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Slow progress towards increasingly accurate exchange-correlation functionals in density functional
theory is holding back calculational methods based more on automatization and less on user ’in-
tuition’. Work aiming for improved functional accuracy, in particular the subsystem functional
approach, is hindered by a recent discovery [R. Armiento, A. E. Mattsson, Phys. Rev. B, 66 165117
(2002)]: local values of the conventional exchange energy per particle cannot be described by an
analytic expansion in the density variation in the limit of slowly varying electron densities. In this
paper, we show the non-analyticity to be caused by the long-rangedness of the Coulomb potential.
The exchange energy per particle is made well-behaved by screening its long-ranged part, and the
correlation part is adjusted to get an alternative separation of the exchange-correlation energy. We
demonstrate functional development using this approach by constructing an LDA-type functional.

PACS numbers: 71.15.Mb, 31.15.Ew

Kohn-Sham (KS) density-functional theory (DFT) [1]
is a successful scheme for electron energy calculations. A
long term goal is chemical accuracy for chemical and ma-
terial properties without the need of an intelligent choice
of exchange-correlation (XC) functional. Fulfillment of
this goal will have impact on much of physics and chem-
istry. However, progress towards generic functionals of
higher accuracy have been slow compared to the progress
of algorithms and computer hardware. The present work
lifts an obstacle holding back such development, in par-
ticular the subsystem functional approach [2].

KS-DFT is based on a total energy functional Ee[n(r)]
that is minimized by the true ground state electron den-
sity n(r) of a system. The minimization is done by self-
consistently refining an effective potential veff(r) of a
system of non-interacting electrons, to make that sys-
tem’s electron orbitals ψν(r) give n(r) as their (non-
interacting) electron density. A crucial part of this
scheme is the XC energy functional Exc[n(r)] which is
the usually small but difficult part of Ee that remains
when all more easily treated parts have been accounted
for (i.e., the potential energy, the kinetic energy of a sys-
tem of non-interacting electrons, and the internal poten-
tial energy of a classical repulsive gas).

It is common to reduce Exc by subtracting the well-
defined Kohn-Sham Hartree-Fock (KSHF) exchange en-
ergy Ex (definition given below), leaving the correlation
energy Ec. This separation is only weakly related to the
underlying physics, and one of the main points of this
paper is that it introduces an artificial non-analyticity.
Exc is decomposed into a local quantity by defining the

XC energy per particle εxc from the requirement:

Exc[n(r)] =

∫

n(r)εxc(r; [n])dr. (1)

An approximation for εxc(r; [n]) is commonly referred to
as a ‘DFT functional’. The XC energy can be separated
on this local level, εxc = εx + εc, where εx must give the
correct total Ex in the exchange part of Eq. (1). Ex is
implicitly defined via one choice [3] of εx, ε

irxh
x (based on

the inverse radius of the exchange hole [4] (irxh), created
from results of Refs. [5]). In rydberg atomic units (a.u.),
for a spin unpolarized system

εirxhx = −2
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dr′. (2)

In recent work [2] we discussed partitioning the inte-
gration in Eq. (1) into a sum of integrals over different
regional parts of a system, applying different functionals
in each subsystem, i.e., ‘subsystem functionals’. The aim
of this approach is a better approximation of the total
XC energy, as each subsystem functional can be tailored
for a specific class of systems. However, calculations for
the Mathieu Gas (MG) model system have shown that
εirxhx in the limit of slowly varying densities cannot be
described by an analytic power expansion. This is an ob-
stacle for attempts to approximate Eq. (2) in the limit
of slowly varying densities without using the freedom of
transformations given by the implicit definition of Eq. (1)
(e.g., subsystem functionals).

