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SUMMARY

Reduced-order models that are able to approximate output quantities of interest of high-fidelity
computational models over a wide range of input parameters play an important role in making
tractable large-scale optimal design, optimal control, and inverse problem applications. We consider
the problem of determining a reduced model of an initial value problem that spans all important initial
conditions, and pose the task of determining appropriate training sets for reduced-basis construction
as a sequence of optimization problems. We show that, under certain assumptions, these optimization
problems have an explicit solution in the form of an eigenvalue problem, yielding an efficient model
reduction algorithm that scales well to systems with states of high dimension. Furthermore, tight upper
bounds are given for the error in the outputs of the reduced models. The reduction methodology is
demonstrated for a large-scale contaminant transport problem. Copyright c© 2000 John Wiley &
Sons, Ltd.
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1. Introduction

Reduced-order models that are able to approximate outputs of high-fidelity computational
models over a wide range of input parameters have an important role to play in making
tractable large-scale optimal design, optimal control, and inverse problem applications. In
particular, the state estimation inverse problem setting requires a reduced model that spans
the space of important initial conditions, i.e. those that have the greatest influence on the
output quantities of interest. Creating such a model with existing model reduction techniques
presents a significant challenge, due to the need to sample adequately the high-dimensional
space of possible initial conditions. In this paper, we present a new methodology that employs
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an efficient sampling strategy to make tractable the task of determining a reduced model for
large-scale linear initial value problems that are accurate over all initial conditions.

For the most part, reduction techniques for large-scale systems have focused on a projection
framework that utilizes a reduced-space basis. Methods to compute the basis in the large-
scale setting include Krylov-subspace methods [15, 16, 19], approximate balanced truncation
[20,27,28,31], and proper orthogonal decomposition (POD) [13,24,30]. Progress has been made
in development and application of these methods to optimization applications with a small
number of input parameters, for example optimal control [1,5,23,25] and parametrized design
of interconnect circuits [12]. In the case of a high-dimensional input parameter space, the
computational cost of determining the reduced basis by these techniques becomes prohibitive
unless some sparse sampling strategy is employed.

For initial-condition problems of moderate dimension, a reduction method has been proposed
that truncates a balanced representation of the finite-dimensional Hankel operator [14]. In [11],
POD was used in a large-scale inverse problem setting to define a reduced space for the
initial condition in which to solve the data assimilation problem. In that work, only a single
initial condition was used to generate the state solutions necessary to form the reduced basis:
either the true initial condition, which does contain the necessary information but would be
unavailable in practice, or the background estimate of the initial state, which defines a forecast
trajectory that may not be sufficiently rich in terms of state information.

For model reduction of linear time-invariant systems using multipoint rational Krylov
approximations, two methods have recently been proposed to choose sample locations: an
iterative method to choose an optimal set of interpolation points [21], and a heuristic
statistically-based resampling scheme to select sample points [29]. To address the more general
challenge of sampling a high-dimensional parameter space to build a reduced basis, the greedy
algorithm was introduced in [33]. The key premise of the greedy algorithm is to adaptively
choose samples by finding the location in parameter space where the error in the reduced
model is maximal. In [32], the greedy algorithm was applied to find reduced models for the
parametrized steady incompressible Navier-Stokes equations. In [17,18], the greedy algorithm
was combined with a posteriori error estimators for parametrized parabolic partial differential
equations, and applied to several optimal control and inverse problems.

Here, we address the problem of determining a reduced basis, and hence reduced model, for
large-scale linear initial value problems that is accurate over all possible initial conditions. The
reduced basis is associated with a judicious sampling of the initial condition space. The basis
spans these initial condition samples, as well as the state trajectories determined by them.
The span can be computed by the POD, or else by solution of an optimization problem to find
the basis that minimizes the output error at the sample points [10]. The sampling problem
itself is formulated as a greedy optimization problem. Rather than invoke error estimators to
approximate the errors in the outputs as in [17,18,32,33], the objective function of the greedy
optimization problem targets the actual errors. To define the errors, the optimization problem
must then be constrained by the initial value systems representing the full and reduced models.
Under certain reasonable assumptions, this optimization problem admits an explicit solution
in the form of an eigenvalue problem for the dominant eigenvectors, which define the samples
in initial condition space and hence the reduced basis. Furthermore, the eigenvalue form leads
to tight, computable upper bounds for the error in the outputs of the reduced model.

This article is organized as follows. Section 2 describes the projection framework used to
derive the reduced-order dynamical system. We then present in Section 3 the theoretical
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approach, leading to a basis-construction algorithm. In Section 4, we demonstrate the efficacy
of the algorithm via numerical experiments on a problem of 2D convective-diffusive transport.
We present an application to model reduction for 3D contaminant transport in an urban canyon
in Section 5, and offer conclusions in Section 6.

2. Reduced-order Dynamical Systems

Consider the general linear discrete-time system

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, . . . , T − 1, (1)
y(k) = Cx(k), k = 0, 1, . . . , T, (2)

with initial condition

x(0) = x0, (3)

where x(k) ∈ IRN is the system state at time tk, the vector x0 contains the specified initial
state, and we consider a time horizon from t = 0 to t = tT . The vectors u(k) ∈ IRP and
y(k) ∈ IRQ contain, respectively, the P system inputs and Q system outputs at time tk. In
general, we are interested in systems of the form (1)–(3) that result from spatial and temporal
discretization of PDEs. In this case, the dimension of the system, N , is very large and the
matrices A ∈ IRN×N , B ∈ IRN×P , and C ∈ IRQ×N result from the chosen spatial and temporal
discretization methods.

