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The aim of this work is to develop nonlinear low-dimensional models to describe

vortex dynamics in spatially developing shear layers with periodicity in time. By

allowing a free variable g(x) to dynamically describe downstream thickness spreading,

we are able to obtain base functions in a scaled reference frame and construct effective

models with only a few modes in the new space. To apply this modified version

of proper orthogonal decomposition (POD)/Galerkin projection, we first scale the

flow along x direction (downstream) to match a template function. In the scaled

space, the first POD mode can capture more than 80% energy for each frequency.

However, to construct a Galerkin model, the second POD mode plays a critical role

and needs to be included. Finally, a reconstruction equation for the scaling variable g

is derived to relate the scaled space to physical space, where downstream spreading of

shear thickness presents. Using only two POD modes at each frequency, our models

captured most basic dynamics of shear layers, such as vortex roll-up (by one-frequency

model) and vortex-merging (by two-frequency model). When arbitrary excitation at

different harmonics is added to the model, we can clearly observe the promoting or

delaying/eliminating vortex merging events as a result of mode competition, which is

commonly shown in experiments and numerical simulations of shear layers.
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I. INTRODUCTION

Free shear layers are often studied as model flow for its simplicity. Behaviors of temporally

developing (TD) and spatially developing (SD) shear layers have been studied for several

decades from theoretical, numerical, and experimental perspectives1–4 . However, shear flows

are still too complex to directly apply dynamic systems and control theories which have

been widely used to analyze and understand many simple mechanical systems. Though

low-dimensional models have been proposed3,5 and succeeded in some applications, they are

mainly phenomenological. The goal here is to develop low-dimensional models from direct

projection of first-principle governing equations.

Based on a combination of POD/Galerkin projection method and symmetry reduc-

tion idea introduced from geometric mechanics, Wei and Rowley recently developed low-

dimensional models for TD free shear layers6. A scaling factor g(t) was introduced to factor

out the thickness growth, so that, similar vortex structures at different thickness can be

uniformly described. It should be pointed out that the scaling factor was introduced and

calculated simultaneously with no self-similarity pre-known. Similar technique has been

used for traveling solutions7 and self-similar solutions8.

However, when the same idea was applied on SD shear layers, many new challenges ap-

peared from the difference, sometimes critical, between temporal and spatial development.9

First, since the self-similarity happens in the streamwise (x direction) for SD flows, a scaling

factor g(x) as a function of x becomes a natural choice for symmetry reduction. Second,

the periodicity can only exist in time and normally be introduced through extra constraints

(e.g. external forcing). Last, the derived low-order model for SD shear layers is an ordinary

differential equation evolving in space instead of time. The main difficulty caused by the

above differences is from the fact that Navier-Stokes equations are parabolic in time but not

parabolic in space. The ellipticity in space makes any model marching in space ill-posed.

Parabolized stability equations (PSE)10 and parabolized Navier-Stokes equations (PNS)11

have opened new avenues to the analysis of the streamwise growth of linear and nonlinear

disturbances in slowly varying shear flows such as boundary layers, jets, and far wakes. PSE

boundary layers are in general not parallel and are valid for convectively unstable flows

such as the mixing layers. PNS equations become mathematically hyperbolic/parabolic in

streamwise direction under certain conditions for the streamwise velocity and the stream-
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wise pressure gradient. It is worth noting that weak ellipticity still exists in both PSE and

PNS. For thin boundary layer type of flows, including the mixing layer in our case, normal

diffusion fluxes dominate their streamwise counterparts12, so that, it is common to drop

streamwise diffusion terms for any approximation and parabolization efforts along stream-

wise direction13 . However, to obtain a simple model strictly evolving downstream, we take

the effort further by neglecting the ellipticity from pressure constraint, though the sacrifice

of mass conservation has to be made at the same time.

For spatially-developing shear layers, mode competition has been studied experimentally

and numerically as a trademark problem for decades2,14. It simply appears when single-

frequency excitation is introduced to a shear layer with broadband background noise15. The

artificial excitation promotes the dynamics of its own frequency, and, at the same time,

suppresses/delays the appearance of dynamics at other frequencies. With or without being

promoted by external excitation, such nonlinear interaction between the harmonics and

subharmonics always exists and often plays an essential role in mixing layer dynamics16

. In mixing layers the forcing frequency and forcing amplitude have significant effects on

the vortex merging such as the number of vortices in each merging and the location of the

merging17. Moreover, Ho and Huang14 defined the merging/pairing location as the position

where the subharmonic frequency saturates and reaches its peak. They also explained that

exciting the fundamental frequency suppresses the subharmonic growth and delays the vortex

pairing, while exciting the subharmonic promotes the vortex pairing. In the present work,

mode competition is investigated to test the robustness of our model and also serves as a

first application.

The paper is arranged as follows. Direct numerical simulation of SD shear layers is de-

scribed in section II. Equation parabolization for modeling and an extension with external

body forces will be discussed in section III. Section IV will then describe the entire method-

ology of low-dimensional modeling for SD shear layers. The results with further comparison

and discussions will be in section V.

II. SIMULATION OF SPATIALLY DEVELOPING SHEAR LAYERS

The flow considered in this paper is a two-dimensional free shear layer developing spatially

as shown schematically in figure 1. With the characteristic length being the initial vorticity
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U1 = 0.25∆U

U2 = 1.25∆U

FIG. 1. Schematic of the two-dimensional free shear layer simulation.

thickness18 δω = ∆U/|du/dy|max at the entrance and the characteristic velocity being the

maximum velocity change across the shear layer ∆U , Reynolds number of the flow is Re =

200. All values are non-dimensionalized by the same characteristic values for the rest of the

paper. Though the modeling will be based on the equations derived from incompressible

Navier-Stokes equations, the simulation itself solves the fully compressible Navier-Stokes

equations at low Mach number (convective Mach number is 0.3 in average), using a code

that has been validated in previous work6,19 . The velocity divergence induced by weak

compressibility here is small, and therefore has negligible impact on current modeling if

no compressibility-specific features (e.g. acoustics) are considered. The usage of weakly-

compressible data for incompressible modeling is common and has been successfully applied

in our previous work on temporally-developing shear layers6.

