
Sundance: High-Level Software for PDE-Constrained Optimization

Kevin Long∗, Paul T. Boggs†and Bart G. van Bloemen Waanders‡

April 5, 2012

Abstract

Sundance is a package in the Trilinos suite designed to provide high-level components for the development of high-
performance PDE simulators with built-in capabilities for PDE-constrained optimization. We review the implications of
PDE-constrained optimization on simulator design requirements, then survey the architecture of the Sundance problem
specification components. These components allow immediate extension of a forward simulator for use in an optimization
context. We show examples of the use of these components to develop full-space and reduced-space codes for linear and
nonlinear PDE-constrained inverse problems.

1 Introduction

Numerical optimization has become an essential tool for mathematicians, scientists and engineers. Manufacturers seek to
maximize efficiency in their production operations. Aerodynamicists try to minimize drag of airplane wings while maxi-
mizing lift characteristics. Geophysicists strive to determine material properties in subsurface structures. In each case, a
“model” can be identified that drives the underlying state or dynamics of the system. For shape optimization of a wing,
the underlying model consists of the compressible fluid flow equations, whereas in the case of determining subsurface
material properties, the model consists of the wave equation. These problems can be formulated as a minimization or
maximization of a function subject to a model as constraints on its variables. This can be expressed mathematically as:

min
α
J (u(α), α) (1)

s.t. c(u, α) = 0 (2)
h(u, α) ≥ 0 (3)

where J (u(α), α) is the objective function, c(u(α), α) = 0 represents the “model” or state equations, α are the design
variables, u are the state variables, and h are the inequality constraints. We write u(α) to indicate that for any value of the
design variables, we can solve for the state variables. Our solution strategies require the knowledge of both the state (model
variables) and the design variables, and we therefore specifically include these in the above described, general formulation
of the optimization problem. The inequality constraints (3) are often simple bounds on the design variables, but could
be used more generally to ensure that certain (nonlinear) functions of the state and/or design variables are appropriately
bounded. We refer to this formulation as a constrained optimization problem and a significant body of literature (a subset
of which is listed here) [17, 8, 7, 9, 3, 22, 13, 6] deals with appropriate solution methods and algorithms.

This paper is focused on the common and important case in which the constraints c(u, α) = 0 are partial differential
equations, a class of problems known as PDE-constrained optimization (PDECO). The size, complexity, and infinite-
dimensional nature of PDECO problems all present significant challenges for general-purpose optimization algorithms and
require special attention in the handling of regularization, iterative solvers, preconditioning, globalization, management
of inexactness, sensitivity calculations, and parallel implementation, all of which need tailoring to the structure of the
∗Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, USA. kevin.long@ttu.edu
†Sandia National Laboratories, Livermore, California, USA. ptboggs@sandia.gov
‡Sandia National Laboratories, Albuquerque, New Mexico, USA. bartv@sandia.gov (Sandia is a multiprogram laboratory operated by Sandia Cor-

poration, a Lockheed-Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000)

1

underlying operators. PDECO methods require not only considerable information from the simulator (or model) but also
require the manipulation of various linear algebra objects that need to be embedded in the model.

In this paper we present a software design and code capability that elegantly and efficiently enables PDECO algorithms.
To set the stage, in section 2 we examine several approaches to solving the PDECO problem (1) – (3). In section 3
we describe such a software system whose syntax allows a natural expression of PDECO problems and seamless way
to connect to an optimizer. In addition, we present the use of multiple Trilinos packages ranging from linear solvers to
distributed linear object capabilities as part of our software infrastructure. In section 4 we give a collection of examples
that illustrate the power of our system. In Section 5 we discuss the current state and future directions for this work.

2 PDE-Constrained Optimization Overview

In this section, we consider two approaches for solving constrained optimization problems (1) –(3). The first approach
solves the PDE c(u, α) = 0 at each step of the optimization process and thus the iterates are always feasible. (We refer to
these methods as “feasibility preserving methods.”) These methods are based on the fact that, in some cases, one only has
an existing code for solving the PDE and this code is not easily modified, or only can be only “slightly” modified. The
second approach only requires that the PDE constraints be satisfied in the limit as the optimization process converges. We
refer to these methods as “all-at-once” methods since we attempt to solve the optimization problem and the PDE constraint
at the same time. This approach requires significant intrusion into the PDE solver so that it can be tightly coupled to the
optimizer. Not surprisingly, each of these two strategies has variants, as we discuss below.

First, however, we note that our discussion below is predicated on the assumption that the PDECO problem has sufficient
smoothness for gradient-based methods to be applicable; if not, then one has little choice but to use a derivative-free
method; such methods can only be realistically considered for problems with very few design variables and even in this
case, they often converge very slowly. For the remainder of this paper, we will assume that the functions are all sufficiently
differentiable.

2.1 Feasibility-Preserving Methods

The methods for solving PDECO that solve the state equation at each iteration have two main variants. The first is
the “black-box” procedure in which no modifications to the PDE solver can be made. The code can only evaluate the
state variables given an instance of the design variables as input. They completely separate optimization strategies from
the model by communicating results through loosely coupled interfaces, e.g., through the file system. Furthermore,
sensitivity information is typically unavailable from the underlying dynamics equation and consequently, the objective
function gradients are acquired by finite differencing the entire forward simulation. Although less efficient, these methods
are nevertheless able to employ some powerful optimization methods, provided the number of design variables is small.
In addition, black-box methods have the distinct advantage of having a very simple interface between the optimizer and
the PDE simulator, and so are sometimes a practical choice.

As mentioned above, an implicit assumption in (1) – (3) is that for any (reasonable) value of the design variables, the
underlying model can be solved for the state variables. Thus, ignoring the inequality constraints to simplify the algorithmic
presentation, we can perform a nonlinear elimination on the equality constraints, i.e., solve the equality constraints for
u(α) to obtain an unconstrained optimization problem of the form minα J (α). A local minimizer may be obtained by
applying a variant of Newton’s method (see, e.g., [17]) given by

αk+1 = αk − σk(Bk)−1∇J (αk),

where the superscripts denote the iteration number, B is an approximation to the Hessian of the objective function evalu-
ated at the kth iterate, and σk is a step length parameter appropriately chosen. The convergence theory for such methods
is well developed.

As noted above, the primary disadvantage of this approach is in its inability to consider large number of optimization
variables and guarantee accuracy. If there are n design variables, then n forward simulations are required for each finite
difference gradient calculation and this must be done at each iteration. For n large, e.g., a design variable at each point of
the computational domain, the finite difference method becomes computationally intractable. Furthermore, even when n
is small the accuracy of finite difference derivatives may be low because the forward simulations are themselves subject
to discretization errors and inexact solves,whose effect is amplified by differencing.

2

We conclude this part by providing two alternatives to finite differencing that, although much more efficient, are still not
as efficient as the all-at-once methods described below. These are the direct sensitivity and adjoint methods. Note that
both require some intrusion into the state-equation solver.

