
PHYSICAL REVIEW B 15 DECEMBER 1997-IIVOLUME 56, NUMBER 24
Properties of a Luttinger liquid with boundaries at finite temperature and size

Ann E. Mattsson,* Sebastian Eggert, and Henrik Johannesson
Institute of Theoretical Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 5 May 1997!

We use bosonization methods to calculate the exact finite-temperature single-electron Green’s function of a
spinful Luttinger liquid confined by open boundaries. The corresponding local spectral density is constructed
and analyzed in detail. The interplay between boundary, finite-size, and thermal effects are shown to dramati-
cally influence the low-energy properties of the system. In particular, the well-known zero-temperature critical
behavior in the bulk always crosses over to a boundary dominated regime in the vicinity of the Fermi level.
Thermal fluctuations cause an enhanced depletion of spectral weight for small energiesv, with the spectral
density scaling asv2 for v much less than the temperature. Consequences for photoemission experiments are
discussed.@S0163-1829~97!02647-7#
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I. INTRODUCTION

In the last decade there has been enormous intere
metallic phases of matter which arenot Fermi liquids. A
paradigm for these is theLuttinger liquid, describing the
low-energy, long-wave length limit of gapless electron s
tems in one dimension.1,2 The Luttinger liquid satisfies Lut-
tinger’s theorem, but the interaction wipes out the qua
particle pole of the electron propagator, with the disjo
Fermi surface~consisting of two Fermi ‘‘points’’6kF) sup-
porting only collective charge- and spin density excitatio
These excitations are dynamically independent, effectiv
leading to a spatial separation of the charge and spin o
electron added to the system. As a result, spectral prope
and dynamical correlations are quite different from those o
Fermi liquid.3

The generic low-energy properties of a gapless interac
one-dimensional~1D! electron system are well understood1,3

in terms of universal power laws of correlation functions a
spectral functions. The behavior of such so-calledLuttinger
liquids is coded in the Tomonaga-Luttinger model,4 much in
the same way as the normal state of 3D interacting elect
is patterned on the free Fermi gas(Landau-Fermi-liquid
theory). However, it is only in the last few years that lab
ratory technology has advanced to the point that the no
of a Luttinger liquid can be confronted with experimen
Indeed, the ability to manufacture true 1D quantum wires5,6

as well as the development of high-precision spectrosco
techniques for probing quasi-1D materials,7 have provided a
strong impetus for investigating Luttinger-liquid physics
realistic contexts. An added motivation comes from the re
ization that the edge excitations of the fractional quant
Hall effect can be described in terms of achiral Luttinger
liquid.8 Also, some of the ‘‘non-Fermi-liquid scenarios’’ fo
the normal state properties of the cuprate superconduc
draw heavily from Luttinger-liquid theory, suggesting po
sible extensions to higher dimensions.9

Whereas Luttinger-liquid theory has been successf
used to predict fractional quantum Hall edge st
transport,10–12 its applicability to the more traditional realm
of quasi-1D materials remains controversial. This cla
of materials contains organic conductors such
560163-1829/97/56~24!/15615~14!/$10.00
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tetrathiafulvalene-tetracyanoquinodimethane~TTF-TCNQ!
and the tetramethyltetraselenafulvalene~TMTSF! 2X Bech-
gaard salts withx5ClO4,PF6, etc. All available information
suggests that the physics of these compounds is domin
by strong electron correlations and pronounc
one-dimensionality.3,13 Yet, data from NMR~Ref. 14! and
photoemission spectroscopy7 interpreted within a conven
tional Luttinger-liquid framework seem to imply single
electron correlations governed by an exponent much la
than can be provided from any realistic lattice Hamiltoni
~of which the Tomonaga-Luttinger model would be the e
fective low-energy continuum theory!. This poses a major
problem for the modeling of these materials, and its reso
tion remains a challenge for the theorist.

One of the basic quantities to consider in this contex
the single-particlespectral density, as this is the object tha
determines the outcome of a photoemission experiment.
prisingly, the full calculation of the spectral density of a
ideal, infinite-volume Luttinger liquid was only recentl
performed,15 expanding upon earlier results by Suzumura16

In the present paper we go a step further and investigate
local, finite-temperature spectral densityof a Luttinger liq-
uid confined byopen boundaries~simulating a reflecting bar-
rier or edge potential!. As photoemission spectroscopy me
surements are highly sensitive to boundary effects~with the
photoelectrons traveling only a short distance, of the orde
a few lattice spacings from the surface of the sample!, it is
crucial to incorporate an analysis of nontrivial boundary co
ditions. Also, spectroscopy on high-mobility quantum wir
doped with artificial impurities~‘‘antidots’’ ! ~Ref. 17! may
soon be within experimental reach, adding yet another rea
to study this problem: at sufficiently low temperatures a p
tential scatterer is expected to act essentially as a reflec
barrier.10

In the present paper we calculate the exact fin
temperature single-electron Green’s function and the ass
ated local spectral density of a confined spinful Lutting
liquid. The combined effects ofboundariesandfinite volume
will be shown to strongly modify the well-known bulk
Luttinger-liquid spectral density. In particular, the presen
of boundaries causes a scaling behavior for energies clos
the Fermi level which produce a depletion of spectral wei
15 615 © 1997 The American Physical Society
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15 616 56MATTSSON, EGGERT, AND JOHANNESSON
significantly larger than that for a bulk system, as we pre
ously reported for a semi-infinite system at ze
temperature.18 In addition, thermal fluctuations deplete th
levels further, and give rise to a universalv2 scaling of the
spectral density for sufficiently small frequenciesv, which is
analogous to the temperature effects in ‘‘bulk’’ systems19

Particular attention is given to the nontrivial zero mode co
tribution to the correlation function from fluctuations in th
spin and charge quantum numbers, which turn out to vio
the spin-charge separation~i.e., the partition function canno
be split into separate spin and charge factors!. Interestingly,
the confined system is sensitive to the ratio between the
fective velocities for the collective charge and spin exci
tions~which in turn depend on the effective electron-electr
coupling!: As the velocity ratio locks into a rational value
the spectrum separates into distinct peaks of equal spa
The spacing between the peaks becomes dense for irrat
values of the velocity ratios, leading to a quasicontinuo
spectrum for largev. This hints at a resonant interferenc
between standing waves of charge and spin for special va
of the electron-electron coupling.

The paper is organized as follows: In Sec. II we introdu
an extended version of the Tomonaga-Luttinger model,
review its bosonization in the presence of open boundar
In Sec. III the full finite-temperature Green’s function in
bounded domain is derived, and the resulting local spec
density is extracted and analyzed in Sec. IV. Section V c
tains a brief discussion of possible consequences for ph
emission experiments, as well as some concluding rema

II. 1D ELECTRONS IN THE PRESENCE OF OPEN
BOUNDARIES: BOSONIZATION

As our model we take an extension of the Tomona
Luttinger Hamiltonian,4 which describes spinful fermions i
one dimension with a~repulsive! local interaction. All
electron-electron interactions must conserve charge and
so that we use the most general gapless Hamiltonian de
that is invariant under the correspondingU(1) andSU(2)
symmetries,

H5vFFcL,s
† i

d

dx
cL,s2cR,s

† i
d

dx
cR,sG

1g2'JL
sJR

2s1g2iJL
sJR

s1g4'~JL
sJL

2s1JR
sJR

2s!

