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A new approach for stabilizing unstable reduced order models (ROMs) for linear time-
invariant (LTI) systems through an a posteriori post-processing step applied to the algebraic
ROM system is developed. The key idea is to modify the unstable eigenvalues of the ROM
system by moving these eigenvalues into the stable half of the complex plane. It is demon-
strated that this modification to the ROM system eigenvalues can be accomplished using
full state feedback (a.k.a. pole placement) algorithms from control theory. This approach
ensures that the modified ROM is stable provided the system’s unstable poles are control-
lable and observable; however, the accuracy of the stabilized ROM is not guaranteed. To
remedy this difficulty and guarantee an accurate stabilized ROM, a constrained nonlinear
least-squares optimization problem for the stabilized ROM eigenvalues in which the error
in the ROM output is minimized is formulated. This optimization problem is small and
therefore computationally inexpensive to solve. Performance of the proposed algorithms
is evaluated on two test cases for which ROMs constructed via the proper orthogonal
decomposition (POD)/Galerkin method suffer from instabilities.

Published by Elsevier B.V.
1. Introduction

As computing power has increased, so has the complexity of multi-physics models. Simultaneously, there has been a
continuing push to incorporate uncertainty quantification (UQ) into high-fidelity simulations. Unfortunately, integrating
UQ techniques into high-fidelity simulation codes can present an intractable computational burden due to the high-dimen-
sional systems that arise, as well as the need to run these simulations many times in order to explore a space of design
parameters or uncertain inputs.

Reduced order modeling is a promising tool that can enable not only UQ, but also on-the-spot decision-making, optimi-
zation and/or control. A reduced order model (ROM) is a surrogate model constructed from a full order (high-fidelity) model
(FOM) that retains the essential physics and dynamics of the FOM, but has a much lower computational cost. Numerous ap-
proaches to construct ROMs exist, from simply running a numerical simulation on a coarser mesh, to surrogates obtained
from data-fitting (e.g., Kriging interpolation). More commonly, however, the term ‘‘reduced order model’’ refers to a
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projection-based reduced order model, the subject of the present work. The basic idea of projection-based reduced order
modeling is to project the state of a large dimensional space onto a small dimensional subspace that contains the essential
dynamics of the system. Examples of projection-based model reduction approaches include proper orthogonal decomposi-
tion (POD) [13,14,9], balanced proper orthogonal decomposition (BPOD) [19,11], balanced truncation [16,5], the reduced ba-
sis method [15,32], and Krylov-based techniques [31].

In order for a ROM to serve as a viable mathematical model of a physical system of interest, it is important that it pre-
serves certain crucial properties of the original system. Particularly important is that the ROM maintains numerical stability
of its underlying physical system, as stability is a prerequisite for the ROM’s accuracy and convergence. Some projection-
based model reduction techniques give rise to ROMs with an a priori stability guarantee. One example of such a method
is balanced truncation [16,5]. Unfortunately, the computational cost of this method, which requires the computation and
simultaneous diagonalization of infinite controllability and observability Gramians, makes balanced truncation computa-
tionally intractable for systems of very large dimensions (i.e., systems with more than 10,000 degrees of freedom (dofs)
[12]). Among the most popular model reduction techniques that are computationally tractable for very large systems are
the POD method [13,14,9] and the BPOD method [19,11]. In general, these methods lack an a priori stability guarantee. In
[18], Amsallem et al. suggest that POD and BPOD ROMs constructed for linear time-invariant (LTI) systems in descriptor form
tend to possess better numerical stability properties than POD ROMs constructed for LTI systems in non-descriptor form.
Although heuristics such as these exist, it is in general unknown a priori if a ROM constructed using POD or BPOD will pre-
serve the stability properties of the high-fidelity system from which the model was constructed. Hence, a ROM might be
stable for a given number of modes, but unstable for other choices of basis size; see [10,3,4] for examples of this for POD
models of compressible flow.

A literature search reveals that approaches for developing stability-preserving projection-based ROMs based on POD and
BPOD fall into roughly three categories, overviewed briefly below.

The first category of methods derives (a priori) a stability-preserving model reduction framework, often specific to a par-
ticular equation set. In [12], Rowley et al. show that Galerkin projection preserves the stability of an equilibrium point at the
origin if the ROM is constructed in an ‘‘energy-based’’ inner product. In [3,4], Barone et al. demonstrate that a symmetry
transformation leads to a stable formulation for a Galerkin ROM for the linearized compressible Euler equations [3,4] and
non-linear compressible Navier–Stokes equations [17] with solid wall and far-field boundary conditions. In [1], Serre et al.
propose applying the stabilizing projection developed by Barone et al. in [3,4] to a skew-symmetric system constructed by
augmenting a given linear system with its adjoint system. This approach yields a ROM that is stable at finite time even if
the solution energy of the full-order model is growing. In [35,40], Sirisup et al. develop a method for correcting long-term
unstable behavior for POD models using a spectral viscosity (SV) diffusion convolution operator. The advantage of approaches
such as these is they are physics-based, and guarantee a priori a stable ROM; the downside is that they can be difficult to
implement, as access to the high-fidelity code and/or the governing partial differential equations (PDEs) is often required.

A second category of methods is aimed to remedy the so-called ‘‘mode truncation instability’’. These methods
[36–38,23,41], motivated by the observation that higher order modes can give rise to nonphysical instabilities in the
ROM system, are often physics-based and minimally intrusive to the ROM. In [23], a ROM stabilization methodology that
achieves improved accuracy and stability through the use of a new set of basis functions representing the small, energy-
dissipation scales of turbulent flows is derived by Balajewicz et al. The stabilization of ROMs using shift modes and residual
modes was proposed in [37,38] by Noack et al. and Bergmann et al. respectively. Other authors, e.g., Terragni et al. [41], have
demonstrated that the stability and performance of a ROM can be improved by adapting the POD manifold to the local
dynamics.

The third category of approaches are those which stabilize an unstable ROM through a post-processing (a posteriori) sta-
bilization step applied to an unstable algebraic ROM system. Ideally, the stabilization only minimally alters the ROM physics,
so that the ROM’s accuracy is not sacrificed. In [2], Amsallem et al. propose a method for stabilizing projection-based linear
ROMs through the solution of a small-scale convex optimization problem. In [22], a set of linear constraints for the left-
projection matrix, given the right-projection matrix, are derived by Bond et al. to yield a projection framework that is
guaranteed to generate a stable ROM. In [20], Zhu et al. derive some large eddy simulation (LES) closure models for POD
ROMs for the incompressible Navier–Stokes equations, and demonstrate numerically that the inclusion of these LES terms
yields a ROM with increased numerical stability. In [39], Couplet et al. propose methods for correcting the behavior of a
low-order POD-Galerkin system through a coefficient calibration/minimization. A nice feature of these and similar
approaches is that they are easy to implement: often the stabilization step can be applied in a ‘‘black-box’’ fashion to an
algebraic ROM system that has already been constructed. However, the approaches can give rise to inconsistencies between
the ROM and FOM physics, thereby limiting the accuracy of the ROM.

The present work proposes and develops a new ROM stabilization method for LTI systems that falls into the second cat-
egory of methods described above. This approach can be used to stabilize ROMs constructed using any choice of reduced
basis (e.g., POD [8], balanced truncation [16,5], proper generalized decomposition [42], among others). The key idea, moti-
vated by the concept of full state feedback (a.k.a. pole placement) in control theory, is to change the unstable eigenvalues of a
system matrix by pushing them into the stable half of the complex plane. The eigenvalues of a ROM system matrix can be
modified by applying directly full state feedback (a.k.a. pole placement) algorithms from control theory [6,7,25], that is, by
adding to the ROM system a linear feedback control term, and solving for the feedback matrix such that the stabilized ROM
system has a desired set of eigenvalues. However, this approach can change the ROM physics, thereby making the ROM
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inaccurate. To alleviate this difficulty, an alternative algorithm is developed in which a constrained nonlinear least-squares
optimization problem that minimizes the error in the ROM output (thereby maximizing the accuracy of the ROM) is formu-
lated. The said optimization problem is small, with at most as many dofs as the number of dofs in the ROM, and therefore
computationally inexpensive to solve.

