Comp. Phys.,
117:1{19, 1995.

20. S. J. Plimpton, R. Pollock, and M. Stevens. Particle-mesh ewald and rREPSA for parallel
molecular dynanmics simulations. In Proc. 8th SIAM Conference on Parallel Processing for

Scienti�c Computing, Minneapolis, MN. SIAM, 1997.



20 BRIGHTWELL AND PLIMPTON

21. S. J. Plimpton, D. B. Seidel, M. F. Pasik, and R. S. Coats. Novel load-balancing techniques for
an electromagnetic particle-in-cell code. Technical Report SAND2000{0035, Sandia National
Laboratories, Albuquerque, NM, 2000.

22. L. Prylli. BIP Messages User Manual for BIP 0.94. Technical report, LHPC, June 1998.

23. Sandia National Laboratories. ASCI Red, 1996. http://www.sandia.gov/ASCI/TFLOP/
Home Page.html.

24. Sandia National Laboratories. Computational Plant, 1997. http://www.cs.sandia.gov/cplant.

25. Sandia National Laboratories. Puma Portals, 1997. http://www.cs.sandia.gov/puma/portals.

26. P. L. Shuler, C. Jong, R. E. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M.
Stallcup. The Puma operating system for massively parallel computers. In Proceedings of the

1995 Intel Supercomputer User's Group Conference. Intel Supercomputer User's Group, 1995.

27. M. J. Stevens and S. J. Plimpton. The e�ect of added salt on polyelectrolyte structure. Eur.
Phys. J. B, 2:341{345, 1998.

28. Task Group of Technical Committee T11. Information Technology - Scheduled Transfer Pro-
tocol - Working Draft 2.0. Technical report, Accredited Standards Committee NCITS, July
1998.

29. M. S. Warren, M. P. Goda, D. J. Becker, J. K. Salmon, and T. Sterling. Parallel Supercomput-
ing with Commodity Components. In Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, 1997.

30. F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler. Architectural Requirements
and Scalability of the NAS Parallel Benchmarks. In Proceedings of SC'99, November 1999.

ACKNOWLEDGMENTS

The authors would like the acknowledge the contributions of the following people:


