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Editor
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To Whom It May Concern:

In this work, we propose a new method to improve performance for nonlinear
reduced-order models. The distinguishing feature of the proposed method is that
it exploits temporal behavior to improve performance; nearly all other work in
the field focuses on exploiting spatial behavior in the forms of various reduced
bases for the state (e.g., POD, modal analysis) and/or nonlinear function (e.g.,
empirical interpolation). We believe that the method is a novel contribution
that can have a broad impact on the field.

Additionally, the method is pragmatic, as it can be applied to first- and second-
order ODEs, and to any projection-based nonlinear model-reduction method.

No part of this work has been previously published.

Best regards,

Kevin Carlberg
Jaideep Ray
Bart van Bloemen Waanders
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1. We propose a fundamentally new ‘forecasting’ approach to accelerate nonlinear ROMs.

2. It uses time-domain data to forecast good initial guesses, lowering # Newton its.

3. The method applies to 1st- and 2nd-order ODEs and any projection-based ROM method.

4. Experiments show the method performs best in the presence of smooth dynamics.

5. Experiments show the method can improve ROM performance by a factor of 50.
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Decreasing the temporal complexity for

nonlinear, implicit reduced-order models by forecasting

Kevin Carlberga,⇤, Jaideep Raya,⇤, Bart van Bloemen Waandersa,⇤⇤

a
Sandia National Laboratories

Abstract

Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear equations at
each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence
of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of
system’s spatial behavior to reduce the computational complexity of each linear-system solve. However,
the number of linear-system solves for the reduced-order simulation often remains roughly the same
as that for the full-order simulation.

We propose exploiting knowledge of the model’s temporal behavior to 1) forecast the unknown
variable of the reduced-order system of nonlinear equations at future time steps, and 2) use this
forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To
compute the forecast, we propose using the Gappy POD technique. The goal is to generate an accurate
initial guess so that the Newton solver requires many fewer iterations to converge, thereby significantly
decreasing the number of linear-system solves in the reduced-order-model simulation.

Keywords: nonlinear model reduction, Gappy POD, temporal correlation, forecasting, initial guess

1. Introduction

High-fidelity physics-based numerical simulation has become an indispensable engineering tool
across a wide range of disciplines. Unfortunately, such simulations often bear an extremely large com-
putational cost due to the large-scale, nonlinear nature of high-fidelity models. When an implicit time
integrator is employed to advance the solution in time (as is often essential, e.g., for sti↵ problems) this
large cost arises from the need to solve a sequence of high-dimensional systems of nonlinear algebraic
equations—one at each time step. As a result, individual simulations can take weeks or months to com-
plete, even when high-performance computing resources are available. This renders such simulations
impractical for time-critical and many-query applications. In particular, uncertainty-quantification
applications (e.g., Bayesian inference problems) call for hundreds or thousands of simulations (i.e.,
forward solves) to be completed in days or weeks; in-the-field analysis (e.g., guidance in-field data
acquisition) requires near-real-time simulation.

Projection-based nonlinear model-reduction techniques have been successfully applied to decrease
the computational cost of high-fidelity simulation while retaining high levels of accuracy. To accomplish
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this, these methods exploit knowledge of the system’s dominant spatial behavior—as observed during
‘training simulations’ conducted a priori—to decrease the simulation’s spatial complexity, which we
define as the computational cost of each linear-system solve.1 To do so, these methods 1) decrease the
dimension of the linear systems by projection, and 2) approximate vector-valued nonlinear functions
by sampling methods that compute only a few of the vector’s entries (e.g., empirical interpolation
[1, 2], Gappy POD [3]). However, these techniques are often insu�cient to adequately reduce the
computational cost of the simulation. For example, Ref. [4] presented results for the GNAT nonlinear
model-reduction technique applied to a large-scale nonlinear turbulent-flow problem. The reduced-
order model generated solutions with sub-1% errors and reduced the spatial complexity by a factor
of 637. However, the total number of linear-system solves required for the reduced-order-model simu-
lation, which we define as the temporal complexity, remained large. In fact, the temporal complexity
was decreased by a factor of only 1.5. As a result, the total computing resources (computing cores
⇥ wall time) required for the simulation were decreased by a factor of 438, but the wall time was
reduced by a factor of merely 6.9. While these results are promising (especially in their ability to
reduce spatial complexity), the time integration of nonlinear dynamics remains problematic and often
precludes real-time performance.

The goal of this work is exploit knowledge of the system’s temporal behavior as observed during
the training simulations to decrease the temporal complexity of (deterministic) reduced-order-model
simulations. For this purpose, we first briefly review methods that exploit observed temporal behavior
to improve computational performance.

Temporal forecasting techniques have been investigated for many years with a specific focus on re-
ducing wall time in a stable manner with maximal accuracy. The associated body of work is large and
a comprehensive review is beyond the scope of this paper. However, this work focuses on time integra-
tion for reduced-order models plagued by highly nonlinear dynamics; several categories of specialized
research e↵orts provide an appropriate context for this research.

At the most fundamental level of temporal forecasting, a variety of statistical time-series-analysis
methods exist that exploit 1) knowledge of the temporal structure, e.g., smoothness, of a model’s
variables, and 2) previous values these variables for the current time series or trajectory. The connection
between these methods and our work is that such forecasts can serve as an initial guess for an iterative
solver (e.g., Newton’s method) at an advanced point in time. However, the disconnect between such
methods and the present context is that randomness and uncertainty drive time-series analysis; as such,
these forecasting methods are stochastic in nature (see Refs. [5, 6, 7, 8, 9, 10, 11, 12]). In addition,
the majority of time-series analyses have been applied to application domains (e.g., economics) with
dynamics that are not generally modeled using partial di↵erential equations. Finally, such forecasting
techniques to not exploit a collection of observed, complete time histories from training experiments
conducted a priori. Because such training simulations lend important insight into the spatial and
temporal behavior of the model, we are interested in a technique that can exploit these data.

As fundamental as time-series analysis, time integrators for ordinary di↵erential equations (ODEs)
employ Taylor-series expansions to provide reasonably accurate forecasts of the state or the unknown
at each time step. Time integrators employ such a forecast for two purposes. First, algorithms with
adaptive time steps employ interpolation to obtain solutions (and their time derivatives) at arbitrary
points in time. Implicit time integrators for nonlinear ODEs, which require the iterative solution to
nonlinear algebraic systems at each time step, use past history (of the current trajectory) to forecast
an accurate guess of the unknown in the algebraic system, e.g., Ref. [13]. Again, forecasting by
Taylor-series expansion makes no use of the temporal behavior observed during training simulations.

Closely connected to time integration but specialized to leverage developments in high-performance

1A sequence of linear systems arises at each time step when a Newton-like method is employed to solve the system
of nonlinear algebraic equations.
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computing, time parallel methods can o↵er computational speedup when integrating ODEs. Dating
back to before the general availability of parallel computers, researchers speculated about the benefits
of decomposing the temporal domain across multiple processors [14]. Advancements have been made
from parallel multigrid to parareal techniques [15, 16, 17, 18]. Although time-domain decomposition
algorithms have demonstrated speedup, they are limited in comparison to the spatial domain decom-
position methods and they require a careful balance between stability and computational e�ciency
[19]. It is possible that these methods could further improve performance in a model-reduction setting
[20] (and could complement the method proposed in this work), but near real-time performance is
likely unachievable through time-parallel methods alone.

