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SUMMARY

Optimization problems constrained by complex dynamicslead to computationally challenging problems especialhew
high accuracy and efficiency are required. We present aroapprto adaptively control numerical errors in optimizatgroblems
approximated using the finite element method. The discrdfeird equation serves as a key tool to efficiently computéh bo
parameter sensitivities and goal-oriented error estimatehe same discretized levels. By using a recovery methiothé error
estimators, we avoid expensive higher order adjoint cattarhs. We nest the adaptivity of the mesh within the optation
algorithm, which is responsible for converging both theestnd optimization algorithms and thereby allowing theseeaf state,
parameters, and reduced Hessian in subsequent optinmiztgrations. Our approach is demonstrated on a paramdiaragi®n
problem for contamination transport in a contact tank reacdignificant efficiency and accuracy improvements ardizec
in comparison to uniform grid refinement strategies and lla@x optimization methods. A flexible and maintainabletwafe
interface was developed to provide access between thelyimgglinear algebra of a production simulator and advancecherical
algorithms such as optimization and error estimation.
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1. INTRODUCTION

One of the key goals of numerical simulation is to approxanamplex physics as accurately as possible while
maintaining computational efficiency. This can be achigbedugh the advancement of numerical methods such as
linear solvers, nonlinear solvers, time integrators, pretitioners, and parallelization. More fundamentally leger,

the accuracy of numerical simulation is strongly depenaenthe appropriate use of discretization techniques and
mesh refinement which almost always accomplishes highetdef solution accuracy. But simply refining meshes
becomes computationally expensive, especially if mudtipkward simulations are required as part of more detailed
optimization studies. Therefore to maintain computatidrectability, one can only afford to sparingly refine the
grid, preferably in a way that is guided by the dynamics of phgblem. This can be accomplished mathematically
using the adjoint formulation, which encompasses the sacgs$nformation to drive both the optimization and grid
refinement problems. Despite many technical advancensswsral important technical issues remain when coupling
optimization and adaptivity, consisting of the computasibexpensive nature of calculating an additional adjomt o
higher order meshes, the lack of established algorithmalmutate error estimation within an optimization context,
and the challenges associated with software implementafimtrusive algorithms in production simulation codes. |
this paper we address these issues by 1) demonstratingeryaoethods applied to adjoint based error estimators as

*Correspondence to: bartv@sandia.gov
fSandia is a multiprogram laboratory operated by Sandia @atjon, a Lockheed-Martin Company, for the United Statep@tment of Energy
under Contract DE-AC04-94AL85000

Received
Copyright(©) 2000 John Wiley & Sons, Ltd. Revised



an inexpensive alternative to higher order adjoint sohgj®) reusing Hessian, state and optimization variabtes af
each adaption cycle, 3) leveraging embedded optimizatiethaas to efficiently combine adaptivity and optimization
algorithms, and 4) enabling a generalized interface togai& the complexities of interfacing advanced numerical
algorithms into production codes.

Significant research has been conducted in the area of aipoisteror estimation for finite element discretizations,
especially for engineering responses of interest, sucludace fluxes, average values on subdomains or surfaces,
and point values. The underlying tool in nearly all of thegpraaches, beginning with the work of Becker and
Rannacher [7], is t@womputationallymake use of an auxiliary linear adjoint problem. Weightihg tocal finite
element residuals with the adjoint error yields both globabr estimates on the error in the responses of interest
and local error indicators that can be used to drive adaptigeh refinement. This approach was subsequently pursued
for linear elliptic problems [19, 20], optimization [5, 6],&nd more general nonlinear systems of PDEs [12]. Recent
reviews of adjoint-based error estimation can be found # #]. One of the main research issues is how to reduce
the high computational cost of approximating the adjoinveavith a higher order method, while still preserving
sufficient accuracy in the error estimators. We present a agproximation approach for the adjoint solve using
recovery methods that is very computationaly efficient whempared to solving the adjoint using a higher order
method.

Optimization techniques have been studied for severald#scand more recently, efficient large scale algorithms
have demonstrated impressive computational perform&jcélie use of these algorithms require access to the linear
algebrainfrastructure of the simulator which typicallyist readily available, especially in production codesféyént
levels of interfaces can be considered and the choice depmnd balance of implementation effort versus desired
performance. For the most efficient algorithm, first and selcorder sensitivity information need to be provided
to the optimization algorithm to realize potentially quatic convergence rates, whereas at the opposite end of the
spectrum the optimizer calculates the objective functiadgent through finite difference techniques requiringyver
little from the simulator (merely forward simulations) batt a significant performance cost. In this paper, we show
performance comparisons for different interface stragdrom the “black box” to the “simultaneous analysis and
design” (SAND) approach (a.k.a. all-at-once approachy the SAND strategy however that not only significantly
improves the computational efficiency but also providesaligerithmic flexibility to accomodate adaptivity withingh
optimization algorithm.

