
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng2000;00:1–6 Prepared usingnmeauth.cls [Version: 2002/09/18 v2.02]

Optimization Under Adaptive Error Control for a Contact Tank Reactor

Bart G. van Bloemen Waanders∗

Brian R. Carnes

Sandia National Laboratories†, PO Box 5800, Albuquerque, NM 87122

SUMMARY

Optimization problems constrained by complex dynamics canlead to computationally challenging problems especially when
high accuracy and efficiency are required. We present an approach to adaptively control numerical errors in optimization problems
approximated using the finite element method. The discrete adjoint equation serves as a key tool to efficiently compute both
parameter sensitivities and goal-oriented error estimates at the same discretized levels. By using a recovery method for the error
estimators, we avoid expensive higher order adjoint calculations. We nest the adaptivity of the mesh within the optimization
algorithm, which is responsible for converging both the state and optimization algorithms and thereby allowing the reuse of state,
parameters, and reduced Hessian in subsequent optimization iterations. Our approach is demonstrated on a parameter estimation
problem for contamination transport in a contact tank reactor. Significant efficiency and accuracy improvements are realized
in comparison to uniform grid refinement strategies and black-box optimization methods. A flexible and maintainable software
interface was developed to provide access between the underlying linear algebra of a production simulator and advancednumerical
algorithms such as optimization and error estimation.
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1. INTRODUCTION

One of the key goals of numerical simulation is to approximate complex physics as accurately as possible while
maintaining computational efficiency. This can be achievedthrough the advancement of numerical methods such as
linear solvers, nonlinear solvers, time integrators, preconditioners, and parallelization. More fundamentally however,
the accuracy of numerical simulation is strongly dependenton the appropriate use of discretization techniques and
mesh refinement which almost always accomplishes higher levels of solution accuracy. But simply refining meshes
becomes computationally expensive, especially if multiple forward simulations are required as part of more detailed
optimization studies. Therefore to maintain computational tractability, one can only afford to sparingly refine the
grid, preferably in a way that is guided by the dynamics of theproblem. This can be accomplished mathematically
using the adjoint formulation, which encompasses the necessary information to drive both the optimization and grid
refinement problems. Despite many technical advancements,several important technical issues remain when coupling
optimization and adaptivity, consisting of the computational expensive nature of calculating an additional adjoint on
higher order meshes, the lack of established algorithms to calculate error estimation within an optimization context,
and the challenges associated with software implementation of intrusive algorithms in production simulation codes. In
this paper we address these issues by 1) demonstrating recovery methods applied to adjoint based error estimators as
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an inexpensive alternative to higher order adjoint solutions, 2) reusing Hessian, state and optimization variables after
each adaption cycle, 3) leveraging embedded optimization methods to efficiently combine adaptivity and optimization
algorithms, and 4) enabling a generalized interface to mitigate the complexities of interfacing advanced numerical
algorithms into production codes.

Significant research has been conducted in the area of a posteriori error estimation for finite element discretizations,
especially for engineering responses of interest, such as surface fluxes, average values on subdomains or surfaces,
and point values. The underlying tool in nearly all of these approaches, beginning with the work of Becker and
Rannacher [7], is tocomputationallymake use of an auxiliary linear adjoint problem. Weighting the local finite
element residuals with the adjoint error yields both globalerror estimates on the error in the responses of interest
and local error indicators that can be used to drive adaptivemesh refinement. This approach was subsequently pursued
for linear elliptic problems [19, 20], optimization [5, 6, 3], and more general nonlinear systems of PDEs [12]. Recent
reviews of adjoint-based error estimation can be found in [14, 4]. One of the main research issues is how to reduce
the high computational cost of approximating the adjoint solve with a higher order method, while still preserving
sufficient accuracy in the error estimators. We present a newapproximation approach for the adjoint solve using
recovery methods that is very computationaly efficient whencompared to solving the adjoint using a higher order
method.

Optimization techniques have been studied for several decades and more recently, efficient large scale algorithms
have demonstrated impressive computational performance [2]. The use of these algorithms require access to the linear
algebra infrastructure of the simulator which typically isnot readily available, especially in production codes. Different
levels of interfaces can be considered and the choice depends on a balance of implementation effort versus desired
performance. For the most efficient algorithm, first and second order sensitivity information need to be provided
to the optimization algorithm to realize potentially quadratic convergence rates, whereas at the opposite end of the
spectrum the optimizer calculates the objective function gradient through finite difference techniques requiring very
little from the simulator (merely forward simulations) butat a significant performance cost. In this paper, we show
performance comparisons for different interface strategies from the “black box” to the “simultaneous analysis and
design” (SAND) approach (a.k.a. all-at-once approach). Itis the SAND strategy however that not only significantly
improves the computational efficiency but also provides thealgorithmic flexibility to accomodate adaptivity within the
optimization algorithm.

Progress on algorithms for large scale optimization with adaptivity in parallel environments has been hampered
by the complexity associated with the implementation process. As one of the few research efforts, Bangerth [3]
demonstrates large scale optimization algorithms withh-adaptivity applied to inversion in 3D optical tomography.
However, his finite element environment was appropriately designed from the outset to accommodate adaptivity and
access to the linear algebra infrastructure. Such capabilities are typically not available in existing legacy production
codes. Short of completely refactoring, the algorithms in Bangerth’s work cannot be conveniently encapsulated and
efficiently transferred to production codes. As part of thisresearch, one of our goals was to create a general interface
so that existing optimization libraries and adaptivity capabilities can be seamlessly used by any simulation code that
adopted the interface. However, just creating an interfacefor optimization and adaptivity is still not sufficient to ensure
the longevity of such an interface. The primary code developers are typically focussed on the enhancement of the
forward prediction mode and not on the maintenance of interfaces for optimization or error estimation. A general
interface must therefore also appeal to other nonlinear numerical algorithms (such as time integrators and nonlinear
solvers) that are in direct support of the forward prediction. Our interface is designed to accomplish this and although
a detailed description of the object oriented design of our interface is beyond the scope of this paper, the importance
of these implementation issues warrants the inclusion of a brief description of our design.