To some extent, exploiting temporal behavior has been explored in nonlinear model reduction.
Bos et al. [21] proposed a reduced-order model in the context of explicit time integration wherein the
generalized coordinates are computed based on a best-linear-unbiased (BLU) estimate approach. Here,
the reduced state coordinates at time step n + 1 are computed using empirically derived correlations
between the reduced state coordinates and 1) their value at the previous time step, 2) the forcing input
at the previous time step, and 3) a subset of the full-order state. However, the errors incurred by this
time-integration procedure (compared with standard time integration of the reduced-order model) are
not assessed or controlled. This can be problematic in realistic scenarios, where error estimators and
bounds are essential. Another class of techniques called a priori model reduction methods [22, 23] build
a reduced-order model ‘on the fly’, i.e., over the course of a given time integration. These techniques
try to use the reduced-order model at as many time steps as possible; they use the high-fidelity model
when the reduced-order model is deemed to be inaccurate. So, these techniques employ the reduced-
order model as a tool to accelerate the high-fidelity-model simulation. In contrast, this work aims to
accelerate the reduced-order-model simulation itself. Further, these methods di↵er from the present
context in that there are no training experiments conducted a priori from which to glean information
about the model’s temporal behavior.

In this work, we propose a method that exploits a set of complete trajectories observed during
training simulations to decrease the temporal complexity of a reduced-order-model simulation. The
method 1) forecasts the unknown variable in the reduced-order system of nonlinear equations, and 2)
uses this forecast as an initial guess for the Newton-like solver. To compute the forecast, the method
employs the Gappy POD method [3], which extrapolates the unknown variable at future time steps
by exploiting 1) the unknown variable for the previous ↵ time steps (where ↵ is the memory of the
process), and 2) a database of time histories of the unknown variable. If the forecast is accurate, then
the Newton-like solver will require very few iterations to converge, thereby decreasing the number
of linear-system solves in the simulation. The method is straightforward to implement: the training
stage simply requires collecting an additional set of snapshots during the training simulations. The
reduced-order-model simulation simply requires an external routine for determining the initial guess
for the Newton-like solver.

2. Problem formulation

This section provides the context for this work. Section 2.1 describes the class of full-order models
we consider, which includes first- and second-order ODEs numerically solved by implicit time integra-
tion. Section 2.2 describes the reduced-order modeling strategies for which the proposed technique is
applicable.
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2.1. Full-order model

2.1.1. First- and second-order ODEs

First, consider the parameterized nonlinear first-order ODE corresponding to the full-order model
of a dynamical system:

ẋ = f (x; t, p (t) , q) (1)

x(0, p, q) = x

0 (q) . (2)

Here, time is denoted by t 2 [0, T ], the time-dependent forcing inputs are denoted by p : [0, T ]! Rp,
the time-independent parametric inputs are denoted by q 2 Rq, and f : RN ⇥ [0, T ]⇥ Rp ⇥ Rq ! RN

is nonlinear in at least its first argument. The state is denoted by x ⌘ x(t, p, q) 2 RN with N denoting
the number of degrees of freedom in the model. The parameterized initial condition is x

0 : Rp ! RN .
Because this work handles both first- and second-order ODEs, consider also the parameterized

nonlinear second-order ODE corresponding to the full-order model of a dynamical system:

ẍ = g (x, ẋ; t, p (t) , q) (3)

x(0, p, q) = x

0 (q) (4)

ẋ(0, p, q) = v

0(q). (5)

Here, the function g : RN ⇥RN ⇥ [0, T ]⇥Rp⇥Rq ! RN is nonlinear in at least its first two arguments,
and the parameterized initial velocity is denoted by v

0 : Rp ! RN .2

2.1.2. Implicit time integration

Given forcing and parametric inputs, the numerical solution to the full-order model described by
(1)–(2) or (3)–(5) can be computed via numerical integration. For systems exhibiting sti↵ness, an
implicit integration method is often the most computationally e�cient choice; it is even essential
in many cases [24]. When an implicit time integrator is employed, s coupled systems of nonlinear
equations are solved at each time step n = 1, . . . M :

R

n

i

�
w

n,1
, . . . , w

n,s; p, q

�
= 0, i = 1, . . . , s. (6)

Here, the function R

n

i

: RN⇥ · · ·⇥RN⇥Rp⇥Rq ! RN is nonlinear in at least its first s arguments and
the unknowns w

n,i 2 RN , i = 1, . . . , s are implicitly defined by (6). As discussed in Appendix A and
Appendix B, the unknowns w

n,i represent the state, velocity, or acceleration at points t

n�1 + c

i

h

n,
where c

i

2 [0, 1], i = 1, . . . , s is defined by the time integrator:

w

n,i ⌘ w

n,i(p, q) ⌘ w(tn�1 + c

i

h

n; p, q). (7)

So, a superscript n denotes the value of a quantity at time t

n ⌘
nP

k=1

h

k, a superscript n, i denotes the

value of a quantity at time t

n,i ⌘
n�1P
k=1

h

k + c

i

h

n, and h denotes the time-step size.

After the unknowns are computed by solving Eq. (6), the state is explicitly updated as

x

n = �x

n�1 +
sX

i=1

�

i

w

n,i

, (8)

2Note that an N -dimensional second-order ODE can be rewritten as 2N -dimensional first-order ODE.
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where � and �

i

, i = 1, . . . , s are scalars defined by the integrator. For second-order ODEs, the velocity
is also updated explicitly as

ẋ

n = ✏ẋ

n�1 +
sX

i=1

⇠

i

w

n,i

, (9)

where ✏ and ⇠

i

, i = 1, . . . , s are also scalars defined by the integrator. Appendix A and Appendix B
specify the form of Eqs. (6)–(9) for important classes of implicit numerical integrators for first- and
second-order ODEs, respectively.

The chief computational burden of solving (1) with an implicit integrator lies in solving nonlinear
equations (6) at each time step; this is typically done with a Newton-like method. In particular, if K̄

denotes the average number of Newton-like iterations required to solve (6), then the full-order-model
simulation requires solving K̄M linear systems of dimension sN .3 We denote the simulation’s spatial
complexity to be the computational cost of solving each linear system; we consider the simulation’s
temporal complexity to be the total number of linear-system solves.

The spatial complexity contributes significantly to the computational burden for large-scale systems
because N is large. However, the temporal complexity is also significant for such problems. First, the
number of total time steps M is often proportional to N . This occurs because refining the mesh in space
often necessitates a decrease in the time-step size to balance the spatial and temporal errors.4 Second,
the average number of Newton-like iterations K̄ can be large when the problem is highly nonlinear
and large time steps are taken, which is common for implicit integrators. Under these conditions,
the initial guess for the Newton solver, which is often taken to be a polynomial extrapolation of the
unknown, can be far from the true value of the unknowns.

In many cases (e.g., linear multi-step methods, single-stage Runge–Kutta schemes), s = 1. For this
reason, and for the sake of notational clarity, the rest of this paper assumes s = 1, and w

n designates
the value of the unknown variable at time t

n,1. However, we note that the proposed technique can be
straightforwardly extended to s > 1.

2.2. Reduced-order model

Nonlinear model-reduction techniques aim to generate a low-dimensional model that is inexpensive
to evaluate, yet captures key features of the full-order model. To do so, these methods first perform
analyses of the full-order model for a set of ntrain training parametric and forcing inputs Dtrain ⌘
{(pk, qk)}ntrain

k=1 during a computationally intensive ‘o✏ine’ training stage. These analyses may include
integrating the equations of motion, modal decomposition, etc.

Then, the data generated during these analyses are employed to decrease the the cost of each linear-
system solve via two approximations: 1) dimension reduction, 2) nonlinear-function approximation
(spatial-complexity reduction). Once these approximations are defined, the resulting reduced-order
model is employed to perform computationally inexpensive analyses for any inputs (p, q) 62 Dtrain

during the ‘online’ stage.