The remainder of this paper is organized as follows. Galerkin projection-based model reduction for LTI systems is re-
viewed in Section 2. Section 3 presents the two ROM stabilization algorithms described above. The first employs full state
feedback (a.k.a. pole placement) algorithms from control theory to change an unstable ROM’s unstable eigenvalues (Sec-
tion 3.1); the second solves a constrained nonlinear least-squares optimization problem for the ROM eigenvalues in which
the ROM output error is minimized, and changes the eigenvalues directly in the ROM system using the eigenvalue decom-
position (Section 3.2). The performance of these eigenvalue reassignment algorithms is evaluated on two benchmarks in Sec-
tion 4: the international space station (ISS) problem (Section 4.1) and a involving a model of an electrostatically actuated
beam (Section 4.2). For both test cases, the ROMs are constructed via the POD/Galerkin method and suffer from instabilities.
The numerical results reveal the superiority of the second stabilization algorithm over the first, and demonstrate that the
second stabilization algorithm delivers a stable and accurate ROM. Conclusions are offered in Section 5.

2. Projection-based model reduction for LTI systems

In this section, projection-based model reduction applied to LTI systems is reviewed briefly. A system is called
time-invariant if the output response for a given input does not depend on when that input is applied [6,7]. In constructing
a projection-based reduced order model, the basic idea is to project the state space of a large dimension onto a small dimen-
sional subspace that contains the essential dynamics of the system. Consider an LTI FOM:
_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ;

ð1Þ
where ‘‘�’’ indicates differentiation with respect to time, i.e., _x � @x
@t ; xðtÞ 2 RN is the full order state vector; uðtÞ 2 RP is the

vector of control variables; yðtÞ 2 RQ is the output. The matrices A 2 RN�N;B 2 RN�P and C 2 RQ�N are constant matrices
(in particular, they are not a function of time t). A system of the form (1) would arise, for instance, by discretizing a linear
set of PDEs in space using a discretization scheme, e.g., the finite element method.

The general approach to Galerkin projection-based model reduction consists of two steps:

Step 1: Calculation of a reduced basis of order M, with M � N.
Step 2: Projection of the governing system (1) onto the reduced basis in some inner product.

In the present work, it will be assumed the projection is done at the level of the discrete Eqs. (1) and in the L2 inner
product, defined by
u;vð Þ � uTv; ð2Þ
for u;v 2 RN . To simplify the presentation, it will also be assumed that the ROM is constructed using a Galerkin projection,
where the solution is approximated by and projected onto the same reduced basis. It is emphasized that the approaches
developed in this work are not restricted to ROMs constructed using Galerkin projection; a more general Petrov–Galerkin
projection can be employed.

Let UM 2 RN�M denote a reduced basis for (1), respectively. Assume this matrix has full column rank, and is orthonormal
in the inner product (2), so that UT

MUM ¼ IM , where IM denotes the M �M identity matrix. First, the solution to the FOM
system (1) is approximated as:
xNðtÞ � UMxMðtÞ; ð3Þ
where xMðtÞ denotes the ROM solution (to be determined in solving the ROM). Substituting (3) into (1) and projecting the
resulting system onto the reduced basis UM , the following is obtained:
_xMðtÞ ¼ AMxMðtÞ þ BMuðtÞ
yMðtÞ ¼ CMxMðtÞ;

ð4Þ
where yMðtÞ is a reduced approximation of the output, and
AM ¼ UT
MAUM 2 RM�M; BM ¼ UT

MB 2 RM�P; CM ¼ CUM 2 RQ�M: ð5Þ
The dynamical system (4) is the ROM LTI system. It is small (M �M with M � N), and describes accurately the dynamics
of the full order system (1) for some set of conditions. The ROM solution xMðtÞ is obtained by advancing (4) forward in time
using a time-integration scheme. Since the FOM considered here is linear, the projection terms in (5) are not time-
dependent. Hence, these terms can be pre-computed and stored in the offline stage of the model reduction – in particular,
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they need not be re-computed at each time step of the online time-integration stage of the ROM. The reduced basis UM can
be calculated using a number of approaches, e.g., POD [13,14,9], BPOD [19,11], balanced truncation [16,5], goal-oriented
methods [10], or the reduced basis method [15,32].

3. ROM stabilization via eigenvalue reassignment

One problem that can arise in projection-based model reduction and addressed herein is ROM instability. In the present
work, the term ‘‘stability’’ refers to Lyapunov stability, defined below.

Definition 3.1. (Lyapunov-Stability [33]): An LTI system (1) is stable in the sense of Lyapunov if and only if all the
eigenvalues of A have real parts less than or equal to zero, and those with real parts equal to zero are non-repeated.

For popular model reduction techniques such as POD and BPOD, a ROM is not guaranteed to preserve the stability prop-
erties of the FOM from which it was constructed. This is because orthogonal and bi-orthogonal projections do not in general
preserve stability. Hence, for some number of modes M, the ROM system matrix AM may be unstable even though the FOM
system matrix A is stable. This issue is particularly problematic for strongly stiff systems, and can arise in computational
fluid dynamics applications (e.g., high Reynolds number 3D turbulent flow problems, compressible flow problems
[10,3,4]), as well as computational structural dynamics applications (e.g., the second order Lagrangian systems considered
in this paper).

In the following subsections, two algorithms are proposed for stabilizing (4) by modifying the unstable eigenvalues of AM

through a ‘‘black-box’’ post-processing step applied to the given (unstable) ROM system, meaning they can be used to sta-
bilize ROMs from any application area. It will be assumed from this point onward that the matrix A defining the FOM system
(1) is stable. Algorithm 2 is the primary contribution of this paper. Algorithm 1 is provided, as it served as a strategic foun-
dation for the final development (Algorithm 2). It is given here not only for the sake of completeness, but also because it is
shown in Section 3.3 that Algorithm 2 can be seen as a variant of Algorithm 1.

3.1. Algorithm 1: ROM stabilization via full state feedback (a.k.a. pole placement)

The first ROM stabilization algorithm is motivated by the observation that (4) is an LTI system, and, as such, can be sta-
bilized using full state feedback, or pole placement, methods from control theory [6,7,25]. The general approach of stabilizing
an LTI system using full state feedback is reviewed below.

Consider the open loop ROM LTI system (4), where it is assumed uðtÞ is given, so that BMuðtÞ represents, for instance, a
given source for the equations. The objective of full state feedback (pole placement) is to redesign the dynamics of the system
(4) through feedback of the state. If AM is unstable, it is desired to redesign the system such that it is stable. Towards this end,
the open-loop system (4) is transformed into a closed-loop system, and a feedback controller that positions the closed loop
eigenvalues of the system is developed. The first step is to select a control matrix BC 2 RM�J for some integer J, and modify the
system (4) by adding to it the control BCuCðtÞ:
_xMðtÞ ¼ AMxMðtÞ þ BMuðtÞ þ BCuCðtÞ
yMðtÞ ¼ CMxMðtÞ:

ð6Þ
Here, uCðtÞ 2 RJ is a control that will be designed to modify the dynamics of the original system (4) such that it is stable.
For an LTI system representing some physical dynamics, BC is typically selected to represent a physical control that can be
imposed on the system, e.g., actuation applied to a boundary of a fluid domain. Next, a linear control law of the form
uCðtÞ ¼ �KCxMðtÞ is assumed, where KC 2 RJ�M is the control matrix, to be determined. Substituting this law into (6) and
rearranging, the following is obtained:
_xMðtÞ ¼ ðAM � BCKCÞxMðtÞ þ BMuðtÞ
yMðtÞ ¼ CMxMðtÞ:

ð7Þ
The system (7) is a system of the form (4) but with AM replaced by ~AM , where
~AM � AM � BCKC : ð8Þ
The reader can observe that if it is possible to compute the control matrix KC such that ~AM is stable, the ROM system (6)
will be stable.