1g4i~JL
sJL

s1JR
sJR

s!1g1'cL,s
† cR,scR,2s

† cL,2s , ~1!

where we used the traditional ‘‘g-ology’’ scheme to index
the couplings.20 The chiral Fermion currents are defined
JL/R

s [:cL/R,s
† cL/R,s :, and cL/R,s(x) are the left- ~right-!

moving components of the electron fieldCs(x) expanded
about the Fermi points6kF ,

C
s
~x!5e2 ikFxc

L,s
~x!1eikFxc

R,s
~x!. ~2!

This expansion is valid as long as the lattice spacing is m
smaller than all length scales we want to consider. Theref
the energy range around the Fermi surface is limited t
region where a linear approximation of the spectrum is j
tified. This is often conveniently illustrated by a cutoff p
rameter, but more accurately one should take higher-o
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operators in the Hamiltonian into account, which result
corrections to the linear spectrum which are of higher ord
in uk2kFu. These perturbations have nonuniversal coe
cients which depend on the detailed interactions of the
derlying lattice Hamiltonian. The appropriate value of t
cutoff parameter~i.e., the range of validity! is then deter-
mined by the momentum scale at which those correcti
become so large that the perturbation series no longer
verges. Generically we can only roughly estimate the ra
of validity to be about one order of magnitude less than
bandwidth.

The first term in Eq.~1! is that of free relativistic fermi-
ons, whileg2 andg4 describe forward electron-electron sca
tering. We also explicitly included a backward scatteri
term g1' . The coupling constants depend on the mic
scopic parameters of the underlying lattice model, andvF is
the Fermi velocity. Normal ordering is carried out with r
spect to the filled Dirac sea, and we sum over repeated
indices.

Equation~1! defines a ‘‘standard model’’ for low-energ
electrons in a 1D metallic phase, and is easily derived fr
the Hubbard Hamiltonian

HH52t(
i

~ci ,s
† c

i 11,s
1ci 11,s

† c
i ,s

!1U(
i

n
i ,↑ni ,↓, U.0.

~3!

In the weak-coupling limitU!t, we can treatU as a pertur-
bation, and the tight-binding bande(k)522t cosak may be
linearized around the Fermi points6kF56nep/2a, ne be-
ing the electron density anda the lattice spacing. The elec
tron operators are replaced by the chiral fieldsc

L/R,s
(x) in

the continuum limit

cn,s/Aa'e2 ikFnac
L,s

~na!1eikFnac
R,s

~na!. ~4!

As a result, the Hubbard model is mapped onto the Ham
tonian density in Eq. ~1! with coupling constants
g1'5g2'52g4'5Ua andg2i5g4i50. The umklapp term
e2 i4kFxcL,s

† cR,scL,2s
† cR,2s1H.c. is also generated, bu

does not contribute away from half-filling (neÞ1,kF
Þp/2a) due to rapid phase oscillations. For this case we
left with the theory in Eq.~1!, with vF52at sin(kFa). It is
important to emphasize that the Hamiltonian in Eq.~1! also
faithfully represents the low-energy sector of the Hubba
model for strong on-site repulsionU.21 However, whenU is
not small, the procedure above fails to identify the prop
values of the model parameters, and instead these have
inferred from the exactBethe ansatzsolution of the Hubbard
model.21,22

Hamiltonian~1! is conveniently bosonized23 by introduc-
ing charge and spin currents, and the corresponding bo
fc and fs with conjugate momentaPc and Ps , respec-
tively:

JL
c/s[

1

A2
~JL
↑6JL

↓ !5
1

A4p
~]xfc/s1Pc/s!, ~5a!

JR
c/s[

1

A2
~JR
↑6JR

↓ !5
1

A4p
~]xfc/s2Pc/s!. ~5b!
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56 15 617PROPERTIES OF A LUTTINGER LIQUID WITH . . .
The resulting theory describes separate spin and charge
citations moving with velocities~to lowest order in the cou
pling constants!

vc5vF1
g4i

p
1

g4'

p
, vs5vF1

g4i

p
2

g4'

p
, ~6!

wherevc.vs for repulsive interactionsg4'.0. The Hamil-
tonian becomes

H5 (
n5s,c

H vn

2
@~]xfn!21Pn

2#1
gn

4p
@~]xfn!22Pn

2#J
1g1'const. cosA8pfs , ~7!

wheregc5g2i1g2' andgs5g2i2g2' . The charge interac
tion gc can be absorbed into the free Hamiltonian by
simple rescaling of the charge boson, but the spin inte
tions gs and g1' obey Kosterlitz-Thouless renormalization
group equations24 with flow lines along hyperbolas
gs

22g1'
2 5const~to lowest order!. For gs.2ug1'u the spin

sector develops a gap in the low-energy, long-wavelen
limit, but, for gs,2ug1'u, the system flows to a stable fixe
point gs* 52Ags

22g1'
2 , g1'

* 50. Forgs52ug1'u the inter-
action corresponds to one single marginally irrelevant ope
tor, so thatgs* 5g1'

* 50. If the flow to a stable fixed poin
occurs, we can rescale the bosons by a canonical transfo
tion to obtain a free theory (n5s,c)

fn→Knfn , Pn→Pn /Kn , ~8!

where, to first order in the coupling constants,

Ks
2512gs* /2pvs , Kc

2512gc/2pvc . ~9!

This yields the Hamiltonian

H5 (
n5s,c

v̄ n

2
@~]xfn!21Pn

2#, ~10!

where v̄ n5@vn1 (gn/2p)#Kn
2 , i.e., v̄ n5vn to first order in

the coupling constants, so we will omit the ‘‘bar’’ in th
following.

The chiral components of the electron field can now
expressed in terms of free boson fields and their duals
using Eq.~5! and the formula25

cL/R,s~x!5
hs

A2pa
expS 72p i E JL/R

s ~x!dxD , ~11!

wherehs obeys the anticommutation relation$h↑ ,h↓%50,
with hs

251. The presence ofhs in Eq. ~11! guarantees tha
operators with different spins obey anticommutation rela
tions.

Using the duality relationPn[]vntfn5]xf̃n , we thus
obtain, using Eqs.~5! and ~8!,

cL/R,s~x!}hs )
n5c,s

expF i en,sS p

2 D 1/2

@7Knfn~x!

2Kn
21f̃n~x!#G , ~12!
ex-

c-

th

a-

a-

e
y

with en,s51 unlessn5s, ands5↓ when it is equal to21.
Note that we have obtained the bosonization formula~12!
with no assumption about boundary conditions.

We now apply the formalism above to a system of leng
L with openboundary conditions and thus require the ele
tron fieldCs(x) to vanish atx50 and atx5L. From Eq.~2!
we see that this implies

cL,s~0,t !52cR,s~0,t !, ~13a!

cL,s~L,t !52ei2kFLcR,s~L,t ! . ~13b!