3Assuming the Jacobian of the residual is sparse with an average number of nonzeros per row ! ⌧ N , the dominant
computational cost of solving Eqs. (6) for the entire simulation is O �

!2sNKM
�
if a direct linear solver is used. It

is O (L!sNKM) if an iterative linear solver is used. Here, L denotes the average number of matrix-vector products
required to solve each linear system in the case of an iterative linear solver.

4This is not necessarily true for explicit time-integration schemes, when the time-step size is limited by stability
rather than accuracy. In this case, Krysl et al. [25] showed that employing a low-dimensional subspace for the state
improves stability and therefore permits a larger time-step size. As a result, the reduced-order state equations can be
solved fewer times than the full-order state equations.
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2.2.1. Dimension reduction

Model-reduction techniques decrease the number of degrees of freedom by computing an approxi-
mate state x̃ ⇡ x that lies in an a�ne trial subspace of dimension N̂ ⌧ N :

x̃(t, p, q) = x

0 (q) + �x̂(t, p, q) (10)

˙̃
x(t, p, q) = � ˙̂

x(t, p, q) (11)

¨̃
x(t, p, q) = �¨̂

x(t, p, q). (12)

Here, the trial basis (in matrix form) is denoted by � ⌘
⇥
�1 · · · �

N̂

⇤
2 RN⇥N̂ with �T� = I. The

generalized state is denoted by x̂ ⌘
⇥
x̂1 · · · x̂

N̂

⇤
T 2 RN̂ . When the unknown variable computed at

each time step (see Section 2.1.2) corresponds to the state, velocity, or acceleration, we can express it
as

w(t, p, q) = w

0 (q) + �ŵ(t, p, q), (13)

where ŵ ⌘
⇥
ŵ1 · · · ŵ

N̂

⇤
T 2 RN̂ denotes the vector of generalized unknowns.

Substituting Eqs. (10)–(11) into (1) yields

� ˙̂
x = f

�
x

0 (q) + �x̂; t, p (t) , q

�
, (14)

Alternatively, substituting Eq. (10)–(12) into (3) yields

�¨̂
x = g

⇣
x

0 (q) + �x̂,� ˙̂
x; t, p (t) , q

⌘
. (15)

The overdetermined ODEs described by (14) and (15) may not be solvable, because image(f) 6⇢
range(�) and image(g) 6⇢ range(�) in general. Several methods exist to compute a solution.

Project, then discretize in time. This class of model-reduction methods first carries out a projection
process on the ODE followed by a time-integration of the resulting low-dimensional ODE. The (Petrov–
Galerkin) projection process enforces orthogonality of the residual corresponding to overdetermined

ODE (14) or (15) to an N̂ -dimensional test subspace range( ), with  2 RN⇥N̂ . For first-order ODEs,
this leads to

˙̂
x =

�
 T�

��1
 T

f

�
x

0 (q) + �x̂; t, p (t) , q

�
. (16)

For second-order ODEs, the result is

¨̂
x =

�
 T�

��1
 T

g

⇣
x

0 (q) + �x̂,� ˙̂
x; t, p (t) , q

⌘
. (17)

Galerkin projection corresponds to the case where  = �.
Because Eq. (16) (resp. (17)) is an ODE of the same form as (1) (resp. (3)), it can be solved using

the same numerical integrator that was used to solve (1) (resp. (3)). Further, the same time-step sizes
are often employed, as the time-step size is determined by accuracy (not stability) for implicit time
integrators. For both first- and second-order ODEs, this again leads to a system of nonlinear equations
to be solved at each time step n = 1, . . . , M :

�
 T�

��1
 T

R

n

�
w

0 (q) + �ŵ

n; p, q

�
= 0. (18)

The unknown ŵ

n can be computed by applying Newton’s method to (18). Then, the explicit updates
(8)–(9) can proceed as usual.
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Discretize in time, then project. This class of model-reduction techniques first applies the same nu-
merical integrator that was used to solve (1) to the overdetermined ODE (14) or (15). However, the
resulting algebraic system of N nonlinear equations in N̂ unknowns remains overdetermined:

R

n

�
w

0 (q) + �ŵ

n; p, q

�
= 0. (19)

To compute a unique solution to (19), orthogonality of the discrete residual R

n to a test subspace
range ( ) can be enforced. However, this leads to a reduced system of nonlinear equations equivalent
to (18). So, in this case, the two classes of model-reduction techniques are equivalent.

On the other hand, to compute a unique solution to (19), the discrete-residual norm can be mini-
mized [26, 4, 27, 28, 29], which ensures discrete optimality [4]:

ŵ

n = arg min
y2RN̂

kRn

�
w

0 (q) + �y; p, q

�
k22. (20)

The unknown ŵ

n can be computed by applying a Newton-like nonlinear least-squares method (e.g.,
Gauss–Newton, Levenberg–Marquardt) to (20). Again, explicit updates (8)–(9) can proceed after the
unknowns are computed.

2.2.2. Spatial-complexity reduction

For nonlinear dynamical systems, the dimension reduction described in Section 2.2.1 is insu�cient
to guarantee a reduction in the computational cost of each linear-system solve. The reason is that
the full-order residual depends on the state, so it must be recomputed and subsequently projected or
minimized at each Newton-like iteration.

For this reason, nonlinear model-reduction techniques employ a procedure to reduce the spatial-
complexity, i.e., decrease the computational cost of computing and projecting or minimizing the nonlin-
ear residual.5 In particular, the class of ‘function sampling’ techniques replace the full-order nonlinear
residual with an approximation R̃ ⇡ R that is inexpensive to compute. Then, R

n  R̃

n is employed
in (18) or (20) to compute the unknowns ŵ

n.
Methods in this class can be categorized as follows:

1. Collocation approaches. These methods employ a residual approximation that sets many of the
residual’s entries to zero:

R̃

n = ZTZR

n

. (21)

Here, Z is a restriction matrix consisting of selected rows of I

N⇥N

. This approach has been
developed for Galerkin projection [30, 22] and discrete-residual minimization [29].

2. Function-reconstruction approaches. These methods employ a residual approximation that com-
putes a few entries of the residual or nonlinear function, and subsequently ‘fills in’ the remaining
entries via interpolation or least-squares regression. That is, these methods apply one of the
following approximations:

R̃

n = �
R

(Z�
R

)+ ZR

n (22)

f̃ = �
f

(Z�
f

)+ Zf (23)

g̃ = �
g

(Z�
g

)+ Zg. (24)

Here, �
R

, �
f

, and �
g

are empirically derived bases used to approximate the nonlinear residual,
velocity, and acceleration, respectively.6 A superscript + denotes the Moore–Penrose pseu-
doinverse. This approach has been developed for Galerkin projection [30, 21, 2, 31, 32] and
discrete-residual minimization [26, 4].

5Such techniques are occasionally referred to as ‘hyper-reduction’ techniques [22].
6When the bases are computed via POD, this technique is known as Gappy POD [3].
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3. Temporal-complexity reduction

While the model-reduction approaches described in the previous section decrease the computational
cost of each linear-system solve (i.e., spatial complexity), they do not necessarily decrease the number
of linear-system solves (i.e., temporal complexity). The goal of this work is devise a method that
decreases this temporal complexity while introducing no additional error.

3.1. Method overview

The main idea of the proposed approach is to compute an accurate forecast of the generalized
unknowns at future time steps using the Gappy POD procedure, and employ this forecast as an initial
guess for the Newton-like solver at future time steps.

Gappy POD is a technique to reconstruct vector-valued data that has ‘gaps,’ i.e., entries with
unknown or uncomputed values. Mathematically, the approach is equivalent to least-squares regression
in one discrete-valued variable using empirically computed basis functions. It was introduced by
Everson and Sirovich [3] for the purpose of image reconstruction. It has also been used for static
[33, 34] and time-dependent [35, 36] flow field reconstruction, inverse design [34], design variable
mapping for multi-fidelity optimization [37], and for decreasing the spatial complexity in nonlinear
model reduction [30, 21, 26, 4]. This work proposes a novel application of Gappy POD: as a method
for forecasting the generalized unknown at future time steps during a reduced-order-model simulation.