In order to formulate a well-posed ROM stabilization algorithm based on the approach outlined above, a number of
questions need to be addressed:

1. How should the control matrix BC be selected? Typically, when applying pole placement algorithms, a physical system is
stabilized using a physical controller. In this case, the controller matrix BC is added at the level of the algebraic system (6).
In this context, what does BC mean? What should it mean?
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2. What eigenvalues should the stabilized ROM matrix ~AM (8) be prescribed to have? It is clear that the eigenvalues should
lie in the stable half of the complex plane, but what physical values should they have?

3. Does the solution KC to the pole placement problem exist?
4. How has the stabilization affected the accuracy of the ROM? By modifying the ROM system (4), inconsistencies between

the FOM and ROM physics have been introduced.

In this subsection, only question 3, the existence question, will be addressed. Answering this question gives rise to a
preliminary ROM stabilization algorithm, referred to as ‘‘Algorithm 1’’. The remaining questions are addressed through
the formulation of ‘‘Algorithm 2’’, described in Section 3.2.

Before formulating an algorithm which guarantees the existence of the solution to the pole placement problem described
above, it is useful to recall the following theorem.

Theorem 3.1.1. (quoted from [6]): If the pair ðAM;BCÞ is controllable,1there exists a feedback uCðtÞ ¼ �KCxM such that the
eigenvalues of ~AM (8) can be arbitrarily assigned.

In general, the pair ðAM;BCÞ may not be controllable. However, it is possible to apply Theorem 3.1.1 by working in the
controllable and observable2 subspaces of AM and BC , which can be isolated through the Kalman decomposition. A detailed dis-
cussion of the Kalman decomposition can be found in classical control theory texts, e.g., [6,7]. The key result of the Kalman the-
orem is that the state space can be decomposed into four parts: a part that is reachable and observable, a part that is reachable
but not observable, a part that is not reachable but observable and a part that is neither reachable nor observable. The procedure
is summarized in Algorithm 1.

Algorithm 1

� Pick a control matrix BC , e.g., BC ¼ 1M .
� Given BC , use the Kalman decomposition to isolate the controllable and observable parts of AM and BC , call them

Aco
M ¼ UAMUT and Bco

C ¼ UBC respectively.
� Compute the eigenvalues kco

1 ; . . . ; kco
Mco of Aco

M .
� Reassign the unstable eigenvalues of Aco

M to make them stable, e.g., for k ¼ 1 to Mco, set
1 An LTI
xð0Þ ¼ x0

W

The LTI sy
2 An LTI
½0; T	 [6,7]

W

The LTI sy
kk ¼minfReðkco
k Þ;�Reðkco

k Þg þ i � Imðkco
k Þ; ð11Þ
where ReðzÞ and ImðzÞ denote respectively the real and imaginary parts of a complex number z 2 C, and i �
ffiffiffiffiffiffiffi
�1
p

.
� Compute KC such that Aco

M � KCBco
C has these eigenvalues using full state feedback (a.k.a pole placement) algorithms

from control theory.
� Set AM ¼ UTðAco

M � KCBco
C ÞU.

Typically in full state feedback, the matrix BC represents a physical control that would be applied to a physical system of
the form (4) so as to stabilize this system. The situation of interest here is not entirely comparable, as it has been assumed
that the physical system underlying (4) is stable (and hence does not need stabilization via full state feedback); it is the alge-
braic ROM system (4) that is unstable, and hence the matrix BC is added to the system at the algebraic level. This scenario
complicates the interpretation of (and therefore the choice of) BC . In general, it can be argued that the choice of BC does not
matter provided the unstable eigenvalues of AM are controllable and observable given the choice of BC . In the numerical
example studied below (Section 4.1), BC is selected to be a vector of all ones.

It remains to provide some discussion of approaches for selecting the eigenvalues of the stabilized matrix ~AM . One possible
choice is to replace the real parts of the unstable eigenvalues of AM with their negatives (11), or some negative scaled multiple
of these values. Another option is to try to match the eigenvalues of the stabilized ROM matrix ~AM with the eigenvalues of the
FOM matrix A (provided the computational resources to compute the FOM eigenvalues are available, which may not be the
case for very large systems). In general, the eigenvalues of a stable ROM will lie on or near the manifold of the eigenvalues of
the FOM from which the ROM was constructed. This is illustrated in Fig. 1, which shows the eigenvalue manifold of the FOM
matrix A and a ROM matrix AM for an M ¼ 20 mode ROM constructed via balanced truncation [16,5] for a variant of the inter-
system (1) is controllable (a.k.a. reachable) if for any x0;xf 2 RN , there exists a T > 0 and u : ½0; T	 ! R such that the corresponding solution satisfies
and xðTÞ ¼ xf [6,7]. To test for controllability of a linear system, it is sufficient to check the rank of the controllability matrix

c � B; AB; . . . ; AN�1B
� �

: ð9Þ

stem (1) is controllable if and only if the controllability matrix (9) is invertible [7,6].
system (1) is observable if for any T > 0 it is possible to determine the state of the system xðTÞ through measurements of yðtÞ and uðtÞ on the interval

. To test for observability of a linear system, it is sufficient to check the rank of the observability matrix

T
o � C; CA; . . . ; CAN�1

� �
: ð10Þ

stem (1) is observable if and only if the observability matrix (10) is full rank [6,7].
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Fig. 1. Eigenvalue manifold of FOM matrix A and ROM matrix AM for an M ¼ 20 mode ROM constructed via balanced truncation for a variant of the ISS
benchmark (Section 4.1).
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national space station (ISS) benchmark (Section 4.1). In fact, if M ¼ N in a ROM, that is, a ROM is constructed with a full basis of
the space RN;AM 
 A (as can be seen from (5)), so that AM will have the same eigenvalues as A.

3.2. Algorithm 2: ROM stabilization through solution of constrained nonlinear least squares optimization problem

The primary downside of Algorithm 1 (Section 3.1) is it is unclear a priori how a particular choice of the control matrix BC

and stabilized eigenvalues will affect the accuracy of the resulting stabilized ROM. This problem is remedied in the present
section through the development of a new algorithm, ‘‘Algorithm 2’’. In this algorithm, the eigenvalues of the stabilized
matrix ~AM are determined such that the ROM output solution deviates minimally from the FOM output solution. Hence,
questions 2 and 4 in Section 3.1 are addressed explicitly. As will be clear shortly, Algorithm 2 does not require the selection
of a control matrix BC (question 1).

Consider the ROM LTI system (4). Note that it is possible to work out analytically in closed form the exact solution to this
system. The reader may verify that the solution to this system is given by
xMðtÞ ¼ expðtAMÞxMð0Þ þ
Z t

0
expfðt � sÞAMgBMuðsÞds: ð12Þ
In Eq. (12), expð�Þ denotes the matrix exponential. It is worthwhile to note that this quantity is not an issue to compute, as
the ROM system matrix AM is small. Given the solution for the ROM state vector (12), the ROM output is given by
yMðtÞ ¼ CM expðtAMÞxMð0Þ þ
Z t

0
expfðt � sÞAMgBMuðsÞds

� �
: ð13Þ
The existence of an analytical solution to the ROM LTI system (4) motivates the formulation of the following optimization
problem, to be solved for the eigenvalues of the stabilized ROM system:
min
ku

i

XK

k¼1

jjyk � yk
Mjj

2
2:

s:t: Reðku
i Þ < 0; i ¼ 1; . . . ; L

ð14Þ
The optimization is over the unstable eigenvalues of the original ROM system matrix AM , denoted by ku
i , for i ¼ 1; ::; L

where L 6 M is the number of unstable eigenvalues of AM . The shorthand yk denotes the FOM output at time tk, i.e.,
yk � yðtkÞ. In a model reduction approach based on an empirical basis computed from a set of snapshots of the high-fidelity
solution, e.g., the POD or BPOD method, these values are available at the snapshot times. The shorthand yk

M denotes the ROM
output at time tk, i.e., yK

M � yMðtkÞ. It is given by the formula (13). The constraint in (14) ensures that the stabilized ROM
eigenvalues are in the stable half of the complex plane Here ReðzÞ denotes the real part of a complex number z 2 C. Eq.
(14) is a constrained nonlinear least-squares optimization problem with inequality constraints.