In the remainder of the paper we present the algorithms to perform optimization and discuss different
implementation strategies. A performance comparison is presented using flow and transport datasets. The practical
difficulties associated with the theoretical error for the optimality conditions are discussed and the dual-weighted
residual approach is justified. Our adaptive process makes use of the adjoints in a recovery method to augment the
solution field with higher order information. This approachis verified by comparing it to an analytic solution for
convection-diffusion dynamics. A description of our implementation approach is included to emphasize the intrusive
nature of the implementation and the added complications ofattempting this in multiple codes and production systems.
After the verification section, the physics of our example dataset are explained followed by numerical results for both
two and three dimensions. We summarize the effectiveness ofadaptivity in the optimization context in addition to
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showing the performance gains for our embedded optimization and adaptivity methods which are both supported by a
single adjoint calculation on the same discrete space. Numerical studies were performed in serial and parallel for two
and three dimensional datasets, respectively.

2. OPTIMIZATION METHODOLOGIES

We start by defining our algorithms to solve large scale optimization problems and by identifying appropriate solution
strategies that are extensible to leverage adaptivity. Suppose that the forward model is described using a semilinear
variational statement: given a value of the parameterp ∈ Π, find the solutionu = u(p) ∈ V :

A(u, p)(v) = 0, v ∈ V. (1)

where the exact form of the funcational spacesV andA are problem dependent. The parameterp can also belong
to a function space; here, for simplicity we assume that the parameter space is finite dimensional, orp ∈ Π ≡ R

n.
In order to define the optimization problem, we need a cost functionalF that depends on the solutionu and the

parametersp. The goal of the optimization problem is to find(u∗, p∗):

F (u∗, p∗) = min
u,p

F (u, p) (2)

subject to the constraint in (1). A classical way to solve this problem is to introduce a Lagrange multiplier field,φ,
also known as the adjoint state, and form a Lagrangian functionalL that combines the objective function with the state
equation:

L(u, p, φ) ≡ F (u, p) + A(u, p)(φ). (3)

The stationarity ofL is derived by taking variations with respect to the adjoint (φ), state (u), and optimization
parameter (p). The following system of equations represent the first-order necessary conditions for optimality
(suppressing the dependence on(u, p) for clarity in our notation):
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This system of equations is typically nonlinear and therefore requires a linearization step, which can be achieved
through Newton’s method. This system of equations for the Newton updates is called the Karush-Kuhn-Tucker (KKT)
system:
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whereLuu is the Hessian operator of the Lagrangian with respect to theu variable. Different algorithms can solve
these optimality conditions and the right choice depends onseveral issues, most importantly on the size of the
optimization space, complexity of the constraints, and theaffordability of the implementation effort. The most difficult
one to implement is afull spacemethod in which (5) is solved directly. The most notable obstacles are the need for
second derivatives and special preconditioning [9, 10]. Neither requirement is tractable in most production codes. An
approximation to the Hessian could be considered such as BFGS or SR1 updating methods [17], which simplifies
the requirements considerably. A popular alternative is toeliminate state and adjoint variables, thereby reducing the
system to a manageable one in just the inversion parameters.Approaches of this type are known asreduced space
methods.

Several important variants of reduced space methods can be considered. A nonlinear elimination variant of a reduced
space method would solve the nonlinear state equation (1) for given p for the state variableu. Knowing the state
then permits solution of the adjoint equation for the adjoint variableφ. Finally, with the state and adjoint known,
the parameterp is updated via an appropriate linearization of the optimization equation. This loop is repeated until
convergence. As an alternative to such nonlinear elimination, one often prefers to follow the Newton strategy offirst
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linearizing the optimality system, andthen eliminating the state and adjoint updates via block elimination on the
linearized state and adjoint equations. The resulting Schur complement operator is known as thereduced Hessian,
and the equation to which it corresponds can be solved to yield the parameter update. After applying appropriate
discretizations, the above described methods require access to the linear algebra in addition to the optimization
algorithm directly communicating with the simulator. In this paper, we have adopted the Newton strategy which
exposes a variety of linear objects to the optimization/adaptivity algorithm. In particular, we reuse the reduced Hessian
after adapting the mesh and realize significant performanceimprovements (see Section 6).

To accommodate optimization algorithms as part of a simulation code can be a challenging undertaking. A range
of non-standard linear algebra objects are needed including objective functions, inequality constraints, sensitivity
information and a mechanism for the optimization algorithmto control the iterative loop. A decoupled approach is
therefore a convenient initial approach to making use of optimization. This often referred to as theblack boxinterface
and requires very little information from the underlying simulator. Some basic data needs to be exchanged between
optimization and simulator (usually through the file system) such as the objective function value, changes to the design
parameters and globalization data. The gradient of the objective function is calculated through finite differences across
the entire simulator and although very expensive computationally for many design variables, the interface is trivial.The
original optimization problem (2) is reformulated by eliminating the state variable and constraints as an unconstrained
optimization problem:

F (u(p)∗, p∗) = min
p

F (u(p), p) (6)

A logical improvement over theblack boxapproach is to substitute direct or adjoint based sensitivities for the
finite difference calculations. It is different from the intrusive approach described above in that there is still no direct
interface and therefore the simulator is converged at each optimization iterations. In the numerical results section,we
present a performance comparison for the black box with finite difference, black box with adjoints, and a reduced
space approach. Unfortunately, the decoupled algorithms do not lend themselves to efficient use of adaptivity. As
the optimization algorithm steers the simulator to convergence there is no direct interface to communicate adjoints
or any other objects between optimizer and forward simulator. A fully coupled approach on the other hand provides
the necessary conduits between the forward simulator and optimization algorithm to exchange adjoints, Hessians,
objective function, and any other pertinent information. Before outlining our algorithmic strategy, the error estimates
for the KKT system (4) and the approximation approaches are explained.