We again use just the equality constrained version to simplify the presentation. Applying the chain rule to the objective
function, we have

∇J =
∂J
∂u

∂u
∂α

+
∂J
∂α

(4)

for the reduced gradient ∇J. Similarly, for c(u(α), α) = 0 we have

∂c
∂u

∂u
∂α

+
∂c
∂α

= 0. (5)

Since ∂c
∂u is invertible, we combine (4) and (5) to obtain

∇J = −∂J
∂u

∂c
∂u

−1 ∂c
∂α

+
∂J
∂α

. (6)

The “direct sensitivity matrix” ∂u
∂α = ∂c

∂u
−1 ∂c

∂α requires the solution of the state Jacobian against a right hand side with
multiple columns equal to the number of optimization variables. Although the direct sensitivity matrix offers more effi-
cient and exact gradient calculations, if the number of optimization variables is sufficiently large this method also becomes
computationally intractable. Fortunately, a simple transformation is possible to avoid the computational expense associ-
ated with the dependence of the optimization variable. By shifting ∂J

∂u
∂c
∂u
−1

and taking the transpose, the dependence on
the multiple right hand sides is now avoided. This transformation is termed the “adjoint based sensitivity” method and the
gradient is calculated as:

∇J =
∂c
∂u

−T ∂J
∂u

∂c
∂α

+
∂J
∂α

. (7)

Note that we already have ∂c
∂u since it is needed to solve the the constraint. Indeed, in the case of a linear constraint, it’s just

the linear operator. Often, the other derivatives are not hard to obtain. The implementation of adjoint based sensitivities
provides the primary prerequisite towards solving PDECO problems with large design variables. In the following section,
we discuss all-at-once methods which rely on adjoints and offer additional computational improvements.

2.2 The All-at-Once Approach

The methods described here offer further computational improvements by tightly coupling the convergence of the state and
optimization calculations. That is, there is no need to solve the nonlinear PDEs exactly until the optimization converges.
The classical way to approach this problem is to introduce Lagrange multiplier fields, λ, known as the adjoint states or
costate variables, and form a Lagrangian functional L that incorporates the PDE constraints via an inner product with
λ. In particular, let c be the PDE constraint and assume that the initial conditions are included. Then we can write the
Lagrangian as

L(α, u, λ) = J (u, α)+ < λ, c > .

One then requires stationarity of L with respect to the state variables (u), decision variables (α), and adjoint variables
(λ). Taking variations, the following system of equations is derived, representing the first-order necessary conditions for
optimality:

Lλ(α, u, λ) = c(u, α) = 0 state equation (8)

Lu(α, u, λ) = Ju(û, α) + cu(u, α) = 0 adjoint equation (9)
Lα(α, u, λ) = Jα(u, α) + cα(u, α) = 0 decision equation (10)

3

where the subscripts denote taking variations of the particular functional with respect to the subscript. When appropriately
discretized on the current grid level, the dimension of each of u, λ is equal to the number of grid points Ng multiplied
by number of time steps (in time-dependent problems) Nt, α is of dimension Ng, and thus the system (8) – (10) is of
dimension NgNt + Ng. This can be very large for problems of interest—for example, in numerical problems presented
in [1], the system contains 3.4× 109 unknowns. The time dimension cannot be “hidden” with the usual time-stepping
procedures, since (8) – (10) couples the initial and final value problems through the decision equation. This is not shown
here, but the optimality system is thus a boundary value-problem in 4D space–time.

If one considers (8) – (10) as a nonlinear system of equations to be solved by Newton’s method, one will have to solve a
linearized system at each iteration. It has been noted that the linearized system corresponds to a constrained optimization
problem that is a quadratic approximation to the objective function with linearized constraints. In the optimization litera-
ture, this goes by the name sequential quadratic programming, or SQP. See [4] for a discussion of SQP methods in finite
dimensions. The system (8) – (10) is known in the optimization literature as the Karush-Kuhn-Tucker (KKT) conditions.

Since the coupled optimality system can be formidable to solve simultaneously, a popular alternative is to eliminate state
and adjoint variables and thereby reducing the system to a manageable one in just the decision variable. Methods of this
type are known as reduced space methods. A nonlinear elimination or nonlinear Gauss-Seidel variant of a reduced space
method proceeds as follows for the KKT system. Given α at some iteration, solve the state equation for the state variable
u. Knowing the state then permits solution of the adjoint equation for the adjoint variables λ and p̂. Finally, with the state
and adjoint known, the decision variable α is updated via an appropriate linearization of the decision equation. This loop is
then repeated until convergence. This procedure is demonstrated as a solution mechanism in our numerical result section.
Historically, reduced space methods have been attractive because solving the subsets of equations in sequence exploits
the state/adjoint/decision structure of the optimality system and capitalizes on well-established methods and software for
solving the state equation. In addition, adjoint PDE solvers are becoming more popular, due to their role in goal-oriented
error estimation and efficient sensitivity computation, so they can be exploited as well.

In contrast to reduced space methods, full space methods solve for the state, decision, and adjoint variables simultane-
ously. For large-scale problems, this is typically effected via Newton-Krylov iteration. That is, the linear system arising
from the KKT systems at each Newton iteration is solved using a Krylov iterative method. The difficulty of this approach
is the complex structure, indefiniteness, and ill-conditioning of the KKT system, which in turn requires effective precondi-
tioning. Similar to the reduced space methods, our software accommodates full space methods with similar ease as shown
in the numerical results section.

2.3 Discussion

Numerical evidence suggests that for steady-state PDE-constrained optimization problems, full-space methods can out-
perform reduced space methods by a wide margin. For optimization of systems governed by time-dependent PDEs, the
answer is not as clear. The nonlinearities within each time step of a time-dependent PDE solve are usually much milder
than for the corresponding stationary PDEs, so amortizing the nonlinear PDE solve over the optimization iterations is
less advantageous. Moreover, time dependence results in large storage requirements for full-space methods, since the full
space optimality system becomes a boundary value problem in the space–time cylinder. For such problems, reduced space
methods are often preferable.

In their survey of approaches to PDECO, van Bloemen Waanders et al. [21] laid out a hierarchy of methods ranging
from a black-box approaches to the all-at-once approaches describe above. They found that for more than ~5-10 design
variables the more intrusive algorithms become more efficient than black-box by many orders of magnitude. Despite this
clear performance advantage, intrusive algorithms present several difficulties for the prospective user. First, one must
compute certain operators not usually available from off-the-shelf simulators. Second, the PDE solver and the optimizer
must interact directly, often in ways more complex than the simple master-slave relationship used in a black-box method.
Given the advantages of the more intrusive approaches for very large problems, we now consider the software implications
and introduce Sundance.