During the o✏ine stage, the proposed method computes a ‘time-evolution basis’ for each general-
ized unknown ŵ

j

, j = 1, . . . , N̂ . Each basis represents the time-evolution of a generalized unknown
as observed during training simulations. Figure 1(a) depicts this idea graphically, and Section 3.2
describes a computationally inexpensive way to compute these bases.
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(a) O✏ine: the computed time-evolution POD basis
for a generalized unknown.
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(b) Online: time steps taken so far (red), recent time
steps used to compute forecast (green), forecast (blue)

Figure 1: Graphical depiction of the proposed method

During the online stage, the method computes a forecast of the generalized unknowns at future
time steps via Gappy POD. This forecast employs 1) the time-evolution bases and 2) the generalized
unknowns computed at several previous time steps. Figure 1(b) depicts this, and Section 3.3 describes
the forecasting method in detail. At future time steps, this forecast is employed as an initial guess
for the Newton-like solver. If the forecast is accurate, the Newton-like solver will converge in very few
iterations; if it is inaccurate, the Newton-like solver will require more iterations for convergence. Note
that the accuracy of the solution is not hampered in either case (assuming a globalization strategy is
employed). If the number of Newton steps required for convergence is large, this indicates an inaccurate
initial guess. When this occurs, the method computes a new forecast.

The proposed method is expected to be e↵ective if the temporal behavior of the generalized un-
knowns is similar across input variation. The method is independent of the dimension-reduction or
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spatial-complexity-reduction scheme employed by the reduced-order model; further, the method is ap-
plicable (without modification) to both first- and second-order ODEs. The next sections describe the
o✏ine and online steps of the methodology in detail.

3.2. O✏ine stage: compute the time-evolution bases

The objective of the o✏ine stage is to compute the time-evolution bases that will be used for the
online forecast. Ideally, the bases should be able to describe the time evolution of the generalized state
for any forcing inputs p and parametric inputs q. If the bases are ‘bad’, then the forecasting step of
the algorithm will be inaccurate, and there may be no reduction in the average number of Newton-like
iterations.

We propose employing a POD basis for the time evolution of the generalized unknown. This basis
is computed a priori during ‘o✏ine’ simulations of the reduced-order model in three steps:

1. Collect snapshots of the unknown during each of the ntrain training simulations:

Y

k

=
⇥
w

0 (p
k

, q

k

) · · · w

M�1 (p
k

, q

k

)
⇤

(25)

for k = 1, . . . , ntrain, with Y

k

2 RN⇥M . Here, p

k

2 Rp denotes the forcing inputs for training
simulation k, and q

k

2 Rq denotes the parametric inputs for training simulation k.
In some cases, the snapshot matrices Y

k

, k = 1, . . . , ntrain are already available from computing
the trial basis �. This occurs, for example, when proper orthogonal decomposition (POD) is
employed to compute � and the time integrator’s unknown is the state vector.

2. Compute the corresponding snapshots of the generalized unknown:

Ŷ

k

⌘ �T

⇥
Y

k

� w

0 (q
k

)1T

⇤
(26)

=
⇥
ŵ

0 (p
k

, q

k

) · · · ŵ

M�1 (p
k

, q

k

)
⇤

(27)

for k = 1, . . . , ntrain, where orthogonality of the trial basis �T� = I has been used. Here,
Ŷ

k

2 RN̂⇥M and 1 2 RM denotes a vector of ones.

3. Compute the time-evolution bases via the singular value decomposition. Defining Ŷ

k

⌘
h
ŷ1,k · · · ŷ

N̂,k

i
T

,

where ŷ

j,k

2 RM can be interpreted as a snapshot of the time evolution of the jth generalized
unknown ŵ

j

during training simulation k, this step amounts to

[ŷ
j,1 · · · ŷ

j,ntrain ] = U

j

⌃
j

V

T

j

(28)

⌅
j

=
⇥
u

j,1 · · · u

j,aj

⇤
, (29)

for j = 1, . . . , N̂ . Here, U

j

⌘ [u
j,1 · · · u

j,ntrain ] 2 RM⇥ntrain and a

j

 ntrain.

After the time-evolution bases ⌅
j

2 RM⇥aj , j = 1, . . . , N̂ have been determined during the o✏ine
stage, they can be used to accelerate online computations via forecasting. The next section describes
this.

3.3. Online stage: forecast

During the online stage, the method employs a forecasting procedure to define the initial guess for
the Newton-like solver. To compute this forecast, it uses the time evolution bases (computed o✏ine),
and the values of the generalized unknown at the previous ↵ time steps (computed online). Here, ↵ is
considered the ‘memory’ of the process. When the number of Newton iterations exceeds a threshold
value ⌧ , this indicates a poor forecast; in this case, the forecast is recomputed. If the forecast is
accurate, then the number of iterations needed to converge from the (improved) initial guess will be

9
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Algorithm 1 Online: temporal-complexity-reduction method

Input: Time-evolution bases ⌅
j

2 RM⇥aj , j = 1, . . . , N̂ ; maximum memory ↵max with
↵max � max

j

a

j

; Newton-step threshold ⌧

Output: Generalized state at all M time steps: x̂

n, n = 1, . . . , M

1: for n = 1, . . . , M do
2: if forecast ŵ(tn�1 + c1h

n) is available then

3: Set initial guess for Newton solver to ŵ

n(0)
j

= ŵ

j

(tn�1 + c1h
n), j = 1, . . . , N̂

4: else
5: Use typical initial guess for Newton solver (e.g., polynomial extrapolation of unknown)
6: end if
7: Solve reduced-order equations (18) or (20) with a Newton-like method and specified initial guess.

The number of Newton-like iterations required for convergence is denoted by K

8: if K > ⌧ and (n� 1) � max
j

a

j

then {recompute forecast}
9: Set memory ↵ min(n� 1, ↵max)

10: Compute forecasting coe�cients z

j

, j = 1, . . . , N̂ using the unknown at the previous ↵ time
steps (see Eq. (30))

11: Set forecast to be ŵ
j

= ⌅
j

z

j

and define ŵ

j

⌘ h

�1
�
ŵ

j

�
, j = 1, . . . , N̂

12: end if
13: end for

drastically reduced, thereby decreasing K̄ and hence the temporal complexity. Algorithm 1 outlines
the proposed technique.

To compute the forecasting coe�cients in step 10 of Algorithm 1, we propose using the Gappy
POD approach of Everson and Sirovich [3]. This approach computes coe�cients z

j

via the following
linear least-squares problem:

z

j

= arg min
z2Raj

kZ(n, ↵)⌅
j

z � Z(n, ↵)h (ŵ
j

) k (30)

Here, the matrix Z(n, ↵) 2 R↵⇥M is the restriction matrix that selects entries corresponding to the
previous ↵ time steps:

Z(n, ↵) ⌘ [e
n�↵�1 · · · e

n�1]
T

, (31)

where e

i

denotes the ith canonical unit vector. Note that ↵ � a

j

is required for there to be a unique
solution to (30). The function h in (30) ‘unrolls’ time according to the time discretization; we define

h : x 7! x with x ⌘ [x1 · · ·x
M

]T 2 RM as

x
n

= x(tn�1 + c1h
n), n = 1, . . . , M. (32)

4. Numerical experiments

These numerical experiments assess the performance of the proposed temporal-complexity-reduction
method on a structural-dynamics example using three reduced-order models: Galerkin projection (Eq.
(17) with  = �), Galerkin projection with collocation (Eq. (21)), and Galerkin projection with
least-squares reconstruction of the residual (Eq. (22)). We consider a sequence of problems that pose
increasing di�culty to the method.