Considering Eq.~12!, this gives us fixed boundary condition
on the boson fieldsfn , which in turn determine the mod
expansion.

To calculate the mode expansion for the boson, we fin
most convenient to consider the classical Euler-Lagra
equation with fixed boundary conditions atx50,L

fn~0,t !5C0 , fn~L,t !5CL , ~14!

and then performing a canonical quantization. We theref
consider the classical Lagrangian density corresponding
the Hamiltonian~10!,

L5 (
n5s,c

vn

2
@~]vntf!22~]xf!2#, ~15!

where]vnt[ (1/vn) ] t . The resulting Euler-Lagrange equa

tions can be expressed in terms of]65]x6]vnt ,

~]vnt
2 2]x

2!fn5]1]2fn50 , ~16!

and it follows that the two solutions can be written in term
of left- and right-moving bosons,fn,L(x1vnt) and
fn,R(x2vnt). We use the combinationfn(x,t)5fn,L(x
1vnt)1fn,R(x2vnt) and its dual fieldf̃n(x,t)5fn,L(x
1vnt)2fn,R(x2vnt), related by

]xfn5]vntf̃n , ]xf̃n5]vntfn . ~17!

The classical solution with the boundary condition~14! is
obtained in a straightforward way, and after canonica
quantizing we find the mode expansion for the quant
fields according to the boundary condition~13!

fn~x,t !5fn,01Q̂n

x

L
1 (

n51

`
1

Anp
sin

npx

L

3~2 ie2 i ~npvnt/L !an
n1H.c.! , ~18a!

f̃n~x,t !5f̃n,01Q̂n

vnt

L
1 (

n51

`
1

Anp
cos

npx

L

3~e2 i ~npvnt/L !an
n1H.c.! . ~18b!

The nonzero commutation relations among the mode op
tors are @an

n ,an
n†#51 and @f̃n,0 ,Q̂n#5 i , while fn,0 are c

numbers. Results~18!, obtained from the classical solutio
automaticallycontain the correct zero modes, in particul
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15 618 56MATTSSON, EGGERT, AND JOHANNESSON
the total charge and spin operatorsQ̂n , which were first
postulated by Haldane for a periodic system.1 The resulting
energy spectrum from Eq.~10! is

H5 (
n5s,c

S vn

2L
Q̂n

21 (
n51

`
pvnn

L
an

n†an
nD . ~19!

From Eqs.~18! we can read off the mode expansions f
left-moving bosons,

fn,L~x,t ![ 1
2 @fn~x,t !1f̃n~x,t !#

5 1
2 ~fn,01f̃n,0!1Q̂n

x1vnt

2L

1 (
n51

`
1

Anp
@e2 i @np~x1vnt !/L#an

n1H.c.# .

~20!

The right-moving boson field can be related to the le
moving one by

fn,R~x,t ![ 1
2 @fn~x,t !2f̃n~x,t !#52fn,L~2x,t !1fn,0 .

~21!

Boundary conditions~13! on the fermions provide us with
the quantization condition for the eigenvalues of the ope
torsQ̂n @using special commutation relations offn andf̃n at
the boundary26 that follow from the mode expansion~18!#

KcQc5S p

2 D 1/2S n111
2kFL

p D , ~22a!

KsQs5S p

2 D 1/2

m, ~22b!

where m and n are either both odd or both even intege
Therefore, the quantum numbers for the total spinm and the
total chargen arenot independent, which is to be expecte
because we can only insert and remove real electrons,
we cannot change the total charge and the total magne
tion independently. In this sense these degrees of freedom
not obey spin-charge separation, and the partition funct
does not factorize. It is interesting to note the formal sim
larity to a spinless periodicsystem, which is also describe
8

-

-

.

e.,
a-
do
n
-

by two channels~left and right moving!, and where a similar
condition holds for the total current and charge quant
numbers.1 As we will see later, the zero modes indeed ma
a contribution to the Green’s function which does not fact
ize, while all dynamical degrees of freedom in Eq.~19! re-
main spin charge separated.

The constantsfc,05Ap/2Kc
21 and fs,050 are also de-

termined by the boundary condition~modulo the intrinsic
periodicity of the bosonA2pKn

21). Hence from Eqs.~12!
and ~21! we obtain

cR,s~x,t !52cL,s~2x,t ! , ~23!

which allows us to write the full theory in terms of left mov
ers only. This concludes our analysis. For an alterna
bosonization approach in the presence of open boundari
exploiting a path integral formulation—see Ref. 27.

III. GREEN’S FUNCTIONS

Using the formalism above, the exact single-electr
Green’s function for a confined Luttinger liquid with ope
boundaries can now be calculated. With the decomposi
in Eq. ~2! and using Eq.~23!, we have

^Cs
†~x,t !Cs~y,0!&5eikF~x2y!G~x,y,t !1e2 ikF~x2y!

3G~2x,2y,t !2eikF~x1y!G~x,2y,t !

2e2 ikF~x1y!G~2x,y,t !, ~24!

where the chiral Green’s function G(x,y,t)
[^cL,s

† (x,t)cL,s(y,0)& is derived in the Appendix. The re
sult is a product of the spin and charge contributionsFs,c and
a factorH from the zero modes,

G~x,y,t !}H~x,y,t ! )
n5c,s

@Fn~vnt1x2y!#2 ~Kn1Kn
21

!2/8

3@Fn~vnt2x1y!#2 ~Kn2Kn
21

!2/8

3S uFn~2x!uuFn~2y!u
Fn~vnt1x1y!Fn~vnt2x2y! D

~Kn
22

2Kn
2
!/8

.

~25!

The contributionH from the zero modes is given by~see the
Appendix!
H~x,y,t !5
q2~uc1tckFLutc!q3~usuts!1q3~uc1tckFLutc!q2~usuts!

q2~tckFLutc!q3~0uts!1q3~tckFLutc!q2~0uts!
ei2uc ~kFL/p! ~26!
y
os-
-

t
ex-
where the theta functionsqk(uut) are defined in Secs. 8.1
and 8.19 in Ref. 28, and

un52
p

2 S vnKn
22t1x2y

L D , tn5 i
vnb

Kn
2L

. ~27!
The expression forH does not contain any poles, but ma
still influence the spectral properties significantly in mes
copic systems.29,30 It is also interesting to note that the con
tribution from the zero modescannotbe written as a produc
of independent spin and charge contributions, which is
pected since the quantum numbersn andm in Eq. ~22! are
not independent.
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The factorsFn from the spin and charge bosonic mod
can also be written in terms of the theta functions~see Secs.
8.18 and 8.19 in Ref. 28!,

Fn~z!5 i
2L

ap
sin

pz

2L )
k51

` F 11S sin
pz

2L

sinhk
pvnb

2L

D 2G
5

q1S pz

2L U i vnb

2L D
q1S 2 i

pa

2L U i vnb

2L D . ~28!

Here x and y denote the distance from the left bounda
(x50), and the argumentz carries an implicit cutoffz2 ia.
The parametersvn and Kn are defined in Eqs.~6! and ~9!,
respectively.