A reduced-order model of (1)–(3) can be derived by assuming that the state x(k) is
represented as a linear combination of n basis vectors,

x̂(k) = V xr(k), (4)

where x̂(k) ∈ IRN is the reduced model approximation of the state x(k) and n ¿ N . The
projection matrix V ∈ IRN×n contains as columns the orthonormal basis vectors Vi, i.e.,
V = [V1 V2 · · · Vn], and the reduced-order state xr(k) ∈ IRn contains the corresponding modal
amplitudes for time tk. Using the representation (4) together with a Galerkin projection of the
discrete-time system (1)–(3) onto the space spanned by the basis V yields the reduced-order
model with state xr and output yr,

xr(k + 1) = Arxr(k) + Bru(k), k = 0, 1, . . . , T − 1, (5)
yr(k) = Crxr(k), k = 0, 1, . . . , T, (6)
xr(0) = V T x0, (7)

where Ar = V T AV , Br = V T B, and Cr = CV .
Since the system (1)–(3) is linear, the effects of inputs u and initial conditions x0 can be

considered separately. In this paper, we focus on the initial-condition problem and, without
loss of generality, assume that u(k) = 0, k = 0, 1, . . . , T − 1. For convenience of notation, we
write the discrete-time system (1)–(3) in matrix form as

Ax = Fx0, (8)
y = Cx, (9)
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where

x =




x(0)
x(1)

...
x(T )


 , y =




y(0)
y(1)

...
y(T )


 . (10)

The matrices A, F, and C in (8) and (9) are given by

A =




I 0 0 · · · 0

−A I 0
. . .

...

0 −A I
. . . . . .

. . . . . . . . . . . . 0
...

. . . . . . . . . 0
0 0 −A I




, F =




I
0
0
...
...
0




, C =




C 0 · · · · · · · · · 0

0 C 0
...

... 0 C 0
. . . . . . . . .

...
. . . . . . . . . 0

0 0 0 C




. (11)

Similarly, the reduced-order model (5)–(7) can be written in matrix form as

Arxr = Frx0, (12)
yr = Crxr, (13)

where xr, yr, Ar, and Cr are defined analogously to x, y, A, and C but with the appropriate
reduced-order quantities. The matrix Fr is given by

Fr =




V T

0
...
0


 . (14)

In many cases, we are interested in rapid identification of initial conditions from sparse
measurements of the states over a time horizon; we thus require a reduced-order model
that will provide accurate outputs for any initial condition contained in some set X0. Using
the projection framework described above, the task therefore becomes one of choosing an
appropriate basis V so that the error between full-order output y and the reduced-order
output yr is small for all initial conditions of interest.

3. Hessian-based Model Reduction

In this section, a methodology to determine a basis that spans the space of important initial
conditions is presented. To compute the basis via a method such as POD, a sample set of
initial conditions must be chosen. At each selected initial condition, a forward simulation is
performed to generate a set of states, commonly referred to as snapshots, from which the
reduced basis is formed. It has been shown that in the case of systems that are linear in the
state, POD is equivalent to balanced truncation if the snapshots are computed for all possible
initial conditions [26]. Since sampling all possible initial conditions is not feasible for large-scale
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problems, we propose an adaptive approach to identify important initial conditions that should
be sampled. The approach is motivated by the greedy algorithm of [33], which proposed an
adaptive approach to determine the parameter locations at which samples are drawn to form
a reduced basis. For the linear finite-time-horizon problem considered here, we show that the
greedy algorithm can be formulated as an optimization problem that has an explicit solution
in the form of an eigenvalue problem.

3.1. Theoretical Approach

Our task is to find an appropriate reduced basis and associated reduced model: one that
provides accurate outputs for all initial conditions of interest. We define an optimal basis,
V ∗, to be one that minimizes the maximal L2 error between the full-order and reduced-order
outputs of the fully discrete system over all admissible initial conditions,

V ∗ = arg min
V

max
x0∈X0

(y − yr)
T (y − yr) (15)

where Ax = Fx0, (16)
y = Cx, (17)

Arxr = Frx0, (18)
yr = Crxr. (19)

For this formulation, the only restriction that we place on the set X0 is that it contain vectors
of unit length. This prevents unboundedness in the optimization problem, since otherwise the
error in the reduced system could be made arbitrarily large. Naturally, because the system is
linear, the basis V ∗ will still be valid for initial conditions of any finite norm.

A suboptimal but computationally efficient approach to solving the optimization problem
(15)–(19) is inspired by the greedy algorithm of [33]. Construction of a reduced basis for a
steady or unsteady problem with parameter dependence, as considered in [17, 32], requires
a set of snapshots, or state solutions, over the parameter–time space. The greedy algorithm
adaptively selects these snapshots by finding the location in parameter–time space where the
error between the full-order and reduced-order models is maximal, updating the basis with
information gathered from this sample location, forming a new reduced model, and repeating
the process. In the case of the initial-condition problem (15)–(19), the greedy approach amounts
to sampling at the initial condition x∗0 ∈ X0 that maximizes the error in (15).

The key step in the greedy algorithm is finding the worst-case initial condition x∗0, which we
achieve by solving the modified optimization problem,

x∗0 = arg max
x0∈X0

(y − yr)
T (y − yr) (20)

where Ax = Fx0, (21)
y = Cx, (22)

Arxr = Frx0, (23)
yr = Crxr. (24)

Equations (20)–(24) define a large-scale optimization problem, which includes the full-scale
dynamics (21), (22) as constraints. The approach taken in [17,32] is to replace these constraints
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with error estimators, so that the full-scale model does not need to be invoked during solution
of the optimization problem. Further, in [17,32], the optimization problem (20)-(24) is solved
by a grid-search technique that addresses problems associated with non-convexity and non-
availability of derivatives.