Progress on algorithms for large scale optimization witagwbity in parallel environments has been hampered
by the complexity associated with the implementation psscés one of the few research efforts, Bangerth [3]
demonstrates large scale optimization algorithms ithdaptivity applied to inversion in 3D optical tomography.
However, his finite element environment was appropriatelsighed from the outset to accommodate adaptivity and
access to the linear algebra infrastructure. Such cafiabikre typically not available in existing legacy prodoct
codes. Short of completely refactoring, the algorithms angerth’s work cannot be conveniently encapsulated and
efficiently transferred to production codes. As part of tieisearch, one of our goals was to create a general interface
so that existing optimization libraries and adaptivity ahjlities can be seamlessly used by any simulation code that
adopted the interface. However, just creating an interfaceptimization and adaptivity is still not sufficient tosure
the longevity of such an interface. The primary code dewels@re typically focussed on the enhancement of the
forward prediction mode and not on the maintenance of iate&$ for optimization or error estimation. A general
interface must therefore also appeal to other nonlinearemio@ algorithms (such as time integrators and nonlinear
solvers) that are in direct support of the forward predictiOur interface is designed to accomplish this and although
a detailed description of the object oriented design of atarface is beyond the scope of this paper, the importance
of these implementation issues warrants the inclusion ofed thescription of our design.

In the remainder of the paper we present the algorithms tdopmr optimization and discuss different
implementation strategies. A performance comparisonésgmted using flow and transport datasets. The practical
difficulties associated with the theoretical error for thgtimality conditions are discussed and the dual-weighted
residual approach is justified. Our adaptive process mageofithe adjoints in a recovery method to augment the
solution field with higher order information. This approaishverified by comparing it to an analytic solution for
convection-diffusion dynamics. A description of our implentation approach is included to emphasize the intrusive
nature of the implementation and the added complicatioaieimpting this in multiple codes and production systems.
After the verification section, the physics of our exampleadat are explained followed by numerical results for both
two and three dimensions. We summarize the effectivenesslaftivity in the optimization context in addition to
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showing the performance gains for our embedded optimiratia adaptivity methods which are both supported by a
single adjoint calculation on the same discrete space. Noalstudies were performed in serial and parallel for two
and three dimensional datasets, respectively.

2. OPTIMIZATION METHODOLOGIES

We start by defining our algorithms to solve large scale ojttion problems and by identifying appropriate solution
strategies that are extensible to leverage adaptivityp8sg that the forward model is described using a semilinear
variational statement: given a value of the paramgterII, find the solutiornu = u(p) € V:

A(u,p)(v) =0, veV. (1)

where the exact form of the funcational spateand A are problem dependent. The parametean also belong
to a function space; here, for simplicity we assume that #rameter space is finite dimensionalpos 11 = R™.

In order to define the optimization problem, we need a costtfanal F' that depends on the solutienand the
parameterg. The goal of the optimization problem is to fiid*, p*):

F(u*,p*) = ijF(u,p) )

subject to the constraint in (1). A classical way to solve gioblem is to introduce a Lagrange multiplier fiedg,
also known as the adjoint state, and form a Lagrangian fonatiC that combines the objective function with the state
equation:

L(u,p,®) = F(u,p) + A(u,p)(9). 3)

The stationarity ofC is derived by taking variations with respect to the adjoipit, (state ), and optimization
parameter ). The following system of equations represent the firsieordecessary conditions for optimality
(suppressing the dependence(arnp) for clarity in our notation):

Ly A state equation
L, y={ F,+AT¢ » =0 adjoint equation (4)
L, F,+ Al ¢ optimization equation

This system of equations is typically nonlinear and theeefequires a linearization step, which can be achieved
through Newton’s method. This system of equations for thetide updates is called the Karush-Kuhn-Tucker (KKT)
system:

L uu L up Ag du L u
Lpu Lpp Ag dp - - Lp (5)
A, A, 0 dy Ly

where L, is the Hessian operator of the Lagrangian with respect tasthiariable. Different algorithms can solve
these optimality conditions and the right choice dependsereral issues, most importantly on the size of the
optimization space, complexity of the constraints, andaffierdability of the implementation effort. The most diffiit
one to implement is &ll spacemethod in which (5) is solved directly. The most notable abkgs are the need for
second derivatives and special preconditioning [9, 10]tHée requirement is tractable in most production codes. An
approximation to the Hessian could be considered such asSB#@GR1 updating methods [17], which simplifies
the requirements considerably. A popular alternative isliminate state and adjoint variables, thereby reducieg th
system to a manageable one in just the inversion paramégepsoaches of this type are known esluced space
methods.