We can immediately verify that the full Green’s functio
is antiperiodic under translation by the inverse tempera
t→t1 ib, as it should be. It is also interesting to note that
factor from the zero modes is periodic under the change
the Fermi levelkF by p/L, which results in periodic oscilla
tions of the spectral properties of the system as the chem
potential is changed. This is a manifestation of Coulom
blockade oscillations, i.e., resonances can be observed i
system is of ‘‘mesoscopic’’ size.30 It is important to empha-
size that the zero mode contributionH in Eq. ~26! is obtained
by using agrand canonical ensemble when taking the av
ages, thus allowing for fluctuations in the magnetizationm
and in the particle numbern. By fixing these quantum num
bers~i.e., using an idealized ‘‘closed’’ system! or by letting
the system size tend to infinity, the zero mode contribut
collapses to a constant phase. This provides a vivid exam
of how different statistical ensembles may lead to differ
results on mesoscopic scales and downwards, where q
tum coherence effects become important.31

We see in Eq.~25! that we recover universal power law
which give the expected branch cuts in the Gree
function.3 In addition, we obtain a contribution from th
boundary, which is entirely contained in the last factor of E
~25!, and gives an additional analytic structure. This fac
does not contribute in noninteracting systems (Kc5Ks51),
re
e
of

al
-
he

-

n
le
t

an-

s

.
r

so that in this case the presence of the boundary is seen
by the addition of the two last ‘‘Friedel’’ terms in Eq.~24!
compared to the bulk case. In contrast,with interaction
(Ks , Kc,1), the boundary influences also the chir
Green’s function. This is expected, since onlywith interac-
tions can effects from electron scattering off the bound
propagate to other parts of the system, thus influencing
the chiral pieces of the full Green’s function.

The zero-temperature limitT→0 is readily obtained by
letting b→` in Eqs.~26! and ~28!,

G~x,y,t !

}ei ~2n021!uc )
n5c,s

S 2L

p
sin

p~vnt1x2y!

2L D 2 ~Kn1Kn
21

!2/8

3S 2L

p
sin

p~vnt2x1y!

2L D 2 ~Kn2Kn
21

!2/8

3S sin
px

L
sin

py

L

sin
p~x1y1vnt !

2L
sin

p~x1y2vnt !

2L

D ~Kn
22

2Kn
2
!/8

~29!

wheren05(kFL/p mod 1) effectively measures the diffe
ence between the Fermi vector and the highest occu
level ~which are not necessarily the same in a system w
discrete energy levels!. The phaseei (2n021)uc comes from the
zero modes, anddoes influence the time correlations. Fo
special values ofn0 this phase may have a different depe
dence onun . When this phase is neglected, Eq.~29! agrees
with the results in Ref. 32, obtained via bosonization acco
ing to the ‘‘Haldane prescription’’.1 It is also in agreemen
with results18 obtained by conformally mapping the sem
infinite complex plane onto a finite strip.

Using the Poisson summation formula, we c
obtain the limits of the u functions q1(zu ig)
'2g21/2e2z2/pge2p/4gsinhz/g and q2(zu ig)'q3(zu ig)
'g21/2e2z2/pg as g→0. Hence, by lettingL→` in Eqs.
~26! and~28!, we obtain the finite-temperature chiral Green
function of a semi-infinite system with open boundary
G~x,y,t !} )
n5c,s

S vnb

p
sinh

p~vnt1x2y!

vnb D 2 ~Kn1Kn
21

!2/8

3S vnb

p
sinh

p~vnt2x1y!

vnb D 2 ~Kn2Kn
21

!2/8

3S sinh
p2x

vnb
sinh

p2y

vnb

sinh
p~x1y1vnt !

vnb
sinh

p~x1y2vnt !

vnb

D ~Kn
22

2Kn
2
!/8

. ~30!

Finally, theT→0 limit for a semi-infinite system is obtained by lettingb→` in Eq. ~30! @or L→` in Eq. ~29!#:

G~x,y,t !} )
n5c,s

~vnt1x2y!2 ~Kn1Kn
21

!2/8~vnt2x1y!2 ~Kn2Kn
21

!2/8S 4xy

@~x1y!22vn
2t2#

D ~Kn
22

2Kn
2/!8

. ~31!
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We note that in the limitxy@u(x2y)22vn
2t2u the last factor

in Eq. ~31! goes to unity, and we recover the known zer
temperature bulk correlation function3 ~as we also do in the
noninteracting caseKc5Ks51). In the limit of equal time,
t50, this gives the asymptotic correlator

G~x,y,t50!}
1

~x2y!2D
, ~32!

with the equal-time bulk exponentD5(Kc
21Ks

21Kc
22

1Ks
22)/8. In contrast, when one of the points is close to

boundary compared to the relative distancex@y, one finds

G~x,y,t50!}
1

~x2y!2D'
, ~33!

with D'5(3Kc
2213Ks

221Kc
21Ks

2)/16. This is to be com-
pared to the asymptotic long-time behavior of the autoco
lation function in the limitt@x,y, which behaves as

G~x,x,t !}
1

t2D i
~34!

with D i5(Kc
221Ks

22)/4. As expected from scale invarianc
we thus recover the scaling lawD'5(D1D i)/2. It may be
worth pointing out that thedynamic(tÞ0) asymptotic large-
distance correlator in Eq.~33! is not governed by the single
exponentD' , as one may naively have expected from t
analogy with classical critical phenomena.33 Instead it re-
mains a product of separate charge and spin correlators
exponents (3Kc

221Kc
2)/16 and (3Ks

221Ks
2)/16, respec-

tively. This is not in conflict with scale invariance, since t
theory is built out of two distinct sectors, each with its ow
effective velocity. More importantly, the behavior in Eq.~34!
reveals thatthe asymptotic low-energy behavior of a Lu
tinger liquid with an open boundary belongs to a differe
universality class than that of the bulk theory.We shall
elaborate on this in Sec. IV when we discuss the local d
sity of states.

IV. LOCAL SPECTRAL DENSITY

To understand the physical implications of the bound
correlations, we study thelocal spectral densityN(v,r ),
given in terms of the single-electron Green’s function in E
~24!,

N~v,r !5
1

2pE2`

`

eivt^$Cs
†~r ,0!,Cs~r ,t !%&dt, ~35!

wherev is measured relative to the Fermi energy andr is the
distance from the boundary.

At T50 and without the boundary, the integral in E
~35! can be done exactly,15 and one finds that the spectr
density scales at the Fermi level asN(v)}vabulk, where the
exponent in the bulk is given by

abulk5~Kc
21Kc

221Ks
21Ks

22!/421. ~36!

However, the boundary clearly influences this scaling
havior, and by inspection of Eq.~31! for a semi-infinite sys-
-

e

-

ith

t

n-

y

.

-

tem atT50, simple power counting reveals that there mu
be a crossover to a boundary dominated regime
rv,vc ,vs with an exponent

abound5~Kc
221Ks

22!/221. ~37!