3 Sundance

In their survey of PDECO methods, [21] a high level software vision was outlined for specifying and solving PDECO
problems; a draft version of that software was described in [21] and in [2]. The outgrowth of that work was a full-featured
finite-element toolkit called Sundance, designed from the ground up with the intention that it be used in the context of

4

Playa high-level solver interface

Epetra
(Distributed linear algebra infrastructure)

Aztec, Belos
(Krylov methods)

Amesos
(Sparse direct)

Anasazi
(Eigensolver)

Ifpack
(Incomplete

 factorization)

ML
(Algebraic
multilevel)

NOX
(Nonlinear

solvers)

Teuchos
(Utilities)

Sundance high-level simulation development tools

Trilinos packages

Intrepid
(FE)

SEACAS
(Mesh I/O)

External libraries (e.g., MPI, LAPACK, NetCDF)

Figure 1: Schematic of relationship between Sundance and other Trilinos packages. The grey box delimits the “universe”
of Trilinos packages. Sundance is a single Trilinos package, and is shown at the top. The four packages shown in dark grey
(Playa, Teuchos, Intrepid, and SEACAS) are those Trilinos packages with which Sundance interacts directly. Interaction
with other packages, for example, the NOX nonlinear solvers and the Epetra distributed linear algebra infrastructure, is
indirect and mediated by the Playa high-level solver interface. Interaction with third parties is indirect and mediated by
Teuchos, SEACAS, and Epetra.

embedded algorithms for PDECO and uncertainty quantification. Sundance is implemented in C++, with 3D capabilities,
fully parallel, and is built upon tools and solver components of the Trilinos library [10]. An overview of Sundance can be
found in the foundational paper [15].

There are a number of similar efforts that produce high-performance simulators from high-level specification or PDEs.
See [14] and [15] for literature surveys.

3.1 Interoperation with other Trilinos packages

In its role as a simulation development toolkit, the Sundance package must interoperate with many different Trilinos
packages that provide services for concrete parallel linear algebra representations, linear and nonlinear solvers, and pre-
conditioners. As Trilinos is a growing and changing system, we expect that the packages used by Sundance will change;
for example, as Epetra is phased out in favor of Tpetra, Sundance will have to be at least partially templatized . To keep
the interaction manageable and extensible, Sundance is interfaced directly with only a small number of Trilinos packages:
the Teuchos utilities, the Intrepid low level finite element package, the SEACAS mesh I/O utilities, and the Playa high-
level linear and nonlinear algebra objects. The current state of the interface is shown in figure 3.1. Centrally important
to Sundance’s interoperation with other Trilinos packages is one package, Playa [11], which provides Sundance with a
single point of contact for the various vector, operator, and solver types available through Trilinos.

3.2 Differentiation as a unifying principle

The central idea behind the design of Sundance is the realization that differentiation makes plain the association between
coefficient expressions and basis functions. Differentiation thereby enables the binding of computational kernels for
coefficients with computational kernels for basis functions and integration. This is the case even in the context of a linear
forward PDE, for which one does not ordinarily consider derivative computation to be necessary; in Sundance, automatic
differentiation is used in the discretization of every PDE. This system enables runtime coordination of very efficient
matrix and vector assembly starting from a high-level specification of the problem’s weak form, using in-place automatic

5

differentiation to compute the required derivatives. By “in-place” automatic differentiation we mean that derivatives
are evaluated concurrently with function values during traversal of an untransformed expression graph; this should not
be confused with symbolic differentiation or with automatic differentiation by source transformation. This concept and
a high-level view of its implementation are described more fully in [15]. In that same paper, performance results are
presented which indicate that the runtime assembly algorithms used by Sundance in fact often outperform both hand-
tuned simulators and simulators based on code generation.

Most pertinent to this paper is the central, and unifying, role of differentiation in the design of Sundance. Because
Sundance uses differentiation to process every weak form, the tools necessary for computation of gradients and Hessians
are built into the core design. In the present paper we will emphasize the user-level features through which problem
specification and derivative specification are used to set up a PDECO algorithm. Because the same functionality for the
forward model setup can be used to differentiate a Langrangian in PDECO, a focus on the design of the forward problem in
the next section is suffucient to explain the optimization capabilities. The core design will be demonstrated on optimiation
in several numerical examples.

3.3 Overview of object architecture

The entire Sundance toolkit contains many classes and nonmember functions, about two dozen of which might commonly
appear in user-level code. To impose some organization on that collection we will first group the user-level objects into
three categories:

• Problem specification building block objects - these are objects out of which problem specifications are as-
sembled. Examples include objects to deal with the meshing (Mesh), general utility objects (Expr), objects
to identify subsets of the computational domain (CellFilter), and a family of finite element basis functions
(BasisFamily). We can further subdivide these objects into those relating to symbolic geometry, discrete geom-
etry, discretization specification, and symbolic expressions.

• Problem specification objects - these are objects that encapsulate a problem along with instructions for its dis-
cretization. Problem specification objects produce algorithm interface objects or perhaps other problem specifica-
tion objects.

• Algorithm interface objects - these are objects that interact directly with solvers or optimizers. These are actually
objects from the Playa package, not the Sundance package, but we include them in the discussion to illustrate the
role of the problem specification objects as producers of objects that interact directly with algorithms.

These categories are shown graphically in Figure 2. In subsequent diagrams of program flow, we will refer back to this
categorization.

The problem specification building blocks have subclasses. Sundance uses the reference-counted handle idiom ([11] for
discussion of this idiom in the context of Playa) to provide polymorphism and safe memory management along with
value syntax. The actual relationship between a handle (Expr), a pointer to a base class (ExprBase), and a derived
class (CoordExpr) is as shown in the left side of figure 3. Logically, however, what matters is the relationship between
the handle and the derived class; the presence of the base class is an implementation detail irrelevant to the user. For
simplicity, we omit the actual base class and regard the handle as playing the role of a base of the inheritance diagram,
as shown in the right side of figure 3. In some cases, there may be intermediate derived types between a base class and a
final derived type; these are also invisible to an end user so we will omit such intermediaries from this discussion.

All of the building block objects have two or more subclasses; the object whose subclasses play the largest role in our
examples is class Expr, whose subclasses represent different types of mathematical expressions, for example, test func-
tions, products, or coordinate functions. A listing of several of the user-level subtypes is shown in figure 4 in the form of
a UML inheritance diagram.

Having established a categorization of objects and a shorthand for discussion of handled inheritance hierarchies, we can
now outline how these objects are typically used to construct a sequence of objects leading ultimately to Playa objects that
can be used in a solver or optimizer. Figure 5 shows the construction of a term in a weak form from its components that
specify the region of integration, the integrand, and the method of quadrature. Each of these is represented by one of the
building block objects: CellFilter for the region of integration, Expr for the integrand, and QuadratureFamily
for the method of quadrature. The result is an Expr representing the term in a weak form; because this is an Expr, it
may be added to other weak forms. Once the weak form and boundary condition expressions are put together, a user

6

QuadratureFamily

Problem specification
building block objects

NonlinearProblem

Problem specification
objects

CellPredicate

BasisFamily

VectorType

CellFilter

Symbolic geometry Discretization
specification

Mesh

Discrete geometry

Expr

Symbolic expression

LinearProblem

Functional

DiscreteSpace

Vector

Algorithm interface
objects (Playa)

LinearOperator

LinearSolver

Figure 2: Classification of user-level Sundance classes into the categories of problem specification building blocks, prob-
lem specifications objects, and algorithm interface objects. The problem specification building blocks are further subdi-
vided into those relating to symbolic geometry, discrete geometry, discretization specification, and symbolic expressions.

Expr

CoordExpr

Expr

ExprBase

CoordExpr

(b) Logical relationship(a) Actual relationship

1

*

Figure 3: UML object diagram showing (a) the actual relationship between a handle class, a polymorphic base class, and
a subclass, and (b) the logical relationship with the implementation detail of the base class supressed.