Remark that the optimization problem (14) is small: there are at most M dofs, and solving the problem does not require
operating on any matrices that are of size OðNÞ. This optimization problem can be solved using standard algorithms for con-
strained optimization, e.g., an SQP algorithm with line search globalization, BFGS for Hessian approximations, and an interior
point method to handle the inequality constraints [30].

An interesting question that arises is whether the solution to the optimization problem (14) is unique. A sufficient con-
dition for a minimization problem of the form
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min
x

f ðxÞ; ð15Þ
where x 2 Rn is a real vector and f : Rn ! R is a smooth function, to have a unique solution is for f to be convex [30]. In this
case, any stationary point of f is a global minimizer of f, and hence a local minimizer of f will be the global minimizer of f. It is
straightforward to show that the objective function in (14) is not necessarily convex. Since convexity is a sufficient but not a
necessary condition for uniqueness of the solution to (14), the optimization problem could have a unique solution, but this
scenario is not guaranteed. The numerical tests performed in Section 4 suggest that the optimization problem (14) has in
general multiple solutions.

It turns out that it is convenient to implement and solve the optimization problem (14) in the ‘‘characteristic variables’’,
defined by zMðtÞ ¼ S�1

M xMðtÞ, where S�1
M is the matrix that diagonalizes AM , i.e., AM ¼ SMDMS�1

M . The steps of the stabilization
are detailed in Algorithm 2. Note that, although it is assumed here AM is diagonalizable, the extension to non-diagonalizable
AM is straightforward. In this case, the eigenvalue decomposition in Algorithm 2 (16) is replaced with the Jordan
decomposition.

Algorithm 2

� Diagonalize the ROM matrix AM:
AM ¼ SMDMS�1
M : ð16Þ
� Initialize a diagonal M �M matrix ~DM .
� Set j ¼ 1.
� for i ¼ 1 to M

if ReðDMði; iÞÞ < 0
Set eDMði; iÞ ¼ DMði; iÞ.

else
Set eDMði; iÞ ¼ ku

j .
endif

endfor
� Increment j jþ 1.
� Solve the optimization problem (14) for the eigenvalues fku

j g with yMðtÞ given by
yMðtÞ ¼ CM SM expðt ~DMÞS�1
M xMð0Þ þ

Z t

0
SM expfðt � sÞ~DMgS�1

M BMuðsÞds
� �

; ð17Þ
using an optimization algorithm.
� Evaluate ~DM at the solution of the optimization problem (14).
� The stabilized LTI ROM system is now given by
_xMðtÞ ¼ ~AMxMðtÞ þ BMuðtÞ
yMðtÞ ¼ CMxMðtÞ;

ð18Þ
where ~AM ¼ SM
~DMS�1

M .

3.3. Connection between Algorithm 1 and Algorithm 2

One notable difference between Algorithms 1 and 2 is that, unlike the former algorithm, the latter algorithm does not
employ directly full state feedback (a.k.a. pole placement) routines from control theory to solve for the stabilized ROM ma-
trix ~AM . However, it turns out that it is possible to show that Algorithm 2 is equivalent to Algorithm 1 for a specific choice of
control matrices BC and KC .

Suppose AM has L 6 M unstable eigenvalues ku
k , each with corresponding eigenvector su

k . Let ~ku
k denote the stabilized value

of ku
k , obtained by solving the optimization problem (14). The reader can verify that ~AM in (18) is equivalent to
~AM ¼ AM � BCKC ; ð19Þ
where
BC ¼ su
1; . . . ; su

Lð Þ 2 RM�L ð20Þ

KC ¼

ku
1 � ~ku

1 0 0 � � � 0

0 ku
2 � ~ku

2 0 � � � 0

..

. ..
. . .

. ..
. ..

.

0 0 0 ku
L � ~ku

L 0

0BBBBB@

1CCCCCAS�1
M 2 RL�M : ð21Þ
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4. Numerical experiments

The performance of the ROM stabilization algorithms described in Section 3 is now assessed on two benchmarks: the
international space station (ISS) benchmark (Section 4.1 benchmark involving a one-dimensional model of an electrostati-
cally actuated beam (Section 4.2). Although the applications considered in this section come from the field of structural
mechanics, the ROM stabilization algorithms developed in this work can potentially be used to build stable ROMs for any
application. For both test cases, the reduced basis UM is constructed using the POD, and the projection step is a Galerkin
projection in the L2 inner product. Discussed in detail in Lumley [8] and Holmes et al. [9], POD is a mathematical procedure
in which, given an ensemble of data and an inner product, an empirical basis is constructed. This basis, the POD basis, is opti-
mal in the sense that it describes more energy (on average) of the ensemble in the chosen inner product than any other linear
basis of the same dimension M. For a discussion of the details of the POD algorithm, the reader is referred to [8,9].

Typically, the size of a reduced POD basis, namely M, is calculated using an energy criterion. That is, M is selected such
that the reduced basis UM captures some fixed percentage of the snapshot energy, e.g., 95% or 99% (see [8,9]). For the
problems considered here, M is chosen to be the smallest integer such that: (1) the basis UM captures at least 99% of the
snapshot energy, (2) the resulting POD/Galerkin ROM has at least one unstable eigenvalue, and (3) the POD/Galerkin
ROM goes unstable during the time horizon considered. This strategy of choosing M is a natural one given the objective
of this paper: to evaluate the ROM stabilization algorithms developed in Section 3.

For both test cases considered, the error in the ROM output relative to the FOM output is calculated and reported. This
error is denoted Erel and computed according to the following formula:
Erel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1jjyk � yk

Mjj
2
2PK

k¼1jjykjj22

s
: ð22Þ
Here, yk � yðtkÞ denotes the snapshot FOM output at time tk, and yk
M � yMðtkÞ denotes the ROM output at time tk.

For the ISS example (Section 4.1) the performance of Algorithm 1 and the performance of Algorithm 2 are evaluated. This
comparison is intended to highlight the superiority of Algorithm 2 over Algorithm 1. For the sake of brevity, results for only
Algorithm 2 (established in the context of the ISS example as the superior algorithm) are shown for the electrostatically
actuated beam example (Section 4.2).

The place function in the MATLAB control toolbox [34] is used to solve the pole placement problem at the heart of Algo-
rithm 1. To solve the constrained nonlinear least squares optimization at the heart of Algorithm 2 (14), the fmincon function
in the MATLAB optimization toolbox [29,30] is employed. The Algorithm option required by this function is set to
interior-point with exact (analytic) Jacobians. An analytic expression for the Jacobian of the objective function for the
specific case of uðtÞ ¼ 0 and one output of interest in (14) can be found in Section A.1 of the Appendix. Deriving and imple-
menting an analytic Jacobian is recommended over using finite difference Jacobians calculated within the MATLAB optimi-
zation toolbox. Since analytic Jacobians are exact, they are accurate. In contrast, finite difference Jacobians can be inaccurate
for some problems as a result of an arbitrary selection of the finite difference increment. Moreover, the solution of the opti-
mization problem (14) is much faster with exact Jacobian due to fewer required function evaluations. With exact Jacobians,
the number of function evaluations per optimization step is constant. In particular, it does not grow with L, the number of
eigenvalues reassigned by the optimization algorithm. The default fmincon settings for this method are used, which can be
found in [29].

Note that the fmincon function will compute only real solutions to an optimization problem. In general the eigenvalues
of the matrix AM may be complex, however. To allow the fmincon algorithm to compute complex eigenvalue solutions of
the ROM stabilization optimization problem (14), a complex-valued functional form for ku

j may be assumed. In this approach,
ku

j in line 9 of Algorithm 2 is replaced with
ku
j  kur

j þ i � kuc
j 2 C; kur

j ; k
uc
j 2 R; ð23Þ
(where i �
ffiffiffiffiffiffiffi
�1
p

) and (14) is solved for kur
j ; k

uc
j 2 R subject to the constraint that kur

j < 0. Since complex eigenvalues of AM oc-
cur in complex-conjugate pairs, if ku

j has the form (23), then kjþ1 in Algorithm 2 must have the form
ku
jþ1 ¼ kur

jþ1 � i � kuc
jþ1 2 C; kur

jþ1; k
uc
jþ1 2 R: ð24Þ
It follows that the approach of assuming complex-conjugate pair solutions to (14) does not give rise to more dofs than the
default approach of solving for real solutions to this problem. In fact, the former approach has fewer constraints.

