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Properties of a Luttinger liquid with boundaries at finite temperature and size
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We use bosonization methods to calculate the exact finite-temperature single-electron Green'’s function of a
spinful Luttinger liquid confined by open boundaries. The corresponding local spectral density is constructed
and analyzed in detail. The interplay between boundary, finite-size, and thermal effects are shown to dramati-
cally influence the low-energy properties of the system. In particular, the well-known zero-temperature critical
behavior in the bulk always crosses over to a boundary dominated regime in the vicinity of the Fermi level.
Thermal fluctuations cause an enhanced depletion of spectral weight for small energiéh the spectral
density scaling as? for @ much less than the temperature. Consequences for photoemission experiments are
discussed[S0163-1827)02647-1

[. INTRODUCTION tetrathiafulvalene-tetracyanoquinodimethan@ TF-TCNQ)
and the tetramethyltetraselenafulvalefiVTSF) ,X Bech-

In the last decade there has been enormous interest gaard salts withk=CIlO,,PF;, etc. All available information
metallic phases of matter which aret Fermi liquids. A suggests that the physics of these compounds is dominated
paradigm for these is theuttinger liquid describing the by strong electron correlations and pronounced
low-energy, long-wave length limit of gapless electron sys-one-dimensionality:'® Yet, data from NMR(Ref. 14 and
tems in one dimensioh? The Luttinger liquid satisfies Lut- photoemission spectroscdpynterpreted within a conven-
tinger's theorem, but the interaction wipes out the quasitional Luttinger-liquid framework seem to imply single-
particle pole of the electron propagator, with the disjointelectron correlations governed by an exponent much larger
Fermi surface€consisting of two Fermi “points”+kg) sup-  than can be provided from any realistic lattice Hamiltonian
porting only collective charge- and spin density excitations.(of which the Tomonaga-Luttinger model would be the ef-
These excitations are dynamically independent, effectiveljective low-energy continuum theoryThis poses a major
leading to a spatial separation of the charge and spin of aproblem for the modeling of these materials, and its resolu-
electron added to the system. As a result, spectral propertidé®n remains a challenge for the theorist.
and dynamical correlations are quite different from those of a One of the basic quantities to consider in this context is
Fermi liquid® the single-particlespectral densityas this is the object that

The generic low-energy properties of a gapless interactingletermines the outcome of a photoemission experiment. Sur-
one-dimensional1D) electron system are well understddd prisingly, the full calculation of the spectral density of an
in terms of universal power laws of correlation functions andideal, infinite-volume Luttinger liquid was only recently
spectral functions. The behavior of such so-calledtinger  performed-® expanding upon earlier results by Suzumtfra.
liquids is coded in the Tomonaga-Luttinger modehuch in  In the present paper we go a step further and investigate the
the same way as the normal state of 3D interacting electroniscal, finite-temperature spectral density a Luttinger lig-
is patterned on the free Fermi g#gkandau-Fermi-liquid uid confined byopen boundariessimulating a reflecting bar-
theory) However, it is only in the last few years that labo- rier or edge potential As photoemission spectroscopy mea-
ratory technology has advanced to the point that the notiosurements are highly sensitive to boundary efféaith the
of a Luttinger liquid can be confronted with experiments. photoelectrons traveling only a short distance, of the order of
Indeed, the ability to manufacture true 1D quantum wirks, a few lattice spacings from the surface of the samptes
as well as the development of high-precision spectroscopicrucial to incorporate an analysis of nontrivial boundary con-
techniques for probing quasi-1D materidlsave provided a ditions. Also, spectroscopy on high-mobility quantum wires
strong impetus for investigating Luttinger-liquid physics in doped with artificial impuritieg“antidots”) (Ref. 17 may
realistic contexts. An added motivation comes from the realsoon be within experimental reach, adding yet another reason
ization that the edge excitations of the fractional quantunto study this problem: at sufficiently low temperatures a po-
Hall effect can be described in terms ofchiral Luttinger  tential scatterer is expected to act essentially as a reflecting
liquid.® Also, some of the “non-Fermi-liquid scenarios” for barrier’®
the normal state properties of the cuprate superconductors In the present paper we calculate the exact finite-
draw heavily from Luttinger-liquid theory, suggesting pos-temperature single-electron Green'’s function and the associ-
sible extensions to higher dimensichs. ated local spectral density of a confined spinful Luttinger

Whereas Luttinger-liquid theory has been successfullyliquid. The combined effects dfoundariesandfinite volume
used to predict fractional quantum Hall edge statewill be shown to strongly modify the well-known bulk
transportt®~*?its applicability to the more traditional realm Luttinger-liquid spectral density. In particular, the presence
of quasi-1D materials remains controversial. This clasof boundaries causes a scaling behavior for energies close to
of materials contains organic conductors such aghe Fermilevel which produce a depletion of spectral weight

0163-1829/97/5@4)/1561514)/$10.00 56 15615 © 1997 The American Physical Society



15616 MATTSSON, EGGERT, AND JOHANNESSON 56

significantly larger than that for a bulk system, as we previ-operators in the Hamiltonian into account, which result in
ously reported for a semi-infinite system at zerocorrections to the linear spectrum which are of higher orders
temperaturé® In addition, thermal fluctuations deplete the in |k—kg|. These perturbations have nonuniversal coeffi-
levels further, and give rise to a universaf scaling of the cients which depend on the detailed interactions of the un-
spectral density for sufficiently small frequencieswhich is  derlying lattice Hamiltonian. The appropriate value of the
analogous to the temperature effects in “bulk” systeths. cutoff parameter(i.e., the range of validityis then deter-
Particular attention is given to the nontrivial zero mode con-mined by the momentum scale at which those corrections
tribution to the correlation function from fluctuations in the become so large that the perturbation series no longer con-
spin and charge quantum numbers, which turn out to violateerges. Generically we can only roughly estimate the range
the spin-charge separatidire., the partition function cannot of validity to be about one order of magnitude less than the
be split into separate spin and charge fagtdrgerestingly, bandwidth.
the confined system is sensitive to the ratio between the ef- The first term in Eq(1) is that of free relativistic fermi-
fective velocities for the collective charge and spin excita-ons, whileg, andg, describe forward electron-electron scat-
tions(which in turn depend on the effective electron-electrontering. We also explicitly included a backward scattering
coupling: As the velocity ratio locks into a rational value, term g,, . The coupling constants depend on the micro-
the spectrum separates into distinct peaks of equal spacingcopic parameters of the underlying lattice model, apds
The spacing between the peaks becomes dense for irratiortle Fermi velocity. Normal ordering is carried out with re-
values of the velocity ratios, leading to a quasicontinuousspect to the filled Dirac sea, and we sum over repeated spin
spectrum for largew. This hints at a resonant interference indices.
between standing waves of charge and spin for special values Equation(1) defines a “standard model” for low-energy
of the electron-electron coupling. electrons in a 1D metallic phase, and is easily derived from
The paper is organized as follows: In Sec. Il we introducethe Hubbard Hamiltonian
an extended version of the Tomonaga-Luttinger model, and
review its bosonization in the presence of open boundaries.
In Sec. Il the full finite-temperature Green’s function in a H:_tEi (C;r"TCi+1,(r+C?+1"TCi,U)+UZ MMy U=0.
bounded domain is derived, and the resulting local spectral (3)
density is extracted and analyzed in Sec. IV. Section V con- o
tains a brief discussion of possible consequences for photdd the weak-coupling limit<t, we can treat) as a pertur-