Section 4.2 considers the ideal scenario for the method: the online inputs are identical to the
training inputs, and the reduced bases are not truncated. In this case, the temporal behavior of the

10
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system is exactly predictable, because (in exact arithmetic) the online response is the same as the
training response. Therefore, we expect the proposed method to work extremely well in this case.

Section 4.3 assesses the method’s performance in a more challenging setting. Here, the online
inputs are di↵erent from the training inputs (i.e., predictive scenario), so the temporal behavior is
not identical to that observed during the training simulations. The parametric inputs correspond
to material properties and shape parameters, and the external force is set to zero; this leads to a
free-vibration problem. As a result, the dynamics encountered in this example are relatively smooth.

Section 4.4 considers a more challenging predictive scenario wherein rich dynamics—generated from
a high-frequency external force—characterize the response. Here, the parametric inputs correspond to
the magnitudes of the high-frequency forces. All material-property and shape variables are held fixed.

Finally, Section 4.5 pushes the method to its limit by considering a predictive scenario characterized
by high-frequency external forces as well as variations in material properties and shape variables.

4.1. Problem setup

Figure 2(a) depicts the parameterized, non-conservative clamped–free truss structure, where the
arrows indicate the initial displacement of magnitude c. The full-order model is constructed by the

bay

1 + µ5

1 + µ4

0.5 + µ6

1

1 1

bay
1

1 1

a

b

c

(a) Geometric parameters, initial displacement (red)

bay

1 + µ5

1 + µ4

0.5 + µ6

1

1 1

bay
1

1 1

a

b

c

(b) External force 1 (blue), 2 (green), and 3 (red)

Figure 2: Clamped–free parameterized truss structure

finite-element method. It consists of sixteen three-dimensional bar elements per bay with three degrees
of freedom per node; this results in 12 degrees of freedom per bay. We consider a problem with 750
bays, which leads to 9 ⇥ 103 degrees of freedom in the full-order model. The bar elements model
geometric nonlinearity, which results in a high-order nonlinearity in the strain energy. Each bay has a
(unitless) depth of 1 and a cross-sectional area determined by the parameterized geometry.
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The parameters q

i

2 [�1, 1], i = 1, . . . , 9 have the following e↵ect on the model:

density = 1 + 0.5q1

bar area = 1 + 0.5q2

modulus of elasticity = 1 + 0.5q3

base width a = 1 + 0.5q4

base height b = 1 + 0.5q5

initial end displacement c = 1 + 0.5q6

magnitude �1 = 0.5 (1 + q7)

magnitude �2 = 0.5 (1 + q8)

magnitude �3 = 0.5 (1 + q9)

The equations of motion for this model are

M (q)ẍ + C (q)ẋ + fint (x; q) = p(t; q). (33)

Here, M (q) 2 RN⇥N denotes the symmetric-positive-definite mass matrix, the internal forced is de-
noted by fint : RN⇥D ! RN with (x, q) 7! fint (x; q), and the symmetric-positive-semidefinite Rayleigh
viscous damping matrix, denoted by C (q) 2 RN⇥N , is of the form

C (q) = ↵M (q) + �r
x

fint

�
x

0; q
�
. (34)

Note that r
x

fint

�
x

0; q
�

represents the tangent sti↵ness matrix at the initial condition. In this work,
the Rayleigh coe�cients ↵ and � are determined by matching the first two damped frequencies with
the first two undamped frequencies of the nominal structure (q

i

= 0, i = 1, . . . 6), while enforcing a
damping ratio of ⇣ = sin�1 (2�) for the first two modes [38, Eq. (7)].

We consider an external force composed of three forces:

p(q, t) =
3X

i=1

r
i

r

i

(q, t), (35)

where r
i

2 RN and r

i

: Rq ⇥ [0, T ] ! R for i = 1, . . . , 3. Figure 2(b) depicts the forces’ spatial
distributions, which lead to vectors r

i

, i = 1, . . . , 3 through the finite-element formulation. The
parameterized, time-dependent magnitudes of these functions are:

r1(q, t) = �1 (q)1R+
(t� T/2) sin (�1 (t� T/2)) (36)

r2(q, t) = �2 (q)1R+
(t� T/2) sin (�2 (t� T/2)) (37)

r3(q, t) = �3 (q)1R+
(t� T/2) sin (�3 (t� T/2)) , (38)

where �

i

, i = 1, . . . , 3 denotes the maximum force magnitudes, and

1
A

(⌧) =

(
1, ⌧ 2 A

0, otherwise
(39)

is the indicator function. The frequencies are (arbitrarily) set to �1 = !6, �2 = 5!6, �3 = 0.5!6, where
!6 denotes the sixth largest natural frequency of the structure in its nominal configuration (q

i

= 0,
i = 1, . . . 6).
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The equations of motion (33) can be rewritten in the standard form of Eqs. (3)–(5) as

ẍ = M (q)�1 (p(t; q)� C (q)ẋ� fint (x; q)) (40)

x(0, p, q) = x

0 (q) (41)

ẋ(0, p, q) = v

0(q). (42)

The nonlinear function defining the second-order ODE is

g (x, ẋ; t, p, q) = M (q)�1 (p(t; q)� C (q)ẋ� fint (x; q)) . (43)

We employ an implicit Nyström time integrator to compute the numerical solution to Eqs. (40)–
(42). In particular, we employ the implicit midpoint rule for both partitions. This leads to discrete
equations (B.2) to be solved at each time step with explicit updates (B.3)–(B.4) and parameters s = 1,
â11 = 1/2, ā11 = 1/4, b̂1 = 1, b̄1 = 1/2, c1 = 1/2. The unknowns are equivalent to the acceleration at
the half time steps: w

n = ẍ

�
t

n�1 + 1/2h

�
, n = 1, . . . , M . Multiplying the corresponding residual by

M (q) yields

R

n (wn) = M (q)wn + C (q)


ẋ

n�1 +
1

2
hw

n

�
+ fint

✓
x

n�1 +
1

2
hẋ

n�1 +
1

4
h

2
w

n; q

◆
� p(tn�1 +

1

2
h; q).

(44)
To solve R

n (wn) = 0 at each time step, Newton’s method is applied. Each linearized system is solved
directly using the Cholesky factorization (the Jacobian of the residual is symmetric), and convergence
of Newton’s method is declared when the 2-norm of the residual is less than or equal to 10�4kRn (0) k2.

The time-interval length is set to T = 25. A time-step size of h = 0.6 is employed in the unforced
case; it is set to h = 0.5 in the forced case. These values were determined by a convergence study
on the nominal configuration defined by q

i

= 0, i = 1, . . . 6 and q

i

= �1, i = 7, . . . , 9 (unforced) or
q

i

= �1, i = 7, . . . , 9 (forced).
To construct the reduced-order models, we collect snapshots of the required quantities for (p, q) 2

Dtrain and t 2 [0, T ]. The trial basis � is determined via POD. Snapshots of the state are collected

X
x

= {xn�1 + hẋ

n�1 +
h

2
ẍ

n,1 � x (0; q) | n = 1, . . . , M ; (q, p) 2 Dtrain} (45)

and the trial basis is set to � = �e (X
x

, ⌫

x

), where ⌫

x

2 [0, 1] is an ‘energy criterion’ and �e is defined
by Algorithm 2 in Appendix C. For Galerkin projection with least-squares residual reconstruction,
the following snapshots are collected during the (full-order model) training simulations:

X
R

= {Rn

⇣
w

n(k)
⌘

| n = 1, . . . , M ; k = 0, . . . , K(n)� 1; (q, p) 2 Dtrain}. (46)