In this paper we present and motivate an alternative
separation of the XC energy. We demonstrate how this
eliminates the non-analyticity in the MG model system.
The results are shown to hold for systems of generic ef-
fective potentials. Finally the ideas are placed into the
context of functional development through the construc-
tion of an LDA-type functional. We perform benchmark
calculations using an implementation of this functional.
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If the long-range Coulomb potential is responsible for
the non-analytical behavior of εirxhx , then the insertion of
a traditional screening factor of Yukawa-type, e−kY|r−r′|,
into the integration of Eq. (2), should give a well-behaved
quantity, εirxh(x+Y). This introduces kY as the Yukawa wave-
vector, which effectively is an inverse screening length for
the Coulomb potential that may be dependent on r. A
corresponding correlation-like term εirxh(c−Y) is defined by

the relation εirxh(x+Y)+ε
irxh
(c−Y) = εirxhxc . A way of viewing this

is that a term is moved from correlation to exchange,

εirxhY = 2

∫

1− e−kY|r−r′|
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εirxh(x+Y) = εirxhx + εirxhY , εirxh(c−Y) = εirxhc − εirxhY . (4)

This describes an alternative way of partitioning εxc with-
out introducing any new approximations. Since the con-
ventional correlation term screens the long range behav-
ior of the exchange, this redistribution is well-founded.
In the limit kY → 0 it approaches the conventional parti-
tioning between exchange and correlation (i.e., εY → 0).
In the following we use a scaled kY, k̄Y = kY/pF with
pF =

√

µ− veff(r), where µ is the chemical potential.
The term of lowest order in density variation of εirxh(x+Y),

i.e., LDA for the exchange-like term, is obtained from
inserting the KS orbitals for the uniform electron gas into
εirxh(x+Y) [Eq. (4)]. Substituting pF → [3π2n(r)]1/3 give

εLDA(x+Y)(n(r)) = −[3/(2π)][3π2n(r)]1/3I0(k̄Y), (5)

I0(k̄Y) = [24− 4k̄2Y − 32k̄Y arctan(2/k̄Y) +

k̄2Y(12 + k̄2Y) ln(4/k̄
2
Y + 1)]/24. (6)

For each r-point with density n(r), the value of εirxh(x+Y) for
a uniform electron gas with the same density is used. In
the limit k̄Y → 0, this approaches regular LDA exchange.

We numerically study εirxh(x+Y) using the Mathieu gas

(MG) family of electron densities. These densities are
parameterized by two dimensionless quantities, λ̄ and
p̄, and are obtained from a non-interacting system of
electrons moving in veff(r) = µλ̄[1 − cos(2

√
µp̄z)]. The

limit of slowly varying densities is found as λ̄, p̄ → 0.
To simplify the analysis of numerical data in this two-
dimensional limit, the parameters are combined in a non-
trivial way into a new parameter α [6], with the slowly
varying limit, 1/α→ 0. The MG family of densities was
also used when demonstrating the non-analytical behav-
ior of εirxhx in Ref. 2. We use the computer program in
that reference, modified for Yukawa screening, to calcu-
late εirxh(x+Y) for 1/α → 0 in specific r-points, for several

specific k̄Y. The results are investigated based on the
expansion of εirxh(x+Y) in density variation,

εirxh(x+Y) = εLDA(x+Y) [1 + airxh(x+Y)s
2 + birxh(x+Y)q + . . .], (7)

s =
|∇n(r)|

2(3π2)1/3n4/3(r)
, q =

∇2n(r)

4(3π2)2/3n5/3(r)
, (8)
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FIG. 1: Effective (a) Laplacian coefficient (εirxh
(x+Y)/ε

LDA
(x+Y) −

1)/q, (b) gradient coefficient (εirxh
(x+Y)/ε

LDA
(x+Y)−1)/s2, for space

points r where (a) s = 0 (density maxima; effective poten-
tial minima) (b) q is close to zero, for different values of λ̄/p̄2

and k̄Y. The quantities are expected to approach (a) birxh
(x+Y),

(b) airxh
(x+Y), in Eq. (7) in the limit of slowly varying densities

1/α → 0. All curves where k̄Y > 0 show convergent trends
towards values predicted by Eq. (12) and (13) (shown in leg-
end and marked on the y axes). The oscillating behavior was
explained in Ref. 2, and is not important in this context. Due
to involved numerics, explicit divergence for k̄Y = 0 can only
be demonstrated in (a), but the values in (b) are consistent
with an expected divergence towards +∞. The similarity of
convergence values for k̄Y = 0.5 and 1.0 in (b) is coincidental.

Figure 1 confirms this expansion for k̄Y > 0 with the di-
mensionless scalars airxh(x+Y) and b

irxh
(x+Y) being functions of

the value of k̄Y. The behavior is consistent for all inves-
tigated values of λ̄/p̄2, i.e., convergence is independent
of the path through the two-dimensional MG parameter
space. However, for k̄Y = 0 the expansion of Eq. (7) is
not confirmed (this was a major point of Ref. 2).