emission experiments, as well as some concluding remarkdation, and the tight-binding bangk) = —2t cosak may be
linearized around the Fermi pointskr= *+n.m/2a, n, be-

ing the electron density ana the lattice spacing. The elec-

tron operators are replaced by the chiral fie&ER U(x) in

the continuum limit Y

As our model we take an extension of the Tomonaga-

Luttinger Hamiltoniarf, which describes spinful fermions in Cn ol \/awe*ikpnagz, (na)+ekFay  (na). (4)

one dimension with a(repulsive local interaction. All ’ Lo R

electron-electron interactions must conserve charge and spiAs a result, the Hubbard model is mapped onto the Hamil-

so that we use the most general gapless Hamiltonian densitgnian density in Eq. (1) with coupling constants

that is invariant under the correspondibf1) andSU(2)  g;, =g,, =294, =Ua andg, =g, =0. The umklapp term

symmetries, e My U ol o -.+H.C. is also generated, but

does not contribute away from half-filling n{# 1 ke

# 1r/2a) due to rapid phase oscillations. For this case we are

left with the theory in Eq(1), with vg=2at sinkga). It is

B B B important to emphasize that the Hamiltonian in ED. also

02, I0IR "+ 92 I g+ 94 (ITIL 7+ IRIRY) faithfully represents the low-energy sector of the Hubbard
c104 1010 t t model for strong on-site repulsidi.“~ However, wherlJ is

Ty JrIR) + 1 U oV VR -~ oL o @ not small, the procedure above fails to identify the proper

where we used the traditionalg“ology” scheme to index Values of the model parameters, and instead these have to be

the coupling€® The chiral Fermion currents are defined asinferred from the exadBethe ansatsolution of the Hubbard

21,22
CR= 0k oURe s @Nd P r o(X) are the left-(right) ~ model

II. 1D ELECTRONS IN THE PRESENCE OF OPEN
BOUNDARIES: BOSONIZATION

T d t _d
H:UF wL,UI&l//L,IT_ wR,(J'l&lsz,rr

moving components of the electron fie, (x) expanded  Hamiltonian(1) is conveniently bosonizé&tiby introduc-
about the Fermi points: ke ing charge and spin currents, and the corresponding bosons
’ ¢. and ¢ with conjugate momentdl, and IIg, respec-
\I,U(X) — efikFxll/L O.(X) + eikFX‘/IR U(X)' (2) thG'y:

This expansion is valid as long as the lattice spacing is much
smaller than all length scales we want to consider. Therefore,
the energy range around the Fermi surface is limited to a
region where a linear approximation of the spectrum is jus- 1 1
tified. This is often conveniently illustrated by a cutoff pa- Js= — (JL+ by = —=(dypejs— I gs). (5b)
rameter, but more accurately one should take higher-order 2 N

cls—
\]L -

1
(JItJb:E(axcbc/smc/s), (59

ol -
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The resulting theory describes separate spin and charge ewith €, ,=1 unlessy=s, ando=| when it is equal to— 1.
citations moving with velocitiegto lowest order in the cou- Note that we have obtained the bosonization formia)
pling constants with no assumption about boundary conditions.
We now apply the formalism above to a system of length
_ 94  9as _ Q41 Qas L with openboundary conditions and thus require the elec-
ve=vpt T T vemvet T T (B o field W ,(x) to vanish ak=0 and atx=L. From Eq.(2)

L . ) we see that this implies
wherev .>v for repulsive interactiong,, >0. The Hamil-

tonian becomes P (00)=—thg ,(0}), (133
M= 2 %U@¢J4Hﬂ+f;n@¢ﬁ—ﬂﬁ YL =—eZrtyp (L) . (130
' Considering Eq(12), this gives us fixed boundary conditions
+g,, const. co§8m s, (7) on the boson fieldg,, which in turn determine the mode
expansion.

whereg. =0y +0,, andgs=0z—gy, - The charge interac- To calculate the mode expansion for the boson, we find it

tion gc can t_)e absorbed into the free Ham|lton_|an_ by 4most convenient to consider the classical Euler-Lagrange
simple rescaling of the charge boson, but the spin interac-

tions g5 andg,, obey Kosterlitz-Thouless renormalization- equation with fixed boundary conditionsat0.L

ggoup2 Squatlor?él with flow lines along hyperbqlas $,(08)=Cq, &,(L,H)=C,, (14)
gs—9g7, =const(to lowest order. For gs>—|g,| the spin

sector develops a gap in the low-energy, long-wavelengtland then performing a canonical quantization. We therefore
limit, but, for gs<—|g4, |, the system flows to a stable fixed consider the classical Lagrangian density corresponding to
pointg¥ =~ o393, g}, =0. Forge=—|gy,| the inter-  the Hamiltonian(10),
action corresponds to one single marginally irrelevant opera-

tor, so thatgs =g7, =0. If the flow to a stable fixed point _ Uy 2 2
occurs, we can rescale the bosons by a canonical transforma- L szs,c 2 [(&”vt(ﬁ) (9x#)7], (19

tion to obtain a free theoryu=s,c)
whereﬁuytE (v ,) ;. The resulting Euler-Lagrange equa-

¢,—K,,, II,—I1,/K,, (8 tions can be expressed in termsaf=d,+4, ,
where, to first order in the coupling constants, 5 5
(avyt_ax)¢v=a+a— ¢V=0 ’ (16)
KZ=1—-g*2mvs, KZ=1-g/2mv,. 9
o o and it follows that the two solutions can be written in terms
This yields the Hamiltonian of left- and right-moving bosons,¢,  (x+v,t) and
_ ¢, r(Xx—v,t). We use the combinatiorp,(x,t)=¢, (X
v . L _
_ g 241127, 10 +v,t)+ ¢, r(x—v,t) and its dual field¢,(x,t)=d¢, (X
n V:ES,C L(9x) /] (10 +v,t)— ¢, r(Xx—v,t), related by
wherev ,=[v,+ (g,/27)]K2, i.e., v,=v, to first order in D=0y By, 0B,=0, b,. 17)
the coupling constants, so we will omit the “bar” in the g g
following.