The flow is simulated in a domain extending 200 in x and out to ±80 in y from the

mixing layer. Extra buffer areas with 20 at the top and bottom and 60 to the left and

right are applied in the computation. To make the flow periodic in time, we seed bodyforce

excitation in a small box area 5 < x < 15, −5 < y < 5 to trigger the instability. Two

excitation frequencies k = 1 and k = 2 are picked based on non-dimensional time period

T = 38.4 for later analysis. For the chosen parameters, at the initial stage, the frequency

k = 2 is near the the most unstable frequency predicted by linear instability, and k = 1 is

getting more stable as the thickness getting thicker later20.
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III. PARABOLIZATION OF GOVERNING EQUATIONS

The governing equations for two-dimensional incompressible flow are

∂u

∂x
+

∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

∂v

∂t
+ u
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= −

∂p

∂y
+
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∂2v

∂x2
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∂2v

∂y2

)

.

(1)

Mathematically, the elliptic behavior in space is introduced in two manners: 1) the Laplacian

of velocity in viscous terms; and 2) pressure Poisson equation implied by the pressure terms

and the continuity equation. The first one can be removed in a relatively easy way by

assuming a thin layer12,21, which ignores all d2(·)/dx2 terms. For the second one, with the

outer flow U(x) being a function of x only, the thin-layer assumption can also remove the

pressure effects. The momentum equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

∂2u

∂y2

∂p

∂y
= 0.

(2)

However, equation (2) loses the instability features22,23 required to initiate/terminate basic

vortex dynamics. So, we put most of terms back in y momentum equation while still

assuming negligible effects from pressure gradient and d2(·)/dx2 terms for a thin layer.

Thus, the reduced parabolic equations for later modeling are

u
∂u

∂x
= −v

∂u

∂y
−

∂u

∂t
+

1

Re

∂2u

∂y2

u
∂v

∂x
= −v

∂v

∂y
−

∂v

∂t
+

1

Re

∂2v

∂y2
,

(3)

where terms are rearranged for convenience. It is understood that pressure can be viewed

as a Lagrange multiplier in the momentum equations to re-enforce the continuity equation

(mass conservation). The simplification in (3) apparently releases this constraint, that is,

the system mass can drift away. In our previous modeling for TD shear flow, we noticed

that the model without mass conservation24 is less accurate than the model with mass

conservation6. However, the mass drift is slow and does not ruin the dynamics entirely, and

the model without mass conservation, in its simple form and low order, can still describe
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basic vortex dynamics. For SD shear flow, a low-order model based on (3) is expected to

represent all basic vortex dynamics. We want to emphasize that though Galerkin projection

is based on the parabolized equation (3), the numerical simulation of flow field uses complete

Navier-Stokes equations which assure the accuracy of base functions (modes).

For the need of flow control, excitation is normally introduced and modeled as body force

terms in momentum equations. Following the same idea above, Navier-Stokes equations

with body force excitation can be parabolized to

u
∂u

∂x
= −v

∂u

∂y
−

∂u

∂t
+

1

Re

∂2u

∂y2
+ fu(y, t)

u
∂v

∂x
= −v

∂v

∂y
−

∂v

∂t
+

1

Re

∂2v

∂y2
+ fv(y, t),

(4)

where, for simplicity, we assume excitation forces fu and fv being functions of y and t only.

Based on (4), we can extend low-dimensional models to include the effects from external

controls. Such extension serves as both an application and a test for model robustness as

shown later.

IV. LOW-DIMENSIONAL MODELS

A. Scaling the flow dynamically

A common approach for low-dimensional modeling is to project governing equations onto

a fixed set of basis functions, which are determined mathematically (i.e. Fourier modes) or

empirically (i.e. POD modes). Here, since the shear layer thickness is spreading downstream

in a manner of slow variation, we consider basis functions that can scale in y-direction to

accommodate the spreading. A similar idea has been successfully applied on temporally-

developing periodic shear flows6,24. The main difference of the current scaling is that the

scaling function becomes a function of x instead of t by its spatially-developing nature. If

the velocity vector is defined by q = (u v)T , a scaled variable q̃ can be introduced by

q(x, y, t) = q̃(x, g(x)y, t), (5)

where g(x) is a scaling factor to be determined. The purpose of introducing g(x) is to factor

out the mean flow development so that the flow dynamics can be represented by much fewer

modes. Consequently, g(x) is defined here to line up the scaled solution q̃ the best to a
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pre-selected template function. The initial shear flow profile q0 = (u0, v0) can be a natural

choice for this template, where

u0 = U1 +
U2 − U1

2
(1 + tanh(2y)), v0 = 0. (6)

It is noticed that the only non-zero component in the template is u0, the scaling factor g(x)

is therefore defined by

g(x) = argmin
g

‖u2(x,
y

g
, t)− u2

0(y)‖
2, (7)

where ‖ · ‖2 is an L2 norm defined upon the integration over y and single time period. A

new thickness δg can be defined by g(x) as

δg = 1/g(x), (8)

which can be used to measure the shear layer spreading as an alternative to vortex thickness

or momentum thickness. In fact, all three thicknesses represent the shear layer spreading in

a qualitatively similar way. The condition for ũ(x, y, t) := u(x, y/g, t) to always match the

template the best is

d

ds

∣

∣

∣

∣

s=0

‖ũ2(x, y, t)− u2
0(h(s)y)‖

2 = 0, (9)

where h(s) is any curve in R
+ with h(0) = 1, and the same norm on the space of functions

of (y, t) is used: that is, h = 1 is a local minimum of the error norm above. Here ũ2 is

used instead of ũ as the way in our previous work for both TD6 and SD9 shear flows. The

new choice simplifies the modeling of convective term u∂u/∂x for SD flows, and results in a

simpler and more accurate equation for g(x). This expression (9) gives

−2

〈

d

ds

∣

∣

∣

∣

s=0

u2
0(h(s)y), ũ

2(x, y, t)− u2
0(y)