In the present article, we exploit the linearity of the state equations to eliminate the full-
order and reduced-order states and yield an equivalent unconstrained optimization problem.
Eliminating the constraints (21)–(24) by solving for the full and reduced states yields

x∗0 = arg max
x0∈X0

xT
0 Hex0, (25)

where
He =

(
CA−1F−CrA−1

r Fr

)T (
CA−1F−CrA−1

r Fr

)
. (26)

It can be seen that (25) is a quadratic unconstrained optimization problem with Hessian
matrix He ∈ IRN×N . From (26), it can be seen that He is a symmetric positive semi-definite
matrix that does not depend upon the state or initial condition. The eigenvalues of He are
therefore non-negative. Since we are considering initial conditions of unit norm, the solution
x∗0 maximizes the Rayleigh quotient; therefore, the solution of (25) is given by the eigenvector
corresponding to the largest eigenvalue of He. This eigenvector is the initial condition for
which the error in reduced model output prediction is largest.

These ideas motivate the following basis-construction algorithm for the initial condition
problem.

Algorithm 1. Greedy Reduced Basis Construction

Initialize with V = 0, so that the initial reduced-order model is zero.

1. For the error Hessian matrix, He as defined in (26), find the eigenvector ze
1 with largest

eigenvalue λe
1.

2. Set x0 = ze
1 and compute the corresponding solution x using (8).

3. Update the basis V by adding the new information from the snapshots x(k), k = 0, 1, . . . , T .
4. Update the reduced model using the new basis and return to Step 1.

In Step 3 of Algorithm 1, the basis could be computed from the snapshots, using, for example,
the POD. A rigorous termination criterion for the algorithm is available in the form of an
error bound, which will be discussed below. It should be noted that, while the specific form
of Algorithm 1 applies only in the linear case, the greedy sampling concept is applicable to
nonlinear problems. In the general nonlinear case, one would solve an optimization problem
similar in form to (20)–(24), but with the appropriate nonlinear governing equations appearing
as constraints. In this case, the explicit eigenvalue solution to the optimization problem would
not hold; instead, one would use a method that is appropriate for large-scale simulation-
constrained optimization (see [3]) to solve the resulting optimization problem.

Under certain assumptions, the form of He in (25) can be simplified, leading to an algorithm
that avoids construction of the reduced model at every greedy iteration. We proceed by
decomposing a general initial condition vector as

x0 = xV
0 + x⊥0 , (27)
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where xV
0 is the component of x0 in the subspace spanned by the current basis V , and x⊥0 is the

component of x0 in the orthogonal complement of that subspace. Substituting (27) into the
objective function (25), we recognize that Frx

⊥
0 = 0, using the form of Fr given by (14) and

that, by definition, V T x⊥0 = 0. The unconstrained optimization problem (25) can therefore be
written as

x∗0 = arg max
x0∈X0

(
CA−1FxV

0 + CA−1Fx⊥0 −CrA−1
r Frx

V
0

)T

(
CA−1FxV

0 + CA−1Fx⊥0 −CrA−1
r Frx

V
0

)
. (28)

The expression (28) can be approximated by assuming that

CA−1FxV
0 = CrA−1

r Frx
V
0 , (29)

which means that for initial conditions xV
0 in the space spanned by the basis, we assume that

the reduced output exactly matches the full output, i.e. y = yr. An approach to satisfying
this condition will be described shortly. Using the approximation (29), we can rewrite (25) as

x∗0 = arg max
x⊥0 ∈X0

(
x⊥0

)T
Hx⊥0 , (30)

where
H =

(
CA−1F

)T (
CA−1F

)
. (31)

H ∈ IRN×N is now the Hessian matrix of the full-scale system, and does not depend on the
reduced-order model. As before, H is a symmetric, positive semi-definite matrix that does not
depend upon the state or initial condition.

If we choose to initialize the greedy algorithm with an empty basis, V = 0, then the
maximizer of (30) on the first greedy iteration is given by the eigenvector of H corresponding
to the largest eigenvalue. We denote this initial condition by z1 and note that z1 satisfies

Hz1 = λ1z1, (32)

where λ1 is the largest eigenvalue of H. We then set V = z1. Under the assumption that
(29) holds, on the second greedy iteration we would therefore seek the initial condition that
maximizes (30). Clearly, this initial condition, which should be orthogonal to z1, is given by
z2, the eigenvector of H corresponding to the second largest eigenvalue.

Returning to assumption (29), this condition can be satisfied if we include in the basis
not just the sequence of optimal initial conditions x∗0 = {z1, z2, . . .}, but rather the span of
all snapshots (i.e. instantaneous state solutions contained in x) obtained by solving (8) for
each of the seed initial conditions z1, z2, . . .. The approximation (29) will then be accurate,
provided the final time tT is chosen so that the output y(k) is small for k > T . If the output
is not small for k > T , then a snapshot collected at some time tk̄, where k̄ < T but k̄ is
large, will be added to the basis; however, if that state were then used as an initial condition
in the resulting reduced-order model, the resulting solution yr would not necessarily be an
accurate representation of y. This is because the basis would not contain information about
system state evolution after time tT−k̄. In that case, (29) would not hold. Further, by including
both the initial conditions, zi, and the corresponding snapshots, x, in the basis, the sequence of
eigenvectors zi will no longer satisfy the necessary orthogonality conditions; that is, the second
eigenvector z2 may no longer be orthogonal to the space spanned by the basis comprising z1
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and its corresponding state solutions. This is because setting x0 = z1 and computing x will
likely lead to some states that have components in the direction of z2. We would therefore
expect this simplification to be more accurate for the first few eigenvectors, and become less
accurate as the number of seed initial conditions is increased.