The numerical results section includes comparisons of the following CPU times for both problems considered:

� The CPU time required for the time-integration of the FOM.
� The CPU time required for the offline (snapshot collection, loading of system matrices/snaptions, calculation of the

POD basis, Galerkin projection, and numerical solution of the optimization problem (14)) stage of the POD/Galerkin
ROMs.

� The CPU time required for the online (time-integration) stage of the POD/Galerkin ROMs.

All computations are performed in serial using MATLAB’s linear algebra capabilities on a Linux workstation with 6 Intel
Xeon 2.93 GHz CPUs. Note that the FOM CPU times do not include the time to discretize the relevant PDEs using the finite
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element method and assemble the global system matrix. This is due to the fact that the matrices defining the FOM were
downloaded from a model reduction benchmark repository, and access to the high-fidelity code that generated these matri-
ces is not available to the authors.

In general, ROMs are employed for many-query and/or real-time analysis. In these contexts, it is critical that the online
time-integration stage of the ROM has a low computational cost and fast run-time. Although the offline construction of the
reduced order model, which includes the collection of snapshots, the construction of the POD basis, the Galerkin projection,
and the solution of the optimization problem (14), can be computationally intensive, this step is done only one time when
the ROM is constructed. The cost of this computation does not affect the run-time of the online step of the model reduction,
the step relevant to analysis using the ROM. Nonetheless, it may be of interest how many times the ROM would need to be
run (online) to compensate the cost of the (offline) pre-processing step. For this reason, estimates of the number of online
ROM runs that would be required to offset the offline ROM cost are given for each example considered following the CPU
time data (Tables 5 and 9).

4.1. International space station problem

The first numerical example considered here involves a structural model of the Russian service module component of
the international space station (ISS) [21]. This service module is a large flexible structure whose dynamics can be described
using a linearized form of the equations of motion (a second order PDE system). Written in first order LTI form, the model
consists of a system of the form (1) with N ¼ 270. The matrices A, B and C defining (1) are downloaded from the ROM
benchmark repository [24]. The matrix A is sparse, as it comes from a finite element discretization. A single output is con-
sidered, corresponding to the first row of the matrix C. Since this problem is unforced uðtÞ ¼ 0, the solution behavior as
t !1 depends only on the real parts of the eigenvalues of the system matrix A. It is verified that the FOM system is stable:
the maximum real part of the eigenvalues of A is �0:0031. The FOM will be reduced using the POD/Galerkin method
[13,14,9].

To generate the snapshots from which a POD basis will be constructed, the full order model (1) is solved using a backward
Euler time integration scheme with an initial condition of xNð0Þ ¼ 1N (N � 1 vector of all ones) and no input ðuðtÞ ¼ 0Þ. A total
of K ¼ 2000 snapshots are collected, every dtsnap ¼ 5� 10�5, until time t ¼ 0:1. These snapshots are used to compute a POD
basis of size M ¼ 20, and a POD/Galerkin ROM of size M ¼ 20 is constructed using this basis. For this problem, the M ¼ 20
mode POD/Galerkin ROM is found to be unstable with four unstable eigenvalues. This basis captures essentially 100% of the
snapshot energy, and the value M ¼ 20 is the smallest basis size such that the ROM exhibits an instability. The numerical
values of the unstable eigenvalues are: ku

1 ¼ 242:5; ku
2 ¼ 32:90þ 26:99i; ku

3 ¼ 32:90� 26:99i, ku
4 ¼ 2:712. Fig. 2 shows the

FOM output yðtÞ (in red) compared to the unstabilized ROM output (in blue). The unstabilized ROM output diverges from
the FOM output around time t ¼ 0:05 and approaches �1 as t !1 due to the ROM instability. The relative error Erel in
the unstabilized ROM output (22) is 1737.9.

The M ¼ 20 mode POD/Galerkin ROM for the ISS problem is stabilized first by Algorithm 1, then by Algorithm 2. These
results illustrate the superiority of Algorithm 2 over Algorithm 1.

4.1.1. Stabilization via Algorithm 1
First, the M ¼ 20 mode unstable POD/Galerkin ROM is stabilized using Algorithm 1 with the control matrix BC selected to

be an M � 1 vector of all ones: BC ¼ 1M . The next step in the stabilization is to select the desired eigenvalues of the stabilized
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Fig. 2. Outputs for M ¼ 20 unstabilized POD/Galerkin ROM vs. FOM output for ISS problem.
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Fig. 3. Outputs for M ¼ 20 POD/Galerkin ROMs stabilized via Algorithm 1 vs. FOM output for ISS problem.
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ROM matrix ~AM . Let ku
k for k ¼ 1; . . . ;4 denote the unstable eigenvalues for AM , and let ~ku

k denotes the corresponding eigen-
values of ~AM (that is, the values ku

k will be replaced within the stabilization algorithm). Here, the following functional form for
~ku

k will be considered:
Table 2
Perform

# Up
# Op
# Fu
First

(j
~ku
k ¼ �a � Reðku

kÞ þ i � Imðku
kÞ;a > 0; ð25Þ
for k ¼ 1; . . . ;4, where ReðzÞ and ImðzÞ denote respectively the real and imaginary parts of a complex number z 2 C and
i �

ffiffiffiffiffiffiffi
�1
p

. The transformation (25) flips the sign of the real part of an unstable eigenvalue of AM (thereby making it stable),
and scales this value by a positive constant a. Three choices of the parameter a in (25) will be tested here:

� a ¼ 0:1.
� a ¼ 1.
� a ¼ 10.

The objective is to study the error in the stabilized ROM for several choices of ~ku
i . The choices are admittedly ad hoc, as

there is no clear guideline for what the eigenvalues of ~AM should be. Note that as a is increased, the eigenvalues ~ku
k are pushed

further into the left (stable) half of the complex plane.
Fig. 3 shows the outputs computed by the three stabilized ROMs obtained using Algorithm 1. To solve the pole placement

problem at the heart of this algorithm, the place command in the MATLAB control toolbox [34] was employed. The relative
errors in the stabilized ROM outputs are given in Table 1. All three ROMs are stable (by construction). The ROM stabilized by
Table 1
Relative errors in M ¼ 20 POD/Galerkin ROM for ISS problem stabilized via Algorithm 1.

ROM Erel

Unstabilized 1737:8
ROM stabilized via Algorithm 1 with a ¼ 0:1 1:51� 10�2

ROM stabilized via Algorithm 1 with a ¼ 1 1:16� 10�2

ROM stabilized via Algorithm 1 with a ¼ 10 2:26� 10�2

ance of fmincon interior point method for Algorithm 2 applied to ISS problem.

Algorithm 2 with Option 1 (real
eigenvalues)

Algorithm 2 with Option 2 (complex-conjugate
eigenvalues)

per bound constraints 4 3
timization iterations 29 27
nction evaluations 30 30
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4:00� 10�7 5:51� 10�7



Fig. 4. Performance of interior point algorithm for Algorithm 2 with Option 1 (real eigenvalues) as a function of iteration number (ISS problem).
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Algorithm 1 with a ¼ 1 is slightly more accurate than the ROM stabilized by Algorithm 1 with a ¼ 0:1. This may lead the
reader to conjecture that the accuracy of the stabilized ROM will improve as the eigenvalues are pushed further and further
into the left half of the complex plane. However, the ROM stabilized by Algorithm 1 with a ¼ 10 results demonstrate that this
is not the case: the ROM with its eigenvalues pushed the most into the left half of the complex plane is the least accurate.