The chiral components of the electron field can now be The classical solution with the boundary conditid) is

; . : obtained in a straightforward way, and after canonically
expressed in terms of free boson fields and their duals b)ﬁuantizing we find the mode expansion for the quantum
using Eq.(5) and the formul®

fields according to the boundary conditigt)

7]0’ . =]
YR AX)= exp{:meJf/R(x)dx , (11 _ ~ X 1 nwXx
’ v Xt)=¢,0+Q,~+ >, —=sin—
277(1 ¢V( ) ¢ ,0 Q L = \/ﬁ L
where 7,, obeys the anticommutation relatigmy, , 7 }=0, X (—ie~ (maY s c) | (189

with »2=1. The presence of,, in Eq. (11) guarantees that
operators with different spiar obey anticommutation rela-
tions.

Using the duality relatioril,,zavvt%:&xzv, we thus
obtain, using Eqs(5) and(8),

:{5 (1) ,(7) e v,,t+ o1 narx
AX =0, T —C0S——
0 L & nr L

X (e 1 (MmtgriHe) | (180

1/2
YR o(X) % 74 11 exp{iew<z) [FK,b,(X) The nonzero commutationNreIatiAons among the mode opera-
v=c.s 2 tors are[ay,ar']=1 and[&,0,Q,]=i, while ¢,, are c
numbers. Result§l8), obtained from the classical solution
. (12 automaticallycontain the correct zero modes, in particular

—K, '$,(x)]
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the total charge and spin operatds,, which were first by two channelgleft and right moving, and where a similar
postu|ated by Haldane for a periodic Systéfﬁhe resu]ting condition holds for the total current and Charge quantum

energy spectrum from Eq10) is numbers. As we will see later, the zero modes indeed made
a contribution to the Green'’s function which does not factor-
Uy asy Z mo,Nn ) ize, while all dynamical degrees of freedom in Ef9) re-
HZVZSC 2LQV+n71 @ an) (19 main spin charge separated.

The constantsp, o= \@/2K_* and ¢¢,=0 are also de-
_ termined by the boundary conditiofmodulo the intrinsic
From Eqgs.(18) we can read off the mode expansions for periodicity of the boson 27K 1). Hence from Eqs(12)

left-moving bosons, and (21) we obtain
b L (XD= 3[4, XD+ B,(x,D)] Pro (X, 1) == o(—X,1) , (23
=1(¢, 0t '(ZV o0+ QVLUVt which allows us to write the full theory in terms of left mov-
’ ' 2L ers only. This concludes our analysis. For an alternative
= bosonization approach in the presence of open boundaries—
n E [e [mr(x-%—v,,t)/L]a;_l_ H.c] . exploiting a path integral formulation—see Ref. 27.
n=1 N
(20) lll. GREEN'S FUNCTIONS
The right-moving boson field can be related to the left- Using the formalism above, the exact single-electron
moving one by Green’s function for a confined Luttinger liquid with open
boundaries can now be calculated. With the decomposition
¢, RD=3[S, (D)=, (X, D]=~ ¢, (—xD)+,o.  INEQ.(2) and using Eq(23), we have
@D (WIXHW,(y,0)=e*VG(x,y,t) +e Ky
iKe(x+
Boundary condition$13) on the fermions provide us with XG(=x,—y,1) = FIG(x, —y,1)
the quantization condition for the eigenvalues of the opera- —e K HIG(—x, 1), (24)

torsQV [using special commutation relationsf and, at

the boundars that follow from the mode expansidi8)] where the chiral Green's function G(x,y.t)

szL) =(y! (x,1)¢ ,(y,0)) is derived in the Appendix. The re-

(228  sultis a product of the spin and charge contributiBgs and

T 1/2
KCQCZ E n+1+
a factorH from the zero modes,

ar 1/2
KsQS:(E> ™ @20 Gxy,heHxy. D TT [F (0 t+x—y)] K%
v=cC,S

wherem and n are either both odd or both even integers. “15
Therefore, the quantum numbers for the total spiand the X[F (v t=x+y)]~ (71078
total chargen are not independent, which is to be expected (K2-K2)8
because we can only insert and remove real electrons, i.e., [F.(2x)][F.(2y)] v
we cannot change the total charge and the total magnetiza- F (v t+x+y)F, (v t—x—Yy) '

tion independently. In this sense these degrees of freedom do (25)
not obey spin-charge separation, and the partition function

does not factorize. It is interesting to note the formal simi-The contributionH from the zero modes is given ligee the
larity to a spinless periodisystem, which is also described AppendiX

Dap(Uct+ 7'ckFI—| 7¢) U3( us| 75) + 93(Uc+ 7'ckFI-l 7c) 02(u5| 7s)

H(x,y,t)=
(x.y.t) 95(7oKeL| 7) 95(0] 70) T o 7okeL| 7o) 95(0] 7o)

eiZUC (kgL/r) (26)

where the theta function§,(u|7) are defined in Secs. 8.18 The expression foH does not contain any poles, but may
and 8.19 in Ref. 28, and still influence the spectral properties significantly in mesos-
copic systemé>¥ |t is also interesting to note that the con-
tribution from the zero modesannotbe written as a product
- v,,K;2t+x—y v,B of independent spin and charge contributions, which is ex-
u,=— —(—) T, =i (27 pected since the quantum numbersndm in Eq. (22) are
2 L KL not independent.
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The factorsF, from the spin and charge bosonic modesso that in this case the presence of the boundary is seen only
can also be written in terms of the theta functidese Secs. by the addition of the two last “Friedel” terms in E§24)
8.18 and 8.19 in Ref. 28 compared to the bulk case. In contrastith interaction

) (Kg, Kc<1), the boundary influences also the chiral

sian—Z Green’s function. This is expected, since omlith interac-
2L mz 2L tions can effects from electron scattering off the boundary
F.(2)=i LT k[[1 1+ p— propagate to other parts of the system, thus influencing also
sinhk 2[ the chiral pieces of the full Green’s function.
The zero-temperature limif—0 is readily obtained by
(77'2 v,,,B) letting B— in EQs.(26) and (28),
| 5|1 =—
2L 2L
- _ (28 G(x.y.1)
19( iTraivV,B) .
1| =15 —v)) — (K, +K 7?8
2L| 2L el @0 1u I (gsi (v, t+X y))

Here x andy denote the distance from the left boundary v=_Cs 2L
(x=0), and the argument carries an implicit cutofz—ia. 2L (v t—x+y) (KK L8
The parameters, and K, are defined in Eqs6) and (9), x| g
respectively. 2L