These simplifications lead us to an alternate “one-shot” basis-construction algorithm for the
initial condition problem. This algorithm does not solve the optimization problems (15)–(19)
or (20)–(24) exactly, but provides a good approximate solution to the problem (20)–(24) under
the conditions discussed above. We use the dominant eigenvectors of the Hessian matrix H to
identify the initial-condition vectors that have the most significant contributions to the outputs
of interest. These vectors are in turn used to initialize the full-scale discrete-time system to
generate a set of state snapshots that are used to form the reduced basis.

Algorithm 2. One-Shot Hessian-Based Reduced Basis Construction

1. For the full-order Hessian matrix, H as defined in (31), find the p eigenvectors z1, z2, . . . , zp

with largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp ≥ λp+1 ≥ . . . ≥ λN ≥ 0.
2. For i = 1, . . . , p, set x0 = zi and compute the corresponding solution xi using (8).
3. Form the reduced basis as the span of the snapshots xi(k), i = 1, 2, . . . , p, k = 0, 1, . . . , T .

Steps 2 and 3 in Algorithm 2 allow us to (approximately) satisfy the assumption (29) by
including not just the initial conditions z1, z2, . . . , zp in the basis but also the span of all
snapshots generated from those initial conditions. The basis could be computed from the
snapshots, using, for example, the POD.

3.2. Error Analysis

A direct measure of the quality of the reduced-order model is available using the analysis
framework described above. We define the error, ε, due to a particular initial condition x0 as

ε = ||y − yr||2 =
∣∣∣∣(CA−1F−CrA−1

r Fr

)
x0

∣∣∣∣
2
. (33)

For a given reduced model, the dominant eigenvector of He provides the worst-case initial
condition. Therefore, the value of the maximal error εmax (for an initial condition of unit
norm) is given by

εmax =
√

λe
1, (34)

where λe
1 is the largest eigenvalue of the error Hessian He, defined by (26). The value εmax

provides both a measure on the quality of the reduced model and a quantitative termination
criterion for the basis-construction algorithm.

In Algorithm 1, εmax is readily available, and thus can be used to determine how many cycles
of the algorithm to perform, i.e. the algorithm would be terminated when the worst-case error
is sufficiently small. In Algorithm 2, it is computationally more efficient to select p, the number
of seed initial conditions, based on the decay rate of the full Hessian eigenvalues λ1, λ2, . . . and
to compute all the necessary eigenvectors z1, z2, . . . , zp at once. Once the reduced model has
been created using Algorithm 2, the error Hessian He can be formed and the error criterion (34)
checked to determine if further sampling is required. While Algorithm 1 is expected to reduce
the worst-case error more quickly, the one-shot Algorithm 2 is attractive since it depends only
on the large-scale system properties and thus does not require us to build the reduced model
on each cycle.
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We also note that the eigenvectors of H =
(
CA−1F

)T (
CA−1F

)
are equivalent to the (right)

singular vectors of CA−1F. Since the latter quantity serves as an input-output mapping, use
of its singular vectors for basis formation is intuitively attractive. It is also interesting to note
that the Hessian H may be thought of as a finite-time observability gramian [4].

3.3. Large Scale Implementation

We first discuss the implementation of Algorithm 2 in the large-scale setting, and then remark
on the differences for Algorithm 1.

Algorithm 2 is a one-shot approach in which all of the eigenpairs can be computed from
the single Hessian matrix H in (31). This matrix can be formed explicitly by first forming
A−1F, which requires N “forward solves” (i.e. solutions of forward-in-time dynamical systems
with A as coefficient matrix), where N is the number of initial condition parameters; or else
by first forming A−T CT , which requires Q “adjoint” solves (i.e. solutions of backward-in-time
dynamical systems with AT as coefficient matrix), where Q is the number of outputs. For large-
scale problems with high-dimensional initial condition and output vectors, explicit formation
and storage of H is thus intractable. (A similar argument can be made for the intractability
of computing the singular value decomposition of CA−1F.) Even if H could be formed and
stored, computing its dominant spectrum would be prohibitive, since it is a dense matrix of
order N ×N .

Instead, we use a matrix-free iterative method such as Lanczos to solve for the dominant
eigenpairs of H. Such methods require at each iteration a matrix–vector product of the form
Hwk for some wk, which is formed by successive multiplication of vectors with the component
matrices that make up the Hessian in (31). At each iteration, this amounts to one forward and
one adjoint solve involving the system A. When the eigenvalues are well-separated, convergence
to the largest eigenvalues of H is rapid. Moreover, when the spectrum decays rapidly, only a
handful of eigenvectors are required by Algorithm 2. Many problems have Hessian matrices
that are of low rank and spectra that decay rapidly, stemming from the limited number of
initial conditions that have a significant effect on outputs of interest. For such problems the
number of Lanczos iterations required to extract the dominant part of the spectrum is often
independent of the problem size N .

Under this assumption, we can estimate the cost of Step 1 of Algorithm 2 (which dominates
the cost) in the case when the dynamical system (8)–(9) stems from a discretized parabolic
PDE. The cost of each implicit time step of a forward or adjoint solve is usually linear or
weakly superlinear in problem size, using modern multilevel preconditioned linear solvers.
Therefore for T time steps, overall work for a forward or adjoint solve scales as TN1+α, with
α usually very small. For a 3D spatial problem, a number of time steps on the order of the
diameter of the grid, and an optimal preconditioner, this gives O(N4/3) complexity per forward
solve, and hence per Lanczos iteration. Assuming the number of Lanczos iterations necessary
to extract the dominant part of the spectrum is independent of the grid size, the overall
complexity remains O(N4/3). (Compare this with straightforward formation of the Hessian
and computation of the eigenvalues with the QR algorithm, which requires O(N3) work.)