3. OPTIMIZATION AND ERROR ESTIMATION

Our goal of the adaptive error control is to minimize the error in the objective functionF (u, p) using an adjoint
equation which is identical to the second equation in (4) used in optimization. Below we present an approach for
using the same discrete adjoint to drive both algorithms. However, the adjoint for optimization is solved in the
same functional space as the forward problem and by finite element orthogonality, the resulting weighted residual
calculation for the error estimate would be zero. This then suggests a need for duplicate adjoint calculations, each in
different functional spaces, which is unfortunately computationally expensive. Our formulation proposes a recovery
method whereby higher order information is extracted from an adjoint solution on the same functional space as the
optimization problem. This will not result in the same levels of accuracy in comparison to an adjoint solved in a higher
functional space but we show that this approximation appears sufficient to steer the mesh adaptivity. Furthermore,
highly accurate adjoints in the early stages of the optimization process will likely not justify the high cost-benefit ratio.

3.1. Finite element approximation and error estimation

The continuous first-order necessary conditions for optimality in (4) must be approximated in practice. Because of
our interest in error estimation and adaptive mesh refinement, we employ the adaptive finite element method [1]. Let
Vh ⊂ V be a finite element approximation space based on conforming elements of fixed polynomial degreer ≥ 1. The
mesh is only required to be locally quasi-uniform [1]. The finite element approximation of the optimality conditions
is then: find(U, Φ, P ) ∈ Vh × Vh × Π:
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A(U, P )(v) = 0, v ∈ Vh

Fu(U, P )(v) + Au(U, P )(v, Φ) = 0, v ∈ Vh

Fp(U, P ) + Ap(U, P )(Φ) = 0
(7)

We are interested in the error of the objective function

E(U, P ) ≡ F (u, p) − F (U, P ).

An a posteriori error estimate for this error was derived by Becker and Kapp [5] which involves the exact solution. For
the case of a fixed finite-dimensional parameter space, this estimate takes the form

E(U, P ) =
1

2
{A(U, P )(ε)

+Fu(U, P )(e) + Au(U, P )(e, Φ)

+Fp(U, P )(ξ) + Ap(U, P )(ξ, Φ)} + R3,

(8)

where the remainder termR3 is cubic with respect to the errors

e ≡ u − U, ε ≡ φ − Φ, ξ ≡ p − P. (9)

A lower order approximation can be defined by

E(U, P ) = A(U, P )(ε) + R2, (10)

where the remainderR2 is only second order [4]. The form in (10) avoids approximating the state and
inversion operators and thereby significantly simplifies the implementation in large production finite element codes.
Consequently, a loss in accuracy is realized as a result of the remainder term increasing from third to second order
(R3 → R2). The lower order error estimate requires the exact solution to the adjoint equation:

Au(u, p)(v, φ) = −Fu(u, p)(v), v ∈ V. (11)

Since the exact solution is unknown, this problem is furtherapproximated by replacing the exact stateu and parameter
p by the approximate solutionU and parameterP : find φ̂ ∈ V :

Au(U, P )(v, φ̂) = −Fu(U, P )(v), v ∈ V. (12)

3.2. Approximations to the adjoint problem

In order to derive a computable error estimate we need to approximate the continuous adjoint problem in (12). The
simplest way to do this is to use the same approximation spaceVh and solve forΦ ∈ Vh

Au(U, P )(v, Φ) = −Fu(U, P )(v), v ∈ Vh. (13)

The solution to this problem is exactly the same as the adjoint component of the solution to the full discrete optimality
problem (7), which is potentially convenient since it has already been computed. However, because of the Galerkin
orthogonality, this would give a zero approximation of the error if substituted forφ in (10). The ideal approach to
calculate the solutionφ is to approximate (12) using a higher order spatial approximation spacẽVh. This can be done,
for example, by increasing the polynomial degree of the finite element spaceVh or by refining the underlying mesh.
Then the adjoint weights are approximated using the higher order approximatioñΦ ∈ Ṽh

ε ≈ Φ̃ − Φ

This approach has the advantages of typically being quite accurate, due to the use of a higher order method. It can
also be expensive, due to the higher order adjoint solve, andvery difficult to implement in existing production finite
element codes.

Various other less expensive approaches have been proposedusing postprocessing of the approximate solution
(U, Φ, P ). In these cases, the error weights are approximated using some smoothing operators that only depend on the
computed approximate solution and the problem data. For self-adjoint differential operators, Paraschivoiu et al. [19]
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Figure 1. Sampling points for value and gradient recovery for linear finite elements

used local Neumann problems on refined patches of elements togenerate upper and lower bounds on the error in
linear functionals. This work was improved by Prudhomme andOden [20], who used techniques from generating
upper and lower bounds on the error in the energy norm to derive sharper bounds on the error in linear functionals.
For more general partial differential equations, Becker and Rannacher [7] proposed an interpolation method for
estimating first and second order derivatives of the adjointsolution computed on the same finite element mesh. Several
options for approximating the adjoint were explored by Larsson et al. [16], including approximating the adjointerror
using a hierarchical higher order approximation with the lower order basis functions removed. They also considered
approximations of the adjoint error on local patches of elements, as was later done by Carnes and Carey [11].

In this work, we approximate the adjoint weights using recovery procedures. Value and gradient recovery have
been used in finite elements for some time, beginning with thekey work of Zienkiewicz et al. [26] and more recently
by Wiberg et al. [25] and Ovall [18]. We refer the reader to thebook by Ainsworth and Oden for a more detailed
review [1]. The value recovery is based on a least squares polynomial fit of nodal values on a patch of elements around
an element. For elements of degree greater than one, this method generally produces a higher order field approximation
on the element. However, for linear elements, the accuracy may not be greatly improved. Thus, this approach may be
sub-optimal when terms involving the value of the adjoint error (φ − φh) are large.