〉

= 0

which becomes
〈

yu0
∂u0

∂y
, ũ2 − u2

0

〉

= 0. (10)

Geometrically, the result in (10) means that the set of all such functions ũ2 that are scaled so

that they most closely match the template u2
0 is an affine space through u2

0 and orthogonal

to yu0∂u0/∂y.
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B. Equations in scaled space

We regard the parabolized equations as a dynamical system evolving on a function space

H , consisting of the flow variables at (y, t) marching in x. Thus, q(x) ∈ H is a snapshot of

the entire flow at location x, and equations (3) may be written as

A
∂q(x)

∂x
= h(q(x)), (11)

where

A =





u 0

0 u



 , (12)

to form the left-hand-side of (3), and h is a differential operator on H such that h(q(x))

gives all right-hand-side terms of (3). Here matrix A can also be written in scaled variables

as

Ã =





ũ 0

0 ũ



 , (13)

and the same scaling holds as

A(x, y, t) = Ã(x, g(x)y, t). (14)

If we introduce the scaling operator Sg : H → H , defined by

Sg[q(y, t)] = q(gy, t), ∀g ∈ R
+ (15)

then the scaling (5) becomes q = Sg[q̃], (14) becomes A = Sg[Ã], and the governing

equations (11) may be written

Sg(x)[Ã(x, y, t)]
∂

∂x
Sg(x)[q̃(x, y, t)] = h(Sg[q̃(x, y, t)]). (16)

Since

∂

∂x
Sg(x)[q̃(x, y, t)] =

∂

∂x
q̃(x, g(x)y, t)

=
∂q̃

∂x
(x, gy, t) + ġy

∂q̃

∂y
(x, gy, t)

= Sg

[

∂q̃

∂x

]

+
ġ

g
Sg

[

y
∂q̃

∂y

]

,

(17)

(16) becomes

Sg[Ã]Sg

[

∂q̃

∂x

]

= h(Sg[q̃])− Sg[A]
ġ

g
Sg

[

y
∂q̃

∂y

]

. (18)
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If we define S1/g as an inverse mapping of Sg such that hg(q̃) = S1/gh(Sg[q̃]), applying the

inverse mapping to above equation, we have the governing equations in scaled space

Ã
∂q̃

∂x
= hg(q̃)− Ã

ġ

g
y
∂q̃

∂y
. (19)

Equation (19) can be written separately in variables ũ and ṽ as

ũ
∂ũ

∂x
= h1

g −
ġ

g
yũ

∂ũ

∂y

ũ
∂ṽ

∂x
= h2

g −
ġ

g
yũ

∂ṽ

∂y
.

(20)

However these equations alone are not sufficient to evolve the dynamics without the knowl-

edge of g(x).

C. Equation for scaling variable

In the section, the evolution equation for g(x) will be derived to close the system. Dif-

ferentiating the constraint (10) along x, we have
〈

yu0
∂u0

∂y
, ũ

∂ũ

∂x

〉

= 0. (21)

Using the x-momentum equation (20):

ũ
∂ũ

∂x
= h1

g −
ġ

g
yũ

∂ũ

∂y
. (22)

So that, we have
〈

yu0
∂u0

∂y
, h1

g −
ġ

g
yũ

∂ũ

∂y

〉

= 0, (23)

which becomes

ġ

g
=

〈

h1
g, yu0

∂u0

∂y

〉

〈

yũ∂ũ
∂y
, yu0

∂u0

∂y

〉 . (24)

Altogether, equation (19) for q̃ and equation (24) for g define the system evolution in a

scaled space without slow variation from shear layer thickness.

D. Galerkin projection

Before we implement the projection, it is necessary to group the equations’ right-hand-

side into nonlinear terms N , linear terms L, and body force terms fq which only appear
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when external control is considered, as

h(q) = N (q,q) + L(q) + fq, (25)

where

N (q,q) =





−v ∂u
∂y

−v ∂v
∂y



 , L(q) =





−∂u
∂t

+ 1
Re

∂2u
∂y2

−∂v
∂t

+ 1
Re

∂2v
∂y2



 , fq =





fu

fv



 . (26)

The corresponding terms in the scaled space are

hg(q̃) = Ng(q̃, q̃) + Lg(q̃) + fq̃, (27)

where

Ng(q̃, q̃) =





−ṽg ∂ũ
∂y

−ṽg ∂ṽ
∂y



 , Lg(q̃) =





−∂ũ
∂t

+ 1
Re
g2 ∂

2ũ
∂y2

−∂ṽ
∂t

+ 1
Re
g2 ∂

2ṽ
∂y2



 , fq̃ =





fũ

fṽ



 . (28)

We can then expand q̃ and fq̃ in its base functions as

q̃ = q̃0(y) +

+∞
∑

k=−∞

∞
∑

n=0

ak,n(x)Φk,n(t, y). (29)

fq̃ =

+∞
∑

k=−∞

∞
∑

n=0

Ak,nΦk,n(t, y). (30)

where

Φk,n(t, y) = e2πikt/Tφk,n(y). (31)

Here, k is the frequency, T is the time period, ak,n(x) are the POD coefficients, φk,n =

(ûk,n, v̂k,n) is the nth POD mode for frequency k, and Ak,n are the control force coefficients.

Here, for simplicity, external control is arbitrarily assumed to be a combination of POD

modes at different frequencies. The frequency and strength of external excitations can then

be adjusted easily by altering the value of Ak,n. The energy of each POD mode (k, n) is

quantified by

λk,n = | 〈q̃− q̃0,Φk,n〉 |2 = |ak,n|2, (32)

where ·̄ denotes a streamwise spatial average.