Algorithm 1 is implemented in much the same way. The main difference is that the error
Hessian He replaces the Hessian H, and we find the dominant eigenpair of each of a sequence of
eigenvalue problems, rather than finding p eigenpairs of the single Hessian H. Each iteration of
a Lanczos-type solver for the eigenvalue problem in Algorithm 1 resembles that of Algorithm 2,
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and therefore the costs per iteration are asymptotically the same. It is more difficult to
characterize the number of greedy iterations, and hence the number of eigenvector problems,
that will be required using Algorithm 1. However, to the extent that the assumptions outlined
in Section 3.1 hold, the number of greedy iterations will correspond roughly the number of
dominant eigenvalues of the full Hessian matrix H. As reasoned above, the spectrum of H is
expected to decay rapidly for the problems of interest here; thus, convergence of the greedy
reduced basis construction algorithm is expected to be rapid.

4. Application to a 2D Convection-Diffusion Transport Problem

In this section, the model reduction methodology described above is assessed for a contaminant
transport problem. The physical process is modeled by the convection-diffusion equation,

∂w

∂t
+ ~v · ∇w − κ∇2w = 0 in Ω× (0, tf ), (35)

w = 0 on ΓD × (0, tf ), (36)
∂w

∂n
= 0 on ΓN × (0, tf ), (37)

w = w0 in Ω for t = 0, (38)

where w is the contaminant concentration (which varies in time and over the domain Ω), ~v is
the velocity vector field, κ is the diffusivity, tf is the time horizon of interest, and w0 is the
given initial condition. Homogeneous Dirichlet boundary conditions are applied on the inflow
boundary ΓD, while homogeneous Neumann conditions are applied on the other boundaries
ΓN . We first consider the case of a simple two-dimensional domain, which leads to a system
of the form (8) of moderate dimension; in the next section a large-scale three-dimensional
example will be presented.

4.1. Two-dimensional model problem

Figure 1 shows the computational domain for the two-dimensional contaminant transport
example. The velocity field is taken to be uniform, constant in time, and directed in the
positive x̄-direction as defined by Figure 1. The inflow boundary, ΓD, is defined by x̄ = 0,
0 ≤ ȳ ≤ 0.4; the remaining boundaries comprise ΓN .

A Streamline Upwind Petrov-Galerkin (SUPG) [9] finite-element method is employed to
discretize (35) in space using triangular elements. For the cases considered here, the spatial
mesh has N = 1860 nodes. The Crank-Nicolson method is used to discretize the equations
in time. This leads to a linear discrete-time system of the form (8), where the state vector
x(k) ∈ IR1860 contains the values of contaminant concentration at spatial grid points at time
tk. For all experiments, the timestep used was ∆t = 0.02 and the time limit, set approximately
by the maximum time of convection across the length of the domain, was tT = 1.4.

The matrix A in (8) depends on the velocity field and the Peclet number, Pe, which is
defined as

Pe =
vc`c

κ
, (39)

where the characteristic velocity vc is taken to be the maximum velocity magnitude in the
domain, while the domain length is used as the characteristic length `c. The uniform velocity
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Figure 1. The computational domain and locations of sensor output nodes. Top: two-sensor case,
bottom: ten-sensor case.

field described above was used in all experiments, but Pe was varied. Increasingly convective
transport scenarios corresponding to Peclet numbers of 10, 100, and 1000 were used to generate
different full-scale systems.

The outputs of interest are defined to be the values of concentration at selected sensor
locations in the computational domain. Figure 1 shows two different sensor configurations
that were employed in the results presented here.

The first step in creating a reduced model with Algorithm 2 is to compute p dominant
eigenvectors of the full-scale Hessian matrix H. Figure 2 shows the eigenvalue spectra of H for
the two-sensor case and the ten-sensor case. The relative decay rates of these eigenvalues are
used to determine p, the number of eigenvectors used as seed initial conditions. We specify the
parameter λ̄, and apply the criterion that the jth eigenvector of H is included if λj/λ1 > λ̄.

Figure 2 demonstrates that the decay rate of the dominant eigenvalues is related to
the number and positioning of output sensors. For the two-output case, the two dominant
eigenvalues λ1 and λ2 are of almost equal magnitude; analogous behavior can be seen for the
first ten eigenvalues in the ten-output case. This is consistent with the physical intuition that
similarly important modes exist for each of the output sensors. For instance, a mode with
initial concentration localized around one particular sensor is of similar importance as another
mode with high concentration near a different sensor.
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Figure 2. A comparison of the Hessian eigenvalue spectra of H for the two- and ten-output cases.
Pe = 100.

4.2. Reduced model performance

Once the p seed eigenvectors have been computed, the corresponding state solutions,
x1,x2, . . . ,xp, are computed from (8) using each eigenvector in turn as the initial condition
x0. The final step in Algorithm 2 requires the formation of the reduced basis from the span
of x1,x2, . . . ,xp. We achieve this by aggregating all state solutions xi(k), i = 1, 2 . . . , p, k =
0, 1, . . . , T into a snapshot matrix X ∈ IRN×(T+1)p and using the POD to select the n basis
vectors that most efficiently span the column space of X. The number of POD basis vectors
is chosen based on the decay of the POD eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µ(T+1)p ≥ 0. As above,
we define a parameter µ̄, and apply the criterion that the kth POD basis vector is retained if
µk/µ1 > µ̄.