The numerical results presented here show that Algorithm 1 works in the sense that it will stabilize an unstable ROM.
Unfortunately, the accuracy of a ROM stabilized using this algorithm is in general unknown before the ROM is stabilized
and the ROM output is computed. Moreover, for some choices of ~ku

i the accuracy may be unacceptable.
4.1.2. Stabilization via Algorithm 2
The M ¼ 20 POD/Galerkin ROM for the ISS benchmark is now stabilized using Algorithm 2. Let ku

k for k ¼ 1; . . . ;4 denote
the four unstable eigenvalues of AM . Two options for the eigenvalue solutions to the optimization problem (14) are
considered:

� Option 1: Solve for ku
i 2 R subject to the constraint that ku

i < 0 for i ¼ 1; . . . ;4.
� Option 2: Solve for k1; k

ur
2 ; k

uc
2 ; k4 2 R subject to the constraint that k1; k

ur
2 ; k4 < 0 and set ku

2 ¼ kur
2 þ ikuc

2 ; ku
3 ¼ kur

2 � ikuc
2 (that

is, ku
3 is set to be the complex-conjugate of ku

2 : ku
3 ¼ �k2

u).

Per the discussion at the beginning of Section 4, Option 2 is more general than Option 1 and has fewer inequality con-
straints. The optimization problem (14) at the heart of Algorithm 2 is solved using the fmincon function in MATLAB’s opti-
mization toolbox. The Algorithm option required by this function is set to interior-point, and an initial guess of �1 for
all the variables is used. For functional forms of the eigenvalues given by both Option 1 and Option 2, the optimization algo-
rithm converges to a local minimum solution in less than 30 optimization iterations and 30 function evaluations. Table 2
shows some key information about the convergence of the optimization algorithm. The reader may observe that fewer iter-
ations and function evaluations are required with Option 2 than with Option 1, which has more constraints. Figs. 4 and 5
illustrate further the performance of the optimization algorithm for Option 1 and Option 2 respectively. For both options,
the optimality conditions are satisfied to the specified tolerance at the value of the optimal solution.3

An interesting question that arises is how the numbers in Table 2 change with M, the reduced basis size. Numerical exper-
iments reveal that it is not necessarily the case that as M increases, more optimization iterations and function evaluations are
required to obtain the solution to the optimization problem (14). The performance of the interior point method depends on a
number of factors, including: (1) the number of optimization dofs (i.e., the number of unstable eigenvalues of a ROM), (2) the
number of upper bound constraints, (3) the character of the objective function, (4) the proximity of the initial guess to the
optimal solution, and (5) the tolerances used in the optimization algorithm; not M, the reduced basis size, directly. Some
additional performance results of the fmincon interior point method for Algorithm 2 applied to the ISS problem for different
(larger) values of M are given in Appendix A.2 (Tables 10,11). For the ISS problem, the ROM does in general become more
unstable with increasing M, but more optimization iterations are not always required (Table 10).
3 For a constrained optimization problem such as (14), the first order optimality conditions require that the gradient of Lagrangian of the objective function
Lðku

1; . . . ; ku
L Þ be equal to zero, i.e., @L

@ku
k
¼ 0 for all k ¼ 1; . . . ; L where L < M is the number of eigenvalues of AM stabilized by Algorithm 2. A detailed discussion of

this and other optimality conditions for the problem (14) can be found in [29,30].



Fig. 5. Performance of interior point algorithm for Algorithm 2 with Option 2 (complex-conjugate eigenvalues) as a function of iteration number (ISS
problem).

Table 3
Original (unstable) eigenvalues of AM for M ¼ 20 mode POD/Galerkin ROM and new stable eigenvalues computed using Algorithm 2 (ISS problem).

Original unstable AM Algorithm 2 with Option 1 (real eigenvalues) Algorithm 2 with Option 2 (complex-conjugate eigenvalues)

ku
1 2:42� 102 �1:32 �1:98

ku
2 3:29� 101 þ 2:70� 101i �2:12� 10�2 �6:47� 10�3 þ 1:42� 101i

ku
3 3:29� 101 � 2:70� 101i �2:13� 10�2 �6:47� 10�3 � 1:42� 101i

ku
4 2:71 �1:33� 10�4 �1:38� 10�4

Table 4
Relative errors in M ¼ 20 POD/Galerkin ROM for ISS problem stabilized via Algorithm 2.

ROM Erel

Unstabilized 1:74� 103

ROM stabilized via Algorithm 2 2:59� 10�2

with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2 2:52� 10�2

with Option 2 (complex-conjugate eigenvalues)
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Fig. 6. Outputs for M ¼ 20 POD/Galerkin ROMs stabilized via Algorithm 2 vs. FOM output for ISS problem.
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The eigenvalue solutions to the optimization problem (14) with both Option 1 and Option 2 are given in Table 3, com-
pared with the values of the original unstable eigenvalues of AM . It is interesting to observe that the eigenvalues computed
by the optimization algorithm with Option 1 are very different in their numerical values than those computed by the opti-
mization algorithm with Option 2. Both are local minimizers of the optimization function (14). As discussed in Section 3.2,
the optimization value is not guaranteed to be unique.

Table 4 gives the error in the ROM algorithm relative to the FOM output for an M ¼ 20 POD/Galerkin ROM stabilized via
Algorithm 2 with Option 1 and Option 2 for the ISS problem. Both options give a ROM with a relative error between 2:5% and
2:6%. This is a significant improvement in accuracy compared to the same ROM stabilized via Algorithm 1 (Table 1). Most
importantly, in contrast to Algorithm 1, Algorithm 2 guarantees some level of accuracy in the stabilized ROM, as it minimizes
the error in the ROM output by construction. Recall that the accuracy of a ROM stabilized via Algorithm 1 is unknown a priori,
and it may require some trial and error to obtain a stabilized ROM with an acceptable error (Section 4.1.1).

Fig. 6 shows the output computed from ROMs stabilized using Algorithm 2. The reader may observe that the stabilized
ROM outputs are in much better agreement with the FOM output than the ROMs stabilized using Algorithm 1 (Fig. 3).

Table 5 summarizes the CPU times for the time-integration step of the FOM, in addition to the CPU times for the offline
and online stages of the M ¼ 20 POD/Galerkin ISS ROM. The reader can observe by examining Table 5 that the M ¼ 20 online
stage of the POD/Galerkin ROM requires approximately 45 times less CPU time than the time-integration stage of the FOM.
To offset the total preprocess time of the ROM (the time required to run the FOM to collect snapshots, calculate the POD
basis, perform the Galerkin projection, and solve the optimization problem (14)), the ROM would need to be run approxi-
mately 53 times. It is worthwhile to note that that the optimization step of the model reduction, which consists of the
solution of the optimization problem (14) is very fast: it takes less than a minute to complete.

4.2. Electrostatically actuated beam problem

The second numerical example is that of an electrostatically actuated beam. The purpose of this second example is to ver-
ify the proposed ROM stabilization approach for a different application and to demonstrate the methodology presented in
this paper on a larger-scale problem which has a forcing term ðBMuðtÞ – 0). Applications for this model include microelec-
tromechanical systems (MEMS) devices such as electromechanical radio frequency (RF) filters [26]. Given a simple enough
shape, these devices can be modeled as one-dimensional beams embedded in two or three dimensional space. The beam
considered here is supported on both sides, and has two dofs: the deflection perpendicular to the beam (the flexural dis-
placement), and the rotation in the deformation plane (the flexural rotation). The equations of motion are determined from
a Lagrangian formulation. It is assumed that the beam deflection is small, so that geometric nonlinearities can be neglected.
The resulting linear PDEs are discretized using the finite element method following the approach presented in [27,26]. The
result of this discretization is a second order linear semi-discrete system of the form:
M€xðtÞ þ E _xðtÞ þ KxðtÞ ¼ BuðtÞ
yðtÞ ¼ CxðtÞ;

ð26Þ
where €x � @2x
@t2 . The input matrix B corresponds to a loading of the middle node of the domain, and yðtÞ is the flexural displace-

ment at the middle node of the domain. The damping matrix E is taken to be a linear combination of the mass matrix M and
the stiffness matrix K:
E ¼ cMMþ cK K; ð27Þ
with cM ¼ 102 and cK ¼ 10�2. Letting _~xðtÞ � xðtÞ, the second order system (26) can be written as the following first order
system:
E M
I 0