We start with simple case retaining only frequencies k = ±1, and the first two POD

modes n = 1 and n = 2 for each frequency. The summation is then an approximation of the
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original q̃. We will retain the notation q̃ for the finite sum in (29). Since q̃ must be real,

we have the additional constraint that

a1,1Φ1,1 + a1,2Φ1,2 = a∗
−1,1Φ

∗

−1,1 + a∗
−1,2Φ

∗

−1,2 (33)

which permits further simplification of the equations that follow.

To obtain the equations for coefficients a1,1(x) and a1,2(x), we project the governing

equation (19) onto modes Φ1,1 and Φ1,2. Eventually, the spatial evolution equation for

coefficient vector a = (a1,1 a1,2)
T is

Bȧ = (gC+Λ+
1

Re
g2D+

ġ

g
E)a+ F. (34)

Matrices B, C, Λ, D, E, and F are defined by

B =





b11 b12

b21 b22



 , C =





c11 c12

c21 c22



 , Λ =





c13 0

0 c23



 ,

D =





d11 d12

d21 d22



 , E =





e11 e12

e21 e22



 , F =





A1,1

A1,2



 ,

(35)

where all coefficients in matrices are well-defined and listed in appendix A with some detailed

derivation. To close the system, the spatial evolution for thickness adjustment g(x) is needed

and can be obtained from scaling relation (24) with the same two modes being retained:

ġ =
(c01a1,1a

∗

1,1 + c02a1,1a
∗

1,2 + c03a1,2a
∗

1,1 + c04a1,2a
∗

1,2)g
2 + 1

Re
d0g

3

b0 + b01a1,1a∗1,1 + b02a1,1a∗1,2 + b03a1,2a∗1,1 + b04a1,2a∗1,2
, (36)

where all coefficients are also defined in appendix A. Having (36) together with (34), we are

able to solve this low-dimensional model system.

If we choose two more modes n = 1 and 2 for wave number k = 2, the same derivation

yields the equations for g, a1,1, a1,2, a2,1, and a2,2 to describe more complex physics. The

resulting equations are lengthy, however, and are listed in appendix B.

V. RESULTS AND DISCUSSIONS

A. Basic model without artificial excitation

With the numerical configuration mentioned in section II, we start the simulation with

excitations on hyperbolic tangent velocity profile and then allow a transition time for as
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FIG. 2. Snapshots of the shear layer at different time: (a) t = 50.4; (b) t = 60; (c) t = 69.6; (d)

t = 79.2; (e) t = 88.8; (f) t = 98.4. Contours show vorticity |ω| < 0.3.

long as 10 periods of k = 1. Finally, another 10 periods are simulated and provide the data

for mode decomposition. It is reminded that the natural excitations at frequencies k = 1

and k = 2 are only used to introduce instability to numerical simulation. So, these natural

excitations are at very low amplitude and are not included in our model. They are different

from the artificial excitations, which appear as extra terms in the model and are discussed

in the next section.

Figure 2 shows several snapshots taken from the simulation, where typical dynamics such

as vortex roll-up, pairing, and merging can be clearly observed. To have a more quantitative

picture of the thickness growth, we compute δg thickness as the flow develops downstream

(figure 3). It is easily observed that the thickness has overall growth with viscous spreading

while showing events associated with vortices.

δ g

x

0 50 100 150
0

5

10

15

20

FIG. 3. The thickness growth along x direction while the shear layer is developing: sample vortex

structure is shown for comparison.
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The simulation data were then mapped to a scaled space with downstream thickness

growth being factored out. In the scaled space, we can easily get POD modes for each

time-frequency. Figure 4 shows the first and second v̂ POD modes at frequency k = 1.

Comparing the v̂ modes in figure 4 to the instability mode at k = 1 (figure 5) from linear

instability analysis3, we see the importance of POD mode n = 2 in forming a similar shape

of the instability mode. There was a similar observation in modeling of TD flows6.

v̂

y
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0

0.1

0.2

0.3

0.4

(a)
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0
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0.4

(b)

FIG. 4. v̂ for POD modes at k = 1: (a) (k, n) = (1, 1) and (b) (k, n) = (1, 2). The thin solid line

represents the real value, the thin dashed line represents the imaginary value, and the thick solid

line represents the absolute value.

v̂

y

-15 -10 -5 0 5 10 15
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-0.15
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-0.05

0

0.05

0.1

0.15

0.2

FIG. 5. v̂ of the instability mode for k = 1. The thin solid line represents the real value, the thin

dashed line represents the imaginary value, and the thick solid line represents the absolute value.

For k = 2, first two POD modes are shown in figure 6. In a comparison to the instability

mode at k = 2 (figure 7, the importance of including both POD modes at this frequency is

implied in a similar way.
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FIG. 6. v̂ for POD modes at k = 2: (a) (k, n) = (2, 1) and (b) (k, n) = (2, 2). The thin solid line

represents the real value, the thin dashed line represents the imaginary value, and the thick solid

line represents the absolute value.
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FIG. 7. v̂ of the instability mode for k = 2. The thin solid line represents the real value, the thin

dashed line represents the imaginary value, and the thick solid line represents the absolute value.

Table I lists each modes’ energy defined by (32). The first POD modes of each frequency

contain most of the energy (totally 82.0% from modes (1,1) and (2,1)). However, as being

indicated by the comparison to the instability modes, the second POD modes are dynami-

cally important for the instability despite their much less energy (totally 7.5% by mode (1,2)

and (2,2)).

The downstream evolution of these 4 POD modes can be therefore obtained by the

projection of DNS data in the scaled space as shown in figure 8(a). As the flow developing

downstream (along x), 2 POD modes at k = 2, as the most unstable modes for the initial

shear thickness, at first dominate the dynamics. In a comparison to the thickness growth,

14



(k, n) energy (%) (k, n) energy (%)

(1, 1) 67.6 (2, 1) 14.4

(1, 2) 5.0 (2, 2) 2.5

TABLE I. Energy captured by different POD modes.
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FIG. 8. Comparison of (a) direct projection from DNS data to (b) 2-mode model results and (c)

4-mode model results: , real part of mode coefficient a1,1 and a2,1; , real part of mode

coefficient a1,2 and a2,2; , shear-layer thickness δg.

the growth of k = 2 modes has clear contribution to the initial thickness growth from x = 10

to x = 40. As the shear layer getting thicker, k = 1 modes become instead more unstable,

and quickly take the dominant role. The appearance of k = 1 modes triggers a sharp increase

of thickness from x = 40 to x = 70. On the other hand, k = 2 modes are suppressed by

k = 1 modes through mode competition.