The resulting reduced models given by (12), (13) can be used for any initial condition x0;
to demonstrate the methodology we choose to show results for initial conditions comprising a
superposition of Gaussian functions. Each Gaussian is defined by

x0(x̄, ȳ) =
1

σ
√

2π
e−[(x̄−x̄c)

2+(ȳ−ȳc)
2]/2σ2

, (40)

where (x̄c, ȳc) defines the center of the Gaussian and σ is the standard deviation. All test initial
conditions are normalized such that ||x0||2 = 1. Three sample initial condition functions that
are used in the following analyses are shown in Figure 3 and are referred to by their provided
labels (a), (b), and (c) throughout.

Tables I and II show sample reduced model results for various cases using the two-sensor
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Figure 3. Sample test initial conditions used to compare reduced model outputs to full-scale outputs.

configuration shown in Figure 1. The error ε is defined in (33) and computed for one of the
sample initial conditions shown in Figure 3. It can be seen from the tables that a substantial
reduction in the number of states from N = 1860 can be achieved with low levels of error in
the concentration prediction at the sensor locations. The tables also show that including more
modes in the reduced model, either by decreasing the Hessian eigenvalue decay tolerance λ̄
or by decreasing the POD eigenvalue decay tolerance µ̄, leads to a reduction in the output
error. Furthermore, the worst case error in each case, εmax, is computed from (34) using the
maximal eigenvalue of the error Hessian, He. It can also be seen that inclusion of more modes
in the reduced model leads to a reduction in the worst-case error, although the reduction in
εmax occurs more slowly than the reduction in ε .
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Case λ̄ µ̄ n ε εmax

1 .1 10−4 28 .0573 .4845
2 .1 10−6 45 .0103 .4838
3 .01 10−4 43 .0237 .4758
4 .01 10−6 69 .0021 .4752
5 .001 10−4 79 .0017 .4735
6 .001 10−6 122 .0007 .4418

Table I. Properties of various reduced-order models of a full-scale system with Pe=10 and two output
sensors. The errors ε and εmax are defined in (33) and (34), respectively; ε is evaluated when each

reduced system (of dimension n) is subjected to test initial condition (a).

Case λ̄ µ̄ n ε εmax

1 .1 10−4 62 .0738 .1920
2 .1 10−6 90 .0722 .1892
3 .01 10−4 128 .0032 .1638
4 .01 10−6 200 .0017 .1604
5 .001 10−4 180 .0004 .1623
6 .001 10−6 282 .0002 .1564

Table II. Properties of various reduced-order models of a full-scale system with Pe=100 and two output
sensors. The errors ε and εmax are defined in (33) and (34), respectively; ε is evaluated when each

reduced system (of dimension n) is subjected to test initial condition (c).

Figure 4 shows a comparison between reduced models computed using Algorithm 1 and
Algorithm 2. The figure highlights the result shown in Table I; that is, using the one-shot
approach, the maximum error decreases rather slowly as the size of the model increases.
However, the figure also shows that the actual error for the same model (shown in this
case for test initial condition (a)) is significantly reduced as n increases. This suggests that
while subsequent eigenvectors of the full-scale Hessian may not directly target the worst-case
initial condition, they do add useful information to the basis. Conversely, Figure 4 shows that
Algorithm 1, which uses the successive dominant eigenvector of the error Hessian, does directly
target the worst-case error. However, it can also be seen that reductions in the worst-case error
for a reduced model do not necessarily translate into reductions in the error observed for a
particular initial condition. For this problem, the cost of computing the first eigenvector is
substantially higher than the cost of computing subsequent eigenvectors, making Algorithm 2
more efficient than Algorithm 1. For example, the results in Table II correspond to p = 5
(λ̄ = 0.1), p = 14 (λ̄ = 0.01), and p = 22 (λ̄ = 0.001) seed eigenvectors, with relative costs
of 1, 1.12, and 1.42, respectively. Thus, the improvements in reduced model accuracy seen in
Table II are obtained with relatively small increases in offline cost; however, this result is not
expected to hold for larger-scale problems where the overhead is much smaller than the cost
of computing each additional eigenvector. For the results that follow, all reduced models were
created using Algorithm 2.

A representative comparison of full and reduced outputs, created by driving both the full and
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Figure 4. Top: Maximum error, εmax, for reduced models computed using Algorithms 1 and 2. Bottom:
Error for test initial condition (a), ε, using the same reduced models.

reduced systems with test initial condition (b), is shown in Figure 5 for the case of Pe=1000.
The values λ̄ = 0.01 and µ̄ = 10−4 are used, leading to a reduced model of size n = 196.
The figure demonstrates that a reduced model of size n = 196 formed using Algorithm 2 can
effectively replicate the outputs of the full-scale system for this initial condition. The error for
this case as defined in (33) is ε = 0.0036.

In order to ensure that the results shown in Figure 5 are representative, one thousand
initial conditions are constructed randomly and tested using this reduced model. Each initial
condition consists of 10 superposed Gaussian functions with random centers (x̄c, ȳc) and
random standard deviations σ. This library of test initial conditions was used to generate
output comparisons between the full-scale model and the reduced-order model. The averaged
error across all 1000 trials, ε̄ = 0.0023, is close to the error associated with the comparison
shown in Figure 5. Furthermore, the maximum error over all 1000 trials is found to be 0.0056,
which is well below the upper bound εmax = 0.0829 established by (34).