� � _xðtÞ
_~xðtÞ

 !
þ

K 0
0 �I

� �
xðtÞ
~xðtÞ

� �
¼

B
0

� �
uðtÞ

yðtÞ ¼ C 0ð Þ
xðtÞ
~xðtÞ

� �
;

ð28Þ
or
_zðtÞ ¼ AzðtÞ þ ~BuðtÞ
yðtÞ ¼ ~CzðtÞ;

ð29Þ� �

where zðtÞ � xðtÞ

~xðtÞ 2 R2N and� � � �

A �

0 I
�M�1K �M�1E

; ~B �
0

M�1B
; ~C � C 0ð Þ: ð30Þ
The matrices M and K in (26) are downloaded from the Oberwolfach model reduction benchmark collection [28]. These
matrices are sparse, as they come from a finite element discretization. These global matrices are then disassembled into their
local counterparts, and reassembled to yield a discretization of any desired size. In the full order model for which results are
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reported here, N ¼ 5000, so (29) has 10,000 dofs. It is verified that the full order system is stable: the maximum real part of
the eigenvalues of A is �0:0016. As for the ISS example, for FOM (29) will be reduced using the POD/Galerkin method
[13,14,9]. It is worthwhile to note that, unlike for the ISS example, the matrix A that defines the system (29) for the electro-
statically actuated beam test case is not sparse. In particular, it is straightforward to see from (29) that this matrix is of the
form A ¼ A1; A2ð ÞT where A1 2 RN�N is sparse, but A2 2 RN�N is dense. This example tests therefore the performance of
Algorithm 2 on a problem defined by a dense matrix A.

To generate the snapshots from which POD bases are constructed, the full order model (29) is solved using a backward
Euler time integration scheme with an initial condition of zð0Þ ¼ 0 and an input corresponding to a periodic on/off switching,
i.e.,
uðtÞ ¼
1; 0:005 < t < 0:01; 0:015 < t < 0:02; 0:03 < t < 0:035
0; otherwise:

	
ð31Þ
A total of Kmax ¼ 1000 snapshots are collected, every dtsnap ¼ 5� 10�5 s, until time t ¼ 0:05 s. From these snapshots, an
M ¼ 17 mode POD/Galerkin ROM is constructed. The ROM is found to be unstable, with four unstable eigenvalues. These
eigenvalues have the following numerical values: ku

1 ¼ 16;053; ku
2 ¼ 48:985; ku

3 ¼ 12:650; ku
4 ¼ 0:05202. The basis size

M ¼ 17 is selected since this is the smallest integer for which the ROM exhibits an instability. It captures effectively 100%
of the snapshot energy. Fig. 7 shows the FOM output yðtÞ (in red) compared to the unstabilized ROM output (in blue).
The relative error in the unstabilized ROM output (22) evaluates to NaN (‘‘not a number’’) on a finite precision arithmetic
machine due to overflow caused by the ROM instability. The M ¼ 17 mode POD/Galerkin ROM is stabilized by Algorithm
2. Algorithm 1 is not considered for the sake of brevity, and since the superiority of Algorithm 2 has been established in
Section 4.1.

4.2.1. Stabilization via Algorithm 2
The M ¼ 17 POD/Galerkin ROM for the electrostatically actuated beam benchmark is stabilized using Algorithm 2. The

four unstable eigenvalues of AM will be denoted by ku
k for k ¼ 1; . . . ;4. Similarly to the ISS test case (Section 4.1), two options

for the eigenvalue solutions to the optimization problem (14) will be considered:
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Fig. 7. Outputs for M ¼ 17 unstabilized POD/Galerkin ROM vs. FOM output for electrostatically actuated beam problem.

Table 5
Time-integration CPU times for ISS problem: FOM vs. M ¼ 20 POD/Galerkin ROM stabilized
via Algorithm 2.

Model Operations CPU time (sec)

FOM Time-integration 1:71� 102

ROM – offline stage Snapshot collection (FOM time-
integration)

1:71� 102

Loading of matrices/snapshots 6:99� 10�2

POD 6.20
Projection 8:18� 10�3

Optimization⁄ 2:28� 101

ROM – online stage Time-Integration 3:77

⁄Optimization times reported are means of the time required to solve (14) with real
eigenvalues and the time required to solve (14) with complex-conjugate eigenvalues.
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� Option 1: Solve for ku
i 2 R subject to the constraint that ku

i < 0 for i ¼ 1; . . . ;4.
� Option 2: Solve for kur

1 ; k
uc
1 ; k

ur
2 ; k

uc
2 2 R subject to the constraint that kur

1 ; k
ur
2 ; < 0 and set ku

1 ¼ kur
1 þ ikuc

1 ; ku
2 ¼ kur

1 � ikuc
1 ; ku

3 ¼
kur

2 þ ikuc
2 ; ku

4 ¼ kur
3 � ikuc

3 (that is, ku
3 is taken to be the complex-conjugate of ku

2 : ku
3 ¼ �k2

u).

Option 2 is more general than Option 1 and has fewer inequality constraints; however, Option 1 may be more consistent
with the system dynamics, as the unstable eigenvalues of A are all real. As before, the fmincon function in the MATLAB opti-
mization toolbox will be used to solve the optimization problem (14), with the Algorithm option set to interior-point

and an initial guess of �1 for all four variables optimized over in (14). For the functional form of the eigenvalues assumed in
Option 1, the algorithm converges in 60 optimization iterations, and requires 64 function evaluations. For the functional
form of the eigenvalues assumed in Option 2, which has less constraints than Option 1, fewer optimization iterations and
function evaluations are required to achieve convergence: 31 optimization iterations, and 32 function evaluations. Some
key information about the convergence of the optimization algorithm for both of these options is summarized in Table 6,
Table 6
Performance of fmincon interior point method for Algorithm 2 applied to electrostatically actuated beam problem.

Algorithm 2 with Option 1 (real eigenvalues) Algorithm 2 with Option 1 (real eigenvalues)

# Upper bound constraints 4 2
# Optimization iterations 60 31
# Function evaluations 64 32
First-order optimality at convergence ðjrLjÞ 2:27� 10�7 8:43� 10�7

Table 7
Original (unstable) eigenvalues of AM for M ¼ 17 mode POD/Galerkin ROM and new stable eigenvalues computed using Algorithm 2 (electrostatically actuated
beam problem).

Original unstable AM Algorithm 2 with Option 1 Algorithm 2 with Option 2

ku
1 1:61� 104 �6:88� 105 �1:16� 105 � 2:25� 104i

ku
2 4:90� 101 �3:54� 102 �1:16� 105 þ 2:25� 104i

ku
3 1:27� 101 �1:97� 104 �3:32� 103 � 1:81� 102i

ku
4 5:20� 10�2 �1:40� 104 �3:32� 102 þ 1:81� 102i

Table 8
Relative errors in M ¼ 17 POD/Galerkin ROM for electrostatically actuated beam problem
stabilized via Algorithm 2.

ROM Erel

Unstabilized NaN

ROM stabilized via Algorithm 2 1:94� 10�2

with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2 2:02� 10�2

with Option 2 (complex-conjugate eigenvalues)

Table 9
Time-integration CPU times for electrostatically actuated beam problem: FOM vs. M ¼ 17 POD/
Galerkin ROM stabilized via Algorithm 2.

Model Operations CPU time (sec)

FOM Time-integration 7:10� 104

ROM – offline stage Snapshot collection (FOM time-integration) 7:10� 104

Loading of matrices/snapshots 5:17
POD 1:09� 101

Projection 2:55� 101

Optimization⁄ 8:79� 101

ROM – online stage Time-Integration 6:78

⁄Optimization times reported are means of the time required to solve (14) with real eigenvalues
and the time required to solve (14) with complex-conjugate eigenvalues.



Fig. 8. Performance of interior point algorithm for Algorithm 2 with Option 1 (real eigenvalues) as a function of iteration number (electrostatically actuated
beam problem).

Fig. 9. Performance of interior point algorithm for Algorithm 2 with Option 2 (complex-conjugate eigenvalues) as a function of iteration number
(electrostatically actuated beam problem).
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and Figs. 8 and 9. For both options, the optimality conditions are satisfied to the specified tolerance at the value of the opti-
mal solution.