We can immediately verify that the full Green’s function 2 2
. . . . . . (K K*®)/8
is antiperiodic under translation by the inverse temperature sinﬂ-—xsinﬂ-—y v
t—t+iB, as it should be. It is also interesting to note that the L L
factor from the zero modes is periodic under the change of X Ca(xtyto,t)  mxty—o,t)
the Fermi levekg by #/L, which results in periodic oscilla- sin sin
. . . 2L 2L
tions of the spectral properties of the system as the chemical
potential is changed. This is a manifestation of Coulomb- (29

blockade oscillations, i.e., resonances can be observed if tr\‘ﬁh ren-= (keL/7 mod 1) effectively m res the differ-
system is of “mesoscopic” siz& It is important to empha- ereng=(keL/7 mod 1) effectively measures the diffe

size that the zero mode contributibhin Eq. (26) is obtained ence between the Fermi vector and the highest occupied

by using agrand canonical ensemble when taking the aver—lgvel (\tNh'Ch arel nOtln_?ﬁeSiar"yiE?,i,S&Te ina sfystertrr]] with
ages, thus allowing for fluctuations in the magnetization iscrete energy levelsThe phase comes from the

and in the particle numbaer. By fixing these quantum num- zero_nlwdtlas, an;ﬂossmfltrj]ence the r?me co(jrrf?latlo?z. For
bers(i.e., using an idealized “closed” systgror by letting special values o, this phase may have a difterent depen-

; P .~ . dence oru,. When this phase is neglected, E9) agrees
the system size tend to infinity, the zero mode contribution ith the results in Ref. 32, obtained via bosonization accord-

collapses to a constant phase. This provides a vivid examp " A .

of how different statistical ensembles may lead to different"d O the g'a'daf.‘e prescription™ It is also In agreement
results on mesoscopic scales and downwards, where quant.h.resuné obtained by confo_rmally_ mapping the semi-
tum coherence effects become importint. mﬁmtg complex plgne onto a flnlte_strlp.

We see in Eq(25) that we recover universal power laws, U_smg the _P_0|sson summation f_ormula, we can
which give the expected branch cuts in the Green’sObtaln thez limits of the 6 functions (z]iy)
function® In addition, we obtain a contribution from the ~2y “& *'"’e"™¥sintely and 9,(z]iy)~D3(2]ivy)
boundary, which is entirely contained in the last factor of Eq.~ y‘l/ze‘zz’” as y—0. Hence, by lettingr—o in Egs.
(25), and gives an additional analytic structure. This factor(26) and(28), we obtain the finite-temperature chiral Green’s

does not contribute in noninteracting systerdis€Ks;=1),  function of a semi-infinite system with open boundary

1, 1
v,B . W(Uyt+X—y))_(K”+KV By B (v t—x+y)| T KK, D8
G(x,y,t)c sinh X sinh
( y ) V]:-_-(IT:,S m U,,B va
w2X | w2y (K, 2-K3)8
sinh——=sinh——
y 0,8 v.B “
m(Xty+uov,t)  mw(X+ty—uv,t) ’ (30
inh o B sinh o B

Finally, theT—0 limit for a semi-infinite system is obtained by lettifg3— in Eq. (30) [or L— in Eq. (29)]:
(K, 2-Kk?)8
) (3D

- - 4xy
G(x,y,t)x vt x— — (K, K, D78 v t—x+ U P L A
(X,Y,t) Vljﬁ( y) ( y) Oy oA
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We note that in the Iimiky>|(x—y)2—v§t2| the last factor tem atT=0, simple power counting reveals that there must
in Eqg. (31) goes to unity, and we recover the known zero-be a crossover to a boundary dominated regime for
temperature bulk correlation functidfas we also do in the rw<uv.,vs with an exponent

noninteracting cas&.=Ks=1). In the limit of equal time, PR

t=0, this gives the asymptotic correlator apound= (K¢ “+Kg 9)/2—1. (37)

Interestingly, the boundary exponemf,,.qthereforealways
(32) dominates for sufficiently smalb. It is also interesting to
(x—y)22’ note that the last two terms in ER4) make a contribution
which oscillates at twice the Fermi wave vector, and drops
with 2the equal-time bulk exponent =(KZ+KZ+K:?  off with the distance from the boundary proportional to
+Ks 9)/8. In contrast, when one of the points is close to thegizker, (K. >+K %2 This contribution is reminiscent of a

boundary compared to the relative distaneey, one finds  Friedel oscillation, although it can probably not be observed

directly, since experimental measurements of the density of

states(in particular photoemissigreffectively average over

(x—y)2AL’ several lattice sites. We therefore ignore those “Friedel”
terms in the following calculations, and make the replace-

with A, =(3K_ 243K 2+ K2+K2)/16. This is to be com- ment

pared to the asymptotic long-time behavior of the autocorre-

G(x,y,t=0)x

G(x,y,t=0)x (33

lation function in the limitt>x,y, which behaves as {wlr0,%,(r,0)})—G(r,r,—t)+G(—r,—r,—1)
1 +G(r,r,t)+G(—r,—r,t)
G(X,X,t)“ﬂ (34 (38

in EqQ. (35). Using our exact results fdg(x,y,t) in Sec.
' allows us to explore fully the physically relevant piece of the
local spectral density.

with A= (K ?+Kg ?)/4. As expected from scale invariance
we thus recover the scaling law, =(A+A)/2. It may be
worth pointing out that theynamic(t#0) asymptotic large-
distance correlator in E433) is not governed by the single
exponentA, , as one may naively have expected from the
analogy with classical critical phenomeftalnstead it re- For T—0 and a semi-infinite systerh,—c, it is readily
mains a product of separate charge and spin correlators wigherived from Egs(31), (35), and(38) that

exponents (B;2+K2)/16 and (XK 2+K2)/16, respec- )

tively. This is not in conflict with scale invariance, since the _ _ & —a. —ag|”

theory is built out of two distinct sectors, each with its own N(w,T=0r)= am2le Us fo dt cosy(t)

effective velocity. More importantly, the behavior in E§4)
reveals thatthe asymptotic low-energy behavior of a Lut-
tinger liquid with an open boundary belongs to a different
universality class than that of the bulk theore shall