7

DiscreteFunction

UnknownFunction

TestFunction

Derivative

CoordExpr

CellDiameterExpr

CellDiameterExpr

Expr

Figure 4: UML object diagram showing several (logical) subclasses of the Expr class.

can construct a problem specification of appropriate type. Figure 6 shows the construction of a NonlinearProblem
object from a specification of the problem’s mesh, weak form, essential boundary conditions, list of test functions, list of
unknown functions, expression for initial guess, and specification of the type of low-level linear algebra representation to
be used. Finally, figure 6 shows the production of Playa operator and vector objects as requested by a solver algorithm.

In some cases, a problem specification object does not produce Playa algorithm interface objects directly, but in-
stead produces two or more problem specification objects. For example, in figure 7 building blocks are used to con-
struct a Functional object. Member functions of the Functional then produce the NonlinearProblem or
LinearProblem objects resulting from computing variations with respect to certain specified functions (these func-
tions being represented as Expr objects). This example is of particular importance in optimization, where the functional
represents a Lagrangian and the nonlinear and linear problems it produces are the state and adjoint equations, respectively.

3.4 Example: constructing a nonlinear forward problem

To place the software objects in the setting of a concrete problem, we show an example of setting up a simple forward
problem. Let Vh be a space of piecewise linear functions on some meshing of [0, 1], and consider the problem of finding
u ∈ Vh such that ˆ 1

0
v′u′ + vxeu − vg(x) dx = 0 ∀v ∈ Vh (11)

with boundary condition u(0) = u(1) = 0. This is a variant of Bratu’s problem [5] and of Toomre’s problem [20].
To produce an exactly solvable problem, we use the method of manufactured solutions [18, 19] (MMS). Choosing the
solution u(x) = x(1− x) gives the forcing function g(x) = xex(1−x) + 2.

The weak form requires a region of integration, and the boundary conditions require some specification of where they
are to be applied. The CellFilter class is used to identify geometric regions; during discretization, a cell filter acts
to select certain cells according to some criterion, for example, all cells of a specified dimension. Cell filters can also be
specified in terms of predicate functions; in the code fragment below, the zero-dimensional cells are further filtered by
predicate functions that select the points at x = 0.0 and x = 1.0.

C e l l F i l t e r omega = new M a x i m a l C e l l F i l t e r () ;
C e l l F i l t e r p ts = new D i m e n s i o n a l C e l l F i l t e r (0) ;
C e l l F i l t e r l e f t = pts . subset (new Coord ina teValueCel lPred ica te (0 , 0 .0)) ;
C e l l F i l t e r r i g h t = pts . subset (new Coord ina teValueCel lPred ica te (0 , 1 .0)) ;

8

CellFilter region

Expr integrand

QuadratureFamily vType

Problem specification
building block objects

Expr integral

Problem specification
building block object

Integral() function

Figure 5: Diagram indicating how the Integral non-member function accepts a symbolic geometry ob-
ject (type CellFilter), a symbolic integrand (type Expr), and a specification of quadrature method (type
QuadratureFamily) to produce an object representation (type Expr) of a weak form.

Mesh

Expr weak form

Expr BC

Expr test func list

Expr unk func list

VectorType

NonlinearProblem

LinearOperator J

Vector resid

Expr soln estimate

NLP ctor

Vector curr soln est

Problem specification
building block objects

Problem specification
object

Algorithm interface
objects

accessors

Figure 6: Example of program flow from building block components, to problem specification object for a nonlinear PDE,
to Playa linear algebra objects that can be used in a nonlinear solver.

9

Mesh mesh

Expr integral

VectorType vType

Functional

Problem specification
building block objects

Problem specification
object

Expr var

Expr unk

Expr fixed

Problem specification
building block objects

Expr varEvalPt

Expr unkEvalPt

Expr fixedEvalPt

ctor

NonlinearProblem

Problem specification
object

nonlinVariationalProbargs

Figure 7: Example of program flow from building block components to construction of a functional, followed by taking
variations with respect to specified functions to obtain a nonlinear problem.

The symbolic objects composing the integrand must also be constructed. In the next code fragment, we define test and
unknown functions v and u and specify that they use first-order Lagrange basis functions. Expressions for the coordinate
function x and the differentiation operator are also defined; the argument “0” specifies the first coordinate direction. With
these components ready, the integrand can be formed using overloaded operators. Finally, a quadrature rule must be
chosen; to give reasonable accuracy on the nonlinear term we use fourth-order Gauss-Legendre quadrature.

BasisFamily bas is = new Lagrange (1) ;

Expr v = new TestFunct ion (bas is) ;
Expr u = new UnknownFunction (bas is) ;

Expr x = new CoordExpr (0) ;
Expr dx = new D e r i v a t i v e (0) ;

QuadratureFamily quad = new GaussianQuadrature (4) ;

Expr weakForm = I n t e g r a l (omega , (dx∗v) ∗ (dx∗u) + v∗x∗exp (u) − g∗v , quad) ;

The boundary conditions are set up in a similar manner. There are a number of ways to specify Dirichlet boundary
conditions with Sundance objects. Nitsche’s method may be used, in which case, the appropriate expressions are formed
and added to the weak form. Here we use the simple method of “replacing” the rows associated with boundary degrees of
freedom by equations that impose the boundary conditions. That these expressions are to replace the weak form for the
specified rows is indicated by using them in an EssentialBC function rather than an Integral function; otherwise,
the specification of weak forms and replacement BCs is identical. Multiplication by a test function is used to allow the
user to indicate which rows are to be replaced. The code to define the Dirichlet boundary conditions is shown here.

Expr bc = Essent ialBC (l e f t + r i g h t , v∗u , quad) ;

We’ve now specified the weak form and boundary conditions in what one might call quasi-symbolic form: symbolic
expressions annotated by specification of basis functions and quadrature rules. To be ready to produce discrete objects,
a mesh must be defined and a low-level linear algebra representation must be chosen. Meshes are obtained through an
abstract MeshSource interface, subclasses of which might do on-the-fly building of simple meshes or reading from
mesh files. For a simple one-dimensional mesh we build on the fly with

10

MeshType meshType = new BasicSimpl ic ia lMeshType () ;
/∗ Mesh the i n t e r v a l [0 , 1] w i th 16 elements ∗ /
i n t nx = 16;
MeshSource mesher = new Par t i t ionedL ineMesher (0 . 0 , 1 .0 , nx , meshType) ;
Mesh mesh = mesher . getMesh () ;

The selection of a subclass of Playa::VectorType controls what type of linear algebra objects will be built; here, we
choose Epetra.

VectorType <double> vecType = new EpetraVectorType () ; / / Use Epetra ob jec ts

The next code fragment shows the construction of the problem’s discrete space and the discrete function that represents
the initial guess for the solution.

DiscreteSpace discSpace (mesh , basis , vecType) ;
Expr u0 = new Disc re teFunc t ion (discSpace , 0 .0) ;

Everything needed to define the problem is now in place, so we construct a NonlinearProblem object.