Several important variants of reduced space methods camris&dered. A nonlinear elimination variant of a reduced
space method would solve the nonlinear state equation ¢lgiven p for the state variable.. Knowing the state
then permits solution of the adjoint equation for the adjeiariable¢. Finally, with the state and adjoint known,
the parametep is updated via an appropriate linearization of the optitidiraequation. This loop is repeated until
convergence. As an alternative to such nonlinear elimdnmatbne often prefers to follow the Newton strategyficdt
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linearizing the optimality system, arttien eliminating the state and adjoint updates via block elitigmaon the
linearized state and adjoint equations. The resulting 6Echmplement operator is known as thedluced Hessign
and the equation to which it corresponds can be solved tal yied parameter update. After applying appropriate
discretizations, the above described methods requiresadrethe linear algebra in addition to the optimization
algorithm directly communicating with the simulator. Iniglpaper, we have adopted the Newton strategy which
exposes a variety of linear objects to the optimizationgigiy algorithm. In particular, we reuse the reduced Hass
after adapting the mesh and realize significant performampeovements (see Section 6).

To accommodate optimization algorithms as part of a sinaratode can be a challenging undertaking. A range
of non-standard linear algebra objects are needed in@udbjective functions, inequality constraints, sendiivi
information and a mechanism for the optimization algoritttntontrol the iterative loop. A decoupled approach is
therefore a convenient initial approach to making use ofheigation. This often referred to as tiack boxinterface
and requires very little information from the underlyingrgilator. Some basic data needs to be exchanged between
optimization and simulator (usually through the file systench as the objective function value, changes to the design
parameters and globalization data. The gradient of thectitigefunction is calculated through finite differencesess
the entire simulator and although very expensive comptatly for many design variables, the interface is trividie
original optimization problem (2) is reformulated by elimaiting the state variable and constraints as an unconatain
optimization problem:

F(u(p)™,p7) = minF(u(p), p) (6)

A logical improvement over thélack boxapproach is to substitute direct or adjoint based sentts/for the
finite difference calculations. It is different from the finsive approach described above in that there is still nectlir
interface and therefore the simulator is converged at eptim@zation iterations. In the numerical results sectiom,
present a performance comparison for the black box withefidifference, black box with adjoints, and a reduced
space approach. Unfortunately, the decoupled algorithonsad lend themselves to efficient use of adaptivity. As
the optimization algorithm steers the simulator to coneeig there is no direct interface to communicate adjoints
or any other objects between optimizer and forward simul&dully coupled approach on the other hand provides
the necessary conduits between the forward simulator atichization algorithm to exchange adjoints, Hessians,
objective function, and any other pertinent informatioef@e outlining our algorithmic strategy, the error estiesa
for the KKT system (4) and the approximation approachesxgamed.

3. OPTIMIZATION AND ERROR ESTIMATION

Our goal of the adaptive error control is to minimize the eirrothe objective functionF'(u, p) using an adjoint
equation which is identical to the second equation in (4)duseoptimization. Below we present an approach for
using the same discrete adjoint to drive both algorithmsweéler, the adjoint for optimization is solved in the
same functional space as the forward problem and by finit@eh orthogonality, the resulting weighted residual
calculation for the error estimate would be zero. This theggests a need for duplicate adjoint calculations, each in
different functional spaces, which is unfortunately cotgtionally expensive. Our formulation proposes a recovery
method whereby higher order information is extracted framadjoint solution on the same functional space as the
optimization problem. This will not result in the same lessef accuracy in comparison to an adjoint solved in a higher
functional space but we show that this approximation appsafficient to steer the mesh adaptivity. Furthermore,
highly accurate adjoints in the early stages of the optitiomgorocess will likely not justify the high cost-benefitia

3.1. Finite element approximation and error estimation

The continuous first-order necessary conditions for ogitgnan (4) must be approximated in practice. Because of
our interest in error estimation and adaptive mesh refinémenemploy the adaptive finite element method [1]. Let
Vi, € V be afinite element approximation space based on conforrengeats of fixed polynomial degree> 1. The
mesh is only required to be locally quasi-uniform [1]. Thetérelement approximation of the optimality conditions
is then: find(U, ®, P) € V}, x V}, x II:



AU, P)(v) = 0, veV,
Fo(U, P)(v) + Au(U, P)(0,®) = 0, veV, @)
F,(UP)+A,(U,P)(®) = 0

We are interested in the error of the objective function

E(U,P) = F(u,p) — F(U, P).

An a posteriori error estimate for this error was derived BcBer and Kapp [5] which involves the exact solution. For
the case of a fixed finite-dimensional parameter space, $tirm&te takes the form

E(U,P) = 5 {AWU, P)(e)
FR(U, P)(e) + Au(U, P)(e, ®) (®)
+E(U, P)(&) + A4,(U, P)(§, @)} + R,

where the remainder terifl; is cubic with respect to the errors
e=u—U, e=¢—®, {=p-—P (9)
A lower order approximation can be defined by
EWU, P) = A(U, P)(e) + Ra, (10)

where the remaindei?, is only second order [4]. The form in (10) avoids approximgtithe state and
inversion operators and thereby significantly simplifies ittnplementation in large production finite element codes.
Consequently, a loss in accuracy is realized as a resulteofetimainder term increasing from third to second order
(Rs — R2). The lower order error estimate requires the exact salutiche adjoint equation:

Ay (u,p)(v, ¢) = —F,(u,p)(v), veV. (11)

Since the exact solution is unknown, this problem is furtigroximated by replacing the exact statend parameter
p by the approximate solutioti and parametepP: find ¢ € V:

Au(U,P)(v,8) = —F,(U, P)(v), veV. (12)

3.2. Approximations to the adjoint problem

In order to derive a computable error estimate we need tocpate the continuous adjoint problem in (12). The
simplest way to do this is to use the same approximation sgaead solve ford € V;,

A, (U, P)(v,®) = —F,(U,P)(v), v €V (13)

The solution to this problem is exactly the same as the atjoimponent of the solution to the full discrete optimality
problem (7), which is potentially convenient since it hagatly been computed. However, because of the Galerkin
orthogonality, this would give a zero approximation of threoe if substituted forg in (10). The ideal approach to
calculate the solution is to approximate (12) using a higher order spatial appraxiom spacé’,. This can be done,

for example, by increasing the polynomial degree of thedipiement spack, or by refining the underlying mesh.
Then the adjoint weights are approximated using the highierapproximatiom € Vj,

ex®—@

This approach has the advantages of typically being quitarate, due to the use of a higher order method. It can
also be expensive, due to the higher order adjoint solveyanddifficult to implement in existing production finite
element codes.

Various other less expensive approaches have been propsseyl postprocessing of the approximate solution
(U, @, P). In these cases, the error weights are approximated using smoothing operators that only depend on the
computed approximate solution and the problem data. Féag@int differential operators, Paraschivoiu et al.][19
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Figure 1. Sampling points for value and gradient recoveryifiear finite elements

used local Neumann problems on refined patches of elememgsnerate upper and lower bounds on the error in
linear functionals. This work was improved by Prudhomme @uén [20], who used techniques from generating
upper and lower bounds on the error in the energy norm to desfiarper bounds on the error in linear functionals.
For more general partial differential equations, Becked &annacher [7] proposed an interpolation method for
estimating first and second order derivatives of the adgmhition computed on the same finite element mesh. Several
options for approximating the adjoint were explored by Ilsarset al. [16], including approximating the adjogrtor
using a hierarchical higher order approximation with thedo order basis functions removed. They also considered
approximations of the adjoint error on local patches of elets, as was later done by Carnes and Carey [11].

In this work, we approximate the adjoint weights using regwprocedures. Value and gradient recovery have
been used in finite elements for some time, beginning wittkdyawork of Zienkiewicz et al. [26] and more recently
by Wiberg et al. [25] and Ovall [18]. We refer the reader to ok by Ainsworth and Oden for a more detailed
review [1]. The value recovery is based on a least squargmpolial fit of nodal values on a patch of elements around
an element. For elements of degree greater than one, thiwohgenerally produces a higher order field approximation
on the element. However, for linear elements, the accuraymot be greatly improved. Thus, this approach may be
sub-optimal when terms involving the value of the adjoimbe(¢ — ¢,) are large.

Our choice of using a recovery method was primarily motitdig computational efficiency of solving the adjoint
on the same mesh plus inexpensive post-processing. Ini@dadiir approach was convenient to implement in our
production finite element code. The approach uses localatq®ar defined orl/, that can recover higher order
approximations of functions ii;,. The form of the adjoint weights can be expressed as:

¢—®rrp(®)— D, V(p—®) = Ry(VE) — VO

We employ a standard approach based on patches of elemeuntslaa vertex node (See Figure 1). We sample the
finite element gradients on the elements and fit a polynorialigh the sampled values using a least squares fit. For
the case of linear finite elements in 2D, the sampling poirgstize element midpoints and the polynomial basis is
{1, z,y}. Then the nodal values are used to define a global recoveaeitegt inV/,2.

4. ALGORITHMS FOR OPTIMIZATION UNDER ADAPTIVITY

To perform optimization under adaptive error control theick of the algorithm is partially dictated by the form of
the coupling between the application code and the optimizé¢ie decoupled “black box” approach, the optimization
loop launches the application code whenever the state amangter sensitivities need to be evaluated. Adaptivity
can be done by the application code, but the adapted meshaadannot be re-used for the next optimization step.
Furthermore, our experience has shown that in this caseptimiaer has difficulty reaching a stable minimum when
the mesh is changing due to adaptivity.

Another possibility is to adapt the mesh at every step angbyeconverging the mesh as part of the optimization
loop. Bangerth [3] demonstrates this aproach for problerith distributed parameters. The forward simulator,
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optimization algorithm and the adaptivity mechanism acsely integrated. A SAND optimization implementation
solves for feasibility and optimality simultaneously, piding the necessary access to all the linear objects at any
point of the forward prediction, optimization and adaptagorithms. Although our work also makes use of the
SAND optimization approach, we do not converge the mesh dopthe optimization loop. The primary reason for
not using this approach was because the goal of our impletienteffort was to develop an interface sufficiently
flexible to accomodate off-the-shelve optimization lilkearand other advanced numerical algorithms. Adaptivity at
each optimization iteration would have required optimmatlgorithms tailored to handle this and shifted the focus
of our development efforts.