Interestingly, the boundary exponentabound thereforealways
dominates for sufficiently smallv. It is also interesting to
note that the last two terms in Eq.~24! make a contribution
which oscillates at twice the Fermi wave vector, and dro
off with the distance from the boundary proportional

ei2kFr r 2(Kc
22

1Ks
22)/2. This contribution is reminiscent of a

Friedel oscillation, although it can probably not be observ
directly, since experimental measurements of the densit
states~in particular photoemission! effectively average over
several lattice sites. We therefore ignore those ‘‘Friede
terms in the following calculations, and make the repla
ment

^$Cs
†~r ,0!,Cs~r ,t !%&→G~r ,r ,2t !1G~2r ,2r ,2t !

1G~r ,r ,t !1G~2r ,2r ,t !

~38!

in Eq. ~35!. Using our exact results forG(x,y,t) in Sec. III
allows us to explore fully the physically relevant piece of t
local spectral density.

A. Zero temperature and infinite length limit

For T→0 and a semi-infinite system,L→`, it is readily
derived from Eqs.~31!, ~35!, and~38! that

N~v,T50,r !5
2

ap2
vc

2acvs
2asE

0

`

dt cosg~ t !

3@cosvt21#S t

a D 2as2ac

3U12S vct

2r D 2U2bc/2U12S vst

2r D 2U2bs/2

,

~39!

where

g~ t !55
p

2
~as1ac!, 0,t,

2r

vc

p

2
~as1ac1bc!,

2r

vc
,t,

2r

vs

p

2
~as1ac1bs1bc!,

2r

vs
,t,`

~40!

and

an5
Kn

21Kn
22

4
, bn5

Kn
222Kn

2

4
. ~41!

To cure the original divergences in Eq.~39!, we have sub-
tracted an infinite constant by renormalizing the static sp
tral density to zero for any givenr , i.e.,N(v50,T50,r )50.

Let us study the two limiting casesr→a ~boundary re-
gime, with a the short-distance cutoff! and r→` ~bulk re-
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gime!. Both limits are easily obtained from Eq.~39! by using
the integral~3.823 in Ref. 28!

E
0

`

dx~cosx21!x2k5
p

G~k!

1

2cos
p

2
k

, 1,k,3, ~42!

with G(k) the Gamma function. This gives

N~v!55
aabulkvc

2acvs
2as

pG~11abulk!
vabulk, r→`

aaboundvc
2ac2bcvs

2as2bs

pG~11abound!
vabound, r→a,

~43!

whereabulk5as1ac21 andabound5as1ac1bs1bc21. In
the bulk limit r→` this result is in full agreement with
previous calculations,15,16but in the boundary limitr→a we
observe completely different exponents. By substitutingvt
with x in the integral in Eq.~39!, we see that, apart from
prefactor measuring the distance to the boundary, the s
tral density depends only on the scaling variablerv. This
implies that the condition for boundary behavior
rv/vc!1, i.e.,regardless of the value of r there will alway
be a region inv around the Fermi energy where the spectr
density is determined by the boundary exponentabound. Ac-
tually, the scaling behavior of the spectral density splits i
three distinct regions inv where different exponents gover
the leadingscaling.

As an example, let us choose parameters adapted
description of the large-U Hubbard chain away from half
filling ~cf. Sec. II and Ref. 3!. In this case the
SU(2)invariance forcesKs51, and it is known from Bethe
ansatz calculations thatKc

2→1/2 whenU→`.21,22Therefore,
the spin channel is not affected by the boundary~since
bs50), and the local spectral densityN(v,r ) in Eq. ~39!
splits into two asymptotic sectors only: the boundary regi
for v! vc /r and the bulk regime forv@ vc/r . From these
numbers, the well-known resultN(v)}uvu1/8 follows imme-
diately for the bulk regime, as can be seen from Eq.~43!. In

FIG. 1. The spectral density as a function ofrv in arbitrary

units ~from Ref. 18!. The corresponding power laws forabulk5
1
8

andabound5
1
2 are also shown. The distance from the boundaryr is

held constant, and just fixes the scale.
c-

l

o

a

e

the presence of the boundary, however, we cross over to

boundary exponentabound5
1
2 for v,vc /r . The results in

Fig. 1 clearly show the crossover from boundary behav

for rv/vc,1 with exponentabound5
1
2, to bulk behavior for

rv/vc.1 with exponentabulk5
1
8 ~the corresponding powe

laws are superimposed!. In the figure, the distance from th
boundary,r , is held constant, thus setting the scale. The
served oscillations in Fig. 1 are an intriguing secondary
fect, which vanish asymptotically as sin(2vr/vc)(vr)bc/221. It
is important to emphasize that they arenot due to the ‘‘Frie-
del’’ terms in Eq.~24! which have been neglected. Instea
they originate from the integrable singularity of the integra
in Eq. ~39! at t5 2r /vc , which is only present in the bound
ary case.

B. Finite temperature and infinite length limit

We now consider the effect of finite temperatures on
semi-infinite system with a boundary. In general, by turni
on temperature one induces a different behavior for sm

FIG. 2. The spectral density as a function ofrv in arbitrary
units for different temperaturesr /b. For v!1/b, we have a para-
bolic behavior which crosses over to theT50 behavior forv@1/b.

FIG. 3. The spectral density atv50 as a function of 2pr /vcb

in arbitrary units. The corresponding power laws forabulk5
1
8 and

abound5
1
2 are also shown. The distancer to the boundary is held

fixed and sets the scales.
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v: Both in bulk and boundary regimes~defined as above! the
spectral density crosses over tov2 scaling whenv,2p/b.
This is due to thermal fluctuations which produce expon
fo
-

tial damping of the density correlations for unequal time
The formal expression forN(v,b,r ) for this case, with
b51/kBT andkB51 is given by
e

ry or

,
en
the
ely,
from the
efore, we
n
either

spectral
or
N~v,b,r !5
2

ap2
vc

2acvs
2asE

0

`

dt cosg~ t !F cosvtS sinh
p

b
t

p

b
a
D 2as2acU sinh

p

vcb
~2r 1vct !sinh

p

vcb
~2r 2vct !

sinh2
2pr

vcb

U2bc/2

3U sinh
p

vsb
~2r 1vst !sinh

p

vsb
~2r 2vst !

sinh2
2pr

vsb

U2bs/2

2S t

a D 2as2acU12S vct

2r D 2U2bc/2U12S vst

2r D 2U2bs/2G , ~44!

whereg(t) is given in Eq.~40!. We subtracted the same infinite constant as in Eq.~39!, thereby, as before, renormalizing th
zero-temperature static spectral density to zero for any givenr , i.e., N(v50,T50,r )50.