NonlinearProblem prob (mesh , weakForm , bc , v , u , u0 , vecType) ;

The nonlinear problem class provides member functions to compute the problem’s Jacobian and residual, and also to
obtain a vector representation of the current state. One could use those functions to write an adapter allowing the use of
NonlinearProblem with a user’s desired nonlinear solver library. Because Trilinos already provides a full-featured
nonlinear solver package, NOX, NonlinearProblem also has a solve()member function that accepts a NOX solver
object as an argument and carries out the solve. The result is written into the discrete function u0 that was used in the
construction of the NonlinearProblem. Definition of the NOX solver object and the solution of the problem is shown
in this code fragment.

ParameterXMLFileReader reader (" nox−amesos . xml ") ;
ParameterL is t noxParams = reader . getParameters () ;
NOXSolver non l i nSo lve r (noxParams) ;

prob . so lve (non l i nSo lve r) ;

Results are shown in figure 8.

3.5 The objective function interface

Once the functional has been defined, the procedure of setting up and using the problems required for a reduced-
space formulation of a nonlinear PDECO problem is largely independent of the specific form of the functional and
can be neatly encapsulated in a further set of driver objects. These are the LinearPDEConstrainedObj and
NonlinearPDEConstrainedObj objects, which represent differentiable objective functions in the reduced space.
These objects manage internally the sequence of solving the state and adjoint equations and then computing the gradient.
These two classes implement a very lightweight objective function interface, Playa::ObjectiveBase that can be
adapted for use with nonlinear solvers such as NOX or gradient-based optimization libraries such as MOOCHO.

3.5.1 Independent or sequential constraints

In some problems, certain of the constraint equations and their associated state variables may either be completely de-
coupled, or perhaps coupled in a sequential way. An example of a set of uncoupled constraints and states arises in
multifrequency inversion, where the responses at different frequencies are mutually independent. Sequential coupling

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

u(
x)

exact solution
numerical solution

Figure 8: Comparison of exact and numerical solutions to the nonlinear forward problem.

arises, for example, in passive advective transport where the equation for the velocity is independent of the concentra-
tion. In such cases, it is often more efficient to solve the smaller systems. To enable this performance optimization, the
constructors for the linear and nonlinear PDEConstrainedObj objects allows specification of sequences of state and
adjoint variables. This is taken as a directive that the state equations are to be solved in the specified order, and the adjoint
equations in the reverse order.

In principle, these relationships could be deduced automatically from the symbolic problem specification. In the current
implementation of Sundance it is the user’s responsibility to provide the correct dependency ordering; automation of this
step is planned in a future version.

4 Model Problems

To illustrate the use of Sundance components to program and solve PDE-constrained optimization problems, we develop
several simple model problems. To keep the focus on the software objects used to set up the problems, we use very simple
solution algorithms.

We show results to verify accuracy, but because we have made no attempt to tune the solvers or optimizers, and because
of the difficulty of programming these problems without Sundance, we present no timing results. For timings of Sundance
on forward problems compared to several other codes and for parallel scalability results, we refer the reader to [15].

4.1 Linear source inversion

Our first model problem is source inversion for the Poisson equation on a washer-shaped domain. The state, adjoint, and
full KKT equations are all linear. The goal of the problem is to select a source in order to match a specified target function.
We use the method of manufactured solutions [18, 19] to construct a problem yielding an exact solution with simple form.
With Tikhonov regularization on the design variable α, the optimization problem is

min
u,α

f (u, α) =
1
2

ˆ
Ω
(u− u∗)2 dΩ +

R
2

ˆ
Ω
(∇α)2 dΩ (12)

subject to


∇2u = α + g in Ω
u = 0 on Γinner
u = cos (θ) sin (θ) on Γouter
∂u
∂n = 0 on remaining surfaces

. (13)

12

Figure 9: Target function u∗ for the Poisson source inversion problem on a washer-shaped region. The outer ring of the
washer is labeled Γouter, the inner ring is Γinner.

Here R is a regularization parameter, and u∗ and g are functions to be defined below. Introducing a multiplier variable λ,
the problem’s Lagrangian is

L = f +
ˆ

Ω
[∇λ · ∇u + λ (α + g)] dΩ. (14)

The manufactured target function u∗ and exact solution u are, in cylindrical coordinates,

u∗ (r, θ, z) =
[
2r− 1 + ((4− 9r)R)/r2

]
cos θ sin θ (15)

and
u (r, θ, z) = (2r− 1) cos (θ) sin (θ) . (16)

With these the forcing function g is

g = (1/(600r2))(−100r6 + 360r5− 150 log(r)r4 +(−273+ log(1024)) r4− 3600r+ log(1024)+ 2392) cos θ sin θ.
(17)

The domain and the target function are shown in figure 9.

4.1.1 Programming the functional

The bulk of the work for the programmer is in setting up the Functional object for the Lagrangian.

/∗ Choose the vec to r type ∗ /
VectorType <double> vecType = new EpetraVectorType () ;

/∗ Create the mesh ∗ /
MeshType meshType = new BasicSimpl ic ia lMeshType () ;
MeshSource meshSrc = new ExodusMeshReader (" concCylinder3D−0" , meshType) ;
Mesh mesh = meshSrc . getMesh () ;

/∗ Create the symbol ic geometry . Mesh l a b e l s are assumed to have been
∗ assigned by the mesher ∗ /

C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r () ;
C e l l F i l t e r faces = new D i m e n s i o n a l C e l l F i l t e r (2) ;
C e l l F i l t e r i nne r = faces . labeledSubset (2) ;

13

C e l l F i l t e r ou ter = faces . labeledSubset (1) ;

/∗ Create the unknown f u n c t i o n s ∗ /
BasisFamily bas is = new Lagrange (1) ;
Expr u = new UnknownFunction (basis , " u ") ;
Expr lambda = new UnknownFunction (basis , " lambda ") ;
Expr alpha = new UnknownFunction (basis , " alpha ") ;

/∗ Set up the symbol ic expressions ∗ /
Expr dx = new D e r i v a t i v e (0) ;
Expr dy = new D e r i v a t i v e (1) ;
Expr dz = new D e r i v a t i v e (2) ;
Expr grad = L i s t (dx , dy , dz) ;

Expr x = new CoordExpr (0) ;
Expr y = new CoordExpr (1) ;
Expr z = new CoordExpr (2) ;

Expr r = s q r t (x∗x + y∗y) ;
Expr cosT = x / r ;
Expr sinT = y / r ;

const double p i = 4.0∗ atan (1 . 0) ;
double R = 1.0e−2;

Expr t a r g e t = uExact + R∗(4.0−9.0∗ r) / r / r ∗cosT∗sinT ;
Expr g = (2392 − 3600∗ r + 360∗pow(r , 5) − 100∗pow(r , 6)

+ pow(r , 4) ∗(−273 + log (1024)) + log (1024) − 150∗pow(r , 4) ∗ l og (r))
/ (600.∗pow(r , 2)) ;

/∗ Create the Lagrangian ∗ /
QuadratureFamily quad = new GaussianQuadrature (4) ;

Expr f = I n t e g r a l (i n t e r i o r , 0.5∗pow(u−t a rge t , 2 .0) , quad , watch) ;
Expr reg = I n t e g r a l (i n t e r i o r , 0.5∗R∗ (grad∗alpha) ∗ (grad∗alpha) , quad) ;

Expr c o n s t r a i n t = I n t e g r a l (i n t e r i o r , (grad∗u) ∗ (grad∗ lambda) + alpha∗ lambda +
g∗ lambda , quad) ;

Expr BC = Essent ialBC (outer , lambda∗ (u−cosT∗sinT) , quad)
+ Essent ialBC (inner , lambda∗u , quad) ;

Func t iona l L (mesh , f +reg+ cons t ra i n t , BC, vecType) ;

With the Lagrangian encapsulated as a Functional object, we can set up our choice of reduced-space or full-space
formulations.