Similarly to the ISS problem, Appendix A.2 (Tables 12,13) gives some additional performance results of the fmincon inte-
rior point method for Algorithm 2 for different (larger) values of M. ROMs with larger basis sizes possess in general more
unstable eigenvalues, and more optimization iterations are required to obtain the solution of the optimization problem
(14) using the interior point method.

The solutions obtained by Algorithm 2 with both Option 1 and Option 2 are given in Table 7, compared with the values of
the original unstable eigenvalues of AM . As for the ISS benchmark (Section 4.1), the eigenvalues computed by the optimiza-
tion algorithm with Option 1 are different in their numerical values from those computed by the optimization algorithm
with Option 2. This suggests that the optimization function (14) for this problem has multiple local minimizers/minima.

Table 8 gives the error in the ROM algorithm relative to the FOM output for an M ¼ 20 POD/Galerkin ROM stabilized via
Algorithm 2 with Option 1 and Option 2. For both options, the relative error in the stabilized ROM output is approximately 2%.

Finally, Fig. 10 shows the output computed from ROMs stabilized using Algorithm 2. There is good agreement between
the FOM output and stabilized ROM outputs.
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Fig. 10. Outputs for M ¼ 17 POD/Galerkin ROMs stabilized via Algorithm 2 vs. FOM output for electrostatically actuated beam problem.
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Table 9 summarizes some CPU times for the electrostatically-actuated beam problem: the CPU times for the FOM, as well
as the CPU times for the offline and online stages of the M ¼ 17 POD/Galerkin electrostatically-actuated beam ROM. The re-
sults in this table reveal that the online stage of the model reduction, the stage relevant to real-time calculations involving
the ROM, took only 6.78 seconds, compared to 7:10� 104 seconds for the time-integration stage of the FOM. To offset the
total preprocess time of the ROM (the time required to run the FOM to collect snapshots, calculate the POD basis, perform
the Galerkin projection, and solve the optimization problem (14)), the ROM would need to be run approximately 1� 104

times. This large number of online ROM runs required to offset the offline ROM cost is due to the large CPU time associated
with the FOM run for this large dense problem. As for the ISS problem, the optimization step of the model reduction does not
contribute significantly to the CPU time of the offline stage of the ROM, taking just 1.5 minutes.
5. Conclusions

This paper presents a new approach for stabilizing unstable reduced order models for LTI systems through an a posteriori
post-processing step applied to the algebraic ROM system. This stabilization step consists of a reassignment of the eigen-
values of the ROM system matrix. First, it is shown how the system’s eigenvalues can be modified by adding to the system
a linear control term, and solving for the control matrix using full state feedback (a.k.a. pole placement) algorithms from con-
trol theory. This approach will yield a stable ROM provided the ROM system’s unstable eigenvalues are controllable and ob-
servable; however, although the stabilized ROM will be stable, it may not be accurate. To ensure accuracy in the stabilized
ROM, a second algorithm is developed, in which the eigenvalues of the stabilized ROM system are computed by solving a
constrained nonlinear least-squares optimization problem in which the error in the ROM output is minimized. This problem
is small (< OðMÞ, where M is the number of dofs in the ROM), and therefore computationally inexpensive to solve using stan-
dard optimization algorithms. The second stabilization algorithm is the primary contribution of this paper, but both algo-
rithms are presented and evaluated, as the first algorithm led to the formulation of the second. The ROM stabilization
approaches developed herein are applicable to ROMs constructed using any choice of reduced basis for any application.
The proposed algorithms are evaluated on two benchmarks: the international space station (ISS) problem and the electro-
statically actuated beam problem. Numerical tests reveal that the second algorithm effectively stabilizes an unstable ROM,
delivering a modified ROM that is both stable as well as accurate. Extensions of the new method to nonlinear problems and
predictive applications, including a study of the robustness of the ROM with respect to parameter changes, will be the sub-
ject of future work. For nonlinear problems with stable fixed points and/or limit cycle solutions (e.g., the classical fluid
mechanics problem involving flow around a cylinder), a natural extension of the algorithm would involve: (1) determining
the stable fixed points of the system, (2) linearizing the system around these points, and (3) using the algorithms developed
in this paper to stabilize the linearized system.
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Appendix A

A.1. Jacobian of objective function in (14)

In this section, the analytic expression for the Jacobian of the objective function in the optimization problem (14) for the
specific case when uðtÞ ¼ 0; y 2 R (there is a single output of interest), and ku

i 2 R is derived. In many cases, it is possible to
derive analytically the Jacobian of the objective function in (14) without these simplified assumptions, but this derivation
will be problem-dependent (i.e., it will depend on the specific forcing uðtÞ). Let yk � yk 2 R and yk

M � yk
M 2 R. If uðtÞ ¼ 0,

the objective function in (14) evaluates to:
Table 1
Perform

M

# Un
# Up
# Op
# Fu
First
f ¼ jjFjj22; ð32Þ
where
F �

CS expðDt1ÞS�1xð0Þ � y1

CS expðDt2ÞS�1xð0Þ � y2

..

.

CS expðDtKÞS�1xð0Þ � yK

0BBBBB@

1CCCCCA 2 RK : ð33Þ
Let J denote the Jacobian of f (32). The reader can verify that
J ¼ 2JT
F F 2 RL ð34Þ
where the ðk; lÞth entry of JF is given by
JFðk; lÞ ¼ tkCS expðD̂ltkÞS�1xð0Þ; ð35Þ
for k ¼ 1; ::;K and l ¼ 1; . . . ; L. In Eq. (35),
D̂l �

0
. .

.

0
ku

l

0
. .

.

0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
2 RM�M; ð36Þ
that is, D̂l is a matrix with a single entry of ku
l in the position ð̂l; l̂Þ, where l̂ is the position of the lth reassigned eigenvalue in the

original matrix D.
Table 11
Performance of fmincon interior point method for Algorithm 2 applied to ISS problem as a function of M (complex-conjugate eigenvalues).

M 20 40 60

# Unstable eigenvalues 4 5 6
# Upper bound constraints 3 3 3
# Optimization iterations 27 50 62
# Function evaluations 30 52 64
First-order optimality at convergence ðjrLjÞ 5:51� 10�7 2:46� 10�7 3:94� 10�7

0
ance of fmincon interior point method for Algorithm 2 applied to ISS problem as a function of M (real eigenvalues).

20 40 60

stable eigenvalues 4 5 6
per bound constraints 4 5 6
timization iterations 29 58 45
nction evaluations 30 59 46
-order optimality at convergence ðjrLjÞ 4:00� 10�7 9:88� 10�7 2:46� 10�7



Table 12
Performance of fmincon interior point method for Algorithm 2 applied to electrostatically actuated beam problem as a function of M (real eigenvalues).

M 17 34 51

# Unstable eigenvalues 4 10 14
# Upper bound constraints 4 10 14
# Optimization iterations 60 78 96
# Function evaluations 64 82 100
First-order optimality at convergence ðjrLjÞ 2:27� 10�7 4:61� 10�7 2:13� 10�7

Table 13
Performance of fmincon interior point method for Algorithm 2 applied to electrostatically actuated beam problem as a function of M (complex-conjugate
eigenvalues).

M 17 34 51

# Unstable eigenvalues 4 10 14
# Upper bound constraints 2 5 7
# Optimization iterations 31 35 78
# Function evaluations 32 36 79
First-order optimality at convergence ðjrLjÞ 8:43� 10�7 6:20� 10�6 1:08� 10�7
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A.2. Additional performance results for Algorithm 2

The following tables give some additional performance results (the number of unstable eigenvalues, the number of upper
bound constraints, the number of optimization iterations, the number of function evaluations, and the first order optimality
at convergence) for Algorithm 2 applied to the ISS and electrostatically actuated beam problems considered in Sections 4.1
and 4.2 respectively. These results enable one to study how these quantities change as M, the reduced basis size, is increased.
The performance of the interior point method depends more on the number of dofs in the optimization problem (14), rather
than the basis size M directly. For the problems considered herein, as M is increased, in general so does the number of unsta-
ble eigenvalues of the ROM.
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