To get a 2-mode model for SD shear layers, we substitute the first and second POD modes

of k = 1 into the coefficients and model equations defined respectively in appendix A and

section IV, and evolve the model equations along x to get the coefficients a(x) and scaling

function g(x) as the flow develops downstream. Figure 8 compares the mode coefficients

and δg thickness calculated from the 2-mode model (figure 8b) to the direction projection

from DNS data (figure 8a). The model captures some basic dynamics: 1) overall thickness

growth; 2) oscillation frequency and amplitude of each modes for k = 1. Of course, the 2-

mode model with single frequency can not describe the thickness variation by the appearance

of k = 2 vortices. The thickness variation by k = 1 vortices are captured but with amplified

oscillation.

Similarly, to get a 4-mode (two-frequency) model, we substitute the first and second POD
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modes of each frequency k = 1 and k = 2 into the coefficients defined in appendix B, and

evolve the model equations along x to compute a(x) and g(x). The 4-mode model results are

also shown and compared in figure 8, where the mode coefficients and δg thickness calculated

from the 4-mode model (figure 8c) are compared to the DNS data projection (figure 8a).

This time, we successfully captured the oscillation of POD modes from both k = 1 and

k = 2 frequencies. The inclusion of k = 2 contributes to the success of presenting a small

variation of thickness caused by k = 2 vortices rolling-up, which is totally neglected by

2-mode model. However, there is no clear improvement for the over-estimation of thickness

variation by k = 1 vortices.
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FIG. 9. Relation between the shear layer thickness variation and the sudden change of the phase

difference of the first two POD modes: (a) from the projection of full simulation; (b) from the

solution of 2-mode model; (b) from the solution of 4-mode model. Notations are: phase

difference between a1,1 and a1,2, phase difference between a2,1 and a2,2, and the shear

layer thickness δg.

In figure 8, for both DNS projection and model results, the thickness growth lines show

certain wavy behavior with overall viscous increase. Such local variation seems a result from

the interaction between 2 POD modes at the same frequency. Figure 9 then gives a better

understanding of such local changes by checking the phase difference between POD modes

at the same frequency. It shows, for both DNS (figure 9a) and models (figures 9b and 9c),

the sudden change of the thickness from increase to decrease is always accompanied by the

sudden change of phase angle for 180o of the phase difference between the first and the

second POD modes. This observation is true for both modes at k = 1 and k = 2. The

models represent such phase angle change in the exact same way as the DNS. This relation

between phase angle and local variation has also been reported in TD shear layers6 .
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(a)

(b)

(c)

(d)

(e)

FIG. 10. Comparison of flow fields at time t = 768 visualized from: (a) DNS data; (b) projection

of DNS data onto 2 POD modes at k = 1; (c) 2-mode model; (d) projection of DNS data onto all

4 modes; (e) 4-mode model;. Contours show vorticity |ω| < 0.3.

To achieve a better physical understanding, figure 10 depicts the vorticity field and shows

a comparison among the original simulation, the projection of simulation data onto 2 modes

which is considered as an exact solution to compare with 2-mode model, the projection of

simulation data onto 4 modes which is considered as an exact solution to compare with

4-mode model, and the results from 2-mode and 4-mode models. The 2-mode model shows

the capability to describe the appearance of k = 1 large vortices. However, 2-mode model

produces k = 1 vortices from direct roll-up instead of going through the pairing and merging

process of smaller vortices at k = 2. It is from the lack of k = 2 information in the 2-mode

model, and it is consistent with the direct projection from DNS data onto these two modes.

By adding two more modes from frequency k = 2, the 4-mode model has the full capability

to capture the whole process including roll-up, pairing, and merging of vortices in a way

consistent with the DNS projection onto these 4 modes. In fact, most characteristics of the

original simulation data are represented by these 4 modes. The over-estimation of thickness

variation shown before in figure 8 now appears as vortices being over-stretched along y

direction, however, without ruining basic vortex dynamics.

17



B. Forced model with artificial excitations

With the external control force being also considered in section IV, the model can be

extended to study the response to artificial excitations at different frequencies. In shear

layers, such frequency responses are often studied as mode competition. The competition

for energy between modes at different frequencies is well-known in determining basic vortex

dynamics (e.g. roll-up, pairing, and merging) in shear layers2,14–17,25–27 . Without external

excitation, the competition between frequencies can be predicted by their instability feature;

with external excitation, the forcing frequency, instead, determines the dominant frequency.

In our study, we model the external excitation in the simplest form by assuming their spatial

function the same as our base functions (i.e. POD modes) and the temporal frequencies at

k = 1 and k = 2. So that, without running corresponding numerical simulation, the forced

model is expected to predict similar behavior of mode competition as in real simulation of

shear layers. With excitation at various amplitudes being introduced, we also provide a

challenge to the model robustness.
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FIG. 11. Comparison of excitations at frequency k = 1 with mode (1,1): different amplitudes are

applied at 0.5 (left) 1.0 (middle) and 1.5 (right); , real part of mode coefficient a1,1 and a2,1;

, real part of mode coefficient a1,2 and a2,2; , shear-layer thickness δg.