4.1.2 Solution by the full-space method

A LinearProblem representation of the full KKT equations is obtained by taking variations of the Lagrangian.

DiscreteSpace discSpace (mesh , L i s t (basis , basis , bas is) , vecType) ;
Expr w0 = new Disc re teFunc t ion (discSpace , 0 .0) ;

Expr dum;

LinearProblem KKT_Prob = L . l i n e a r V a r i a t i o n a l P r o b (L i s t (lambda , u , alpha) ,
w0, L i s t (lambda , u , alpha) , dum, dum) ;

At this point, the system’s matrix and right-hand side can be obtained as Playa LinearOperator and Vector objects
through member functions of LinearProblem. Alternatively, the solve() member function of LinearProblem
can be called, with a Playa LinearSolver argument to specify the solve algorithm to be used.

14

LinearSolver <double> l i n S o l v e r
= L inea rSo l ve rBu i l de r : : c rea teSo lver ("amesos . xml ") ;

Expr solnFS = prob . so lve (l i n S o l v e r) ;

The solve() function returns the solution in the form of a DiscreteFunction.

4.1.3 Programming an adjoint gradient method

Much of the code for this problem is identical to that for the SAND case shown above. The principal difference is that
instead of setting up a LinearProblem object that encapsulates the KKT equations, we set up a Functional object
representing the Lagrangian. The linear problem is then produced by taking variations as in the initial example above; in
this example that step is done automatically by the LinearPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType) ;

Expr u0 = new Disc re teFunc t ion (ds2 , 0 .0) ;
Expr lambda0 = new Disc re teFunc t ion (ds2 , 0 .0) ;
Expr alpha0 = new Disc re teFunc t ion (ds2 , 0 .0) ;

RCP<PDEConstrainedObjBase> ob j
= rcp (new LinearPDEConstrainedObj (L , u , u0 , lambda , lambda0 , alpha , alpha0 ,

l i n S o l v e r , verb)) ;

The linSolver argument is used to specify the solve algorithm used for the state and adjoint equations. This objective
function object can then be used in a gradient-based optimizer.

Notice a subtle but significant difference from the specification of the full-space method: there, a single discrete function
w0 was defined on the full space discSpace, but here we create three discrete functions u0, lambda0, alpha0 each
on the reduced space.

4.1.4 Numerical results

We solved this problem using both the full space and reduced space formulations. The same code for the Lagrangian was
used for both cases. We used the KLU sparse direct solver from the Amesos package for all linear solves arising in either
formulation. The mesh used had 15255 elements and 3829 nodes. In the reduced space calculations, we used a limited-
memory BFGS [16, 17] (LM-BFGS) algorithm with line search. In all calculations, the initial estimate of the Hessian was
the identity and the initial estimate of the design variable was zero. Stopping tolerances were 10−7 in objective function
value, 10−6 in gradient norm, and 10−4 in step. When all three tolerances have been attained the problem is considered
to have converged.

Reduced space Full space
R ‖u− uexact‖ ‖u− u∗‖ LM-BFGS iters ‖u− uexact‖ ‖u− u∗‖
1 0.00848782 0.797512 47 0.0040405 0.797476

0.01 0.00403758 0.00673811 171 0.00403347 0.00674269
0.0001 0.00364934 0.00361768 124 0.00364973 0.00361806

Table 1: Error norms and iteration counts for the linear source inversion problem with several different regularization
parameters, and for both the reduced space and full space formulations. The error norms are L2.

Some results are shown in table 1. For a sample of three different regularization parameters R, we have computed L2

norms of the error in the solution and the mismatch from the target, and for the reduced-space method we have recorded
the number of LM-BFGS iterations needed to reach the specified tolerance. As expected, as the regularization parameter
is reduced the target is matched more closely.

It is of course possible to improve on this optimization procedure in many ways; however, the focus of this paper is on
the software infrastructure needed to enable setting up either the full KKT system needed for a full-space approach or the
sequence of systems needed for a reduced-space approach.

15

4.2 Nonlinear source inversion

In this example we consider least-squares estimation of the source term in a nonlinear boundary value problem.

min
u,α

f (u, α) =
1
2

ˆ π

0
(u− u∗)2 dΩ +

R
2

ˆ π

0
α2 dΩ (18)

subject to

{
∇2u = sin (u) + α + g in Ω
u = 0 at x = 0, x = π

. (19)

The Lagrangian is

L = f +
ˆ π

0
[∇λ · ∇u + λ sin (u) + λα + λg] dx = 0. (20)

With the method of manufactured solutions we can construct an exactly solvable problem with

u (x) = sin (x) (21)

λ (x) = R sin2 (x) (22)

α (x) = − sin2 (x) (23)

u∗ = −R cos (2x) + R sin2 (x) + sin (sin (x)) + sin (x) (24)

g (x) = sin2 (x)− sin (x)− sin (sin (x)) . (25)

4.2.1 Programming the functional

Here is the code to create the Lagrangian Functional object.

/∗ Create the mesh ob jec t ∗ /
i n t nx = 512;
const double p i = 4.0∗ atan (1 . 0) ;
MeshType meshType = new BasicSimpl ic ia lMeshType () ;
MeshSource mesher = new Par t i t ionedL ineMesher (0 . 0 , p i , nx , meshType) ;

Mesh mesh = mesher . getMesh () ;

/∗ Define the symbol ic geometry ∗ /
C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r () ;
C e l l F i l t e r bdry = new Bounda ryCe l lF i l t e r () ;

/∗ D i s c r e t i z a t i o n s p e c i f i e r s ∗ /
QuadratureFamily quad = new GaussianQuadrature (4) ;
BasisFamily bas is = new Lagrange (1) ;

/∗ Define the unknown fu n c t i o n s ∗ /
Expr u = new UnknownFunction (basis , " u ") ;
Expr lambda = new UnknownFunction (basis , " lambda ") ;
Expr alpha = new UnknownFunction (basis , " alpha ") ;

DiscreteSpace discSpace (mesh , L i s t (basis , basis , bas is) , vecType) ;
Expr w0 = new Disc re teFunc t ion (discSpace , 0 .0) ;

/∗ Regu la r i za t i on constant (logR i s a loop v a r i a b l e) ∗ /
double R = pow(10 .0 , logR) ;

/∗ Wri te the t a r g e t and f o r c i n g f u n c t i o n ∗ /
Expr dx = new D e r i v a t i v e (0) ;
Expr x = new CoordExpr (0) ;