Our choice of using a recovery method was primarily motivated by computational efficiency of solving the adjoint
on the same mesh plus inexpensive post-processing. In addition our approach was convenient to implement in our
production finite element code. The approach uses local operators defined onVh that can recover higher order
approximations of functions inVh. The form of the adjoint weights can be expressed as:

φ − Φ ≈ rh(Φ) − Φ, ∇(φ − Φ) ≈ Rh(∇Φ) −∇Φ

We employ a standard approach based on patches of elements around a vertex node (See Figure 1). We sample the
finite element gradients on the elements and fit a polynomial through the sampled values using a least squares fit. For
the case of linear finite elements in 2D, the sampling points are the element midpoints and the polynomial basis is
{1, x, y}. Then the nodal values are used to define a global recovered gradient inV 2

h .

4. ALGORITHMS FOR OPTIMIZATION UNDER ADAPTIVITY

To perform optimization under adaptive error control the choice of the algorithm is partially dictated by the form of
the coupling between the application code and the optimizer. In the decoupled “black box” approach, the optimization
loop launches the application code whenever the state and parameter sensitivities need to be evaluated. Adaptivity
can be done by the application code, but the adapted mesh and state cannot be re-used for the next optimization step.
Furthermore, our experience has shown that in this case the optimizer has difficulty reaching a stable minimum when
the mesh is changing due to adaptivity.

Another possibility is to adapt the mesh at every step and thereby converging the mesh as part of the optimization
loop. Bangerth [3] demonstrates this aproach for problems with distributed parameters. The forward simulator,
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optimization algorithm and the adaptivity mechanism are closely integrated. A SAND optimization implementation
solves for feasibility and optimality simultaneously, providing the necessary access to all the linear objects at any
point of the forward prediction, optimization and adaptivyalgorithms. Although our work also makes use of the
SAND optimization approach, we do not converge the mesh as part of the optimization loop. The primary reason for
not using this approach was because the goal of our implementation effort was to develop an interface sufficiently
flexible to accomodate off-the-shelve optimization libraries and other advanced numerical algorithms. Adaptivity at
each optimization iteration would have required optimization algorithms tailored to handle this and shifted the focus
of our development efforts.

In our approach, adaptivity is performed as an outer loop around an inner optimization loop, which allows a
fixed (adapted) mesh to be used for optimization. Our integrated optimization solution strategy provides, after each
outer loop iteration step, the necessary access to reuse various linear objects such as the reduced Hessian, state and
optimization variables. Instead of recalculating with a prescribed initial guess, the optimization now starts from a much
improved starting point after each outer loop iteration. Weshow in section 6 the computational improvement of this
reuse mechanism. The stopping criteria for the outer loop should ideally be set by comparing the error estimate for the
objective function with a prescribed tolerance. Because ofthe uncertain quality of the error estimates that we compute,
we instead use a fixed number of refinement levels. Algorithm 1outlines our implementation strategy.

Algorithm 1 Optimization under adaptive error control
Given an initial parameter valuep0 and stateU0

Set initial HessianH0 = I
for k = 1 to number of adaption levelsn do

while optimization not convergeddo
calculate adjoint sensitivities
perform step computation
globalize with line search
update optimization and state variables(Uk, pk)

end while
Compute the adjoint based error estimate forF (Uk, pk)
Adapt the mesh using error indicators
Prolong state from old mesh to newUk+1 = Uk

Update ParametersPk+1 = Pk

Update HessianHk+1 = Hk

end for

In order to make use of the error estimator in adaptivity, a strategy is needed to decide which elements to
refine/coarsen. The inputs are the element error contributions, which are the restriction of the integrals in the
estimate (see equation 10) to a mesh elementK. These element indicators, denotedηK , can be either positive or
negative. This confounds most adaptive strategies, which are based on refining elements with large indicators, and
coarsening those with small indicators.

Our approach to adaptivity is to compute two basic statistics on the element error indicators: the meanµ and standard
deviationσ. The idea behind the adaptivity is that refinement should concentrate on thoseηK that are outliers. This is
defined formally as: mark an elementK for refinement if

|ηK − µ| > θR σ, (14)

whereθR is a free parameter. Typically we have usedθR from 0.5 to 1.5, with decreasingθR yields more adaptivity.
In the study we keepθR fixed at 0.5. We do not apply any coarsening, since we are only concerned with stationary
problems. However, the above approach can be extended as: mark an elementK for coarsening if

|ηK − µ| < θC σ, (15)

with θC a free parameter.
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5. IMPLEMENTATION

The implementation of analysis algorithms into productionsimulation codes poses numerous challenges. First,
production codes historically are designed to perform onlyforward predictions. The linear algebra representation
is typically designed with this in mind and accessing non-standard numerical objects requires extensive refactoring.
For example in the case of optimization algorithms, the adjoint calculation requires a transpose of the Jacobian which
is not a standard operation, especially in the parallel context (higher order adjoint solves for error estimators are
even more difficult to implement). Furthermore, the terms inthe general error estimate formula (8) are not included
in typical production codes. Even the simpler error expression in (10) requires the integration of the finite element
residual against special adjoint weight functions. This can be done using the standard element assembly process, but
requires the code to support swapping the nodal test functions with a single adjoint weight function for every possible
term in the residual. Second, each production code presentsunique implementation styles with different concrete
linear algebra infrastructures. Thus for legacy production codes, implementing analysis algorithms directly in the code
would duplicate implementation efforts. This could be simplified if a general purpose, standardized interface were to
be adopted by all the legacy codes. Third, such specialty interfaces are difficult to maintain because the advancement of
production codes is centered around the forward predictionmode and the responsibility for maintaining these specialty
interfaces may become quickly outdated as the development of the forward simulation code advances and changes.
Our proposed solution for all the above mentioned issues is to design an interface sufficiently flexible and extensible
to accommodate different underlying linear algebra infrastructures and to enable a range of numerical algorithms of
interest to the developers.