Here, K(n) denotes the number of Newton steps taken at time step n. The basis �
R

is set to �
R

=
�e (X

R

, ⌫

R

) with ⌫

R

2 [0, 1]. The same sampling matrix Z is used for the collocation and Gappy POD
approximations; it is determined using the GNAT model-reduction method’s approach for selecting
the sample matrix [26, 4]. The number of rows in Z is set to be twice the number of columns in �

R

.
The output of interest is the downward displacement of the bottom-left point at the tip of the

structure (denoted by d) for all time steps. To quantify the performance of the reduced-order models,
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the following metrics are used:

" =

1
M

MP
n=0

|dn � d

n

FOM|

max
n

d

n

FOM �min
n

d

n

FOM

(47)

 =
K̄FOM

K̄

(48)

S =
TFOM

T
(49)

Here, " designates the scaled `1 norm of the discrepancy in the output predicted by a reduced-order
model. The temporal-complexity-reduction factor is denoted by , where K̄ denotes the average
number of Newton-like steps per time step. The speedup is denoted by S with T denoting the wall
time required for a simulation. A subscript ‘FOM’ denotes a quantity computed using the full-order
model.

In all experiments, the forecasting method is compared with a ‘no forecasting’ case. For this
case, the initial guess corresponds to a first-order approximation of the displacement within the time
interval: x

(0)(t) = x

n�1 +
�
t� t

n�1
�
ẋ

n�1 for t 2
⇥
t

n�1
, t

n

⇤
, or equivalently ẍ

n,1 = w

n(0) = 0. Also,

the forecasting method always employs untruncated time-evolution bases: a

j

= ntrain for j = 1, . . . , N̂ .

4.2. Ideal case: invariant inputs, no truncation of bases

This experiment explores the ideal case for the method: the online inputs equal the training inputs,
and the bases are not truncated (⌫

x

= ⌫

R

= 1.0). In this scenario, the full-order model’s temporal
behavior encountered online is exactly the same as that observed during training simulations; for this
reason, we expect the proposed method to perform very well. We consider a single configuration
(ntrain = 1) characterized by q

i

= 0, i = 1, . . . , 9. For the forecasting technique, the Newton-step
threshold is set to ⌧ = 0 and the maximum memory is set to ↵max = 12.

Table 1 and Figure 3 report the results. First, note that the relative errors generated by ROMs
are essentially zero. This is expected, because the reduced bases are not truncated and the inputs are
invariant. Next, note that the Galerkin ROM generates no speedup; this is expected because it is not
equipped with a spatial-complexity-reduction technique (see Section 2.2.2). The other two techniques—
which employ spatial-complexity-reduction approximations—lead to significant speedups. Also, it is
evident that the reduced-order models exhibit no temporal-complexity reduction (i.e.,   1.0) in the
absence of the proposed forecasting technique.

When the models employ the proposed forecasting technique, the number of Newton iterations dras-
tically decreases, leading to temporal-complexity reductions of  = 49.5 for two ROMs and  = 6.25
for the third. In turn, this leads to significantly improved wall-time speedups in all cases. This can
be viewed as the best possible performance for the method (applied to this problem): the temporal
behavior of the system is exactly predictable, as the inputs have not changed, and the reduced bases
have not been truncated. So, the forecast is ‘perfect’ after only one time step for the Galerkin and
Galerkin with Gappy POD ROMs; no Newton steps are required after this. The next sections investi-
gate the forecasting method’s performance in the (more realistic) case of varying inputs and truncated
bases.

4.3. Unforced dynamics, varying structure

This experiment assesses the performance of the method when applied to the problem in the absence
of external forcing, but subject to changes in the structure’s shape, material properties, and initial
condition. This will test the method for a problem exhibiting ‘smooth’ dynamics, as it amounts to
a free vibration problem. We randomly choose six training configurations (ntrain = 6) for which we
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ROM method
relative
error "

No forecasting With forecasting

Newton
its K̄M

speedup
S

reduction
factor 

Newton
its K̄M

speedup
S

reduction
factor 

Galerkin 8.64⇥ 10�12 99 1.01 1.0 2 1.84 49.5
Galerkin + Gappy POD 8.64⇥ 10�12 99 36.4 1.0 2 69.3 49.5
Galerkin + collocation 2.12⇥ 10�5 100 36.5 0.99 16 61.9 6.25

Table 1: Limiting case: forecast performance
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Figure 3: Limiting case: all ROMs generate near-zero error

collect snapshot in the o✏ine stage Dtrain = {p(qsample,k), qsample,k}6
k=1; then, we deploy the ROMs on

two randomly chosen online configurations q

?,1 and q

?,2. Table 2 reports the values of the parametric
inputs for these configurations.

configuration q1 q2 q3 q4 q5 q6

q

sample,1 -0.2999 -0.9735 0.2374 0.5872 0.9248 0.4786
q

sample,2 0.0660 0.3187 -0.1555 -0.8393 0.6152 0.3911
q

sample,3 0.2395 -0.6085 0.2981 -0.8126 0.6181 -0.3415
q

sample,4 -0.0033 0.3666 -0.5749 -0.4519 0.2338 0.0790
q

sample,5 -0.5650 -0.9869 0.5075 0.2002 0.8572 0.8681
q

sample,6 0.9286 -0.8243 -0.4919 -0.9116 -0.7414 0.3112

q

?,1 -0.8722 -0.3269 -0.5777 -0.4507 0.3181 -0.1177
q

?,2 0.0059 -0.2022 -0.6903 0.7106 0.7589 0.8779

Table 2: Unforced dynamics, varying structure: parametric inputs. Note that qi = �1 for i = 7, 8, 9, which sets the
external-force magnitudes to zero.

This experiment employs truncation criteria of ⌫

x

= ⌫

R

= 0.9999 for the reduced bases. Again,
the forecasting technique employs ⌧ = 0 and ↵max = 12. Figure 4 and Table 3 report the results for
this experiment. First, note that all ROMs generate very small relative errors (" < 10�2) even though
a mere 6 training points were (randomly) selected in a six-dimensional input parameter space. This
strong performance can be attributed to the relative smooth dynamics characterizing the problem.
Again, we observe that spatial-complexity reduction is necessary to generate significant speedups (the
Galerkin ROM has a speedup of roughly one). We also note that—in the absence of the proposed
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forecasting technique—the ROMs exhibit no temporal-complexity reduction ( = 1.0).
When the models employ the proposed forecasting technique, the number of total Newton steps is

nearly cut in half, as all methods generate temporal-complexity reduction factors of  = 1.71. This
also leads to a significant improvement in speedup for all reduced-order models. These results indicate
that the proposed technique is e↵ective in realistic scenarios where the reduced bases are truncated
and the inputs vary.

To gain insight into the method’s potential, Figure 5 depicts the time evolution of the first gener-
alized unknown ŵ1 for the online and training inputs; note that this is one of the forecasted variables.
The online inputs lead to di↵erent frequency content of the generalized unknown’s temporal behavior,
even though the qualitative behavior of the response is similar. The forecasting method performs well
in spite of this frequency shift. This indicates that the method is reasonably robust with respect to
frequency shifts in the system’s temporal response.

