Bad Words: Finding Faults In Spirit’s Syslogs

Jon Stearley
Sandia National Laboratories
Albuquerque, NM 87111 USA
Email: jrstear@sandia.gov

Abstract—Accurate fault detection is a key element of resilient
computing. Syslogs provide key information regarding faults,
and are found on nearly all computing systems. Discovering
new fault types requires expert human effort, however, as no
previous algorithm has been shown to localize faults in time and
space with an operationally acceptable false positive rate. We
present experiments on three weeks of syslogs from Sandia’s
512-node “Spirit” Linux cluster, showing one algorithm that
localizes 50% of faults with 75% precision, corresponding to an
excellent false positive rate of 0.05%. The salient characteristics
of this algorithm are (1) calculation of nodewise information
entropy, and (2) encoding of word position. The key observation
is that similar computers correctly executing similar work should
produce similar logs.

I. INTRODUCTION

Nearly all systems encounter faults, accidental conditions
that cause a component to fail to perform its intended function
[20](7C). This is certainly true of high-performance computing
clusters designed for performance rather than reliability. As the
component count and complexity of these systems increase,
faults become more frequent and difficult to localize. Whereas
it is not difficult to detect and localize faults with known
signatures, the root causes of new fault types can be extremely
challenging to find, resulting in repeated application interrupts
and unscheduled downtimes.

Syslogs are a rich source of fault information, evidenced
by the fact that they are one of the first places systems
administrators look for clues when problems occur. Syslog
is the most widely used mechanism by which system and
application programmers may emit arbitrary text messages
to a centralized message repository. Although the possibility
of unstructured message content makes syslog flexible for
programmers, the resulting variety of messages are a bane
to systems administrators and automated detection algorithms,
alike. For example, some programmers use the word “error”
only in reference to faults justifying human response, while
others use it in a frustratingly liberal fashion. In fact, pro-
grammers may not know when human responses are justified,
because it is often the interaction of multiple interdependent
programs that determines this condition. Additionally, the time
interleaving of messages emitted from multiuser, multinode,

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy under
Contract DE-AC04-94AL85000.

Work was funded in part by the U.S. Department of Energy High Perfor-
mance Computer Science Fellowship.

Adam J. Oliner
Stanford University
Department of Computer Science
Stanford, CA 94305-9025 USA
Email: oliner@cs.stanford.edu

multitasking supercomputers produces logs with wildly vary-
ing time properties. Indeed, syslogs are regarded by many
system administrators as a necessary evil.

In this paper, we present an algorithm that can accurately
detect faults in syslogs by leveraging two important insights.
First, the context of a word in a message is important. We
encode words as terms, the concatenation of the word text and
its token position in the message. Second, similar computers
correctly executing similar workloads tend to generate similar
logs. By aggregating logs by node and computing certain
information-theoretic quantities, explained later, we achieve
unprecedented results: 50% accuracy at 75% recall. This corre-
sponds to a false positive rate of 0.05%. Using experiments on
syslog data from Sandia’s “Spirit” supercomputer, we explain
why using nodewise term entropy is so effective.

II. BACKGROUND

Because syslogs do contain critical fault and misuse infor-
mation, and are used so widely in computing systems, they
have a rich research history. The most common approach is
to monitor syslogs for known fault types, usually via regular
expressions [1], [8], [15], [21]. The maintenance of precise
expressions requires diligent expert attention, especially as
logs change with time, due to software and hardware upgrades
and configuration changes. Variations in user behavior can
also directly affect log content. But the maintenance and
monitoring tasks are simple compared to the process used
to discover previously unknown fault or misuse messages,
which is most commonly based on an expert’s intuitions and
experience, coupled with decades-old tools such as UNIX
grep and 1s.

In order to facilitate this discovery task, researchers have
considered a wide variety of visualization methods. These
include plotting of message rates [4] (also, see splunk.com)
and three-dimensional renderings of host groups [18], [19].
Other approaches include parallel coordinates, spring layouts,
and self-organizing maps [7]. Efforts have even been made to
auralize log streams [6] using sounds such as frogs croaking
and birds singing. Many of these approaches are interesting
and may be valuable, but it is difficult to quantify their
effectiveness.