Since at least two frequencies need to be involved in mode competition, we only con-

sider the 4-mode model in this section. For simplicity, only the first POD modes of each

frequencies are considered in external forcing, though the excitation with the second POD

modes can also change the vortex dynamics in a similar but less pronounced way. Figure 11

shows the results by exciting at k = 1 with mode (1,1). It is clearly shown that both POD

modes at k = 1 are promoted and both modes at k = 2 are suppressed. The large peak
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FIG. 12. Comparison of excitations at frequency k = 2 with mode (2,1): different amplitudes are

applied at 1.0 (left) 2.0 (middle) and 3.0 (right): , real part of mode coefficient a1,1 and a2,1;

, real part of mode coefficient a1,2 and a2,2; , shear-layer thickness δg.

of the thickness growth, which is corresponding to the appearance of k = 1 vortex, is also

moved towards the upstream. On the other hand, with the excitation at k = 2 with mode

(2,1) (figure 12), the appearance of modes at k = 1 is significantly delayed. The rapid

increase in the thickness is also pushed downstream and even disappears. For both figures,

the excitations with larger amplitude amplify the behavior.

In figure 13, we reconstruct the vortex field from model computation so that the char-

acteristics of mode competition are shown in a physical and more clear manner. In figure

13(a), snapshots from DNS projection to all 4 modes are used to show the whole evolution

of vortex dynamics from roll-up, pairing, to merging. The stage for dominant frequency

switching from k = 2 to k = 1 is identified by the entire vortex pairing/merging process and

is boxed. Once vortex merging is completed, shear layer thickness reaches its peak and is

noted by a vertical like in the picture below. The results from 4-mode model show similar

behavior in figure 13(b). With excitation at k = 1, figure 13(c) shows clearly shortened

pairing/merging stage and a promotion of vortex structures at k = 1. With excitation

at k = 2, figure 13(d), on the other hand, shows a longer pairing/merging process and a

delayed appearance of k = 1 vortices. Such behaviors have been observed experimentally

and numerically2,14, and here, they are qualitatively predicted by the current model without

running extra simulations.
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FIG. 13. Vorticity field snapshots (top) (at t = 624, 648, 672, 696, 720, 744, 768, 792, and 816) and

average thickness variations (bottom) from: (a) DNS projection on 4 modes; (b) 4-mode model;

(c) 4-mode model with excitation at k = 1; (d) 4-mode model with excitation at k = 2. Contours

show vorticity |ω| < 0.3.

VI. CONCLUSION

Direct numerical simulation of a SD shear layer shows overall downstream spreading with

events marked by vortex roll-up, pairing, and merging. When vortex structures translate

downstream, most of these physical mechanisms remain present. However, this similarity

can be damaged by the effects from mean flow variation along x, and therefore, the number

of required modes increases in reduced-order modeling. In order to avoid this problem, we

introduce a function g(x) to scale the flow dynamically in y-direction so that the shear-

layer thickness remains the same in the scaled space. Then, a low-dimensional system

evolving downstream can be built more efficiently in the new symmetry-reduced space,

using traditional POD/Galerkin projection. Finally, a reconstruction equation for g(x) is

derived and computed simultaneously to close the system.

The approach needs to be based on equations strictly parabolized along x and at the

same time with enough terms to keep some key physics (i.e. instability). Such parabolic

requirement is satisfied by applying a thin-layer assumption in a spatially-developing shear

layer but without neglecting key terms for basic instability.
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A 2-mode model for SD shear layers is developed to describe vortex roll-up and shear-layer

thickness changes. Similar to TD cases, we need at least two POD modes for each frequency

for a successful model. The shapes of each modes are also similar to those of TD cases,

and therefore, a possible connection between the POD modes and the instability modes is

indicated. The downstream development of each modes is depicted qualitatively well by

the 2-mode model even without enforcing mass conservation. Similarly, a 4-mode model for

SD shear layers is developed to describe more complex dynamics involving the interaction

between harmonics (e.g. vortex pairing and merging). There is an overall improvement for

the 4-mode model, but the thickness oscillation is still over-predicted due to lack of mass

conservation. Similar differences due to absence/presence of mass conservation are observed

for low-dimensional TD models.6,24

With an extension to include effects from external excitation, the models can describe the

response to different frequencies. The forced 4-mode model successfully predicts basic char-

acteristics of mode competition without running the corresponding numerical simulations.

The model also shows robustness under excitations at different amplitudes.
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Appendix A: Equations and coefficients for the 2-mode model

1. Projection of left-hand-side

〈

Ã
∂q̃

∂x
,Φ1,1

〉

= T

[
∫

(u0û1,1û
∗

1,1 + u0v̂1,1v̂
∗

1,1)dy

]

ȧ1,1 + T

[
∫

(u0û1,2û
∗

1,1 + u0v̂1,2v̂
∗

1,1)dy

]

ȧ1,2

= T (b11ȧ1,1 + b12ȧ1,2),

(A1)
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so that coefficients are defined

b11 =

∫

(u0û1,1û
∗

1,1 + u0v̂1,1v̂
∗

1,1)dy (A2)

b12 =

∫

(u0û1,2û
∗

1,1 + u0v̂1,2v̂
∗

1,1)dy. (A3)

Similarly,

b21 =

∫

(u0û1,1û
∗

1,2 + u0v̂1,1v̂
∗

1,2)dy (A4)

b22 =

∫

(u0û1,2û
∗

1,2 + u0v̂1,2v̂
∗

1,2)dy. (A5)

2. Projection of nonlinear terms

〈Ng(q̃, q̃),Φ1,1〉 =− Tg

[
∫

(v̂0
dû1,1

dy
û∗

1,1 + v̂0
dv̂1,1
dy

v̂∗1,1)dy

]

a1,1

− Tg

[
∫

(v̂0
dû1,2

dy
û∗

1,1 + v̂0
dv̂1,2
dy

v̂∗1,1)dy

]

a1,2

− Tg

[
∫

(v̂1,1
dû0

dy
û∗

1,1 + v̂1,1
dv̂0
dy

v̂∗1,1)dy

]

a1,1

− Tg

[
∫

(v̂1,2
dû0

dy
û∗

1,1 + v̂1,2
dv̂0
dy

v̂∗1,1)dy

]

a1,2

=− Tg

[
∫

(v̂1,1
dû0

dy
û∗

1,1)dy

]

a1,1 − Tg

[
∫

(v̂1,2
dû0

dy
û∗

1,1)dy

]

a1,2,

=Tg(c11a1,1 + c12a1,2).

