
Correlation functions of interacting fermions at finite temperature and size

Sebastian Eggert and Ann E. Mattsson*
Institute of Theoretical Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

Jari M. Kinaret
Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 17 July 1997!

We present explicit expressions for the correlation functions of interacting fermions in one dimension which
are valid for arbitrary system sizes and temperatures. The result applies to a number of very different strongly
correlated systems, including mesoscopic quantum wires, quantum Hall edges, spin chains and quasi-one-
dimensional metals. It is, for example, possible to calculate Coulomb blockade oscillations from our expression
and determine their dependence on interaction strength and temperature. Numerical simulations show excellent
agreement with the analytical results.@S0163-1829~97!50748-X#

Recently, there has been great interest in strongly corre-
lated systems of all kinds, which is spurred by high-
temperature superconductivity, progress in mesoscopic phys-
ics, quantum Hall systems, and newly available materials
which accurately display the characteristics of one-
dimensional metals or spin chains. In the case of quasi-one-
dimensional electron systems much progress can be made
with the Luttinger liquid formalism1 which is able to de-
scribe virtually any type of local interaction and can be
solved by the use of bosonization techniques.2,3 Using these
methods, it is well known how to calculate correlation func-
tions in the infinite length or zero-temperature limit and
therefore determine the spectral properties4 of a number of
systems, like mesoscopic quantum wires, quantum Hall
bars,5 quasi-one-dimensional metals, and spin chains,6,7 even
in the presence of boundaries.8,9 We now present explicit
expressions for the correlation functions which are valid at
arbitrary temperature, system size, and distances~as long as
the lattice spacing is relatively small!. These expressions can
be used to calculate Coulomb blockade oscillations in meso-
scopic systems as a function of the interaction strength and
of temperature. Monte Carlo simulations of one of the sim-
plest systems, namely interacting spinless fermions on a one-
dimensional lattice, show excellent agreement with our re-
sult.

As our model Hamiltonian we consider one-dimensional
interacting fermions in the continuum limit
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HereJL/R[:cL/R
† cL/R : are the chiral fermion currents of the

left- and right-moving components of the fermion field
C(x), expanded about the Fermi points6kF ,
C(x)5e2 ikFxcL(x)1eikFxcR(x). This expansion is valid as
long as the lattice spacinga is small compared to the inverse
temperaturevb and the length scales we want to consider. In
this limit the Hamiltonian~1! can describe almost any one-
dimensional fermion system with short-range interactions by
choosing appropriate coupling constantsg1 andg2 . The um-
klapp processei4kFxcL

†cRcL
†cR1H.c. can also be included,

but it only contributes if the system is close to half-filling
kF5p/2a and then it can often be absorbed by renormaliz-
ing the coupling constantg2 .1

The fermion correlation functions of systems with the
Hamiltonian of Eq.~1! are known to obey simple power laws
in the zero-temperature and infinite length limit, with expo-
nents determined by the interaction.1 At nonzero tempera-
tures the correlation functions are exponentially damped and
are described by powers of the hyperbolic sine in the infinite
length limit. For finite lengthl and periodic boundary con-
ditions, on the other hand, the correlation functions are peri-
odic and at zero temperature are described by powers of the
sine instead. The correlation functions are essential to under-
stand the spectral characteristics and other properties of ex-
perimental systems, and it is often necessary to consider both
finite size and finite temperature. We will now derive explicit
expressions for this case and show the crossover between the
two limits.

To establish notation we will review shortly the bosoniza-
tion formalism3 for the Hamiltonian~1!, which is given by
the relations
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wheref̃ is the dual field to the bosonf with the finite length
mode expansion
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HereP andQ are canonically conjugate to the zero modes
f0 and f̃0 , respectively, and the time variable implicitly
carries a small ultraviolet cutofft2 ia.
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The g1 interaction can be absorbed by redefining the ve-
locity v5vF1g1/2p, and the Hamiltonian density becomes

H5
v
2

@~]xf!21~]xf̃ !2#1
g2

4p
@~]xf!22~]xf̃ !2#. ~4!

The Hamiltonian is then solved by a simple rescaling of the
boson,

f→Kf, f̃→f̃/K, ~5!

whereK512g2/4pv to lowest order in the coupling con-
stant ~i.e., K51 for a noninteracting system andK,1 for
repulsive interactions!.

The eigenvalues of the operatorsP andQ are quantized
by using appropriate boundary conditions on the fermions
together with Eqs.~2! and ~3!. For the case of periodic
boundary conditionscR,L(0,t)5e6 ikFl cR,L(l ,t) we use the
Baker-Hausdorf formula and the boson commutation rela-
tions to find

Q5Ap~n2n0!/K, P5ApKm, ~6!

wheren andm are either both even or both odd integers and
n05 kFl /p11 which can be defined modulo 2. The quan-
tum numbern represents the particle number andm is a
measure of the current in the ring. If a magnetic field is
applied, the ground state may have quantum numbermÞ0
and the system carries a persistent current.10,11

As a simple example of our calculation at finite tempera-
ture and size, we now want to consider the chiral Green’s
function