Extensive research has also been conducted on the time
properties of logs. It is well known that some faults generate
large numbers of messages in short periods of time, and much
work capitalizes on this property [3], [10]. Hardware failures

(such as disk, memory, and network) can be particularly
prolific. The majority of fault types, however, are not bursty
[14]. Another supposed property on which researchers have
capitalized is the normal periodicity of messages [9], [13],
yet many messages are not periodic, but rather are driven
by the varying workload. Most of these works assume that
message types are well known: that message content is easily
tokenized into a message-type-identifying ID. While this is
true of some logs (such as from network and phone switches),
this is certainly not the case for syslogs.

Less work has been done in the area of unstructured mes-
sage content. Attempts to apply techniques originally devel-
oped for genomic sequence mining to logs [17], [24] have run
up against scaling problems. Vaarandi applied clustering [22]
and a priori data mining [23] to the problem of automatically
categorizing messages. Vaarandi was the first to encode word
positions in his analyses (e.g. the first word of the message,
the second, etc.), thereby effectively capturing a simple form
of message context. This paper extends the understanding of
how useful this encoding can be.

Reuning [16] and Liao [11] have each applied simple term
weighting schemes to the goal of intrusion detection in logs,
but Reuning concludes that his false positive rate renders the
approach unusable in practice. This paper applies a more
complex weighting scheme (“log.entropy,” explained later),
which has been shown to be highly effective for information
retrieval tasks [2].

III. DATA

Over a 23-day period of production operation, Sandia’s
512-node Linux cluster, called “Spirit,” generated 8.3 million
(911MB) syslog messages [12]. Administrators held weekly
meetings in which they identified and discussed all known
faults, including hardware failures (disks, fans, memory, and
network cards), misconfigurations (software, BIOS, and hard-
ware inconsistencies), parallel job failures, and other miscel-
laneous events. More information on this log, as well as four
others, can be found elsewhere [14].

Let a nodehour be one hour of log data generated by a single
node. Using the faults identified above, we generated a list of
single-word regular expressions that identify those messages
that were indeed symptoms of faults, and applied them to
identify 365 distinct nodehours as containing faults. We use
this list of fault-containing nodehours as the ground truth for
experiment scoring (described later). The detection algorithms
are unsupervised, however, and do not know a priori which
nodehours contain faults.

Software present on Spirit nodes detects a number of
known fault conditions and sends mail from the node to alert
the administrators. This, in turn, generates syslog messages.
Presenting nodehours containing such mail, however, is not
operationally useful (the alarm was already raised). In order
to deal with this, we ignore all email-related syslog messages
in this study. This is accomplished by simply discarding all
messages that start with “postfix:”, which is Spirit’s mail
transfer agent.

The lack of publicly-available, labeled log data is a
significant barrier to major advances in the log analysis
research community. A primary reason logs are not shared
is the technical difficulty of exposing enough information
to enable effective research, while not exposing enough to
put the sharing site at risk [5]. We scrubbed the logs in this
study clean of sensitive information and they are available
upon request. Our analysis tools are also publicly available at
http://www.cs.sandia.gov/ ~ jrstear/sisyphus.

IV. PREPROCESSING

We first index the logs to create a sparse M x N matrix,
where non-zero values in the matrix indicate how many times
word 7 (rows) occurs during nodehour j (columns). A word is
a whitespace-separated character sequence in the unstructured
text messages. We use message timestamp and host name
(node) solely to determine nodehour; they are not included
in the index. Words occurring only once in the entire log
set are excluded; most words occur infrequently [22]. This
results in a matrix with 36,115 rows (words), 243,409 columns
(nodehours), and only 0.045% nonzero entries.

Word position is a simple form of message context in-
formation. In order to study the impact of encoding word
position, we generated a term-nodehour matrix in addition to
the word-nodehour matrix. A term is the concatenation of a
word with its position in the message; position is encoded
as a four digit hexadecimal prefix. For example, the term
“0007CONDITION” indicates that the word “CONDITION”
occurs as the seventh word of a message. Terms that occur
only once in the entire log set are excluded from the index.
This matrix has 39,493 rows, 243,409 columns, and 0.075%
non-zero entries.

It is conventional for the first word in syslog messages to be
of the form “pname[pid]:” where “pname” is the name of the
process generating the msg and “pid” is its process ID. Given
this convention, we study the detection performance impact
of including it in the index versus ignoring it. In all cases,
we eliminate the pid during indexing, rendering first words as
“pname[*]:” (and thus the first terms are “0001pname[*]:”).

V. OBIJECTIVE

Our goal is to automatically divide the nodehours into two
classes: those that contain faults, and those that do not. The
confusion matrix shown in Table I forms the basis for scoring
how well a classifier performs. Let an alarm be a nodehour
document that is presented by the classifier as containing a
fault. Let actionable denote a nodehour that does, in fact,
contain a fault.