To this end, we have developed an interface that is sufficiently general to provide a conduit from a range of advanced
numerical algorithms (ANAs) to different underlying linear algebra infrastructures. Underlying the design is the
premise that the interface is stateless, lightweight, and extensible. Our stateless interface does not maintain temporary
copies to any vector or matrix objects but instead manipulates pointers. The interface is designed so that any input
and output variables can be easily added or deleted to accomodate any algorithm. This is a critical feature because the
interface ideally should not only be used in specialized ANAs (such as optimization) but also algorithms central to the
forward simulator (i.e. nonlinear solver, time integration, etc).

5.1. Model Evaluator

The Thyra package in Trilinos [15] contains a set of interfaces and supporting code that define basic interoperability
mechanisms between different types of numerical software.The foundation of all of these interfaces are the
mathematical concepts of vectors, vector spaces, and linear operators, as well as interfaces to various linear and
nonlinear solvers. To address the communication from ANA toconcrete application, the ModelEvaluator class is
introduced (Fig 2). This design is based on the ’decorator’ design pattern which makes it possible to extend (decorate)
the functionality of a class at run time. This works by addinga new decorator class that wraps the original class in
addition to combining component pointers as field to the decorator class, initializing these pointers in the component
constructor, and redirecting component methods to the pointers. For additional details see [13]. The essence of the
ModelEvaluator class lies in the definition of input, outputand evaluation methods from which a variety of input and
output parameters can be defined for different algorithms.

5.2. Legacy Production Simulator

The forward simulation models were implemented in a computational mechanics framework called Sierra in which
the Aria package is responsible for the thermal and fluid capabilities. The Sierra framework (see Section 7 in [8]) was
designed to provide common finite element services and thereby allow for an efficient concentration on the physics
development. Parallelism, mesh adaptivity, contact and multiphysics management components are among the many
complex features that are available within this environment. However, the framework was designed primarily to enable
the forward prediction mode which consequently creates significant implementation challenges to incorporate analysis
algorithms. Aria is capable of first and second order finite elements on locally refined (h-adaptive) meshes. The
supported physics used were the incompressible flow and transport modules. The adjoint was implemented and solved
by making use of the solver capabilities from the Trilinos framework. In addition to optimization and error estimation,
the Thyra::ModelEvaluator interface will also enable advanced time integration, and uncertainty quantification in the
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Figure 2. The Trilinos Thyra::Model Evaluator UML class diagram. Trilinos::Epetra is the underlying vector and
matrix parallel class. The ModelEvaluator class is part of the Trilinos::Thyra package which is a facility to manage

and support interfaces for numerical software.

near future.

6. NUMERICAL RESULTS

Optimization and adaptivity algorithms present significant implementation challenges but, as this section will show,
these disadvantages are offset by impressive accuracy and performance improvements. The embedded nature of SAND
methods enable adjoint based error estimation to drive adaptivity which further improves the overall computational
efficiency in addition to improving the accuracy of both the forward and the optimization problems. In this numerical
results section, our goal is to demonstrate these algorithms on non-trivial examples within a production type simulation
code. We target two and three dimensional datasets that describe flow and transport dynamics for a contact reactor
tank used in water treatment. Navier Stokes and convection-diffusion-reaction partial differential equations are
implemented in a parallel finite element framework with embedded optimization under adaptivity. First, the recovery
method will be verified by comparing adjoint calculations using higher order elements to the recovery method with
simple convection-diffusion dynamics. Second, the performance of SAND versus NAND optimization interfaces will
be compared, followed by the performance and accuracy of these interfaces combined with uniform (combined with a
NAND interface) and adaptive (combined with a SAND interface) refinement strategies. A two-dimensional flow and
transport problem forms the basis for our numerical experiments. Third and finally, a three dimensional dataset for a
subsection of the contact reactor tank will demonstrate ourimplementation in parallel, in addition to a demonstration
of the reuse of certain linear algebra objects to help accelerate the convergence of the optimization problem.

6.1. Prototype Two Dimensional Problem with Solution Verification

We compare the accuracy of our recovery-based approach to a higher order adjoint solve on a simple transport problem
in which the error is calculated using a known analytical solution. The model represents stationary transport of a species
by convection-diffusion as follows:
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u · ∇c − ǫ∆c = f in Ω ≡ (0, 2) × (0, 1),
c = 0 on Γin ≡ {x = 0},
c = 1 on Γout ≡ {x = 2},

−ǫ∇c · n = 0 on Γo ≡ {y = 0, 1}

(16)

The velocity field is chosen to be parabolic withu ≡ (4y(1 − y), 0). The dimensionless parameterǫ is equal
to the inverse of the Peclet number (Pe) and is set to 0.01 to prevent stability problems from highly convective
dominated dynamics, which would require some form of stabilization. Although stabilization is available in the
SIERRA framework we elected to use mild convective transport conditions instead of complicating our implementation
with a stabilized formulation. The infinite dimensional problem is approximated using bilinear basis functions on
quadrilateral elements.

Using methods of manufactured solution [21, 22] the source termf is chosen so that the exact solution is given by

u(x, y) =
1 − exp((1 + x(x − 2)y2(1 − y)2)x/ǫ)

1 − exp(2/ǫ)

The response functionJ is defined to be the average value of the species across the entire domain:

J(c) ≡
1

|Ω|

∫

Ω

c dx.

We employ two metrics to compare the performance of the errorestimators. The first is the standard effectivity
index, which is defined to be the ratio of the error estimator to the exact error. Ideally this number should be close to
one. The second is the error reduction under adaptivity, when compared to uniform mesh refinement. In Figure 3(a)
we plot the effectivity ratio for both the recovery method (denoted as Q1R) and the higher order approach with bi-
quadratic elements (denoted as Q2) under uniform and adaptive refinement. For both the recovery and higher order
adjoint the residuals associated with surface flux boundaryconditions can be neglected although in general these
weighted residual contributions should be included.