A. Zero temperature and infinite length limit

x[cos»t—l](;) e

elaborate on this in Sec. IV when we discuss the local den- y 1_(%)2 o2 - (U_st)z b2
sity of states. 2r 2r '
IV. LOCAL SPECTRAL DENSITY 39
where
To understand the physical implications of the boundary
correlations, we study théocal spectral densityN(w,r), (™ 2r
given in terms of the single-electron Green'’s function in Eq. E(as+ ac), 0<t<v_c
24, iy 2r 2r
1 (= y(1) =3 E(as+ actbe), U_<t<_ (40)
N(w,r)= —J et wi(r,0,w,(r,t)})dt, (35 ¢ °
27) o 7 T 2r
—(ag+as+bs+by), —<t<w
wherew is measured relative to the Fermi energy anslthe \ 2 Us
distance from the boundary. and
At T=0 and without the boundary, the integral in Eqg.
(35) can be done exacth?, and one finds that the spectral K2+K; 2 K, 2—K2
density scales at the Fermi level B§w) « w*buk, where the &= hWE T (41)

exponent in the bulk is given b
P I y To cure the original divergences in E@9), we have sub-

apuc= (K24+ K 2+ K2+ K ?)/4-1. (36)  tracted an infinite constant by renormalizing the static spec-
tral density to zero for any given i.e.,N(w=0,T=0,)=0.
However, the boundary clearly influences this scaling be- Let us study the two limiting cases— « (boundary re-
havior, and by inspection of E¢31) for a semi-infinite sys- gime with « the short-distance cutgfindr—c (bulk re-



N(rm)

re/v,

FIG. 1. The spectral density as a functionrab in arbitrary
units (from Ref. 18. The corresponding power laws farbu,k:%

and apound= 3 are also shown. The distance from the boundaiy
held constant, and just fixes the scale.

gime. Both limits are easily obtained from E(9) by using
the integral(3.823 in Ref. 28

©

)

with T'(k) the Gamma function. This gives

k:

dx(cosx—1)x~ W et 1<k<3, (42

ZCOSEk

—ag

a/“bulkv C_ an s

— = %uk r—oo
N(w)= mI'(1+ apyi)
(w - aaboun(v;acfbcvs*asfbs
@ “bound r—a,
I (1+ apound
(43

whereap,=as+a.—1 andaygn&astac+bst+b.—1. In
the bulk limit r—oo this result is in full agreement with
previous calculation$>'®but in the boundary limit — a we
observe completely different exponents. By substitutistg
with x in the integral in Eq(39), we see that, apart from a
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i —————— 2mi/v B =1
Z | 2mip=3
O L I
-4 -2 0 2 4
/v,

FIG. 2. The spectral density as a functionrab in arbitrary
units for different temperaturad 8. For w<1/8, we have a para-
bolic behavior which crosses over to the- 0 behavior foro>1/8.

the presence of the boundary, however, we cross over to the

boundary exponentr,q =3 for @<v./r. The results in
Fig. 1 clearly show the crossover from boundary behavior

for rw/v <1 with exponentayy,.= 3, to bulk behavior for

rwlv,>1 with exponenta,, =3 (the corresponding power
laws are superimposgdn the figure, the distance from the
boundary,r, is held constant, thus setting the scale. The ob-
served oscillations in Fig. 1 are an intriguing secondary ef-
fect, which vanish asymptotically as sir{v )(wr)’? 1. It

is important to emphasize that they arat due to the “Frie-
del” terms in Eq.(24) which have been neglected. Instead,
they originate from the integrable singularity of the integrand
in Eq. (39) att= 2r/v., which is only present in the bound-
ary case.

B. Finite temperature and infinite length limit

We now consider the effect of finite temperatures on a
semi-infinite system with a boundary. In general, by turning
on temperature one induces a different behavior for small

prefactor measuring the distance to the boundary, the spec-

tral density depends only on the scaling variable This
implies that the condition for boundary behavior is
rolv.<1, i.e.,regardless of the value of r there will always
be a region inw around the Fermi energy where the spectral
density is determined by the boundary exporeft, . Ac-

tually, the scaling behavior of the spectral density splits into

three distinct regions i where different exponents govern
the leading scaling.

As an example, let us choose parameters adapted to a i

description of the largé} Hubbard chain away from half-
filing (cf. Sec. Il and Ref. B In this case the
SU(2)invariance forceK;=1, and it is known from Bethe
ansatz calculations th&Z— 1/2 whenU — o 22?2 Therefore,
the spin channel is not affected by the boundésince
b,=0), and the local spectral density(w,r) in Eq. (39)

C e 7 -
o s - -
= N(@=0,8.1)
1] T - T
8 L o T1/8
Z.
0] : w ‘
2me/v B

splits into two asymptotic sectors only: the boundary regime FIG- 3. The spectral density at=0 as a function of Zr/vf

for o< v./r and the bulk regime fow> v./r. From these
numbers, the well-known resuit(w) | w|"® follows imme-
diately for the bulk regime, as can be seen from &@). In

in arbitrary units. The corresponding power laws f%m:% and

@pound= 5 are also shown. The distanceto the boundary is held
fixed and sets the scales.
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w: Both in bulk and boundary regimédefined as aboyeghe  tial damping of the density correlations for unequal times.
spectral density crosses overdd scaling whenw<2w/B8.  The formal expression foN(w,3,r) for this case, with
This is due to thermal fluctuations which produce exponenB8=1/kgT andkg=1 is given by

o\ Casa - - —b/2
sinh—=t sinh—(2r +vt)sinh—(2r — vt
_ 2 —a, —ag [~ B UCIB( ) UC,B( ct)
N(w,ﬁ,r)—;vc vq OdtCOSy(t) coswt P
—a sink?
B veB
'|l—7T 2r+uvdt 'h—ﬂ- 2 t o
sin Usﬂ( r+ost)sin Usﬁ( r—ugt) t) ~as—a v t| 2 b2 b |2 ~be2
X = 1-15- 1-\5- , (44)
2@ o 2r 2r
sink?
vsf

wherey(t) is given in Eq.(40). We subtracted the same infinite constant as in(B9), thereby, as before, renormalizing the
zero-temperature static spectral density to zero for any giyée., N(w=0,T=0,r)=0.

Substitutingwt by x in the integration of Eq(44) as above reveals thai(w,B,r) can be expressed as a functionteb
scaling variables w and w8 (up to the same-dependent prefactor as for zero temperatuBy inspection we recover the
T=0 result whenwB/2m7>1, but for smallw another behavior sets in. Independently of whether we are in the boundary or
bulk region,N(w,3,r)—N(0,8,r) will be proportional tow? for small w3,

) -k )
N(w,ﬂ,r)—N(O,ﬂ,r)ocfo dt(coa»t—l)(sinh%t) =—2§fo dx(sinhx) ~Ksir?