In our approach, adaptivity is performed as an outer loopagioan inner optimization loop, which allows a
fixed (adapted) mesh to be used for optimization. Our integraptimization solution strategy provides, after each
outer loop iteration step, the necessary access to reusmigdinear objects such as the reduced Hessian, state and
optimization variables. Instead of recalculating with agaribed initial guess, the optimization now starts fromuem
improved starting point after each outer loop iteration. $ew in section 6 the computational improvement of this
reuse mechanism. The stopping criteria for the outer loopihideally be set by comparing the error estimate for the
objective function with a prescribed tolerance. Becausb@fincertain quality of the error estimates that we compute
we instead use a fixed number of refinement levels. Algoritrontlines our implementation strategy.

Algorithm 1 Optimization under adaptive error control
Given an initial parameter valyg and statd/,
Set initial Hessiaddy = 1
for k£ = 1 to number of adaption levetsdo
while optimization not convergedo
calculate adjoint sensitivities
perform step computation
globalize with line search
update optimization and state variab{és,, )
end while
Compute the adjoint based error estimate Fgt/., py)
Adapt the mesh using error indicators
Prolong state from old mesh to néwy,,; = Uy
Update Parameter3; 1 = Py
Update Hessiail; 1 = Hy
end for

In order to make use of the error estimator in adaptivity, @tegy is needed to decide which elements to
refine/coarsen. The inputs are the element error contabstiwhich are the restriction of the integrals in the
estimate (see equation 10) to a mesh eleniénThese element indicators, denoted, can be either positive or
negative. This confounds most adaptive strategies, whietbased on refining elements with large indicators, and
coarsening those with small indicators.

Our approach to adaptivity is to compute two basic staisiitcthe element error indicators: the megand standard
deviations. The idea behind the adaptivity is that refinement shouldentrate on thosgy that are outliers. This is
defined formally as: mark an elemefitfor refinement if

|77K—[1,| >9RO', (14)

wherefy, is a free parameter. Typically we have ugggdfrom 0.5 to 1.5, with decreasiriy, yields more adaptivity.
In the study we keefiy fixed at 0.5. We do not apply any coarsening, since we are @ngerned with stationary
problems. However, the above approach can be extended dsamalements for coarsening if

Inx —pl < 0co, (15)

with 6¢ a free parameter.



5. IMPLEMENTATION

The implementation of analysis algorithms into productsimulation codes poses numerous challenges. First,
production codes historically are designed to perform dolyvard predictions. The linear algebra representation
is typically designed with this in mind and accessing namgard numerical objects requires extensive refactoring.
For example in the case of optimization algorithms, the iatljgalculation requires a transpose of the Jacobian which
is not a standard operation, especially in the parallel ednthigher order adjoint solves for error estimators are
even more difficult to implement). Furthermore, the term¢hi@ general error estimate formula (8) are not included
in typical production codes. Even the simpler error exgoesi (10) requires the integration of the finite element
residual against special adjoint weight functions. This ba done using the standard element assembly process, but
requires the code to support swapping the nodal test fumetigth a single adjoint weight function for every possible
term in the residual. Second, each production code presengsie implementation styles with different concrete
linear algebra infrastructures. Thus for legacy produttiodes, implementing analysis algorithms directly in thee
would duplicate implementation efforts. This could be dlifigrl if a general purpose, standardized interface were to
be adopted by all the legacy codes. Third, such speciakyfadtes are difficult to maintain because the advancement of
production codes is centered around the forward predictiode and the responsibility for maintaining these specialt
interfaces may become quickly outdated as the developnighedorward simulation code advances and changes.
Our proposed solution for all the above mentioned issues design an interface sufficiently flexible and extensible
to accommodate different underlying linear algebra irtftagures and to enable a range of numerical algorithms of
interest to the developers.

To this end, we have developed an interface that is suffigigeneral to provide a conduit from a range of advanced
numerical algorithms (ANAs) to different underlying linealgebra infrastructures. Underlying the design is the
premise that the interface is stateless, lightweight, asehsible. Our stateless interface does not maintain teanpo
copies to any vector or matrix objects but instead manipslabinters. The interface is designed so that any input
and output variables can be easily added or deleted to actaimany algorithm. This is a critical feature because the
interface ideally should not only be used in specialized ANguch as optimization) but also algorithms central to the
forward simulator (i.e. nonlinear solver, time integratj@tc).