Precision is the percentage of alarms (positive presenta-
tion class) that are actionable (positive true class), and is
calculated as P = TP/(TP + FP). There exists some
threshold for P below which a classifier is practically useless
because too many false alarms are raised (this threshold is
site and application dependent). Recall is the percentage of
actionable nodehours presented as alarms, and is calculated
as R=TP/(TP + FN). Plots relating these two quantities

True Class
Positive Negative
(Actionable) (Ignorable)
Positive True False
Presentation (Alarm) Positive (TP) Positive (FP)
Class . False True
Iée%::)tg)e Negative Negative
£ (FN) (TN)
TABLE I

CLASSIFIER SCORING MATRIX

are called precision-recall plots. An ideal classifier exhibiting
perfect precision and detection would be represented by a
single point at (1,1). In practice, however, there are a range
of precision and detection values as the classifier presentation
threshold is varied from maximum to minimum (left and right
ends of the lines on PR plots, respectively).

System administrators commonly begin this classification
task by examining log file sizes—an unusually large size
implies unusually high message rates (a known symptom of
some faults). We therefore use the number of bytes in each
nodehour log as the baseline classifie—any classifier that does
not significantly exceed the performance of this simple bytes
algorithm is not worth pursuing.

VI. EXPERIMENTS

Given an M x N matrix X, the magnitude of the j** column
is |zj| = /> i~ (i, j)?. This calculation forms the basis of
our classifiers.

We calculated magnitudes of the word and term index
matrices, but these do not significantly outperform bytes as
a classifier, and are thus omitted for brevity.

We also explored the tf.idf weighting scheme [2]. In this
scheme, the elements of X are first scaled by g(i) = loga(1+
ﬁ), where df; is the number of nodehours in which term 4
occurs. So |z;| = />~ (g(i)x(i,5))? . The intent of this
scheme is to give a greater weight to those terms that are useful
in distinguishing between nodehours. This also does not yield
a classifier that significantly outperforms bytes.

Next, we explored log.entropy weighting [2], which involves
the following two steps. First, we diminish the dominance of
terms having high occurrence counts by taking their logarithm.
Second, we scale by their information entropy:

1 n
— ijl0g2(pij),
lOgQ(n);pg 92(pij)

g(i) =1+
(i)
Dy w(id)
occurrences which are in document j. Terms that occur the
same number of times in all documents receive a weight of
zero, and terms which occur in only one document get a weight
of one. Terms can occur in all documents and still receive a
weight of nearly one if a large majority of their occurrences
are focused among a small number of documents. Using this
weighting, |z;| = /> i, (g(i)log2(x(4, 5)))2. This also does

not yield outstanding results.

where p;; = is the fraction of term ¢’s total

Finally, we calculated each of the above again, but using
weights based on aggregates of nodehours rather than raw
nodehours. Let Y be a node-aggregated M x N matrix,
where N is the total number of nodes, and column j is
equal to the element-wise sum of columns of X corresponding
to node j. Compute ¢(i) as above, using y(i,j) instead of
x(4, 7). Similarly, generate a time-aggregated M x H matrix Z,
where H is the total number of hours. Using these aggregated
weighting factors, tf.idf still does not produce noteworthy
results, but log.entropy does.

1.0

— riode
— hour

nodehour
— hytes

171

0.8

0.6
1

Frecision

04

0.z

Recall

Fig. 1. Using bytes per nodehour as a fault detection criteria yields high preci-
sion only for bursty fault types (roughly 10% in this experiment). Information
magnitude using distribution of terms over hours or nodehours yields similarly
poor performance. In contrast, nodewise information magnitude detects an
impressive 50% of faults with 75% precision, corresponding to an excellent
false positive rate of 0.05%.

VII. RESULTS

Column magnitudes resulting from log.entropy using (%)
are referred to as the node classifier (the columns of Y
correspond to individual nodes). Magnitudes resulting from
log.entropy using z(i) are referred to as the hour classifier
(the columns of Z correspond to individual hours). Magnitudes
using log.entropy on (i) are referred to as nodehour (X
is our original nodehour index matrix). Figure 1 shows the
precision-recall performance of these classifiers. The bytes
classifier maintains a high alarm precision rate for only a very
small subset of fault conditions, corresponding to a specific
disk failure mode resulting in a large burst of messages. The
hour and nodehour classifiers perform similarly poorly to
bytes. In comparison, the node classifier yields outstanding
performance. The point at (0.5, 0.75) indicates that we detect
50% of fault-containing nodehours before alarm precision falls
below 75%. For this data, this corresponds to an excellent false
positive rate of 0.05%.