— _ @22

w_BXwB small ) 1
2 2

3 rw
é) f dx(sinhx) ~¥x?,
0

ko

(45)

where the last integral converges iK&<3 (in our casek=a,+1, where,a, is the boundary or bulk exponentin
conclusion, the spectral properties are unaffected for energies well above the temperatird 8, as expected. However,
the spectral density will exhibit @? behavior foro <2/ before the crossover to the=0 behavior occurs, as can be seen
in Fig. 2, where we again consider the laide<ubbard model away from half-filling. This is in complete agreement with the
recent work by Nakamura and Suzumtitayhere an analogous effect was reported for an infinite “bulk” system. Effectively,
Fig. 2 contains all information about both the bulk and boundary cases, since we are free to adjust the distance from the
boundaryr to any value, and this only changes the scale on which we measure the energies and temperatures. Therefore, we
observe a crossover from the quadratic behavior directly to bulk behavigg/B=> 1, while an intermediate boundary region
can be observed favB/2r=<1. As we can see in Fig. 2, the spectral density can look very flat around the Fermi level in either
case, and the sharp cusp which has been predictef=fd@r may not at all be visible in experiments.

It is interesting to note that the boundary exponent also shows up in the temperature dependence of the static spectral
densityN(w=0,8,r). This is expected since the static density samplégimes, with the asymptotic large-time behavior
governed by the boundary exponent. As can be obtained front4&y.

B 271\ Pe( 2771\ Bs 2
2 B~ “boun v U_ Clapoundt 1), v <1
N(0=0,8,1)= — (ma)3* 21y 3y 8 ) ° . (46)
i B~ ukC(apykt1), >1
veB
where C. Zero temperature and finite length limit

We now turn to a confined system with open boundaries
T (> ok e at both ends. At this point we want to emphasize that there is
C(k)=cos§kfo dx(sinh™*x—x"7), (47 a distinction between effects that arise from a nontrivial
boundary conditionas discussed in Sec. IV)Aand effects
from a finite system sizéwvhich may or may not have trivial
which is convergent for £k<3. With parameters again boundary conditions
chosen to describe the large-Hubbard chainfaway from A confined system with open boundary conditions is tech-
half-filling), the boundary dominated regime opens up fornically more difficult to analyze, since the functién,(z) in
0<2wrlvB=1, as depicted in Fig. 3. Eqg. (28) is periodic inz with twice the system size 12
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FIG. 4. lllustration of the allowed values of (pointy and the
zeros of the argument of thé functions (line) in Eq. (51). The

15 623
imz/2L *
(isin;—E)L(e . )72 C(y)e ML (4g)
with
—(—1)" F(y+1) B I'(n—vy)
=Y D (y=n+ 1) T(= )T+ 1)’
(49)

An immediate consequence of the periodicity is thabe-
comes discretized, which is consistent with the appearance of
discrete energy levels for a finite system. The integral over
the exponentials in expansigA8) will give &functions at
those special values af, and we can try to extract an effec-
tive behavior in the prefactors, i.e. the coefficieats For a
single channel case we can verify by inspection that the
asymptotic behavior of the prefactor in E@9) gives the
expected power law for large, i.e., the semi-infinite length

coordinatesn and m are the summation indices. The line moves resylt can be recovered.

outward asw increases, and a function appears in the spectral

However, for two channels and arbitrary valueswofve

density at values of» where the line crosses a point with coeffi- haad to make a more careful analysis. By using the multipli-

cients as given in Eq51).

Because of the noninteger exponents in §), we need to
keep track carefully of the overall phase as we integrate
around the various branch-cuts. However, we can simplify

things by explicitly using the short-distance cutoffz—i«,

cation formula

n

anz agb,_ (50

k=0

o] o0 o0
2 akxkE bkxk=2 Cka,
k=0 k=0 k=0

which allows us to make a Taylor expansion of the factors in

Eqg. (29, we derive, from Egs(29), (35), (38), and(48),
|
1 [ ma)dstac ot bg+b, “ *°
N(w’r):a_(T ZSIHT) z 2 fn(a(:vbcvr)fm(asyb&r)
n=0 m=0
| 8l o mu(ac+be) 3 mug(astbg) n TUe MU
@ 2L 2L L L
a.+b a;+b
8l o WUC(ZE c) WUS(ZIS_ s) nﬂli)c_i_mﬂlj)s) , (51)
T

where points are the allowed values afand the ratiw /v deter-

n P
fn<k1,k2,r>=p§O cn_p<—kl>q§0 cq(—kal2)Cpq

2r
X(—k2/2)co{(p—2q)T} (52

To understand the role of th&functions in Eq.(51), it is

mines the relative distances between the points ixtaedy
directions. This ratio plays a crucial role, because when
vslv¢ is a rational number we have a resonance situation,
and the spectra will consist of peaks with constant spacing.
On the other hand, fows/v, irrational, N(w,r) is still dis-
crete for smallw but approaches a continuous function for
largew, since the number of points close to the line increases
with increasingw. Moreover, if the spin-wave velocitys is

convenient to represent the argument of the delta function isignificantly smaller thaw . the spectrum may appear con-

a two-dimensional parameter space, coordinatized by theénuous, but the discrete charge peaks may still be resolvable.
pair of summation indicesn;m) in Eq. (51), as shown in  (As v,—0 the charge excitations are described by yet an-
Fig. 4. The line connecting«,0) and (Ow) indicates where other exponent?)

the argument of thes function vanishes, and hence selects When the(experimental energy resolutioml w is larger

the terms to be included in the double sum in Esl). The  than the spacing between the peaks, it is appropriate to con-
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vert the infinite sums in Eq51) into integrations over con- whereg,, () is a highly nontrivial but well-behaved func-
tinuous variables. The resulting double integrals can actuallyion composed of the coefficientg(y). The zero mode term
be done exactly in the extreme boundary case as well as iH also makes a nontrivial contribution, which will be dis-
the extreme bulk case, and the semi-infinite length results areussed elsewher&.
recovered in both scenarios. Even for the intermediate case it The integration over the exponentials in E§5) gives us
appears that the coefficient#9) under the double sum @againé functions. However, there is no shift or smearing of
closely reproduce the power laws of the semi-infinite case ithe peaks in the spectra due to temperature, only the height
some smearing is taking into account. This is in strong conof the existing peaks are modified, i.e., the points where the
trast to the exponents that describe the momentum distribu¥functions contribute are at the same valueswoés indi-
tion, which are known to be strongly influenced by finite-sizecated in Fig. 4. In the extreme boundary case we can derive
effects as well as boundary effedfs. an explicit(but complicateglexpression for the spectral den-

In conclusion, the main difference between a semi-infiniteSity and we observe that the temperature has a negligible
and a finite system is therefore the appearance of a digffect for largew as expected. We conjecture a quadratic
cretized spectrum, with possible beatings of charge and spiehavior of the coefficients for smaill, which is supported
excitations. This effect can only be observed in very smalby preliminary numerical evidence, i.e., we observe a similar
(mesoscopicsystems or with a very high experimental reso-€ffect to the one discussed in Sec. IV B. Thus we are left
lution, since the smeared spectral weight appears to followvith the analogous conclusion from Sec. Il that finite-size
the same frequency dependence. The effect of the boundagffects always result in a discrete level spacingsdiunc-
remains dominant for small frequencies in either case.  tions, but do not alter thésmeareyl dependence on fre-
quency. We therefore recover the same cross-over ém
behavior to boundary or bulk behavior as discussed in Sec.
IV B.