16

Expr uExact = s in (x) ;
Expr sx = s in (x) ;
Expr cx = cos (x) ;
Expr ssx = s in (sx) ;
Expr sx2 = sx∗sx ;
Expr cx2 = cx∗cx ;

Expr g = sx2 − sx − ssx ;
Expr t a r g e t = 2.0∗R∗ (sx2−cx2) + R∗sx2∗ssx + sx ;

/∗ we can now def ine the o b j e c t i v e and c o n s t r a i n t ∗ /
Expr f i t = I n t e g r a l (i n t e r i o r , 0.5∗pow(u−t a rge t , 2 .0) , quad) ;
Expr reg = I n t e g r a l (i n t e r i o r , 0.5∗R∗ (alpha∗alpha) , quad) ;
Expr c o n s t r a i n t = I n t e g r a l (i n t e r i o r ,

(grad∗u) ∗ (grad∗ lambda) + alpha∗ lambda + g∗ lambda + lambda∗ s in (u) , quad) ;
Expr const ra in tBC = Essent ialBC (bdry , lambda∗u , quad) ;

/∗ Wri te the Lagrangian ∗ /
Expr L = f i t + reg + c o n s t r a i n t ;
Func t iona l Lagrangian (mesh , L , constra intBC , vecType) ;

The next step is to set up either a full-space or reduced-space solve.

4.2.2 Solution by the full-space method

As in the linear source inversion problem, obtaining the full KKT system is a matter of taking variations of the Lagrangian.
The difference is that a NonlinearProblem is produced.

LinearSolver <double> l i n S o l v e r
= L inea rSo l ve rBu i l de r : : c rea teSo lver ("amesos . xml ") ;

ParameterXMLFileReader reader (" nox−amesos . xml ") ;
ParameterL is t noxParams = reader . getParameters () ;
NOXSolver non l i nSo lve r (noxParams) ;

Expr dum;
Nonl inearProblem prob = Lagrangian . non l i nea rVa r i a t i ona lP rob (L i s t (lambda , u , alpha) ,

w0, L i s t (lambda , u , alpha) , w0, dum, dum) ;

prob . so lve (non l i nSo lve r) ;

The solution is written into the discrete function w0.

4.2.3 Programming an adjoint gradient method

The Lagrangian is used to construct a NonlinearPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType) ;

Expr u0 = new Disc re teFunc t ion (ds2 , 0 .0) ;
Expr lambda0 = new Disc re teFunc t ion (ds2 , 0 .0) ;
Expr alpha0 = new Disc re teFunc t ion (ds2 , 0 .0) ;

RCP<PDEConstrainedObjBase> ob j
= rcp (new NonlinearPDEConstrainedObj (

Lagrangian , u , u0 ,
lambda , lambda0 ,
alpha , alpha0 ,
non l inSo lver , l i n S o l v e r)) ;

17


1 



p
1
p
2

p
Np





1

x x x x x x x x x x x

Figure 10: Geometry of frequency-domain conductivity inversion. The data were generated by a forward model having
the inclusion region shown with conductivity κ2. Samples were taken at the probe locations p1 to pNp , over a range of
frequencies. Boundary conditions are a unit sinusoidal load on Γ1 and insulation on Γ2.

The nonlinear and linear solver arguments specify the solvers to be used for the state and adjoint equations respectively.
As in the linear case, three discrete functions are used, each defined on the reduced space.

4.2.4 Numerical results

The reduced space optimizer used the same algorithm and tolerances as in the linear source inversion example above.
Nonlinear solves of the full KKT system and of the state equation were done with NOX’s implementation of Newton’s
method with line search. Tolerance for the nonlinear solves was 10−10. The Amesos KLU solver was used for all linear
solves.

Reduced space Full space
R ‖u− uexact‖ ‖u− u∗‖ LM-BFGS iters ‖u− uexact‖ ‖u− u∗‖
1 0.0494592 3.08711 6 0.0494581 3.08711

0.01 0.00180347 0.0295964 14 0.00180349 0.0295963
0.0001 0.000101083 0.000325266 14 2.53442e-05 0.0002902

Table 2: Error norms and iteration counts for the nonlinear source inversion problem with several different regularization
parameters, and for both the reduced space and full space formulations. The error norms are L2.

4.3 Frequency-domain conductivity inversion

Our final model problem is frequency-domain inversion of a material’s conductivity parameter κ. The underlying physics
might be, for example, heat conduction; a slight change in problem setup would give a model appropriate to eddy current
inversion. The problem’s geometry is sketched in figure 4.3. The time-domain model is assumed to be

∇ · [κ∇φ] =
∂φ

∂t
(26)

where φ is some scalar field, with insulating boundary conditions on all surfaces except for a surface Γ1 where a sinusoidal
load is imposed,

∂φ

∂n
= e−iωt on Γ1. (27)

Assuming κ to be independent of φ and writing φ = u (x) e−iωt, we have

∇ · [κ∇u] + iωu = 0 (28)

18

∂u
∂n

= 1 on Γ1 (29)

∂u
∂n

= 0 on Γ\Γ1. (30)

To ensure positive conductivity we introduce an auxiliary design variable α and write κ = eα. Now, signals at different
frequencies penetrate to different skin depths (see, e.g., [12]) so one usually carries out a frequency sweep, taking data
at N f frequencies ω1,ω2 · · · , ωN f . We assume an array of Np discrete probe locations, and suppose that measurements
u∗f (ps) have been taken at frequencies ω f and probe locations ps. The magnitudes of the signals differ by several orders
of magnitude over the frequency range, so in the objective function we will use relative misfits rather than absolute misfits.
With only Np × N f measurements the problem is clearly ill-posed and demands regularization. We use a mollified total
variation diminishing (TVD) regularization,

R
√

ε2 + h2 (∇α)2 (31)

where R is a regularization coefficient, ε is a constant that smooths the singularity, and h is the local cell diameter. Having
specified the fitting objective, regularization, and constraints, we can pose the PDECO problem.

min
u,α

F (u, α) =
1
2

Np

∑
s=1

N f

∑
f=1

(
u f (ps)− u∗f (ps)

u∗f (ps)

)2

+ R
ˆ

Ω

√
ε2 + (∇α)2dΩ (32)

subject to, for f = 1 to N f ,


∇ ·

[
eα∇u f

]
+ iω f u f = 0 in Ω

∂u f
∂n = 1 on Γ1

∂u f
∂n = 0 on Γ2

. (33)

Note that the N f constraints are decoupled and can be solved independently.

4.3.1 Programming the conductivity inversion problem

For this problem we show only the code for setting up the Lagrangian. As in the previous examples, once the Lagrangian
has been constructed the problem is ready for solution by either a full space or reduced space method. Some interesting
features of this problem are the use of complex-valued expressions and the decoupling of the states at different frequencies.