(A6)

where v̂0 = 0 is applied. So, we have

c11 = −

∫

(v̂1,1
dû0

dy
û∗

1,1)dy (A7)

c12 = −

∫

(v̂1,2
dû0

dy
û∗

1,1)dy. (A8)

Similarly,

c21 = −

∫

(v̂1,1
dû0

dy
û∗

1,2)dy (A9)

c22 = −

∫

(v̂1,2
dû0

dy
û∗

1,2)dy. (A10)
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3. Projection of linear terms

〈Lg(q̃),Φ1,1〉 =− T (
2πi

T
)

[
∫

(û1,1û
∗

1,1 + v̂1,1v̂
∗

1,1)dy

]

a1,1

+
1

Re
g2T

{[
∫

(
d2û1,1

dy2
û∗

1,1 +
d2v̂1,1
dy2

v̂∗1,1)dy

]

a1,1

+

[
∫

(
d2û1,2

dy2
û∗

1,1 +
d2v̂1,2
dy2

v̂∗1,1)dy

]

a1,2

}

,

=T (c13a1,1 +
g2

Re
[d11a1,1 + d12a1,2]).

(A11)

that

c13 = −(
2πi

T
)

∫

(û1,1û
∗

1,1 + v̂1,1v̂
∗

1,1)dy (A12)

d11 =

∫

(
d2û1,1

dy2
û∗

1,1 +
d2v̂1,1
dy2

v̂∗1,1)dy (A13)

d12 =

∫

(
d2û1,2

dy2
û∗

1,1 +
d2v̂1,2
dy2

v̂∗1,1)dy. (A14)

Similarly

c23 = −(
2πi

T
)

∫

(û1,2û
∗

1,2 + v̂1,2v̂
∗

1,2)dy (A15)

d21 =

∫

(
d2û1,1

dy2
û∗

1,2 +
d2v̂1,1
dy2

v̂∗1,2)dy (A16)

d22 =

∫

(
d2û1,2

dy2
û∗

1,2 +
d2v̂1,2
dy2

v̂∗1,2)dy. (A17)

4. Projection of thickness correction terms

The correction term of downstream evolution resulted by the scaling is
〈

−Ã
ġ

g
y
dq̃

dy
,Φ1,1

〉

=− T
ġ

g

[
∫

(u0
dû1,1

dy
û∗

1,1 + u0
dv̂1,1
dy

v̂∗1,1)ydy

]

a1,1

− T
ġ

g

[
∫

(u0
dû1,2

dy
û∗

1,1 + u0
dv̂1,2
dy

v̂∗1,1)ydy

]

a1,2

− T
ġ

g

[
∫

(û1,1
du0

dy
û∗

1,1 + û1,1
dv̂0
dy

v̂∗1,1)ydy

]

a1,1

− T
ġ

g

[
∫

(û1,2
du0

dy
û∗

1,1 + û1,2
dv̂0
dy

v̂∗1,1)ydy

]

a1,2

=T
ġ

g
(e11a1,1 + e12a1,2).

(A18)
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Coefficients are

e11 = −

∫

(u0
dû1,1

dy
û∗

1,1 + u0
dv̂1,1
dy

v̂∗1,1 + û1,1
du0

dy
û∗

1,1)ydy (A19)

e12 = −

∫

(u0
dû1,2

dy
û∗

1,1 + u0
dv̂1,2
dy

v̂∗1,1 + û1,2
du0

dy
û∗

1,1)ydy, (A20)

where v̂0 = 0 is applied again. Similarly,

e21 = −

∫

(u0
dû1,1

dy
û∗

1,2 + u0
dv̂1,1
dy

v̂∗1,2 + û1,1
du0

dy
û∗

1,2)ydy (A21)

e22 = −

∫

(u0
dû1,2

dy
û∗

1,2 + u0
dv̂1,2
dy

v̂∗1,2 + û1,2
du0

dy
û∗

1,2)ydy. (A22)

5. Projection of external forcing terms

〈fq̃,Φ1,1〉 = T

[
∫

(A1,1û1,1û
∗

1,1 + A1,1v̂1,1v̂
∗

1,1)dy

]

+ T

[
∫

(A1,2û1,2û
∗

1,1 + A1,2v̂1,2v̂
∗

1,1)dy

]

= T (A1,1).

(A23)

Similarly

〈fq̃,Φ1,2〉 = T (A1,2). (A24)

6. Terms for thickness evolution

〈

yũ
∂ũ

∂y
, yu0

∂u0

∂y

〉

=T

∫
(

yu0
du0

dy

)2

dy

+ T

[
∫

(û1,1

dû∗

1,1

dy
+ û∗

1,1

dû1,1

dy
)y2u0

du0

dy
dy

]

a1,1a
∗

1,1

+ T

[
∫

(û1,1

dû∗

1,2

dy
+ û∗

1,2

dû1,1

dy
)y2u0

du0

dy
dy

]

a1,1a
∗

1,2

+ T

[
∫

(û1,2

dû∗

1,1

dy
+ û∗

1,1

dû1,2

dy
)y2u0

du0

dy
dy

]

a1,2a
∗

1,1

+ T

[
∫

(û1,2

dû∗

1,2

dy
+ û∗

1,2

dû1,2

dy
)y2u0

du0

dy
dy

]

a1,2a
∗

1,2.

(A25)
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and
〈

f 1
g , yu0

∂u0

∂y

〉

=

〈

N 1
g (q̃, q̃), yu0

∂u0

∂y

〉

+

〈

L1
g(q̃), yu0

∂u0

∂y

〉

=− Tg

[
∫

(v̂1,1
dû∗

1,1

dy
+ v̂∗1,1

dû1,1

dy
)yu0

du0

dy
dy

]

a1,1a
∗

1,1

− Tg

[
∫

(v̂1,1
dû∗

1,2

dy
+ v̂∗1,2

dû1,1

dy
)yu0

du0

dy
dy

]

a1,1a
∗

1,2

− Tg

[
∫

(v̂1,2
dû∗

1,1

dy
+ v̂∗1,1

dû1,2

dy
)yu0

du0

dy
dy

]

a1,2a
∗

1,1

− Tg

[
∫

(v̂1,2
dû∗

1,2

dy
+ v̂∗1,2

dû1,2

dy
)yu0

du0

dy
dy

]

a1,2a
∗

1,2

+
1

Re
g2T

∫

(
d2u0

dy2
yu0

du0

dy
dy.