For uniform refinement, the Q2 estimator effectivity tends to about 1.02, while the Q1R estimator only tends
approximately to the value of about -5.3. When adaptivity isused, the effectivity of both the Q1R and Q2 estimators
becomes more volatile because the meshes are much more irregular. However, the Q2 estimator eventually stabilizes,
while the Q1R estimator still appears to oscillate on the finest adaptive meshes. From this comparison, the Q1R
estimator does not appear to achieve reasonable effectivity values whereas the Q2 estimator eventually settles on
more stable quantities. However, in Figure 3(b) the error reduction from the Q1R is significantly better than uniform
refinement and provides equal error reduction as the Q2 estimator. Moreover, the error reduction from the Q1R
estimator is more monotone than that obtained from the Q2 estimator. We conclude that the Q1R estimator can drive
adaptivity although additional work is required to achieveappropriate effectivity values. Accordingly in our numerical
experiments, the number of refinement levels is set a priori and not dynamically determined with an effectivity
tolerance.

6.2. Application to a Model for Transport in a Contact Tank Reactor

Our recovery approach efficiently calculates error estimators using the optimization adjoint. To further demonstratethis
capability on a relatively complex problem, we select an appropriate optimization problem constrained by convection-
diffusion-reaction transport of a species in a contact tankreactor, which is used in water treatment. In this section the
details of the contact problem are described and in subsequent sections this dataset will be used to perform numerical
experiments. Wang et al. [24] developed a two dimensional finite difference model of the flow and transport in order to
investigate transport of a tracer. They focused primarily on resolving the fluid flow with different turbulence models,
concluding that solute transport predictions depends on the accuracy of the hydrodynamics. Although in Wang’s study
the flow is turbulent, we have reduced Reynolds number to the laminar case to allow for a more simplified investigation
of adaptivity and optimization for transport without the complications of turbulence. In addition the chemical reactions
which consume the reactant species were assumed to be first order and located on prescribed surfaces.

For the contact tank, the boundaryΓ ≡ ∂Ω is divided into four parts: the inflowΓin, for which we specify a
parabolic fluid velocity and constant species concentration; the outflowΓout, for which we specify an open flow
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(a) (b)

Figure 3. Results of the two dimensional verification problem. (a) Effectivity ratio for linear (Q1R) and quadratic
(Q2) meshes, under uniform and adaptive mesh refinement. (b)Exact error under uniform adaptive refinement for

Q1R and Q2.

boundary condition on the flow and a zero diffusive flux condition on the species concentration; the surface reaction
Γrxn, for which we specify a first order reaction for the species (the flow boundary condition is no slip); and the
remaining surfaceΓo for which we also specify a zero diffusive flux condition on the species and a no slip condition
on the flow.

The mathematical model for the flow is defined by the stationary incompressible Navier Stokes equations along
with appropriate boundary conditions. Neglecting gravity, these can be formulated on a domainΩ as follows.

ρ u · ∇u − µ∆u + ∇p = 0 in Ω,
∇ · u = 0 in Ω,

u = uin on Γin,
u = 0 on Γrxn ∪ Γo,

{−p I + µ (∇u + ∇ut)} · n = µ n · ∇ut on Γout.

(17)

The actual contact tank geometry consists of a flow domain with a single inlet and outlet. The domain has multiple
turns at right angles to form a serpentine structure. We plotthe computed flow field for Re= 100 in Figure 4. The
channel was extended at the outlet (not shown) in order to allow the fluid to return to a near fully developed flow.
The reaction zones were located where the flow would be in closest proximity to the walls, in order to increase mass
transport.

Because our interest is in the species transport, we only consider the flow as an auxiliary problem that provides
input to the transport through the fluid velocity. In order toavoid numerical errors from under-resolved flow, the flow
equations (17) were solved on a fine grid using finite element spaces consisting of quadratic velocities and continuous
linear pressures. This solution was then interpolated to the grids (both uniform and adaptive) where the following
transport equation was solved:

u · ∇c − D∆c = 0 in Ω,
c = cin on Γin,

−D∇c · n = 0 on Γo ∪ Γout,
−D∇c · n = k c on Γrxn.

(18)

The dominant dimensionless groups for equations (17)-(18)are the Reynolds number Re≡ ρ U L
µ

, the Peclet number
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Figure 4. Two dimensional contact reactor tank with a flow field for Re= 100. Resolved flow was achieved by
extensions at the outlet.

Pe≡ U L
D

, and a third dimensionless group denoted byΠ ≡ k L
D

. HereU is defined to be the maximum inlet velocity
uin, L is the width of the flow channel, andk is a reference surface reaction rate constant. In Table I we specify the
baseline parameters for the contact tank model.

Name Value Units Description Name Value Units Description
Re 100 - Reynolds number µ 1.307e-3 [Pa − s] Viscosity
Pe 100 - Peclet number u0 6.330e-4 [m/s] Initial velocity
Π 3.160 - - cin 1.0 - Inlet concen.
L 0.21 [m] Length D 1.329e-6 [m2/s] Diffusivity
ρ 9.832e+2 [kg/m3] Density k 2.0e-5 [m/s] Reaction rate

Table I. Nominal parameters for the contact tank model. Re isthe Reynolds number, the Peclet number Pe
represents a ratio of convection and diffusion, and the dimensionless numberΠ represents the ratio of reaction

and diffusion.

The solution to the steady state transport problem defined by(18) can be expressed in abstract form as in (1). To
do this, we define the function spacesV cin ≡ {v ∈ H1(Ω) : v|Γin

= cin} andV ≡ {v ∈ H1(Ω) : v|Γin
= 0}.

The parameters are the set of reaction coefficientskj that are specified as constants on the set of surfaces that make up
Γrxn. The weak solution is obtained by findingc = c(k) ∈ V cin :

A(c, k)(v) = 0, v ∈ V. (19)

where the operatorA is defined by

A(c, k)(v) ≡ (u · ∇c, v) + (D∇c,∇v) + 〈k c, v〉
Γrxn

, (20)

and we have used the usual notations for integral inner products(v, w) ≡
∫

Ω
vw dx and〈v, w〉

Γ
≡

∫

Γ
vw ds.