G~x,t ![^cL~x,t !cL
†~0,0!& ~7!

but the generalization to more complicated correlation func-
tions is straightforward as we will see later. Using Eqs.~2!
and~5! and applying the Baker-Hausdorf formula as well as
the cumulant theorem for bosonic modes, we obtain
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where
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is the contribution from the operatorsP and Q, andGL,R[^fL,R(x,t)fL,R(0,0)2fL,R
2 (0,0)& are the chiral boson Green’s

functions for the left- and right-moving modesfL,R5@f6f̃2(Q6P) (x6vt)/l #/2, respectively. Using the mode expansion
~3! the chiral boson Green’s function can be expressed as
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Since we know the energy levelsEn5n (2pv/l ) of the free boson modes, it is useful to write the Bose-Einstein distribution
as a sum over occupation numbers^an

†an&51/(ebEn21)5(k51
` e2 (2pv/l ) bkn. After exchanging the order of the summations

over k andn we can use the identity(n51
` (xn/n)52 ln(12x) to obtain
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Using the ellipticu function of the first kindu1(z,q),12 this result can be written more compactly as
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and likewise forGR(x,t)5GL(2x,t).
The cumulant theorem does not apply to the contributionB(x,t) from the operatorsP andQ, but we can use the energy

spectrumE5 (v/2l ) (Q21P2) and sum over all eigenvalues in Eq.~6!. The result can again be expressed in terms of the
elliptic u functions12
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, ~12!

where g[ pvb/l is a measure of the energy gap compared to the temperature scale, and we have defined
xQ[ (p/l ) (x1vt/K2) and xP[ (p/l ) (x1vtK2). The complete chiral Green’s function therefore reduces to a compact
expression

G~x,t !}B~x,t !Fu1@p ~x1vt !/l ,e2pvb/l #

u1@2 i pa/l ,e2pvb/l #
G2~K1 1/K !2/4Fu1@p ~vt2x!/l ,e2pvb/l #
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G2~K2 1/K !2/4

. ~13!
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We can immediately verify that this expression is antiperi-
odic under translationt→t1 ib and periodic under transla-
tion x→x1l up to a phase ofeikFl as it should be.

If the temperature is much smaller than the energy gap of
the system, i.e.,g5 pvb/l →`, we can use the limits of
the u function12 asq5e2g→0 to find

G~x,t !→ei ~n0mod2!xQF l

p
sin p

x1vt

l
G2~K1 1/K !2/4

3F l

p
sin p

vt2x

l
G2~K2 1/K !2/4

, ~14!

which is the expected finite length result.1 For special values
of n0 the overall phase may have a differentx dependence,
which will not be discussed here in detail.

Likewise, we can explore the limit of a large system
size compared to the temperature scale, i.e.,g→0. We
use the Poisson summation formula to find
u1(z,e2g)'2A(p/g)e2z2/ge2p2/4g sinhpz/g and
u2(z,e2g)'u3(z,e2g)'A(p/g)e2z2/g as e2g→1 so that
the correct finite temperature result13 is reproduced

G~x,t !→Fvb

p
sinh p

x1vt

vb G2~K1 1/K !2/4

3Fvb

p
sinh p

vt2x

vb G2~K2 1/K !2/4

. ~15!

Taking the limit l →` in Eq. ~14! or vb→` in Eq. ~15!
recovers the well-known universal power laws. The results in
Eqs.~14! and~15! can actually be derived from those power
laws by a conformal transformation of the complex plane
onto a strip. However, there exists no such mapping onto any
finite area so that our new results~13! cannot be obtained in
that way.

One interesting aspect of Eqs.~12! and~13! is the depen-
dence on the variablen05 kFl /p11. The Green’s function
~13! is invariant under the increase ofn0 by 2, i.e., periodic
in kF with period 2p/l . Hence, as we change the Fermi
energy~e.g., by applying a gate voltage!, the spectral prop-
erties of the system are changed periodically. These are Cou-
lomb blockade oscillations,14–16 which come from the fact
that the system has a regular energy-level spacing. In the
case of Luttinger liquids this level spacing has been derived
from a complete solution of a quantum system which takes
all interactions into account and cannot be obtained from a
geometrical analysis of the capacitance as in the usual
quantum-dot systems. As possible experimental setups to test
this periodicity we can imagine electron tunneling through a
quasi-one-dimensional wire or ring of mesoscopic size. Such
wires can be fabricated by etching, gating17 or by cleaved
edge overgrowth.18 A small gated quantum hall bar on the
other hand should exhibitchiral Luttinger liquid behavior
which can be examined with the same formalism, except that
in that case the rescaling parameterK is fixed by the filling
fraction in the bulk of the quantum Hall bar.5 The experi-
mental situation is developing quickly and most recently car-
bon nanotubes have been produced which were seen to ex-
hibit the characteristics of one-dimensional wires.19