A derivation of the convergence points for curves with
k̄Y > 0 in Fig. 1 for systems of generic veff(r) follows.
We start from an expansion of the exchange energy per
particle in pF [7, 8] with all spatial integrations done,

εirxh(x+Y) = −
1

n

(

p4F
2π3

I0 +
∇2p2F
18π3

IB +
(∇p2F )2
24π3p2F

IC + . . .

)

,

(9)
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IB = [40 + 12k̄2Y − 6k̄Y(4 + k̄2Y) arctan(2/k̄Y)−
(4 + k̄2Y) ln(4/k̄

2
Y + 1)]/(16 + 4k̄2Y), (10)

IC = [k̄Y(4 + k̄2Y) arctan(2/k̄Y)− 4− 2k̄2Y −
2(k̄2Y − 4)/(k̄2Y + 4)]/(8 + 2k̄2Y). (11)

Using the expansion of the density in pF [8], Eq. (9)
can be recasted into the form of Eq. (7). This gives the
general coefficients as functions of k̄Y,

airxh(x+Y)(k̄Y) = 16

(

1

72
− 1

162

IB
I0

+
1

108

IC
I0

)

, (12)

birxh(x+Y)(k̄Y) =
8

27

IB
I0
− 4

9
. (13)

There is an excellent agreement between these derived
coefficients and the values extracted from the numerical
data from the MG family of densities. This indicates
that our numerical data illustrate the behavior of a gen-
eral system. When the GEA gradient coefficient was es-
tablished [8–10], there was an order of limits problem
between the limit k̄Y → 0 and the limit of slowly varying
electron densities. In contrast, our calculations show that
an expansion involving both the gradient and the Lapla-
cian, Eq. (7), cannot describe the conventional exchange
energy per particle regardless of the order of the limits.
The solution is instead to use the alternative separation
given by Eq. (4), keeping kY > 0.

To further substantiate these ideas, an LDA-type func-
tional is derived in the following. The expression for
εLDA(x+Y) [Eq. (5)] has one free parameter, k̄Y, for which
a natural choice is a scaled Thomas-Fermi wave vector,
k̄TF = kTF/pF =

√

4rs/(πγ), where γ = (9π/4)1/3 and
rs = γ/[3π2n(r)]1/3 (a.u.) is an r dependent density pa-
rameter. A generalized choice is

k̄aY =
√
ars. (14)

The Yukawa exchange-like term, Eq. (5), is expanded
around rs = 0 and ∞, giving

εLDA(x+Y)
rs→0−→ −3γ

2π

(

1

rs
− 2π

√
a

3

1√
rs

+

a

[

ln 2− 1

2
ln a− 1

2
ln rs +

1

2

])

, (15)

εLDA(x+Y)
rs→∞−→ −3γ

2π

(

4

9a

1

r2s
− 8

15a2
1

r3s

)

. (16)

The expansions for the total XC energy of a uniform
electron gas are known [11–13]:

εunifxc
rs→0−→ −(3γ)/(2πrs) + c0 ln rs − c1 +

c2rs ln rs, (17)

εunifxc
rs→∞−→ −(3γ)/(2πrs)− d0/rs + d1/r

3/2
s , (18)

where c0–c4, d0, and d1 are scalars [15]. Setting a =
c04π/(3γ) makes the leading logarithmic term compati-
ble with Eq. (15). It is now easy to produce a suitable

expression to model εLDA(c−Y),

εLDA,1(c−Y) =
b1
√
rs + b2

r
3/2
s + b3rs + b4

√
rs
, (19)

Of the four free parameters, b1 to b4, two are fixed
by eliminating the 1/

√
rs in the low rs limit (Eq. 15),

and by rendering the total constant term equal to c1.
The remaining two parameters are determined by a least
squares fit, minimizing

∑

rs

∣

∣

∣

[

εLDA(x+Y)(rs) + εLDA(c−Y)(rs)− κ(rs)
]

/∆κ(rs)
∣

∣

∣

2

, (20)

where κ(rs) and ∆κ(rs) are the Ceperley-Alder (CA) [14]
data and errors respectively. This gives YLDA1, com-
posed by Eqs. (5), (14) and (19) with parameters: a =
0.135718, b1 = −1.71478, b2 = −7.57697, b3 = 5.13452,
b4 = 10.7168. In Table I it is compared to the CA data
and other XC parameterizations currently in use. In the
fitting, YLDA1 uses one fitting parameter less than the
other parameterizations but still performs at least as well
as PZ and approximately as well as VWN.