By choosing appropriate finite dimensional spacesV cin

h ⊂ V cin andVh ⊂ V for the trial and test functions,
respectively, we can define the Galerkin finite element approximation: findC = C(k) ∈ V cin

h :

A(C, k)(v) = 0, v ∈ Vh. (21)

This abstract form provides a mapping to our algorithmic description in the preceding sections.
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Figure 5. Reaction sites are marked by the arrows in the two dimensional contact tank. These sites are represented
as six disjoint sidesets of the mesh

6.3. Optimization of Multiple Reaction Parameters to Fit a Prescribed Concentration on Reaction Surfaces

We compare the performance of the various optimization approaches described in Section 2, with the exception of the
full space approach. In addition, we compare the performance and accuracy of using either uniform or adaptive grids
for the reduced space SAND approach.

Our test problem contains six reaction parameters. The goalof the optimization problem is to solve an inverse
problem by reconciling the differences between prescribedand numerical concentration profiles. The area where the
comparison is made is along the total reaction surface, which in this example consists of six disjoint surfaces, each
with its own constant reaction rate (See Figure 5). The function that we fit is a linear function ofx that decreases along
the overall flow direction:

crxn(x) ≡ 1 − x/4. (22)

Since the length of the domain in thex-direction is two, this should result in a concentration profile from approximately
one to one half in thex-direction. The response function in this case is defined by

J(c) ≡
1

2

∫

Γrxn
|c − crxn|

2 dx. (23)

The solutions to the forward and adjoint problem are shown inFigure 6 for Re=Pe=100 and at the optimal parameter
values. The forward solution exhibits large gradients nearthe surfaces where reactions occur, as well as near the various
corner singularities. The adjoint has similar dynamics, only reversed, and exhibits plumes that flow off the reaction
surface in the upwind direction. These plumes mask the serpentine like features in the adjoint solution.

We compare the various optimization approaches – black box with finite difference sensitivities (BB-FD), black box
with analytic sensitivities (BB), and reduced space with analytic sensitivities (RS), using both uniform and adaptive
meshes. In all cases, the optimal parameters from the coarser mesh are used to initialize the optimization of the finer
mesh. However, only the RS approach is able to reuse the solution state and reduced space Hessian approximation as
discussed in Section 4.

In Table II we can see that there are significant differences in the computational cost. Most expensive is the BB-FD
approach. Here the cost can be more than an order of magnitudeslower than the BB approach. This is because of the
excessive number of function evaluations needed as well as the lower accuracy of the finite difference derivatives. The
BB approach was about a factor of four to six slower than the RSapproach. The latter method likely was faster than the
black box case with analytic sensitivities because of the improved algorithm which allows infeasible paths toward the
optimal parameters in addition to the elimination of repetitive pre and post-processing of the simulator. These results
are consistent with past studies that have demonstrated thecomputational advantages of SAND methods over black
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Figure 6. Concentration solutions for the forward (top) andadjoint (bottom) for the multiple parameter case. The
plumes off the reaction sites in the adjoint solution mask the serpentine feature similar to the forward solution.

Total Computational Time [s]
DoFs J(c) × 1e3 % Error BB-FD BB RS
893 4.99553 147.6 1537 176 24
3217 2.61738 29.75 3646 461 41
12161 2.15112 6.64 9253 1283 264
47233 2.05408 1.83 – 12077 3481
186113 2.01717 – – – 73101

Table II. Optimization results for the contact tank using six parameters and uniform meshes. The error is with
respect to the 186113 Dof case as the truth model. BB-FD represents the black box finite difference interface, BB
represents the black box with analytic sensitivity case, and RS represent the reduced space optimization approach.
All our numerical results were performed on a Intel Xeon 2.66GHz processor, running RedHat Linux Enterprise

release version 4.0.

box implementations [23, 2]. It is clear that avoiding the repetition of converging the forward simulator provides the
SAND approach with significant computational advantages.

However, another advantage to the SAND approaches is that adaptivity can be implemented. We compared the RS
approach for both uniform and adaptive grids, with adaptivity driven by the error estimator defined in Section 3. In
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Table III we report the values and relative error of the objective function. We clearly see that with adaptivity, the
accuracy in the objective function is improved by orders of magnitude over what is computable using uniform grids.
Moreover, optimization under adaptivity is more efficient.To reach approximately two percent relative error using
uniform grids takes about one hour (3481 s); using adaptivity, a similar accuracy can be obtained in about one to three
minutes.

RS, Uniform Refine RS, Adaptive Refine
DoFs J(c) × 1e3 % Error Time [s] DoFs J(c) × 1e3 % Error Time [s]
893 4.99553 147.6 24 1425 3.79773 88.26 27
3217 2.61738 29.75 41 2896 2.35480 16.73 40
12161 2.15112 6.64 264 5020 2.09260 3.73 65
47233 2.05408 1.83 3481 10724 2.01748 0.012 172
186113 2.01717 - 73101 24166 2.02137 0.20 702

- - - - 34796 2.01767 0.02 2763
- - - - 119322 2.01726 – 14437

Table III. Optimization results for the two dimensional contact tank using six parameters and adaptive meshes. The
Reduced Space (RS) is used to compare the accuracy and performance for uniform and adaptive mesh refinement.

The error is with respect to the finest grid.