Effect of variations in µ̄. As discussed above, µ̄ is the parameter that controls the number
of POD vectors n chosen for inclusion in the reduced basis. If µ̄ is too large, the reduced
basis will not span the space of all initial conditions for which it is desired that the reduced
model be valid. Figure 6 illustrates the effect of changing µ̄. The curve corresponding to a
value of µ̄ = 10−6 shows a clear improvement over the µ̄ = 10−4 case. This can also be seen
by comparing the errors listed in the first two rows of Table I, which correspond to the two
reduced models seen in Figure 6. However, the improvement comes at a price, since the number
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test initial condition (b). Pe=1000, λ̄ = 0.01, µ̄ = 10−4, ε = 0.0036.
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Figure 7. Lowering λ̄ to increase p, the number of Hessian eigenvector initial conditions used in basis
formation, leads to more accurate reduced-order output. Test initial condition (c) was used with two

output sensors, Pe=100 and µ̄ = 10−4. The output at the second sensor location is plotted here.

of basis vectors, and therefore the size of the reduced model n, increases from 43 to 69 when
µ̄ is decreased.

Effect of variations in λ̄. Another way to alter the size and quality of the reduced model is
to indirectly change p, the number of eigenvectors of H that are used as seed initial conditions
for basis creation. We accomplish this by choosing different values of the eigenvalue decay
ratio λ̄. The effect of doing so is illustrated in Figure 7. An increase in reduced model quality
clearly accompanies a decrease in λ̄. This can also be seen by comparing rows 1 and 3 of
Table II, which correspond to the two reduced models seen in Figure 7. The increase in n with
lower values of λ̄ is expected, since greater p implies more snapshot data with which to build
the reduced basis, effectively uncovering more full system modes and decreasing the relative
importance of the most dominant POD vectors. In general, for the same value of µ̄, more POD
vectors are included in the basis if λ̄ is reduced.

4.3. Ten-sensor case

To understand how the proposed method scales with the number of outputs in the system,
we repeat the experiments for systems with Q = 10 outputs corresponding to sensors in the
randomly-generated locations shown in Figure 1. A reduced model was created for the case
of Pe=100, with µ̄ = 10−4 and λ̄ = 0.1. The result was a reduced system of size n = 245,
which was able to effectively replicate all ten outputs of the full system. Figure 8 shows a
representative result of the full and reduced model predictions at all ten sensor locations.

The size n = 245 of the reduced model in this case is considerably larger than that in the
corresponding two-output case (n = 62), which is shown in the first row of Table II, although
both models were constructed with identical values of µ̄ and λ̄. The difference between high-
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Figure 8. A comparison of the full (N = 1860) and reduced (n = 245) outputs for all Q = 10 locations
of interest. Test initial condition (c) was used to generate these data with Pe = 100, µ̄ = 10−4, λ̄ = 0.1.

and low-Q experiments is related to the Hessian eigenvalue spectrum. As demonstrated in
Figure 2, the eigenvalue decay rate of the Q = 10 case is less rapid than that of the Q = 2
case. This means that, for the same value of λ̄, more seed initial conditions are generally
required for systems with more outputs. Since additional modes of the full system must be
captured by the reduced model if the number of sensors is increased, it is not surprising that
the size of the reduced basis increases.

4.4. Observations and Recommendations

The results above demonstrate that reduced models formed by the proposed method can be
effective in replicating full-scale output quantities of interest. At this point, we can use the
results to make recommendations about choosing µ̄ and λ̄, the two parameters that control
reduced-model construction.

In practice, one would like to choose these parameters such that both the reduced model size
n and the modeling error for a variety of test initial conditions are minimal. The size of the
reduced model is important because n is directly related to the online computational cost; that
is, n determines the time needed to compute reduced output approximations, which is required
to be minimal for real-time applications. The offline cost of forming the reduced model is also
a function of µ̄ and λ̄. When µ̄ is decreased, the basis formation algorithm requires more POD
basis vectors to be computed; thus, decreasing µ increases the offline cost of model construction.
In addition, the online cost of solving the reduced system in (12) and (13), which is not sparse,
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Figure 9. A measure of the error in six different reduced models of the same system plotted versus
their sizes n for the ten-sensor case. The three plots were generated with test initial conditions (a),

(b), and (c), respectively. Pe=100, Q = 10 outputs.

scales with n2T . While decreasing µ̄ might appreciably improve modeling accuracy, doing so
can only increase the time needed to compute reduced output approximations. Changes in λ̄
affect the offline cost more strongly. Every additional eigenvector of H to be calculated adds
the cost of several additional large-scale system solves: several forward and adjoint solves are
needed to find an eigenvector using the matrix-free Lanczos solver described earlier. In addition,
the number of columns of the POD snapshot matrix X grows by (T +1) if p is incremented by
one; computing the POD basis thus becomes more expensive. If these increases in offline cost
can be tolerated, though, the results suggest a clear improvement in reduced-model accuracy
for a relatively small increase in online cost.

Figure 9 illustrates the dependence of reduced model size and quality on the parameters
µ̄ and λ̄. For the case of ten output sensors with Pe=100, six different reduced models were
constructed with different combinations of µ̄ and λ̄. The three plots in Figure 9 show the
error ε versus the reduced-model size n for each of the test initial conditions in Figure 3.
Ideally, a reduced model should have both small error and small n, so we prefer those models
whose points reside closest to the origin. Ignoring differences in offline model construction cost,
decreasing λ̄ should be favored over decreasing µ̄ if more accuracy is desired. This conclusion
is reached by realizing that for a comparable level of error, reduced models constructed with
lower values of λ̄ are much smaller. Maintaining a small size of the reduced model is important
for achieving real-time computations for large-scale problems of practical interest, as discussed
in the next section.
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5. Application: Model Reduction for 3-D Contaminant Transport in an Urban Canyon

We demonstrate our model reduction method by applying it to a three-dimensional airborne
contaminant transport problem for which a solution is needed in real time. Intentional or
unintentional chemical, biological, and radiological (CBR) contamination events are important
national security concerns. In particular, if contamination occurs in or near a populated
area, predictive tools are needed to rapidly and accurately forecast the contaminant spread
to provide decision support for emergency response efforts. Urban areas are geometrically
complex and require detailed spatial discretization to resolve the relevant flow and transport,
making prediction in real-time difficult. Reduced-order models can play an important role in
facilitating real-time turn-around, in particular on laptops in the field. However, it is essential
that these reduced models be faithful over a wide range of initial conditions, since in principle
any of these initial conditions can be realized. Once a suitable reduced-order model has been
generated, it can serve as a surrogate for the full model within an inversion/data assimilation
framework to identify the initial conditions given sensor data (see the discussion of the inverse
problem in the full-scale case in [2]).