The node classifier is now in production use on Sandia’s
Red Storm and Spirit supercomputers, and has detected a wide
range of faults in near real-time (statistics are computed via
cron every 15 minutes, which has proven to be an acceptable
lag time).

Why does aggregating by node have such a positive effect?
Some non-fault events also result in message bursts, such
as when a computer boots. Every time one of the nodes in
this data set boots, it emits 506 messages in one minute.
This causes a significant number of false positives for rate-
based methods, because rebooting is often a symptom of
human intervention, rather than a consequence of a fault.
We need a method that detects faults soon after (or before)
the fault occurs, rather than after remedial action has been
taken. Roughly speaking, all nodes reboot an equal number of
times, so the terms involved are evenly distributed across the
nodes. The node classifier described above results in these
terms being weighted low (near zero), greatly diminishing
their effect on the magnitude calculations. This is a practical
example of how the node classifier is beneficial—when similar
bursts of messages appear on all nodes over time, it weights
those messages low. Bursts of messages that do not occur on
all nodes still receive a high weight (near one), as they should.

In Figure 2, we plot two key properties of terms: nodewise
information weight g(¢) on the vertical axis and total occur-
rence rate on the horizontal axis. The aforementioned terms
associated with booting appear in the lower right region of
the plot (low information but high occurrence rate). Terms
with both a high information weight and a high occurrence
rate contribute most significantly to nodehour information
magnitudes. Terms that occur only once must also have an
information weight of one (it can only occur on a single node).
Similarly, for a term to have an information weight of zero it
must occur on all nodes (in this case, 512). The negatively
sloped boundary at the left of the diagram is a consequence
of this bounding relationship between information weight and
occurrence rate. Colors are used to group terms into similar
information weight ranges, based on arbitrary thresholds.
Terms arising from the first word of each message are depicted
using “+” symbols (addressed in detail later).

We now turn to the advantage of using terms instead of
words, which is quantified in Figure 3. The Wnode classifier
is calculated in the same way as node, but using the word
index as X instead of the term index. Indexing terms results
in a slightly larger matrix than words, but the precision benefits
are well worth the cost. As a specific example, consider the
following two messages:

o CROND[23597]: LAuS error - do_command.c:226 -

laus_attach: (19) laus_attach: No such device

o Event Log Daemon:[2907]: Fatal drive error, SCSI port

1IDO
The first message is distributed evenly across all nodes, and
does not indicate a fault condition (rather, it indicates a benign
misconfiguration). The second, however, indicates disk failure,
which only occurred on two nodes. The word “error” in the
first message is indexed as the term “0003error”, whereas that

2 4 odcmE——D 0D 000 @ 06 O o o o @ oo
o
o
oo&ogc%oooo o o +

= R
- + +
= +

+ +

- +
(=] o
B S
E
5 +
5
2
.
= o
o
=
£
o
i

d

N

=

=4

T T T T
1e+01 1e+03 1e+05 1e+07
Term Total Occurences [one point per term]
Fig. 2. Terms exhibit a wide range of information weights g¢(¢) and

occurrence counts. Terms occurring many times on few hosts (upper right
corner) contribute most significantly to nodehour information magnitude. In
contrast, terms having only high occurrence rate or high information weight
contribute little to information magnitude. The negatively sloped boundary
condition is described in Section VII.

same word in the second message is indexed as the term
“0006error”. The former occurs in a variety of fault and non-
fault messages (described below), but the latter occurs only in
messages indicating faults, and has an entropy weight nearly
one, and thus appears at upper right of Figure 2. Word position
information helps to distinguish the terms as being part of
fundamentally different messages. By encoding word position
in this manner, we retain a simple form of message context
and thereby achieve greater precision.

Encoding more context, such as term tuples, may offer
additional benefits. It turns out that the term *“0003error”
also occurs in the message “kernel: EXT3-fs error (device
cciss0(104,3)): ext3_get_inode_loc: unable to read inode block
- inode=97638, block=196619”, which is another symptom of
a type of disk failure. Because “0003error” occurs in both fault
and non-fault messages, it receives a nodewise information
weight of 0.86. The term “0007unable,” on the other hand,
only occurs in the disk failure messages and only on one of
the 512 hosts, and so it receives a nodewise information weight
of 1.