As an example we consider the Green’s function at the
lowest Matsubara frequencyiv05 ip/b for spinless Fermi-
ons on a ring. This quantity only gives an indirect indication
of experimental tunneling resonances, but it is a simple illus-
tration of the properties of Eq.~13! as a function of tempera-
ture and interaction. The absolute value of the Matsubara
Green’s function has been plotted in Fig.~1! as a function of
the Fermi wave vector in arbitrary units. As the Fermi level
is changed, the system shows periodic resonances which be-
come more pronounced as the temperature is lowered. These
peaks occur at special values ofn05 (11K4)/2 , (32K4)/2
where the even and odd sectors ofn andm in Eq. ~6! give
the same degenerate ground state. Hence, the spacing of the
resonances can give a direct experimental measure of the
interaction strengthK.11 As shown in the inset of Fig.~1! a
noninteracting system (K51) has only one central peak in
the range 0<n0,2, while an interacting system has two
split resonances. The physical interpretation of the reso-
nances is that tunneling of an extra electron into the system
does not require any additional energy at the degenerate val-
ues of n0 so that such processes are enhanced. Recently,
much progress has been made with Bethe ansatz methods,14

which showed evidence of Coulomb-blockade-like oscilla-
tions in a strongly interacting system, but in contrast to state-
ments made in that paper, field theoretical methods also pre-

FIG. 2. The prefactor of Eq.~18!, which is determined by dividing the
alternating part of the density-density correlations from numerical simula-
tions by the expressions of Eq.~18! for each correlation lengthx separately.
As predicted, the prefactor is asymptotically constant in all cases.

FIG. 1. The absolute value of the Green’s function at the Matsubara
frequencyiv05 ip/b as a function of the Fermi wave vectorkF for differ-
ent temperatures andK250.7. The periodic resonances in the spectral prop-
erties are the so-called Coulomb blockade oscillations. The inset shows the
curves for different interaction parametersK250.5, 0.7, 1 atpvb/ l 530.
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dict the desired Coulomb blockade oscillations.15,16 Using
our result~13! it is now possible to determine the complete
spectral properties, including the dependence of the Cou-
lomb blockade oscillations on interactions and on tempera-
ture for any of the systems mentioned above.

So far we have taken the fermion field to be spinless, but
the results apply equally well to electrons with spin because
the well-known spin-charge separation allows the same for-
malism to be used for the spin and the charge excitations
separately.1 It is also well understood how to incorporate
open boundary conditions within the same formalism.9,20

To test our result, we will now consider one of the sim-
plest models of spinless interacting fermions described by
the Hamiltonian

H52t(
x

@c†~x!c~x11!1H.c.#

1U(
x

@n~x!2 1
2 #@n~x11!2 1

2 #, ~16!

wheren5c†c, and the lattice constant has been set to unity.
In this case the coupling constants are given by
g15g2/45U. We have chosen the system to be at half-
filling kF5p/2 where the model is equivalent to thexxzspin
chain. In this case the umklapp process is allowed, but irrel-
evant, and the rescaling parameterK and the velocityv can
actually be determined exactly by comparison with Bethe
ansatz results,21 i.e., to all orders in the coupling constants.
For our numerical simulations we have takent5U which
corresponds toK25 3

4 and v5t (3A3/2). In particular, we
consider the equal time density-density correlation function
^n(x)n(0)&. At half filling the density-density correlation
function acquires an alternating part which dominates the
uniform contribution and can be expressed in terms of chiral
fermions

^n~x!n~0!&alt}e2ikFx^cL
†~x!cR~x!cR

†~0!cL~0!&. ~17!

Following the analogous steps from Eq.~8! to Eq. ~13! we
find

^n~x!n~0!&alt}~21!xU u1~px/l ,e2g!

u1~ ipa/l ,e2g!
U23/2

u2~2px/l ,e28g/3!u3~0,e23g/2!1u3~2px/l ,e28g/3!u2~0,e23g/2!

u2~0,e28g/3!u3~0,e23g/2!1u3~0,e28g/3!u2~0,e23g/2!
. ~18!

Here we tookn0 to be odd, i.e.,l divisible by four, but other
cases have similar expressions.

For comparison we performed numerical Monte Carlo
simulations using the Hamiltonian~16! and extracted the al-
ternating part of the density-density correlation function to
determine the unknown proportionality constant in Eq.~18!.
This prefactor should be independent ofx up to corrections
for smaller distances, which come from irrelevant terms in
the Hamiltonian that can be neglected in the long-distance
limit x@a. As shown in Fig.~2! the prefactor is indeed
constant within the error bars of the Monte Carlo simulations
for all system sizesl and temperatures. This serves as a very
sensitive test of our theoretical predictions since the expres-
sion ~18! varies over several orders of magnitude over the
range shown, so that even slight changes from the predicted
expression~18! would have resulted in huge deviations from

a constant for larger values ofx. Using the previously known
approximate expressions~14! or ~15! is not sufficient in this
case.

We therefore conclude that our field theoretical calcula-
tions make very accurate estimates for the correlation func-
tions of almost any one-dimensional interacting system at
arbitrary temperature and system size~as long as the cutoffa
is small compared to the corresponding scales!. The results
can be used to determine the complete spectral behavior of
such systems, including Coulomb blockade oscillations as a
function of both interaction and temperature. Monte Carlo
simulations serve as accurate ‘‘experiments,’’ which confirm
the results.
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