Substitutingvt by x in the integration of Eq.~44! as above reveals thatN(v,b,r ) can be expressed as a function oftwo
scaling variablesrv andvb ~up to the samer -dependent prefactor as for zero temperature!. By inspection we recover the
T50 result whenvb/2p@1, but for smallv another behavior sets in. Independently of whether we are in the bounda
bulk region,N(v,b,r )2N(0,b,r ) will be proportional tov2 for small vb,

N~v,b,r !2N~0,b,r !}E
0

`

dt~cosvt21!S sinh
p

b
t D 2k

522
b

pE0

`

dx~sinhx!2ksin2
vb

2p
x ——→

vb small

2v2
1

2 S b

p D 3E
0

`

dx~sinhx!2kx2,

~45!

where the last integral converges if 0,k,3 ~in our casek5an11, where,an is the boundary or bulk exponent!. In
conclusion, the spectral properties are unaffected for energies well above the temperaturev@ 2p/b, as expected. However
the spectral density will exhibit av2 behavior forv,2p/b before the crossover to theT50 behavior occurs, as can be se
in Fig. 2, where we again consider the large-U Hubbard model away from half-filling. This is in complete agreement with
recent work by Nakamura and Suzumura,19 where an analogous effect was reported for an infinite ‘‘bulk’’ system. Effectiv
Fig. 2 contains all information about both the bulk and boundary cases, since we are free to adjust the distance
boundaryr to any value, and this only changes the scale on which we measure the energies and temperatures. Ther
observe a crossover from the quadratic behavior directly to bulk behavior ifvb/2p.1, while an intermediate boundary regio
can be observed forvb/2p&1. As we can see in Fig. 2, the spectral density can look very flat around the Fermi level in
case, and the sharp cusp which has been predicted forT50 may not at all be visible in experiments.

It is interesting to note that the boundary exponent also shows up in the temperature dependence of the static
densityN(v50,b,r ). This is expected since the static density samplesall times, with the asymptotic large-time behavi
governed by the boundary exponent. As can be obtained from Eq.~44!,

N~v50,b,r !5
2

p2
~pa!as1ac21vc

2acvs
2asH b2aboundS 2pr

vc
D bcS 2pr

vs
D bs

C~abound11!,
2pr

vsb
!1

b2abulkC~abulk11!,
2pr

vcb
@1

~46!
ies
e is
ial

l

ch-
where

C~k!5cos
p

2
kE

0

`

dx~sinh2kx2x2k!, ~47!

which is convergent for 1,k,3. With parameters again
chosen to describe the large-U Hubbard chain~away from
half-filling!, the boundary dominated regime opens up
0,2pr /vcb&1, as depicted in Fig. 3.
r

C. Zero temperature and finite length limit

We now turn to a confined system with open boundar
at both ends. At this point we want to emphasize that ther
a distinction between effects that arise from a nontriv
boundary condition~as discussed in Sec. IV A! and effects
from a finite system size~which may or may not have trivia
boundary conditions!.

A confined system with open boundary conditions is te
nically more difficult to analyze, since the functionFn(z) in
Eq. ~28! is periodic in z with twice the system size 2L.
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Because of the noninteger exponents in Eq.~29!, we need to
keep track carefully of the overall phase as we integr
around the various branch-cuts. However, we can simp
things by explicitly using the short-distance cutoffz→z2 ia,
which allows us to make a Taylor expansion of the factors
Eq. ~29!,

FIG. 4. Illustration of the allowed values ofv ~points! and the
zeros of the argument of thed functions ~line! in Eq. ~51!. The
coordinatesn and m are the summation indices. The line mov
outward asv increases, and ad function appears in the spectra
density at values ofv where the line crosses a point with coef
cients as given in Eq.~51!.
n
th

ts
e
y

n

S i sin
pz

2L D g

5S eipz/2L

2 D g

(
n50

`

cn~g!e2 in~pz/L !, ~48!

with

cn~g!5~21!n
G~g11!

G~n11!G~g2n11!
5

G~n2g!

G~2g!G~n11!
.

~49!

An immediate consequence of the periodicity is thatv be-
comes discretized, which is consistent with the appearanc
discrete energy levels for a finite system. The integral o
the exponentials in expansion~48! will give d-functions at
those special values ofv, and we can try to extract an effec
tive behavior in the prefactors, i.e. the coefficientscn . For a
single channel case we can verify by inspection that
asymptotic behavior of the prefactor in Eq.~49! gives the
expected power law for largen, i.e., the semi-infinite length
result can be recovered.

However, for two channels and arbitrary values ofv we
need to make a more careful analysis. By using the multi
cation formula

(
k50

`

akx
k(
k50

`

bkx
k5 (

k50

`

ckx
k, cn5 (

k50

n

akbn2k ~50!

we derive, from Eqs.~29!, ~35!, ~38!, and~48!,
N~v,r !5
1

ap S pa

L D as1acS 2sin
pr

L D bs1bc

(
n50

`

(
m50

`

f n~ac ,bc ,r ! f m~as ,bs ,r !

3FdS v2
pvc~ac1bc!

2L
2

pvs~as1bs!

2L
2n

pvc

L
2m

pvs

L D
1dS v1

pvc~ac1bc!

2L
1

pvs~as1bs!

2L
1n

pvc

L
1m

pvs

L D G , ~51!
en
ion,
ing.

or
ses

-
ble.

an-

con-
where

f n~k1 ,k2 ,r !5 (
p50

n

cn2p~2k1! (
q50

p

cq~2k2/2!cp2q

3~2k2/2!cosF ~p22q!
2pr

L G . ~52!

To understand the role of thed functions in Eq.~51!, it is
convenient to represent the argument of the delta functio
a two-dimensional parameter space, coordinatized by
pair of summation indices (n,m) in Eq. ~51!, as shown in
Fig. 4. The line connecting (v,0) and (0,v) indicates where
the argument of thed function vanishes, and hence selec
the terms to be included in the double sum in Eq.~51!. The
in
e

points are the allowed values ofv and the ratiovs /vc deter-
mines the relative distances between the points in thex andy
directions. This ratio plays a crucial role, because wh
vs /vc is a rational number we have a resonance situat
and the spectra will consist of peaks with constant spac
On the other hand, forvs /vc irrational, N(v,r ) is still dis-
crete for smallv but approaches a continuous function f
largev, since the number of points close to the line increa
with increasingv. Moreover, if the spin-wave velocityvs is
significantly smaller thanvc the spectrum may appear con
tinuous, but the discrete charge peaks may still be resolva
~As vs→0 the charge excitations are described by yet
other exponent.34!

When the~experimental! energy resolutionDv is larger
than the spacing between the peaks, it is appropriate to
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15 624 56MATTSSON, EGGERT, AND JOHANNESSON
vert the infinite sums in Eq.~51! into integrations over con
tinuous variables. The resulting double integrals can actu
be done exactly in the extreme boundary case as well a
the extreme bulk case, and the semi-infinite length results
recovered in both scenarios. Even for the intermediate ca
appears that the coefficients~49! under the double sum
closely reproduce the power laws of the semi-infinite cas
some smearing is taking into account. This is in strong c
trast to the exponents that describe the momentum distr
tion, which are known to be strongly influenced by finite-si
effects as well as boundary effects.18

In conclusion, the main difference between a semi-infin
and a finite system is therefore the appearance of a
cretized spectrum, with possible beatings of charge and
excitations. This effect can only be observed in very sm
~mesoscopic! systems or with a very high experimental res
lution, since the smeared spectral weight appears to fol
the same frequency dependence. The effect of the boun
remains dominant for small frequencies in either case.