These examples hint at the complexity of fault detection
in syslog data: the text messages are entirely unstructured. In
production use, we configure some terms to be ignored from
magnitude calculations (e.g. memory addresses in hexadeci-
mal, which almost always receive high nodewise information
weighting but provide little detection value). Experience sug-
gests that a small number of such configurations is sufficient
to yield accurate detection results, but some platform-specific

24 — — node
o |
=
o
g
=
S
g
o
o
=+ |
=
d
g
=
=
T T T T T T
0.0 0.z 04 0.6 0.8 1.0
Recall
Fig. 3. Using terms in the nodewise information magnitude detector

(node) yields significantly higher precision than using just words (Wnode).
Furthermore, omitting the first word of each message (node) yields a slight
advantage over including it (nodel).

tuning in this manner is necessary to achieve an operationally
acceptable precision rate.

Regarding the first message word, consider Figure 3, which
shows that omitting the first message word yields a small
precision advantage. The Wnodel classifier is the same as
Wnode, except that the first message word is included in the
calculations (similarly for nodel versus node). An example
motivating this result is the fact that 80% of boot messages
are emitted by the Linux kernel, and thus begin with “kernel:”.
The disk failure message described above, however, also
begins with “kernel:”. Due to the very large bursts of disk
failure messages (two nodes emit 3.8 million of them over
28 total nodehours), the term “0001kernel” receives a high
nodewise information weight. Including the term in magnitude
calculations erroneously results in boot nodehours receiving a
higher magnitude value than if the term were ignored from
the calculations. There are other terms with similar properties.
Any program that emits a large number of normal messages,
but occasionally emits fault messages, will have this effect.
Additionally, Figure 2 shows that the majority of first-word
terms have low information weight (depicted using “+”).

We next divide nodehours into three groups, (1) those con-
taining hardware faults, (2) those containing software faults,
and (3) those containing no faults. We plot the distributions
of these groups with respect to their nodewise information
magnitude (the node classifier) in Figure 4. Ideally, all fault
nodehours would be distributed at the right and non-fault
nodehours would be at the left. An overlap of fault and
non-fault distributions corresponds to decreasing precision in

—— Hardware Faults
- - Software Faults
. _
o Non-Faults
(\! —
o
o
('\! —
o
z 9 |
= o
[
[al
o
‘—! —
o
0
O_ —
o
o
S -7 =
o

0 5 10 15 20 25 30

Nodewise Information Magnitude

Fig. 4. The nodewise information magnitude classifier effectively separates
nodehours not containing faults from nodehours containing either hardware
or software faults.

Figures 1 and 3. Both hardware and software fault nodehours
are well-separated from non-fault nodehours. This is signif-
icant because most hardware faults are extremely bursty, as
previously discussed. In fact, the nodehours containing the
disk failure messages are outside the range shown in Figure 4,
tightly concentrated at a value of 163. Thus, the node classifier
is effective at detecting more than just bursty faults.

Figure 5 plots nodehour information magnitude versus time.
The high density of non-fault nodehours towards the bottom of
the plot corresponds to the sharp peak of non-fault nodehours
in Figure 4. Blank vertical bands correspond to periods of
time during which no logs were emitted due to system down-
time. Plotting versus time provides an intuitive and intriguing
overview of the information trends present in this data set.

VIII. CONCLUSIONS

Similar computers correctly executing similar workloads
tend to produce similar logs. For example, we found that
compute nodes in a Linux cluster, running jobs for users,
generated logs with similar content to one another during
non-faulty operation. We have quantitatively shown that a
non-uniform distribution of terms across supercomputer nodes
(high nodewise information) is useful for fault detection in sys-
logs, as is the encoding of word position (terms). These facts,
coupled with simple file indexing and matrix computations,
yield a classifier that, on our data set, detects 50% of faults
while maintaining a precision of at least 75%. This approach
could be used to help inform resilience measures that a fault
has occurred or is imminent. While some log messages provide
only postmortem information, others indicate conditions that

& - - Fault Modehour
Mon-Fault Modehour
=
PRE
=
2
= .
[=23
]
E 1
=
=
-Ej‘ =
T = 4
é .
£ - " 1
2 o
H . B
! Poaom
z . M |
[Tl . m i .
' ¥ . H
: ot IR et W
LS B . ,
o -
T T T T T
hay 02 hay OF hay 12 hay 17 hay 22
Time [one dot per nodehout]
Fig. 5. Most nodes emit low-information logs most of the time. Fault-

contaning nodehours tend to rise to the top.

are progressing towards fault. In both cases, quick detection
and response minimizes the impact on users.