Online
inputs

ROM method
relative
error "

No forecasting With forecasting

Newton
its

speedup
S

reduction
factor 

Newton
its

speedup
S

reduction
factor 

q

?,1
Galerkin 2.04⇥ 10�3 82 0.998 1.00 48 1.37 1.71

Gal. + Gappy 1.77⇥ 10�3 82 58.2 1.00 48 82.4 1.71
Gal. + coll. 1.83⇥ 10�3 82 59.4 1.00 48 80.8 1.71

q

?,2
Galerkin 3.86⇥ 10�3 82 1.03 1.00 48 1.55 1.71

Gal. + Gappy 3.64⇥ 10�3 82 54 1.00 48 86.1 1.71
Gal. + coll. 3.19⇥ 10�3 82 55.5 1.00 48 88.7 1.71

Table 3: Unforced dynamics: forecast performance
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Figure 4: Unforced dynamics: responses generated by reduced-order models

4.4. Forced dynamics, fixed structure

This experiment analyzes the method for the problem in the absence of shape and material-property
changes, but with external forcing and changes in the initial condition. Because the external forces
are of relatively high frequency (close to the largest natural frequency of the structure), we expect this
problem to be characterized by ‘rich’ dynamics: the first half of the time interval is a free-vibration
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Figure 5: Unforced dynamics. First generalized unknown at online inputs (bold curve) and training inputs (thin curves)

problem, while the second half of the time interval is a high-frequency forced response. As before,
we randomly choose six training configurations and two online configurations; Table 4 reports the
associated parametric inputs.

configuration q6 q7 q8 q9

q

sample,1 0.4786 0.0001 0.4019 -0.9561
q

sample,2 0.3911 -0.2747 0.7756 0.4022
q

sample,3 -0.3415 -0.4041 0.7287 0.4164
q

sample,4 0.0790 -0.2275 -0.4506 0.4536
q

sample,5 0.8681 0.9115 0.6784 0.2574
q

sample,6 0.3112 0.9821 0.8428 -0.1354

q

?,1 -0.1177 0.5200 -0.4993 -0.2177
q

?,2 0.8779 0.1817 -0.2161 -0.3058

Table 4: Forced dynamics, fixed structure: parametric inputs. Note that qi = 0 for i = 1, . . . , 5, which causes shape and
material-property inputs to be fixed.

Again, we employ truncation criteria of ⌫

x

= ⌫

R

= 0.9999 and forecasting parameters ⌧ = 0 and
↵max = 12. Figure 6 and Table 5 report the results for this experiment.

Similar results to the experiment in Section 4.3 can be observed. All relative errors are reasonably
small (below 2⇥ 10�2), although the responses deviate from the full-order model around t = 20. Also,
the proposed forecasting technique significantly improves the temporal-complexity reduction factor 

and leads to improvements in speedups. However, the performance of the proposed technique is not
quite as strong as in the unforced case (compare Tables 3 and 5). This is likely attributable to the
presence of richer dynamics in the present experiment. Figure 7 depicts this: the temporal behavior of
the first generalized coordinate is much less smooth than in the unforced case. However, because the
temporal behavior remains qualitatively similar when the inputs are varied, the forecasting method can
e↵ectively exploit the training data to generate an accurate forecast. This highlights one advantage of
the proposed method: it is relatively insensitive to the smoothness of the temporal response. Instead,
it depends much more strongly on how this response is a↵ected by input variation.
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Figure 6: Forced dynamics, fixed structure: responses generated by reduced-order models
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Figure 7: Forced dynamics, fixed structure. First generalized unknown at online inputs (bold curve) and training inputs
(thin curves)
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Online
inputs

ROM method
relative
error "

No forecasting With forecasting

Newton
its

speedup
S

reduction
factor 

Newton
its

speedup
S

reduction
factor 

q

?,1
Galerkin 1.51⇥ 10�2 100 1.02 1.00 60 1.47 1.67

Gal. + Gappy 1.39⇥ 10�2 100 52.7 1.00 61 75.2 1.64
Gal. + coll. 1.38⇥ 10�2 100 49.5 1.00 71 70.9 1.41

q

?,2
Galerkin 1.50⇥ 10�2 100 1.02 1.00 60 1.52 1.67

Gal. + Gappy 1.40⇥ 10�2 100 52.1 1.00 61 73.2 1.64
Gal. + coll. 1.41⇥ 10�2 100 54.3 1.00 68 71.8 1.47

Table 5: Forced dynamics, fixed structure: forecast performance

4.5. Forced dynamics, varying structure

This experiment pushes the boundaries of the method further. Here, we consider both external
forces and variations in the structure’s shape and material properties. As a result, we expect rich
dynamics and a larger variation in the system’s dynamics in the input space. Table 6 reports the
randomly-chosen parametric inputs for this experiment.

configuration q1 q2 q3 q4 q5 q6 q7 q8 q9

q

sample,1 -0.2999 -0.9735 0.2374 0.5872 0.9248 0.4786 0.0001 0.4019 -0.9561
q

sample,2 0.0660 0.3187 -0.1555 -0.8393 0.6152 0.3911 -0.2747 0.7756 0.4022
q

sample,3 0.2395 -0.6085 0.2981 -0.8126 0.6181 -0.3415 -0.4041 0.7287 0.4164
q

sample,4 -0.0033 0.3666 -0.5749 -0.4519 0.2338 0.0790 -0.2275 -0.4506 0.4536
q

sample,5 -0.5650 -0.9869 0.5075 0.2002 0.8572 0.8681 0.9115 0.6784 0.2574
q

sample,6 0.9286 -0.8243 -0.4919 -0.9116 -0.7414 0.3112 0.9821 0.8428 -0.1354

q

?,1 -0.8722 -0.3269 -0.5777 -0.4507 0.3181 -0.1177 0.5200 -0.4993 -0.2177
q

?,2 0.0059 -0.2022 -0.6903 0.7106 0.7589 0.8779 0.1817 -0.2161 -0.3058

Table 6: Forced dynamics, varying structure: parametric inputs

As before, we employ the following parameters: ⌫

x

= ⌫

R

= 0.9999, ⌧ = 0, and ↵max = 12. Figure
8 and Table 7 report the results for this experiment.

For these experiments, we observe that the relative errors generated by the reduced-order models
are significantly larger than in the previous experiments. This illustrates that the inputs are inducing
a wider variety of dynamics, which reduced-order models have di�culty capturing. For this reason,
we expect the proposed forecasting method to also perform worse, as the temporal behavior is (likely)
also more di�cult to predict. This is certainly the case: the temporal-complexity-reduction factors 

are lower than in previous experiments. Nonetheless, the proposed technique results in significantly
improved performance in all but one case. The only exception is for the Galerkin ROM applied to q

?,1;
here, the forecasting technique decreases  from 1.39 (without forecasting) to 1.33. This illustrates
that the forecasting method can lead to degraded performance if the forecast is inaccurate; this can
occur if the temporal behavior of the response is su�ciently rich and varies significantly with parameter
variation.

Thus, as expected, the method appears to perform best when the dynamics of the problem are
relatively smooth and the temporal behavior does not drastically change as inputs vary.

4.6. Parameter study: maximum memory ↵max and Newton-step threshold ⌧

In this experiment, we perform a parameter study to determine the parameters ↵max and ⌧ that
lead to the best performance for the method. For this purpose, we run the experiments described

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

d
is
p
la
ce
m
en
t

time

Gal. + coll.
Gal. + Gappy
Galerkin
full-order model

0 5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a) q?,1

 

 

d
is
p
la
ce
m
en
t

time

Gal. + coll.
Gal. + Gappy
Galerkin
full-order model

0 5 10 15 20 25
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

(b) q?,2

Figure 8: Forced dynamics, varying structure: responses generated by reduced-order models
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Figure 9: Forced dynamics, varying structure. First generalized unknown at online inputs (bold curve) and training
inputs (thin curves)
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Online
inputs

ROM method
relative
error "

No forecasting With forecasting

Newton
its

speedup
S

reduction
factor 

Newton
its

speedup
S

reduction
factor 

q

?,1
Galerkin 4.95⇥ 10�2 104 1.21 1.39 109 1.38 1.33

Gal. + Gappy 1.65⇥ 10�1 124 8 1.17 94 9.48 1.54
Gal. + coll. 6.93⇥ 10�2 120 8.12 1.21 90 11 1.61

q

?,2
Galerkin 1.40⇥ 10�1 95 1.04 1.02 62 1.47 1.56

Gal. + Gappy 1.17⇥ 10�1 95 7.47 1.02 64 10.4 1.52
Gal. + coll. 1.21⇥ 10�1 100 7.36 0.97 73 9.98 1.33

Table 7: Forced dynamics, varying structure: forecast performance

in Sections 4.3–4.5 for ↵max = 6, 9, 12, 15 and ⌧ = 0, 1. Then, we compute k as the average value
of forecast/no over all experiments and all three reduced-order models. Here, forecast designates
the temporal-complexity-reduction factor achieved when the proposed forecasting method is used; no

denotes the temporal-complexity-reduction factor obtained without forecasting. Similarly, s denotes
the average value of Sforecast/Sno over all experiments and reduced-order models. Here, Sforecast denotes
the wall-time speedup obtained when the proposed method is used; Sno is the speedup when the method
is not employed.