(A26)

Therefore, the coefficients in thickness evolution equation (36) are

b0 =

∫
(

yu0
du0

dy

)2

dy (A27)

b01 =

∫

(û1,1

dû∗

1,1

dy
+ û∗

1,1

dû1,1

dy
)y2u0

du0

dy
dy (A28)

b02 =

∫

(û1,1

dû∗

1,2

dy
+ û∗

1,2

dû1,1

dy
)y2u0

du0

dy
dy (A29)

b03 =

∫

(û1,2

dû∗

1,1

dy
+ û∗

1,1

dû1,2

dy
)y2u0

du0

dy
dy (A30)

b04 =

∫

(û1,2

dû∗

1,2

dy
+ û∗

1,2

dû1,2

dy
)y2u0

du0

dy
dy (A31)

c01 = −

∫

(v̂1,1
dû∗

1,1

dy
+ v̂∗1,1

dû1,1

dy
)yu0

du0

dy
dy (A32)

c02 = −

∫

(v̂1,1
dû∗

1,2

dy
+ v̂∗1,2

dû1,1

dy
)yu0

du0

dy
dy (A33)

c03 = −

∫

(v̂1,2
dû∗

1,1

dy
+ v̂∗1,1

dû1,2

dy
)yu0

du0

dy
dy (A34)

c04 = −

∫

(v̂1,2
dû∗

1,2

dy
+ v̂∗1,2

dû1,2

dy
)yu0

du0

dy
dy (A35)

d0 =

∫

(
d2u0

dy2
)yu0

du0

dy
dy. (A36)

and the differential equations for scaling variable g and coefficient vector are

a = (a1,1 a1,2)
T

ġ =
(c01a1,1a

∗

1,1 + c02a1,1a
∗

1,2 + c03a1,2a
∗

1,1 + c04a1,2a
∗

1,2)g
2 + 1

Re
d0g

3

b0 + b01a1,1a∗1,1 + b02a1,1a∗1,2 + b03a1,2a∗1,1 + b04a1,2a∗1,2
, (A37)
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and

Bȧ = (gC+Λ+
1

Re
g2D+

ġ

g
E)a+ F. (A38)

where the matrices B,C,Λ,D,E, and F for the two mode case were defined previously in

section IVD.

Appendix B: Equations for the 4-mode model

The differential equations for scaling variable g and coefficient vector

a = (a1,1 a1,2 a2,1 a2,2)
T

for 4-mode model are given as

ġ =
C0

B0
g2 +

1

Re

d0
B0

g3 (B1)

where coefficients B0 and C0 are given as

B0 =b0 + b01a1,1a
∗

1,1 + b02a1,1a
∗

1,2 + b03a1,2a
∗

1,1 + b04a1,2a
∗

1,2

+ b05a2,1a
∗

2,1 + b06a2,1a
∗

2,2 + b07a2,2a
∗

2,1 + b08a2,2a
∗

2,2,
(B2)

C0 =c01a1,1a
∗

1,1 + c02a1,1a
∗

1,2 + c03a1,2a
∗

1,1 + c04a1,2a
∗

1,2

+ c05a2,1a
∗

2,1 + c06a2,1a
∗

2,2 + c07a2,2a
∗

2,1 + c08a2,2a
∗

2,2,
(B3)

and

Bȧ = (C +
g2

Re
D+

ġ

g
E)a+N1 +

ġ

g
N2 + F, (B4)

where matrices N1 and N2 includes all terms nonlinear to ak,n as

N1 =















g(c1121a
∗

1,1a2,1 + c1122a
∗

1,1a2,2 + c1221a
∗

1,2a2,1 + c1222a
∗

1,2a2,2)

g(c1321a
∗

1,1a2,1 + c1322a
∗

1,1a2,2 + c1421a
∗

1,2a2,1 + c1422a
∗

1,2a2,2)

g(c1511a1,1a1,1 + c1512a1,1a1,2 + c1522a1,2a1,2)

g(c1611a1,1a1,1 + c1612a1,1a1,2 + c1622a1,2a1,2)















, (B5)

and

N2 =















e1121a
∗

1,1a2,1 + e1122a
∗

1,1a2,2 + e1221a
∗

1,2a2,1 + c1222a
∗

1,2a2,2

e1321a
∗

1,1a2,1 + e1322a
∗

1,1a2,2 + e1421a
∗

1,2a2,1 + c1422a
∗

1,2a2,2

e1511a1,1a1,1 + e1512a1,1a1,2 + e1522a1,2a1,2

e1611a1,1a1,1 + e1612a1,1a1,2 + e1622a1,2a1,2















, (B6)
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and other matrices for terms linear to ak,n have blocks of zeroes as shown below:

B =





B1 0

0 B2



 , C =





C1 0

0 C2



 , D =





D1 0

0 D2



 ,

E =





E1 0

0 E2



 , F =















A1,1

A1,2

A2,1

A2,2















,

(B7)

with sub-matrices defined by

B1 =





b111 b112

b211 b212



 , B2 =





b121 b122

b221 b222



 ,

C1 =





gc111 + c311 gc112

gc211 gc212 + c312



 , C2 =





gc121 + c321 gc122

gc221 gc222 + c322



 ,

D1 =





d111 d112

d211 d212



 , D2 =





d121 d122

d221 d222



 ,

E1 =





e111 e112

e211 e212



 , E2 =





e121 e122

e221 e222



 .

The equations for coefficients are too many to be listed here.
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