Expr I = new ComplexExpr (0 . 0 , 1 .0) ; / / \ s q r t {−1}

Array <Expr> u (nFreq) ; / / I n i t i a l i z a t i o n code omi t ted
Array <Expr> lambda (nFreq) ; / / I n i t i a l i z a t i o n code omi t ted

Expr f i t = 0 . 0 ;
Expr c o n s t r a i n t = 0 . 0 ;
Expr const ra in tBC ;

/∗ set up equat ion f o r each frequency ∗ /
double R = 0 . 1 ;
for (i n t f =0; f <nFreq ; f ++)
{

/∗ Sum the squared r e s i d ua l s a t the probes ∗ /
for (i n t p=0; p<probes . s ize () ; p++)
{

f i t = f i t + I n t e g r a l (probes [p] ,
0.5∗pow ((u [f] . imag ()−p_i [f] [p]) / p_ i [f] [p] , 2 .0)
+ 0.5∗pow ((u [f] . r e a l ()−p_r [f] [p]) / p_r [f] [p] , 2 .0) , quad) ;

}
/∗ Wri te the PDE as a c o n s t r a i n t ∗ /
c o n s t r a i n t = c o n s t r a i n t

+ I n t e g r a l (i n t e r i o r , exp (kappa) ∗ (grad∗ lambda [f]) ∗ (grad∗u [f])
− I ∗omega [f]∗ lambda [f]∗u [f] , quad)
− I n t e g r a l (top , lambda [f] . r e a l () , quad) ;

}

19

Figure 11: Contours of recovered conductivity. As seen by comparison with figure 11 the location of the region of
enhanced conductivity is determined accurately, though the conductivity there is underestimated.

/∗ r e g u l a r i z e f o r smoothness i n the c o n d u c t i v i t y ∗ /
Expr h = new Cel lDiameterExpr () ;
Expr reg = I n t e g r a l (i n t e r i o r , R∗ s q r t (1 .0+h∗h∗ (grad∗kappa) ∗ (grad∗kappa)) , quad) ;

Expr L_eqn = f i t + reg + c o n s t r a i n t ;
Expr L_BC = const ra in tBC ;

Once the Lagrangian has been constructed it is used to set up a NonlinearPDEConstrainedObj objective function
objects as in the nonlinear source inversion example, which is then used in an optimization loop. In a reduced-space
approach the state equations at different frequencies decouple and can be solved independently; this is managed automat-
ically by the objective function object. Because of the complexity of preconditioning this problem we make no attempt to
solve this system with a full space method.

4.3.2 Numerical results

In figure 11 is shown the recovered conductivity profile in a domain having a region of enhanced conductivity. Twenty-one
probes spaced evenly along the top measured the response at ten frequencies. The frequencies were chosen to give a range
of skin depths 1

11 , 2
11 , · · · , 10

11 . The regularization constant was R = 1 and the mollification constant was ε = 1. The
LM-BFGS algorithm converged after 80 iterations. The location of the enhanced conductivity inclusion is determined
accurately, though its magnitude is underestimated (κ ≈ 2.5 compared to the exact value of 10.)

4.4 Summary of model problems

We have shown how to set up and solve a variety of linear and nonlinear PDE-constrained optimization problems using
both full-space and reduced-space methods. In each case, the same Lagrangian Functional object was used to produce
code for the full-space and reduced-space formulations. Notice also that the code for the PDE constraints is just that
needed to write a forward simulator, so it is a simple matter to take a forward simulator programmed in Sundance and
extend it for use in PDE-constrained optimization.

5 Conclusions

PDECO is required to solve large scale inverse problems in engineering and science. However the implementation of
these methods is time consuming as well as plagued with complications. A significant obstacle preventing PDECO

20

Figure 12: Exact location of the enhanced conductivity region in the frequency-domain inversion example. The bulk
conductivity is 1, that in the enhanced region is 10.

from becoming a mainstream analysis tool is rooted in the practise of developing simulation codes without planning for
future use in optimization. To overcome this obstacle, we introduce a high-level simulation toolkit called Sundance with
which both very efficient forward and inverse problems can be programmed conveniently. Using components provided by
Sundance the finite element weak form can be represented and a fully functional simulator can be built. More importantly,
the same infrastructure can be used to differentiate a Langragian function, thereby automatically providing a solution
mechanism for PDECO. We demonstrate the use of Sundance on several numerical examples using different PDECO
solution strategies. These examples are non-trivial but it is apparent that this capability can be applied to more complicated
applications without much additional effort.

Sundance is available as part of the Trilinos suite. It leverages multiple Trilinos packages for distributed linear alge-
gra, low-level finite element libraries, linear and nonlinear solvers, and utilities. Sundance complements the low-level
capabilities in Trilinos with a unique high-level optimization-enabled simulation development capability for Trilinos.

6 Acknowledgements

KRL acknowledges support from NSF awards 0830655 and 0904834, from a subcontract from Sandia National Labora-
tories, and from startup funds from Texas Tech University. PTB acknowledges support from the Department of Energy
Office of Advanced Scientific Computing Research under contract 10-014804.

References

[1] Volkan Akcelik, George Biros, and Omar Ghattas. Parallel multiscale gauss-newton-krylov methods for inverse
wave propagation. In Proceedings of the IEEE/ACM SC2002 Conference, 2002.

[2] L. Biegler, O. Ghattas, and B. van Bloemen Waanders. Large-Scale PDE-constrained Optimization. Springer, 2003.

[3] Lorenz T. Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders, editors. Large-Scale
PDE-Constrained Optimization, volume 30 of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Heidelberg, 2003.

[4] Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. Acta Numerica, 1995:1–52, 1995.

[5] J. P. Boyd. An analytical and numerical study of the two-dimensional bratu equation. Journal of Scientific Comput-
ing, 1(2):183–206, 1986.

[6] J. E. Dennis, Jr. and Robert. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

21

[7] R. Fletcher. Practical Methods of Optimization. Wiley, 1987.

[8] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Academic Press, New York, 1981.

[9] M. Gunzburger. Flow Control. Springer, 1995.

[10] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara Kolda, Richard Lehoucq,
Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring,
and Alan Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia National Laboratories,
2003.

[11] Victoria E. Howle, Robert C. Kirby, Kevin Long, Brian Brennan, and Kimberly Kennedy. Playa: High-performance
programmable linear algebra. Scientific Programming, X:X, 2011.

[12] John David Jackson. Classical Electrodynamics Third Edition, volume 67. Wiley, 1998.

[13] C. T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

[14] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2011.

[15] Kevin Long, Robert Kirby, and Bart van Bloemen Waanders. Unified embedded parallel finite element computations
via software-based fréchet differentiation. SIAM Journal on Scientific Computing, 32(6):3323–3351, 2010.

[16] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35:772–782,
1980.

[17] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[18] P. J. Roache. Verification of codes and calculations. AIAA Journal, 36 (5):696–702, 1998.

[19] P. J. Roache. Code verification by the method of manufactured solutions. J. Fluids Eng., 124 (1):4–10, 2002.

[20] Alar Toomre. Some flattened isothermal models of galaxies. Astrophys. Jour., 259:535–543, 1982.

[21] B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs, and A. Salinger. Large scale non-linear programming for
PDE constrained optimization. Technical Report SAND2002-3198, Sandia National Laboratories, 2002.

[22] Curtis R. Vogel. Computational Methods for Inverse Problems. SIAM, 2002.

22