ACKNOWLEDGMENTS

First and foremost, Jon would like to thank his savior Jesus
Christ, the revealer of all mysteries. Thanks also to Jerry
Smith, Sophia Corwell, and Tim Draelos for contributing their
time and insight.

ERRATA

Example messages for terms ”0003error” and ’0006error”
on page 4 did not appear correctly in a previous revision of
this paper, but have been corrected herein.

REFERENCES

[1] Logsurfer - a tool for real-time monitoring of text-based logfiles.
http://www.cert.dfn.de/eng/logsurf/.

[2] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces, and
information retrieval. SIAM Rev., 41(2):335-362, 1999.

[3] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel,
G. Tolle, J. Hui, A. Fox, M. L. Jordan, and D. Patterson. Combining
visualization and statistical analysis to improve operator confidence and
efficiency for failure detection and localization. In In The 2nd IEEE
International Conference on Autonomic Computing (ICAC ’05), 2005.

[4] A. L. Couch. Visualizing huge tracefiles with Xscal. In USENIX LISA’96
Conference Proceedings, 1996.

[5] U. Flegel. Pseudonymizing UNIX log files. In InfraSec '02: Proceedings
of the International Conference on Infrastructure Security, pages 162—
179, London, UK, 2002. Springer-Verlag.

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

M. Gilfix and A. L. Couch. Peep (the network auralizer): Monitoring
your network with sound. In USENIX LISA’00 Conference Proceedings,
2000.

L. Girardin and D. Brodbeck. A visual approach for monitoring logs.
In USENIX LISA’98 Conference Proceedings, 1998.

S. E. Hansen and E. T. Atkins. Automated system monitoring and
notification with swatch. In USENIX LISA’93 Conference Proceedings,
1993.

J. L. Hellerstein, S. Ma, and C. Perng. Discovering actionable patterns
in event data. IBM Systems Journal, 41(3), 2002.

Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Moreira, and
M. Gupta. Filtering failure logs for a bluegene/l prototype. In IEEE,
editor, Proceedings of the 2005 International Conference on Dependable
Systems and Networks (DSN’05), 2005.

Y. Liao and V. R. Vemuri. Using text categorization techniques for
intrusion detection. In /1th USENIX Security Symposium, August 5-9,
2002., pages 51-59, 2002.

C. Lonvick. The BSD syslog protocol. Request for Comments 3164,
The Internet Society, Network Working Group, August 2001. RFC3164.
S. Ma and J. Hellerstein. Mining partially periodic event patterns with
unknown periods. In Proceedings of the 2001 International Conference
on Data Engineering (ICDE’01), pages 409-416, 2001.

A. Oliner and J. Stearley. What supercomputers say: A study of five
system logs. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages
575-584, Washington, DC, USA, 2007. IEEE Computer Society.

J. Prewett. Listening to your cluster with LoGS. In Proceedings of the
2004 Linux HPC Revolution Conference, 2004.

J. R. Reuning. Applying term weight techniques to event log analysis
for intrusion detection. Master’s thesis, University of North Carolina at
Chapel Hill, July 2004.

J. Stearley. Towards informatic analysis of syslogs. In Proceedings of
the 2004 IEEE Conference on Cluster Computing, 2004.

T. Takada and H. Koide. Information visualization system for monitoring
and auditing computer logs. In IEEE Conference on Information
Visualization, 2002.

T. Takada and H. Koide. Mielog: A highly interactive visual log browser
using information visualization and statistical analysis. In USENIX
LISA’02 Conference Proceedings, 2002.

S. C. C. . (Terms and D. J. R. (Chair). The IEEE Standard Dictionary
of Electrical and Electronics Terms, volume IEEE Std 100-1996. IEEE
Publishing, 1996.

R. Vaarandi. SEC - a lightweight event correlation tool.
IPOM’02 Proceedings, 2002.

R. Vaarandi. A data clustering algorithm for mining patterns from event
logs. In IEEE IPOM’03 Proceedings, 2003.

R. Vaarandi. A breadth-first algorithm for mining frequent patterns from
event logs. In Proceedings of the 2004 IFIP International Conference on
Intelligence in Communication Systems, volume 3283, pages 293-308,
2004.

A. Wespi, M. Dacier, and H. Debar. An intrusion-detection system
based on the teiresias pattern-discovery algorithm. In EICAR Annual
Conference Proceedings, pages 1-15, 1999.

In IEEE