5.1. Model Evaluator

The Thyra package in Trilinos [15] contains a set of inteefaand supporting code that define basic interoperability
mechanisms between different types of numerical softwaiee foundation of all of these interfaces are the
mathematical concepts of vectors, vector spaces, andrlogerators, as well as interfaces to various linear and
nonlinear solvers. To address the communication from ANAdacrete application, the ModelEvaluator class is
introduced (Fig 2). This design is based on the 'decoratesigh pattern which makes it possible to extend (decorate)
the functionality of a class at run time. This works by addingew decorator class that wraps the original class in
addition to combining component pointers as field to the doo class, initializing these pointers in the component
constructor, and redirecting component methods to thetp@nFor additional details see [13]. The essence of the
ModelEvaluator class lies in the definition of input, outpat evaluation methods from which a variety of input and
output parameters can be defined for different algorithms.

5.2. Legacy Production Simulator

The forward simulation models were implemented in a comral mechanics framework called Sierra in which
the Aria package is responsible for the thermal and fluid b#itias. The Sierra framework (see Section 7 in [8]) was
designed to provide common finite element services and lilgeakbow for an efficient concentration on the physics
development. Parallelism, mesh adaptivity, contact antlipmysics management components are among the many
complex features that are available within this environimidowever, the framework was designed primarily to enable
the forward prediction mode which consequently createsfsigint implementation challenges to incorporate analysi
algorithms. Aria is capable of first and second order finitem@@nts on locally refinedhfadaptive) meshes. The
supported physics used were the incompressible flow anggcahmodules. The adjoint was implemented and solved
by making use of the solver capabilities from the Trilincafrework. In addition to optimization and error estimation,
the Thyra::ModelEvaluator interface will also enable athed time integration, and uncertainty quantification i th
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- Thyra-based interoperability Epetra-based application-
Nonlinear interface laver | o friendly implementation
ANA y i support interface
Thyra::ModelEvaluator - EpetraExt::ModelEvaluator
create_W_op() : LinearOpBase createlnArgs() : InArgs
create_W() : LinearOpWithSolveBase createOutArgs() : OutArgs
createlnArgs() : InArgs create_W() : Epetra_Operator
createOutArgs() : OutArgs
evalModel( in InArgs, out OutArgs )

;-}'\'/aIModel( in InArgs, out OutArgs )

Thyra::EpetraModelEvaluator

Concrete
createlnArgs() : InArgs Application
createOutArgs() : OutArgs

create_W() : LinearOpWithSolveBase “%{

Thyra::LinearOpWithSolveFactoryBase

evalModel( in InArgs, out OutArgs )

Figure 2. The Trilinos Thyra::Model Evaluator UML class gliam. Trilinos::Epetra is the underlying vector and
matrix parallel class. The ModelEvaluator class is parhefTrilinos:: Thyra package which is a facility to manage
and support interfaces for numerical software.

near future.

6. NUMERICAL RESULTS

Optimization and adaptivity algorithms present significamplementation challenges but, as this section will show,
these disadvantages are offset by impressive accuracyeasfttipance improvements. The embedded nature of SAND
methods enable adjoint based error estimation to drivetadtgpwvhich further improves the overall computational
efficiency in addition to improving the accuracy of both tibedard and the optimization problems. In this numerical
results section, our goal is to demonstrate these algositrmon-trivial examples within a production type simudati
code. We target two and three dimensional datasets thatilbe$low and transport dynamics for a contact reactor
tank used in water treatment. Navier Stokes and convedifbusion-reaction partial differential equations are
implemented in a parallel finite element framework with ehtbed optimization under adaptivity. First, the recovery
method will be verified by comparing adjoint calculationsngshigher order elements to the recovery method with
simple convection-diffusion dynamics. Second, the penfmmce of SAND versus NAND optimization interfaces will
be compared, followed by the performance and accuracy sétheterfaces combined with uniform (combined with a
NAND interface) and adaptive (combined with a SAND intedfaefinement strategies. A two-dimensional flow and
transport problem forms the basis for our numerical experita. Third and finally, a three dimensional dataset for a
subsection of the contact reactor tank will demonstratdropiementation in parallel, in addition to a demonstration
of the reuse of certain linear algebra objects to help acailehe convergence of the optimization problem.

6.1. Prototype Two Dimensional Problem with Solution \eaitfion

We compare the accuracy of our recovery-based approachighartorder adjoint solve on a simple transport problem
in which the error is calculated using a known analyticaliioh. The model represents stationary transport of a sgeci
by convection-diffusion as follows:



u-Ve—eAe = f in 2=(0,2) x (0,1),
c = 0 on Iy, ={x =0},
c = 1 on Tyu = {x =2}, (16)
—eVe-n = 0 on I'hw={y=0,1}

The velocity field is chosen to be parabolic with= (4y(1 — y),0). The dimensionless parameteiis equal
to the inverse of the Peclet number (Pe) and is set to 0.01deept stability problems from highly convective
dominated dynamics, which would require some form of sizddilon. Although stabilization is available in the
SIERRA framework we elected to use mild convective transpmmditions instead of complicating ourimplementation
with a stabilized formulation. The infinite dimensional pkem is approximated using bilinear basis functions on
guadrilateral elements.