D. Finite temperature and finite length limit

The most general case is to consider both finite temp
ture and a confined system~finite length!. The periodicity of
the Green’s function~25! is unchanged, but we expect th
the coefficients in front of thed functions will acquire
temperature-dependent corrections similar to the ones
cussed in Sec. IV B. We can make a similar Taylor exp
sion as in the previous section by using Eq.~50! to expand
the temperature-dependent factor in Eq.~28! to the power of
g,

)
k51

` F 11S sin
pz

2L

sinhk
pvnb

2L

D 2G g

5)
k51

`

(
n50

`

dn~g,z!e2knb~pvn /L !, ~53!

where

dn~g,z!5~21!n(
p50

n

cn2p~22g! (
q50

p

cq~g!cp2q~g!

3ei ~p22q! ~pz/L !, ~54!

and the coefficientscn are defined in Eq.~49!. This can be
written as

)
k51

` F 11S sin
pz

2L

sinhk
pvnb

2L

D 2G g

511 (
m51

`

(
n50

m

gn,m~g!~ein
pz
L 1e2 in

pz
L !e2mb ~pvn /L !,

~55!
ly
in
re
it

if
-
u-

e
is-
in
ll
-
w
ry

a-

is-
-

wheregn,m(g) is a highly nontrivial but well-behaved func
tion composed of the coefficientscn(g). The zero mode term
H also makes a nontrivial contribution, which will be dis
cussed elsewhere.30

The integration over the exponentials in Eq.~55! gives us
againd functions. However, there is no shift or smearing
the peaks in the spectra due to temperature, only the he
of the existing peaks are modified, i.e., the points where
d-functions contribute are at the same values ofv as indi-
cated in Fig. 4. In the extreme boundary case we can de
an explicit~but complicated! expression for the spectral den
sity and we observe that the temperature has a neglig
effect for largev as expected. We conjecture a quadra
behavior of the coefficients for smallv, which is supported
by preliminary numerical evidence, i.e., we observe a sim
effect to the one discussed in Sec. IV B. Thus we are
with the analogous conclusion from Sec. III that finite-si
effects always result in a discrete level spacing ofd func-
tions, but do not alter the~smeared! dependence on fre
quency. We therefore recover the same cross-over fromv2

behavior to boundary or bulk behavior as discussed in S
IV B.

V. DISCUSSION

In conclusion, we derived an exact closed-form expr
sion for the single-electron Green’s function of a spinful Lu
tinger liquid at finite temperature, and confined to a fin
interval by open boundaries. By analyzing the correspond
spectral density we obtained detailed information about
interplay between boundary, finite-size, and temperature
fects in an interacting electron system. Most importantly,
find that the scaling of the zero-temperature spectral den
with frequencyv close to the Fermi level isalwaysgoverned
by a coupling-dependent boundary exponent significan
larger than the bulk exponent. In other words, the asympt
low-energy behavior of a Luttinger liquid with an ope
boundary belongs to a different universality class than tha
the bulk theory. Thermal fluctuations at finite temperatu
T.0 destroy this behavior, and open up a regime forv less
than the temperature where the spectral density exhibits
dratic scaling inv. Not surprisingly, thesame effect is
present in a bulk system for this frequency range,19 implying
that the boundary plays no decisive role in the process. In
case of a finite interval confined bytwo open boundaries, ou
results reveal a discretized spectrum withd functions at the
allowed energy levels. It is interesting to observe the dep
dence of spacing of the energy levels on the ratiovc /vs
between the effective velocitiesvc andvs of the charge and
spin excitations, respectively: Forvc /vs , a rational number,
the spectrum consists of well-separated peaks which, for
ficiently largev, coalesce to a quasicontinuum ifvc /vs is
shifted to an irrational number. Although this effect cann
be observed experimentally, it nonetheless suggests a r
nance phenomenon with the collective charge and spin e
tations, showing interference effects at special values of
electron-electron coupling. However, despite the appeara
of a discrete spectrum we find that finite size does not in
ence thev dependence of the integrated~i.e., smeared! spec-
tral density significantly, so that the same boundary a
finite-temperature effects as for a semi-infinite size can
observed.
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Let us close by briefly discussing the possible releva
of our results to experiments, in particular the photoemiss
studies on the Bechgaard salts7 referred to in Sec. I. Thes
materials are composed of molecular chains which beco
conducting above some characteristic temperatureTc , and
are expected to show Luttinger-liquid behavior provided
temperature is high enough to mask the weak interchain c
pling. However, as mentioned in Sec. I, high-precision p
toemission experiments indicate a scaling of spectral we
with frequency that is inconsistent with standard theory o
bulk Luttinger liquid: The effective exponenta for scaling of
the photoemission intensity is roughly 1.25~Ref. 7!, as also
seen in independent NMR experiments on the sa
materials,14 whereas the largest realistic value obtaina
from a bulk Luttinger-liquid description isa50.125, corre-
sponding to the large-U Hubbard chain.3 Attempts to include
long-range Coulomb repulsion, which can be shown to
creasea,21 fails due to the instability against an insulatin

phase ata5 9
16,

35 so other explanations must be invoked. A
the typical escape depth of photoelectrons in the UV rang
only 5–10 Å, the experiments are extremely surface se
tive, suggesting that 1D boundary effects may play a role
the observed scaling behavior.

Consider first the case where one probes electrons
escape from a crystal face perpendicular to the 1D molec
chains. The photoemission intensityI (v,b) is then propor-
tional to the local spectral densityN(v,b,r ), integrated over
the escape depth of the photoelectrons, and weighted by
Fermi-Dirac distributionf FD(bv)

I ~v,b!}E dr f FD~bv!N~v,b,r !. ~56!

In a boundary dominated region,I (v) is seen to be dramati
cally reduced compared to the bulk regime, considering
results in Eq.~43!. With a typical escape depth of a fe
lattice spacings, the condition for boundary behav
rv/vc,1 may apply over an energy range of several h
dred meV~since vc.aEF , with a the lattice spacing and
with EF'0.521 eV, depending on the particular material.36!

In the recent photoemission experiments
(TMTSF)2PF6,7 the chains are always in the plane of t
cleaved surface,37 and it is less clear to what extent 1
boundary effects contribute. However, in the likely case t
the cleaving of the surface introduces defects in neighbo
chains, effectively breaking these into smaller segments,
may model the breaks by open boundaries and apply
results. Unfortunately, the actual defect concentration
mains unknown, and it is therefore difficult to make a qua
titative prediction from our results. This is an important iss
that in principle should be possible to resolve via scann
tunneling microscopy techniques. To explore the size of
boundary effects experimentally, it would also be of gre
interest to do photoemission experiments on cleaved surf
that areperpendicularto the chains, that could then be com
pared to the results from cleaved surfaces parallel to
chains.