The expansion of YLDA1 for small rs is now

εYLDA1xc
rs→0−→ −3γ

2π

1

rs
+ c0 ln rs − c1 − 0.0098291

√
rs +

rs (−0.00540532 + 0.000351631 ln rs) .(21)

Since the rs ln rs coefficient is set by the value of a (as
εirxh(c−Y) does not contain any logarithmic terms), this term

is not used in a fitting procedure. Instead the
√
rs term

is used to mimic the additional influence of this term in
the low rs limit. An improved YLDA is given by the
additional requirements of an independent rs ln rs term,
and a zero coefficient for

√
rs. This is achieved through

extending k̄Y in Eq. (14) to

k̄abY =
√
ars + br3/2s (22)

and adding two parameters to the εLDA(c−Y)-part

εLDA,2(c−Y) =
e1rs + e2

√
rs + e3

r2s + e4r
3/2
s + e5rs + e6

√
rs
. (23)

Hence four parameters are fitted to the CA data. This
gives YLDA2 with a = 0.135718, b = 0.0426055, e1 =
−1.81942, e2 = 2.74122, e3 = −14.4288, e4 = 0.537230,
e5 = 1.28184, e6 = 20.4080 [16]. The performance of
YLDA2 is comparable with the PW correlation (Table I).

To make sure that there is no major difference between
the YLDAs and the other parameterizations of the CA
data we have calculated the surface energy of jellium sur-
faces using self-consistent densities obtained by the PW
correlation. Ranging over surface systems with constant
bulk rs = 2, 2.07, 2.30, 2.66, 3, 3.28, 4, 5, and 6, we find
no systematic differences. They all differ from each other
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TABLE I: a) Correlation from original CA data (in mRy) and from different parameterizations of this data, compared to
εxc − εirxh

x for the YLDAs. b) Differences between the values in a, and the CA data, scaled with the errors in the CA data. An
absolute value ≤ 1 means that the parameterization is within the error bars of the CA data and can be considered exact.
a)

rs CA PZ VWN PW YLDA1 YLDA2
1 120 119.3 120.0 119.5 120.5 120.3
2 90.2 90.18 89.57 89.52 89.70 90.05
5 56.3 56.68 56.27 56.43 56.21 56.43
10 37.22 37.137 37.089 37.145 37.044 37.104
20 23.00 22.995 23.095 23.060 23.094 23.091
50 11.40 11.332 11.407 11.385 11.421 11.377
100 6.379 6.3429 6.3693 6.3820 6.3695 6.3829

b)

rs PZ VWN PW YLDA1 YLDA2
1 −0.31 0.47 −0.02 0.94 0.76
2 −0.07 −1.61 −1.73 −1.27 −0.40
5 3.48 −0.62 1.03 −1.18 1.01
10 −1.58 −2.54 −1.43 −3.44 −2.23
20 −0.11 3.24 2.06 3.20 3.08
50 −6.55 0.96 −1.21 2.36 −2.01
100 −7.15 −1.88 0.66 −1.83 0.84

in the order of 0.1%, with a total error in the order of
a few percent [17]. Furthermore, self-consistent calcula-
tions for bulk silicon [18] give a lattice constant of 5.38 Å,
and a bulk modulus between 95.2 and 95.6 GPa, regard-
less of parameterization; i.e., PZ, VWN, PW, YLDA1,
YLDA2 give essentially equal values.

In this paper we have i) established that the lack of
analytical behavior in the slowly varying limit of εirxhx in
the MG model is caused by the long-rangedness of the
Coulomb potential; ii) shown that this is a general arti-
fact of the conventional definition of εirxhx , and is not re-
stricted to limits taken through MG densities; iii) shown
that an analytical behavior can be obtained by using a
non-conventional separation of exchange and correlation
within εxc; iv) derived and implemented an LDA-type
functional based on this alternative separation. This
LDA-type functional provides a starting point for further
approximate functionals within schemes where the lack
of analytical behavior in the slowly varying limit provides
an obstacle, such as the subsystem functional approach.
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