Using methods of manufactured solution [21, 22] the sowo®a §f is chosen so that the exact solution is given by

1 —exp((1+z(z — 2)y*(1 — y)?)z/e)
1 —exp(2/e)

The response functios is defined to be the average value of the species across ihedmhain:

1
J(c) = @/ﬂcdaﬂ.

We employ two metrics to compare the performance of the exstimators. The first is the standard effectivity
index, which is defined to be the ratio of the error estimatahe exact error. Ideally this number should be close to
one. The second is the error reduction under adaptivitywdwmpared to uniform mesh refinement. In Figure 3(a)
we plot the effectivity ratio for both the recovery methockfdted as Q1R) and the higher order approach with bi-
guadratic elements (denoted as Q2) under uniform and agagtfinement. For both the recovery and higher order
adjoint the residuals associated with surface flux boundanditions can be neglected although in general these
weighted residual contributions should be included.

For uniform refinement, the Q2 estimator effectivity tendsabout 1.02, while the Q1R estimator only tends
approximately to the value of about -5.3. When adaptivityded, the effectivity of both the Q1R and Q2 estimators
becomes more volatile because the meshes are much mondamdgowever, the Q2 estimator eventually stabilizes,
while the Q1R estimator still appears to oscillate on thesfirsaptive meshes. From this comparison, the Q1R
estimator does not appear to achieve reasonable effgctimities whereas the Q2 estimator eventually settles on
more stable quantities. However, in Figure 3(b) the errducgion from the Q1R is significantly better than uniform
refinement and provides equal error reduction as the Q2 astimMoreover, the error reduction from the Q1R
estimator is more monotone than that obtained from the Q&hagir. We conclude that the Q1R estimator can drive
adaptivity although additional work is required to achieygropriate effectivity values. Accordingly in our nurnrcad
experiments, the number of refinement levels is set a priodi mot dynamically determined with an effectivity
tolerance.

u(;L,y) =

6.2. Application to a Model for Transport in a Contact TanlkaRr

Our recovery approach efficiently calculates error estorgatising the optimization adjoint. To further demonstthie
capability on a relatively complex problem, we select anrappate optimization problem constrained by convection-
diffusion-reaction transport of a species in a contact ta&aictor, which is used in water treatment. In this secti@n th
details of the contact problem are described and in subst¢geetions this dataset will be used to perform numerical
experiments. Wang et al. [24] developed a two dimensionigfiifference model of the flow and transport in order to
investigate transport of a tracer. They focused primaniyesolving the fluid flow with different turbulence models,
concluding that solute transport predictions depends ematcuracy of the hydrodynamics. Although in Wang’s study
the flow is turbulent, we have reduced Reynolds number tcatiménlar case to allow for a more simplified investigation
of adaptivity and optimization for transport without thengplications of turbulence. In addition the chemical reausi
which consume the reactant species were assumed to be fiestaord located on prescribed surfaces.

For the contact tank, the boundary= 09X is divided into four parts: the inflow';,,, for which we specify a
parabolic fluid velocity and constant species concentnatibe outflowl,,:, for which we specify an open flow
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Figure 3. Results of the two dimensional verification profléa) Effectivity ratio for linear (Q1R) and quadratic
(Q2) meshes, under uniform and adaptive mesh refinemerEx@t error under uniform adaptive refinement for
Q1R and Q2.

boundary condition on the flow and a zero diffusive flux coiaditon the species concentration; the surface reaction
Iz, for which we specify a first order reaction for the speciéw (flow boundary condition is no slip); and the
remaining surfacé’, for which we also specify a zero diffusive flux condition o tspecies and a no slip condition
on the flow.

The mathematical model for the flow is defined by the statipi@rompressible Navier Stokes equations along
with appropriate boundary conditions. Neglecting grauityese can be formulated on a dom&ias follows.

pu-Vu—puAu+Vp = 0 in Q,
Veu = 0 in Q,
U = Uin on Piny (17)
u = 0 on Iy, U,
{-pI+p(Vu+Vul)}-n = pun-Vu'  on Toyu.

The actual contact tank geometry consists of a flow domaih aisingle inlet and outlet. The domain has multiple
turns at right angles to form a serpentine structure. We thietcomputed flow field for Re= 100 in Figure 4. The
channel was extended at the outlet (not shown) in order tavathe fluid to return to a near fully developed flow.
The reaction zones were located where the flow would be irestqeoximity to the walls, in order to increase mass
transport.

Because our interest is in the species transport, we onlgidenthe flow as an auxiliary problem that provides
input to the transport through the fluid velocity. In ordeetmid numerical errors from under-resolved flow, the flow
equations (17) were solved on a fine grid using finite elemgatess consisting of quadratic velocities and continuous
linear pressures. This solution was then interpolated ¢ogifids (both uniform and adaptive) where the following
transport equation was solved:

u-Ve—DAc = 0 in Q,
c = ¢ on T,
—DVC n = 0 on 1—‘o U Fout; (18)
—DVe-n = kc on I'vzn.