The most general case is to consider both finite tempera-
ture and a confined syste(finite length. The periodicity of V. DISCUSSION
the Green'’s functior25) is unchanged, but we expect that

:2; C;Zﬁ:cr:f_gt; g:] dfé%?tcg:r;rc]t?g n?g?gﬁg? tv(\)' Illhzcgzgg dis_ion for the single-electron Green'’s function of a spinful Lut-
b b ?inger liquid at finite temperature, and confined to a finite

cussed in Sec. IV B. We can make a similar Taylor eXPaNihterval by open boundaries. By analyzing the correspondin
sion as in the previous section by using E50) to expand yop - oY yzing P 9

. spectral density we obtained detailed information about the
the temperature-dependent factor in E2f) to the power of interplay between boundary, finite-size, and temperature ef-

D. Finite temperature and finite length limit

In conclusion, we derived an exact closed-form expres-

v fects in an interacting electron system. Most importantly, we
) find that the scaling of the zero-temperature spectral density
. sinw—z 7 with frequencyw close to the Fermi level ialwaysgoverned
2L by a coupling-dependent boundary exponent significantly
kll 1+ —TFUVB larger than the bulk exponent. In other words, the asymptotic
sinhk 5L low-energy behavior of a Luttinger liquid with an open
boundary belongs to a different universality class than that of
© the bulk theory. Thermal fluctuations at finite temperature
=[I X d.(y,z)e kst /L), (53)  T>0 destroy this behavior, and open up a regimeddess
k=1n=0 than the temperature where the spectral density exhibits qua-
where dratic scaling inw. Not surprisingly, thesame effect is

present in a bulk system for this frequency rahimplying
that the boundary plays no decisive role in the process. In the

" P case of a finite interval confined ltyvo open boundaries, our
dn(1,2)=(=1)" 2 Cn p(—27) 2 Cq(¥)Cpo(¥) results reveal a discretized spectrum wétfunctions at the
p=0 a=0 allowed energy levels. It is interesting to observe the depen-
X gl(P=29) (m2/L) (54)  dence of spacing of the energy levels on the ratidv

between the effective velocitieg. anduv ¢ of the charge and
and the coefficients, are defined in Eq(49). This can be spin excitations, respectively: Fog /v, a rational number,

written as the spectrum consists of well-separated peaks which, for suf-
ficiently large w, coalesce to a quasicontinuumuf/vg is
w7 27y shifted to an irrational number. Although this effect cannot
o Sin— be observed experimentally, it nonetheless suggests a reso-
H 1+ 2L nance phenomenon with the collective charge and spin exci-
k=1 sinhk B tations, showing mterfeyence effects at sp(_eual values of the
2L electron-electron coupling. However, despite the appearance

of a discrete spectrum we find that finite size does not influ-
© m ence thaw dependence of the integratéc., smearedspec-
-1+ S g, m(,y)(einwTZ_FefianZ)eme(wu,,/L), tral density significantly, so that the same boundary and
m=1n=0 finite-temperature effects as for a semi-infinite size can be
(55) observed.
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Let us close by briefly discussing the possible relevance ]
of our results to experiments, in particular the photoemission R
studies on the Bechgaard saltsferred to in Sec. . These TN
materials are composed of molecular chains which become i RN
conducting above some characteristic temperaiyre and RN
are expected to show Luttinger-liquid behavior provided the i ’

—~ \
temperature is high enough to mask the weak interchain cou- S k
pling. However, as mentioned in Sec. |, high-precision pho- _§ _ N\
toemission experiments indicate a scaling of spectral weight _ a: ig 5 .
with frequency that is inconsistent with standard theory of a I z;o "-»_1\\
bulk Luttinger liquid: The effective exponentfor scaling of N
the photoemission intensity is roughly 1.28ef. 7, as also na
seen in independent NMR experiments on the same (_’100 50 0 50
materialst* whereas the largest realistic value obtainable ®/[meV]

from a bulk Luttinger-liquid description isx=0.125, corre-
sponding to the large; Hubb_ard cha!r?.Attempts o include . FIG. 5. The predicted intensitly,,s in arbitrary units as a func-
long-range Coulomb repulsion, which can be shown to in-

21 ¢ . - . . . tion of w for boundary and bulk casdge., for power laws with
creaseq,“” fails due to the instability against an insulating 1 1 , .
9 35 Apound= 3 and apy =3, respectively. The corresponding three-

phase atx= 15> so other explanations must be invoked. AS gimensional cased=0) is also shown. Temperaturd £50 K)
the typical escape depth of photoelectrons in the UV range ignd finite resolution £=20 me\) effects have been taken into
only 5-10 A, the experiments are extremely surface sensiccount.
tive, suggesting that 1D boundary effects may play a role for
the observed scaling behavior.

Consider first the case where one probes electrons that () gp= 1 J
escape from a crystal face perpendicular to the 1D molecular obs J2mA
chains. The photoemission intensityw, ) is then propor-

tional to the local spectral densily(«w, 3,r), integrated over  \yhich completely wipes out the power-law singularities in
the escape depth of the photoelectrons, and weighted by thgiher the bulk or boundary case. This “smearing” results in
Fermi-Dirac distributionf ep(Bw) a similar effect as the thermal fluctuations, which also wipe

out the sharp cusp from the power laws, as shown in Fig. 2,

but have to be taken into account separately. With an experi-

|(w,,3)°<f dr fep(Bw)N(w,B,r). (56)  mental resolution oA =20 meV and at a temperatuife= 50

K (experimental values according to Rej, @ndassuming
boundary dominated behavior fdi(w,B,r), the observed
intensity in the vicinity of the Fermi level indeed appears to
be depleted with an exponent of one or larger as shown in

e~ (007222 () (57)

In a boundary dominated regiol(,w) is seen to be dramati-
cally reduced compared to the bulk regime, considering ou

results in Eq.(43). With a typical escape depth of a few "5 (This should be compared to the largeHubbard

lattice spacings, the condition for boundary behavior 1 . .
rwlv,<1 may apply over an energy range of several hun£XPonentay,= 5 of the bulk spectral function without tem-

dred meV (sincev.>aEg, with a the lattice spacing and perature or averaging effe¢tdn experiments the condition

with Er~0.5— 1 eV, depending on the particular matefg!. for boundary behaviow<<v./r will be satisfied over an en-
In the recent photoemission experiments on€dY rangew~ Eg /L around the Fermi level, whele is the