As discussed in Ref. 18, the finite-energy resolution of
photon lines effectively introduces an averaging over
‘‘true’’ spectrum
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I ~v!obs[
1

A2pD
E e2~v2x!2/2D2

I ~x!dx ~57!

which completely wipes out the power-law singularities
either the bulk or boundary case. This ‘‘smearing’’ results
a similar effect as the thermal fluctuations, which also w
out the sharp cusp from the power laws, as shown in Fig
but have to be taken into account separately. With an exp
mental resolution ofD520 meV and at a temperatureT550
K ~experimental values according to Ref. 7!, andassuming
boundary dominated behavior forN(v,b,r ), the observed
intensity in the vicinity of the Fermi level indeed appears
be depleted with an exponent of one or larger as shown
Fig. 5. ~This should be compared to the large-U Hubbard

exponentabulk5
1
8 of the bulk spectral function without tem

perature or averaging effects!. In experiments the condition
for boundary behaviorv,vc /r will be satisfied over an en
ergy rangev;EF /L around the Fermi level, whereL is the
distance from the boundary in units of the lattice spaci
This means that if the broken chains close to the clea
surface have an average impurity density of a few perc
boundary effects could be observed over a region of up
100 meV around the Fermi energy. Experiments indeed s
gest a scalingI (v)obs}vaobs with aobs.1, extending, how-
ever, over a larger energy range. Thus, some additio
mechanism ~interchain coupling or electron-phono
coupling38! most likely have to be invoked to fully explain
the data. Yet, a complete modeling of photoelectron sp
troscopy on quasi-1D organic metals must certainly incor
rate the boundary and temperature effects predicted in
present paper.
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FIG. 5. The predicted intensityI obs in arbitrary units as a func-
tion of v for boundary and bulk cases~i.e., for power laws with

abound5
1
2 and abulk5

1
2, respectively!. The corresponding three

dimensional case (a50) is also shown. Temperature (T550 K!
and finite resolution (D520 meV! effects have been taken int
account.
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APPENDIX: CALCULATION OF THE CHIRAL GREEN’S FUNCTION

Here we extend the calculations of Ref. 30 to the case of spinful Fermions with open boundaries. To calculate th
fermionic Green’s function, we find it useful to treat the contributions from the zero modes and the dynamic bosonic
separately. Hence we writefn,L in Eq. ~20! as a sum of the zero modes and the harmonic-oscillator terms

fn,L5
1

2
~fn,01f̃n,0!1Q̂n

x1vnt

2L
1Sn,L , ~A1!

where the bosonic operators are contained in the sum

Sn,L5 (
n51

`
1

Anp
@e2 i @np~x1vnt !/L#an

n1H.c.# . ~A2!

We now insert this mode expansion into the bosonization formula~12! for cL , and use the definition o
G(x,y,t)[^cL,s

† (x,t)cL,s(y,0)& to find

G~x,y,t !}H~x,y,t ! )
n5c,s

expF2
ip

4L
~vnt1x2y!GexpFp2 ~Kn1Kn

21!2Bn,L~x,t;y,0!GexpFp2 ~Kn2Kn
21!2Bn,L~2x,t;y,0!G

3expFp4 ~Kn
222Kn

2!@2Bn,L~x,t;2y,0!12Bn,L~2x,t;y,0!

2Bn,L~x,t;2x,t !2Bn,L~2x,t;x,t !2Bn,L~y,0;2y,0!2Bn,L~2y,0;y,0!#G . ~A3!

Here we used the identityeAeB5:eA1B:e^AB1 @(A21B2)/2# & for the bosonic operatorsSn,L , and we have defined the boson
Green’s function

Bn,L~x,t;x8,t8!5^Sn,L~x,t !Sn,L~x8,t8!2 1
2 @Sn,L~x,t !Sn,L~x,t !1Sn,L~x8,t8!Sn,L~x8,t8!#&. ~A4!

The contribution from the zero modes is

H~x,y,t !5K )
n5c,s

expiunS 2

p D 1/2

KnQ̂nL , ~A5!

where un52 (p/2L) (vnKn
22t1x2y). This factorcannot be written as a product of spin and charge expectation va

separately, because the quantum numbersn andm in Eq. ~22! are connected by the condition that both are even or both
odd. However, since we know the quantization condition~22! and the energy spectrum~19! for the zero modes, we ca
directly sum over all eigenvaluesm,n. The factorH can then be expressed in terms of the ellipticu functions~see Secs. 8.18
and 8.19 in Ref. 28!

H~x,y,t !5
q2~uc1tckFLutc!q3~usuts!1q3~uc1tckFLutc!q2~usuts!

q2~tckFLutc!q3~0uts!1q3~tckFLutc!q2~0uts!
ei2uc

kFL

p , ~A6!
wheretn5 i vnb/Kn
2L.

To calculate the bosonic Green’s functionBn,L , we insert
the expression~A2! for Sn,L(x,t) into Eq. ~A4!, which gives

Bn,L5 (
n51

`
1

4pn
@~e22p in @vnt1x2~vnt81x8!/2L#21!~11mn

n!

1~e2p in
vnt1x2~vnt81x8!

2L 21!mn
n#, ~A7!

wheremn
n are the Bose-Einstein distributions
mn
n5^an

n†an
n&5

1

eb ~nvnp/L !21
. ~A8!

We define a5e22p i @vnt1x2(vnt81x8)/2L# and b5eb (vnp/L),
which allows us to write

1

12~b21!n
5 (

k50

`

~b2n!k5 (
k50

`

~b2k!n. ~A9!

The bosonic Green’s function can then be written as
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Bn,L5 (
n51

`
1

4pn F ~an21!(
k50

`

~b2k!n

1~a2n21!b2n(
k50

`

~b2k!nG
5 (

k50

`

(
n51

`
1

4pn
@~ab2k!n2~b2k!n

1~a21b212k!n2~b212k!n#

5 (
n51

`
1

4pn
~an21!1 (

k51

`

(
n51

`
1

4pn

3@~ab2k!n2~b2k!n1~a21b2k!n2~b2k!n#.

~A10!

We now can use the formula

(
k51

`
zk

k
52 ln~12z!, uzu,1, ~A11!

and we need to use the high-momentum cutoffa in the first
two terms of Eq.~A10!

(
n51

`
1

n
~an21!→(

n51

`
1

n
~an21!cn, c5e2a ~p/L !, a→0.

~A12!

This yields
Bn,L52
1

4p
lnF12ac

12c )
k51

`
~12ab2k!~12a21b2k!

~12b2k!~12b2k!
G

52
1

4p
lnF ~ac!1/2

2 iap

2L

S ~ac!21/22~ac!1/2

2i D

3)
k51

` S 11

S a21/22a1/2

2i D 2

S bk/22b2k/2

2 D 2D G . ~A13!

Insertinga andb defined above gives us

Bn,L~x,t;x8,t8!5
i

4 S vnt1x2vnt82x8

2L D2
1

4p
ln@Fn~vnt1x

2vnt82x8!#, ~A14!

where

Fn~z!5 i
2L

ap
sin

pz

2L)
k51

` F 11S sin
pz

2L

sinhk
pvnb

2L

D 2G
5

q1S pz

2L U i vnb

2L D
q1S 2 i

pa

2L U i vnb

2L D . ~A15!

The first term in Eq.~A14! cancels with the phase in the zer
mode part of Eq.~A3!, resulting in Eq.~25!.
.
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