To appreciate the improvements in efficiency and accuracy, the relative error versus computational cost is plotted
for all the approaches – BB-FD, BB, and RS (both uniform and adaptive refinement) – on a single graph in Figure 7.
Several conclusions can be drawn: first, the restriction to uniform meshes results in a limiting slope (dashed line)

Figure 7. Cost versus accuracy for the BB, BB-FD and RS (uniform and adaptive) strategies. The dashed line
represents the limiting slope for uniform refinement.

for the error reduction (when plotted as log-log). This slope is a function of the smoothness of the exact forward
and adjoint solutions, which is reduced in this case becauseof the number of geometric singularities in the problem
occurring at re-entrant corners. Second, the slope is much better when adaptive refine is used, actually closer to the
optimal second order slope that is observed for problems with smooth solutions on uniform meshes. As a result, the
adaptive approach can realize levels of accuracy not practically obtainable using uniform meshes. The RS adaptive
results exhibit an anomalously low objective function error value at approximately 200 seconds. We believe this to be
a result of the somewhat random nature of the adaptivity process.
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Figure 8. Adaptive meshes used at optimal value of reaction rate parameters for 10,724 dofs (top) and 34,796 dofs
(bottom)

Two of the adaptive grids used for refinement levels four and six are shown in Figure 8. Adaptivity is concentrated
along the reaction surfaces and in regions where the adjointsolution plumes are located. No adaptivity occurs near the
outlet because the adjoint is approximately zero.

6.4. Large Scale Optimization of a 3D Contact Tank Model

Although a detailed three dimensional study is beyond the scope of this paper, the implementation of any algorithms
in our computational framework must be functional in multiple dimensions and operate in parallel. Therefore, in this
section our algorithms are demonstrated on a subsection of athree dimensional contact tank dataset (Figure 9) with an
increased number of inversion parameters (eighteen) solved in parallel using eight Intel Xeon 2.66 GHz processors.
For this 3D case, the optimization is performed to match a different constant constant value on the upper (0.9) and
lower (0.8) reaction surfaces. The solution concentration is plottedin Figure 9.

Our numerical experiments are limited to a comparison of uniform refinement and adjoint based adaptive refinement,
all within the reduced space SAND optimization context. As shown in Table IV, the adaptive refinement algorithm
achieves the same error as the uniform refinement, but with anorder of magnitude less number of degrees of freedom.
This translates then into more than an order of magnitude improvement in computational efficiency. It should be noted
that the total cost of the adjoint based error estimator using the recovery post-processing approach was generally less
than 10 percent of the total computational cost.

As a final calculation, a comparison was performed to assess the benefits of re-using the reduced Hessian matrix,
which in this problem is an18 × 18 dense matrix. When the reduced Hessian is not re-used, it is initialized as an
identity matrix. We see in Table V that even for uniform problems, computational cost savings of a single optimization
solve on the finest mesh can be as much as 60%. When adaptive refinement is used, the cost savings can be as high
as 70%. Since most of the computation is done on the finest grid, we conclude that re-use of objects such as the
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Figure 9. Three dimensional dataset for a subsection of the contact tank; 18 reaction sites are indicated by the
colored squares (top). Concentration profile is shown alongthe centerline (bottom).

RS, Uniform Refine RS, Adaptive Refine
DoFs J(c) × 1e3 % Error Time [s] DoFs J(c) × 1e3 % Error Time [s]
532 1.23231 56.43 18 532 1.23231 56.43 18
3367 3.12091 10.34 69 1260 2.74336 3.01 39
23725 3.06178 8.25 995 4473 2.97430 5.16 118
177625 2.92271 3.33 8441 15237 2.89203 2.25 364

- - - - 60047 2.84875 0.72 1587
- - - - 234159 2.82843 – 9812

Table IV. Optimization results for the 3D contact tank using18 parameters using Reduced Space (RS) comparing
both uniform and adaptive refinement. Error are calculated with respect to the finest grid.

reduced Hessian, in addition to the state, between levels ofmesh refinement can significantly improve the efficiency
of algorithms for optimization under adaptivity.
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RS, Uniform Refine RS, Adaptive Refine
DoFs Re-use Iden DoFs Re-use Iden
550 26 26 550 26 26
3385 18 19 914 21 22
23743 26 30 2722 17 30
177643 12 31 9517 12 29

- - - 36098 9 29

Table V. Comparison of iteration counts for both re-use of the reduced Hessian and initialization with an identity
matrix for both uniform and adaptive refinement

7. CONCLUSIONS

We have presented an approach for implementing goal-oriented adaptivity and optimization in a production finite
element code. The adjoint is central to both calculating an optimal solution and error estimation for mesh adaptivity.
To avoid finite element orthogonality, ideally the adjoint for estimating errors should be determined on a higher
functional space than the corresponding adjoint for sensitivity calculations. This poses more computational demands
and therefore we have developed a recovery process that allows the higher functional space adjoint to be approximated
by polynomial projection. This error indicator avoids additional adjoint calculations and was shown to be a viable
tool for driving adaptivity. Numerical experiments showedthat effectivity could not be relied upon to terminate the
adaptivity loop. However future work is planned to investigate improvements.

The SAND optimization approach provides significant computational advantages over a black-box interface, in
addition to a convenient environment for adjoint based error estimator for adaptivity. The SAND optimization interface
was shown to be compatible with adaptivity using a nested approach. Moreover, reduced space optimization methods
can be accelerated through the re-use of the state and parameter variables, as well as the approximate reduced Hessian,
when transferred from coarse to fine grids.

We outlined the implementation requirements needed to enable optimization under adaptivity in production
simulation codes. This was accomplished through a ModelEvaluator abstract interface from the Trilinos library. The
ModelEvaluator interface provides a conduit between advanced numerical algorithms and the underlying linear algebra
native to the simulator. Besides enabling off-the-shelve optimization libraries, other numerical algorithms can be
efficiently interfaced including those algorithms that areessential to the forward simulator, such as nonlinear solvers
and time integration methods. Not only are duplicate implementation efforts avoided but this interface is more likely
to be maintained by those responsible for the forward simulation codes.

Finally, the effectiveness of our approach was demonstrated on a 2D convection-diffusion-reactionproblem from the
water treatment community. It should be noted however that our methods and interfaces are generally applicable to a
wide variety of physics and production simulation codes. Furthermore, our numerical tests showed improved accuracy
in the optimization solution. Finally, we demonstrated ouralgorithms on a 3D parallel dataset with an increased number
of optimization parameters.
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