To illustrate the generation of a reduced-order model that is accurate for high-dimensional
initial conditions, we consider a three-dimensional urban canyon geometry occupying a
(dimensionless) 15 × 15 × 15 domain. Figure 10 shows the domain and buildings, along
with the locations of six output nodes that represent sensor locations of interest, all placed at
a height of 1.5. The model used is again the convection-diffusion equation, given by (35). The
PDE is discretized in space using an SUPG finite element method with linear tetrahedra, while
the Crank-Nicolson method is used to discretize in time. Homogeneous Dirichlet boundary
conditions of the form (36) are specified for the concentration on the inflow boundary, x̄ = 0,
and the ground, z̄ = 0. Homogeneous Neumann boundary conditions of the form (37) are
specified for the concentration on all other boundaries.

The velocity field, ~v, required in (35) is computed by solving the steady laminar
incompressible Navier-Stokes equations, also discretized with SUPG-stabilized linear
tetrahedra. No-slip conditions, i.e. ~v = 0, are imposed on the building faces and the ground
z̄ = 0 (thus there is no flow inside the buildings). The velocity at the inflow boundary x̄ = 0
is taken as known and specified in the normal direction as

vx(z) = vmax

(
z

zmax

)0.5

,

with vmax = 3.0 and zmax = 15, and zero tangentially. On the outflow boundary x̄ = 15,
a traction-free (Neumann) condition is applied. On all other boundaries (ȳ = 0, ȳ = 15,
z̄ = 15), we impose a combination of no flow normal to the boundary and traction-free
tangent to the boundary. The spatial mesh for the full-scale system contains 68,921 nodes
and 64,000 tetrahedral elements. For both basis creation and testing, a final non-dimensional
time tf = 20.0 is used, and discretized over 200 timesteps. The Peclet number based on the
maximum inflow velocity and domain dimension is Pe=900. The PETSc library [6–8] is used
for all implementation.

Figure 11 illustrates a sample forward solution. The test initial condition used in this
simulation, meant to represent the system state just after a contaminant release event, was
constructed using a Gaussian function with a peak magnitude of 100 centered at a height of
1.5.
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Figure 10. Building geometry and locations of outputs for the 3-D urban canyon problem.

For comparison with the full system, a reduced model was constructed using Algorithm 2
with the eigenvalue decay ratios λ̄ = 0.005 and µ̄ = 10−5, which led to p = 31 eigenvector
initial conditions and n = 137 reduced basis vectors. Eigenvectors were computed using the
Arnoldi eigensolver within the SLEPc package [22], which is built on PETSc. Figure 12 shows
a comparison of the full and reduced time history of concentration at each output location.
The figure demonstrates that a reduced system of size n = 137, which is solved in a matter
of seconds on a desktop, can accurately replicate the outputs of the full-scale system of size
N = 65, 600. We emphasize that the (offline) construction of the reduced-order model targets
only the specified outputs, and otherwise has no knowledge of the initial conditions used in
the test of Figure 12 (or any other initial conditions).

6. Conclusions

A new method has been proposed for constructing reduced-order models of linear systems that
are parametrized by initial conditions of high dimension. Formulating the greedy approach
to sampling as a model-constrained optimization problem, we show that the dominant
eigenvectors of the resulting Hessian matrix provide an explicit solution to the greedy
optimization problem. This result leads to an algorithm to construct the reduced basis in
an efficient and systematic way, and further provides quantification of the worst-case error
in reduced model output prediction. Thus, the resulting reduced models are guaranteed to
provide accurate replication of full-scale output quantities of interest for any possible initial
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Figure 11. Transport of contaminant concentration through urban canyon at six different instants in
time, beginning with the initial condition shown in upper left.
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Figure 12. Full (65,600 states) and reduced (137 states) model contaminant concentration predictions
at each of the six output nodes for the three-dimensional urban canyon example.

condition, making them appropriate for use in an inverse problem/data assimilation setting.
The adaptive greedy sampling approach combined with the model-constrained optimization
formulation provides a general framework that is applicable to nonlinear problems, although
the explicit solution and maximal error guarantees apply only in the linear case. Further, we
note that the task of sampling system inputs (which here were taken to be zero) to build a
basis over the input space could also be formulated as a greedy optimization problem.
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3. V. Akçelik, G. Biros, O. Ghattas, J. Hill, D. Keyes, and B. van Bloemen Waanders. Parallel algorithms for
PDE-constrained optimization. In M. Heroux, P. Raghaven, and H. Simon, editors, Frontiers of Parallel
Computing. SIAM, 2006.

4. A. Antoulas. Approximation of Large-Scale Dynamical Systems. Advances in Design and Control DC-06.
SIAM, Philadelphia, 2005.

5. E. Arian, M. Fahl, and E.W. Sachs. Trust-region proper orthogonal decomposition for optimal flow control.
Technical Report ICASE 2000-25, Institute for Computer Applications in Science and Engineering, May
2000.

6. S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National
Laboratory, 2004.

7. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, and H. Zhang.
PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

8. S. Balay, W. Gropp, L. McInnes, and B. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.
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