(TMTSF),PF, the chains are always in the plane of the dis.tance from the' boundary in unitg of the lattice spacing.
cleaved surfac® and it is less clear to what extent 1D This means that if the broken chains close to the cleaved
boundary effects contribute. However, in the likely case thafurface have an average impurity density of a few percent,
the cleaving of the surface introduces defects in neighboringoundary effects could be observed over a region of up to
chains, effectively breaking these into smaller segments, weC0 meV around the Fermi energy. Experiments indeed sug-
may model the breaks by open boundaries and apply o#€St @ scaling(w)ops* webs with agps>1, extending, how-
results. Unfortunately, the actual defect concentration re€Ver. over a larger energy range. Thus, some additional
mains unknown, and it is therefore difficult to make a quan-Mechanism (interchain ~ coupling or  electron-phonon
titative prediction from our results. This is an important issuecoupling®) most likely have to be invoked to fully explain
that in principle should be possible to resolve via scanningn® data. Yet, a complete modeling of photoelectron spec-
tunneling microscopy techniques. To explore the size of thd&"0SCOPY On quasi-1D organic metals must certainly incorpo-
boundary effects experimentally, it would also be of greatrate the boundary and temperature effects predicted in the
interest to do photoemission experiments on cleaved surfac@$€Sent paper.
that areperpendicularto the chains, that could then be com-
gﬁ;eizr?sto the results from cleaved surfaces parallel to the ACKNOWLEDGMENTS
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APPENDIX: CALCULATION OF THE CHIRAL GREEN’'S FUNCTION

Here we extend the calculations of Ref. 30 to the case of spinful Fermions with open boundaries. To calculate the chiral
fermionic Green'’s function, we find it useful to treat the contributions from the zero modes and the dynamic bosonic modes
separately. Hence we wriig, | in Eq. (20) as a sum of the zero modes and the harmonic-oscillator terms

vt
¢V,L_ (¢VO+ ¢V0)+QV +SVL’ (Al)

where the bosonic operators are contained in the sum

[

1
S,L= 2>, —fe Mmxtubillgiyy ] (A2)
L = Inw n

We now insert this mode expansion into the bosonization forma) for ¢, , and use the definition of
G(x,Y.1)=({ ,(X,1) ¥ o(y,0)) to find

m —1,2 i
EXF{E(KV_KV ) BV,L(_Xltvyuo)

v=C,S

i 7T T _
G(x,y,tyeH(x,y,t) |] exp[ 4L(v t+x—y)le r{z(KV—l—Kyl)zB,,v,_(x,t;y,O)

xexr{%(KV2—K3>[2BV,L(x,t;—y,0)+2BV,L(—x,t;y,0>

=B, L%t =xt) =B, [ (=x,t;x,t) =B, . (y,0;—-y,00—B,  (=Y,0;y,0)] | (A3)

Here we used the identity®eB=:eA*B:e(AB+ [(A*+B%72)) for the bosonic operatorS,, , and we have defined the bosonic
Green’s function

BV,L(th;X’ !tl)z <SV,L(X1t)Sv,L(X, ,t,)_ % [SV,L(X!t)Sv,L(X!t) + SV,L(X, ’t,)SV,L(X, vt,)]> (A4)

The contribution from the zero modes is

2 1/2 .
H(x,y,t)=< I1 exp'uy(—) KVQV>, (A5)

v=C,S m
whereu,=— (#/2L) (v VK;2t+x—y). This factorcannotbe written as a product of spin and charge expectation values
separately, because the quantum numbeasdm in Eq. (22) are connected by the condition that both are even or both are
odd. However, since we know the quantization condit{g®) and the energy spectrufi9) for the zero modes, we can
directly sum over all eigenvalues,n. The factorH can then be expressed in terms of the elligtitinctions(see Secs. 8.18
and 8.19 in Ref. 2B

(Ut TeKel | 7o) D3(Ug| 76) + Fa(Uct kel | 7c) Fo(Ug| 75) izuck':_L (A6)
Fo( 7Kgl | 7¢) 03(0| 75) + F3( 7Kgl | 7) 95(0 75) ,

H(Xx,y,t)=

wherer,=iv,B/KA3L. 1
To calculate the bosonic Green’s functiBp _, we insert mi=(a/Ta’)=
the expressiotiA2) for S, | (x,t) into Eq.(A4), which gives

eB(anﬂ'lL)_l : (A8)

We definea= 67217i [v,t+x—(v,t"+x")/2L] and b= e,B (UV']T/L)’
which allows us to write

Z

477n[( —2mn [v t+x— (vt +x")/2L] _ 1)(1+m1/)

oo

S v tEx—= (ot +x") K - _k
(&~ 1)m], (A7) TS 1)n =2 (b= (b7 (A9)

wherem;, are the Bose-Einstein distributions The bosonic Green’s function can then be written as



B,L= (@ —1)2 (b~H)n

—1 47Tn

+@ "-1)b " (b-k)”]
k=0

=2 2 ~[(ab™H)"=(b™H)"
_’_(aflbflfk)n_(bflfk)n]
1 1
2 4_ a _1)+21n 1477n
X[(ab™®)"—(b~})"+(a b~ K)"— (b~ ).
(A10)
We now can use the formula
Z %: In(1-2), |z|]<1, (A11)

and we need to use the high-momentum cutofh the first
two terms of Eq.(A10)

[ ©

1 1
2, H@-1)- 2 S(@'-1)c

n=

c=e *™L  40.

(A12)

This yields
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1 [1-acy (1—ab—k)(1—a—1b—k)]
B, . =—-—1In
T 4w [ 1-cikcr (1-bM)(1-b7H
1 (ac)1/2 (aC)—1/2_(aC)l/2
:_4_I —iCMT( 2i )
L 2L
a71/2_a1/22
- 2i
X;;E[]_ 1+—bwrtrm (A13)
—

Insertinga andb defined above gives us

i [v t+x—v,t' — 1
B, L(x,t;x,t’ )—4 oL —Eln[FV(v,,ter
—v,t'=x")], (A14)
where
Tz 2
Sin-—
2L
F.(2)= |—S|n—H 1+ —B
sinhk ———
v,B
= ﬂl(i | 2L> A15
B s .ma| v,B ( )
TR T

The first term in Eq(A14) cancels with the phase in the zero
mode part of Eq(A3), resulting in Eq.(25).
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