Figure 10 reports the results for the parameter study. It is evident that the parameters that lead to
best performance for this problem in both temporal-complexity-reduction improvement (k) and speedup
improvement (s) are ⌧ = 0 and ↵max = 12. Interestingly, ↵max = 6 yields the worst performance in
temporal-complexity reduction. This choice corresponds to interpolation in the Gappy POD forecast,
as the forecast employs six basis vectors. This observation is consistent with those reported in Refs.
[26, 4]: interpolation when applied with Gappy POD rarely leads to the best performance in reduced-
order modeling.
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Figure 10: Parameter study: performance averaged over all experiments and reduced-order models

4.7. Parameter study: dimension of trial subspace N̂

This experiment analyzes the performance of the proposed technique as a function of trial-subspace
dimension N̂ . We consider the experimental setup in Section 4.3, and run the experiment for ⌫

x

=

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

⌫

R

= 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999. The temporal-complexity method employs ⌧ = 0 and
↵max = 12.

Figure 11 reports the results. These results indicate that as the trial-subspace dimension increases,
the error in the reduced-order models’ responses decreases monotonically and the performance of the
temporal-complexity-reduction method improves, plateauing at  ⇡ 1.7. This can be explained as fol-
lows: when the trial-subspace dimension increases, the ROMs become more accurate, so they generate
responses closer to that of the full-order model. Because the time-evolution bases are generated from
full-order-model training simulations, a more accurate ROM implies a more accurate forecast. In turn,
an accurate forecast leads to a greater reduction in temporal complexity.
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Figure 11: Unforced dynamics, varying structure. E↵ect of trial-basis dimension N̂ on error and temporal-complexity-
reduction method performance.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-
order models in the case of implicit time integration. The method exploits knowledge of the dynamical
system’s temporal behavior in the form of ‘time-evolution bases’; one such basis is generated for each
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generalized coordinate of the time integrator’s unknown during the (o✏ine) training stage. During the
(online) deployed stage, these time-evolution bases are used—along with the solution at recent time
steps—to forecast the unknown at future time steps via Gappy POD. If this forecast is accurate, the
Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the
performance of nonlinear reduced-order models, even in the presence of high-frequency content in
the dynamics. The experiments also demonstrated the e↵ect of input parameters and trial-subspace
dimension on the method’s performance, and provided a parameter study to analyze the e↵ect of the
method’s parameters.

Future work includes devising a way to directly handle frequency and phase shifts in the response,
as well as time-shifted temporal behavior.
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Appendix A. Implicit time-integration schemes: first-order ODEs

For notational simplicity, consider a system without parametric inputs q, and define f̄(x, t) ⌘
f (x; t, p (t)) such that

ẋ = f̄ (x, t) . (A.1)

Further, denote by h the time-step size at time step n.

Appendix A.1. Implicit linear multi-step schemes

A linear k-step method applied to first-order ODEs can be expressed as

kX

j=0

↵

j

x

n�j = h

kX

j=0

�

j

f̄

�
x

n�j

, t

n�j

�
, (A.2)

where ↵0 6= 0 and
kP

j=0

↵

j

= 0 is necessary for consistency. These methods are implicit if �0 6= 0. In

this case, the form of the residual is

R

n (wn) = ↵0w
n � h�0f̄(wn

, t

n) +
kX

j=1

↵

j

x

n�j � h

kX

j=1

�

j

f̄

�
x

n�j

, t

n�j

�
(A.3)

and the explicit state update is simply
x

n = w

n

. (A.4)

Therefore, the unknown is the state at time t

n.
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Appendix A.2. Implicit Runge–Kutta schemes

For an s-stage Runge–Kutta scheme, the form of the residual is

R

n

i

�
w

n,1
, . . . , w

n,s

�
= w

n,i � f̄(xn�1 + h

sX

j=1

a

ij

w

n,i

, t

n�1 + c

i

h), i = 1, . . . , s (A.5)

with the following explicit computation of the state:

x

n = x

n�1 + h

sX

i=1

b

i

w

n,i

. (A.6)

The unknowns correspond to the velocity ẋ at times t

n�1 + c

i

h, i = 1, . . . , s.

Appendix B. Implicit time-integration schemes: second-order ODEs

For notational simplicity, consider a second-order di↵erential equations without parametric inputs
q and define ḡ (x, ẋ, t) ⌘ g (x, ẋ; t, p(t)) such that

ẍ = ḡ (x, ẋ, t) . (B.1)

Appendix B.1. Implicit Nyström method

Nyström methods are partitioned Runge–Kutta schemes applied to second-order ODEs. They lead
to the following representation for the residuals:

R
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(B.2)
The state and velocity are updated explicitly as

x

n = x

n�1 + hẋ

n�1 + h

2
sX
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i

w

n,i (B.3)

ẋ

n = ẋ

n�1 + h

sX

i=1

b̂

i

w

n,i

. (B.4)

The unknowns correspond to the acceleration ẍ at times t

n�1 + c

i

h, i = 1, . . . , s.

Appendix B.2. Implicit Newmark method

The implicit Newmark method leads to the following residuals:

R

n(wn) = w

n � ḡ

✓
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(B.5)

The state and velocity are explicitly updated as

x

n = x

n�1 + hẋ

n�1 +
h

2

2
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(1� 2�) ẍ

n�1 + 2�w
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ẋ

n = ẋ

n�1 + h

⇥
(1� �) ẍ

n�1 + �w

n

⇤
. (B.7)

Here, the unknown corresponds to the acceleration ẍ at time t

n.
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Appendix C. Proper orthogonal decomposition

Algorithm 2 describes the method for computing a proper-orthogonal-decomposition (POD) basis
given a set of snapshots. The method essentially amounts to computing the singular value decompo-
sition of the snapshot matrix. The left singular vectors define the POD basis.

Algorithm 2 Proper-orthogonal-decomposition basis computation (normalized snapshots)

Input: Set of snapshots X ⌘ {w
i

}nw
i=1 ⇢ RN , energy criterion ⌫ 2 [0, 1]

Output: �e (X , ⌫)
1: Compute thin singular value decomposition W = U⌃V

T , where W ⌘ [w1/kw1k · · · w

nw/kw
nwk].

2: Choose dimension of truncated basis N̂ = n

e

(⌫), where

n

e

(⌫) ⌘ arg min
i2V(⌫)

i (C.1)

V(⌫) ⌘ {n 2 {1, . . . , n

w

} |
nX

i=1

�

2
i

/

nwX

i=1

� ⌫}, (C.2)

and ⌃ ⌘ diag (�
i

).
3: �e (X , ⌫) =

⇥
u1 · · · u

N̂

⇤
, where U ⌘ [u1 · · · u

nw ].
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