The dominant dimensionless groups for equations (17)df8jhe Reynolds number Re ”(I+L, the Peclet number
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Velocity Magnitude
0.000228 0.000457 0.000685

0.000913

Figure 4. Two dimensional contact reactor tank with a flowdfiielr Re = 100. Resolved flow was achieved by
extensions at the outlet.

Pe= %, and a third dimensionless group denoted by %L. HereU is defined to be the maximum inlet velocity

uin, L is the width of the flow channel, anidis a reference surface reaction rate constant. In Table Ipseify the
baseline parameters for the contact tank model.

Name| Value Units Description Name | Value Units Description
Re 100 - Reynolds number u 1.307e-3| [Pa — $] Viscosity
Pe 100 - Peclet number U 6.330e-4| [m/s] Initial velocity
II 3.160 - - Cin 1.0 - Inlet concen.
L 0.21 [m] Length D | 1.329e-6| [m?/s] Diffusivity
p 9.832e+2| [kg/m?] Density k 2.0e-5 [m/s] Reaction rate

Table 1. Nominal parameters for the contact tank model. RthésReynolds number, the Peclet number Pe
represents a ratio of convection and diffusion, and the dsimmless numbell represents the ratio of reaction
and diffusion.

The solution to the steady state transport problem defined 8ycan be expressed in abstract form as in (1). To
do this, we define the function spacgs» = {v € HY(Q) : v|r,, = cin} andV = {v € HY(Q) : v|r,, = 0}.
The parameters are the set of reaction coefficienthat are specified as constants on the set of surfaces thatupak
I'2n. The weak solution is obtained by finding= c(k) € Vin:

Alce,k)(v) =0, veV. (29)
where the operatad is defined by

Ale,k)(v) = (u-Ve,v) + (DVe, Vo) + (ke,v)p (20)
and we have used the usual notations for integral inner mtsdu, w) = [, vw dz and(v, w) = [ vwds.
By choosing appropriate finite dimensional spatgs® C V<~ andV; C V for the trial and test functions,
respectively, we can define the Galerkin finite element axipration: findC' = C(k) € V7"
A(C k) (v) =0, veW. (21)

This abstract form provides a mapping to our algorithmicdgsion in the preceding sections.
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Figure 5. Reaction sites are marked by the arrows in the tw@dsional contact tank. These sites are represented
as six disjoint sidesets of the mesh

6.3. Optimization of Multiple Reaction Parameters to Fit@$tribed Concentration on Reaction Surfaces

We compare the performance of the various optimization@ggres described in Section 2, with the exception of the
full space approach. In addition, we compare the perforrmamcl accuracy of using either uniform or adaptive grids
for the reduced space SAND approach.

Our test problem contains six reaction parameters. The gtile optimization problem is to solve an inverse
problem by reconciling the differences between prescrioedi numerical concentration profiles. The area where the
comparison is made is along the total reaction surface, wini¢his example consists of six disjoint surfaces, each
with its own constant reaction rate (See Figure 5). The fondhat we fit is a linear function af that decreases along
the overall flow direction:

erxn(z) =1 —z/4. (22)

Since the length of the domain in thedirection is two, this should result in a concentrationfieedrom approximately
one to one half in the-direction. The response function in this case is defined by

J(c) = % / le — crxn|2 dx. (23)
I'rxn

The solutions to the forward and adjoint problem are showkignire 6 for Re=Pe=100 and at the optimal parameter
values. The forward solution exhibits large gradients tleasurfaces where reactions occur, as well as near thaxgario
corner singularities. The adjoint has similar dynamicdyaaversed, and exhibits plumes that flow off the reaction
surface in the upwind direction. These plumes mask the singelike features in the adjoint solution.

We compare the various optimization approaches — black hitfinite difference sensitivities (BB-FD), black box
with analytic sensitivities (BB), and reduced space withlgtic sensitivities (RS), using both uniform and adaptive
meshes. In all cases, the optimal parameters from the gaaesh are used to initialize the optimization of the finer
mesh. However, only the RS approach is able to reuse the@oktate and reduced space Hessian approximation as
discussed in Section 4.

In Table Il we can see that there are significant differencelsé computational cost. Most expensive is the BB-FD
approach. Here the cost can be more than an order of magsitmder than the BB approach. This is because of the
excessive number of function evaluations needed as welledstver accuracy of the finite difference derivatives. The
BB approach was about a factor of four to six slower than th@@8oach. The latter method likely was faster than the
black box case with analytic sensitivities because of tharawed algorithm which allows infeasible paths toward the
optimal parameters in addition to the elimination of refpegipre and post-processing of the simulator. These esult
are consistent with past studies that have demonstratezbthputational advantages of SAND methods over black
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Concentration

0.514 0.636 0.757 0.879 1.00

Adjoint Concentration
-1.18e+03 -141. 902.

-2.23e+03 1.94e+03

Figure 6. Concentration solutions for the forward (top) adibint (bottom) for the multiple parameter case. The
plumes off the reaction sites in the adjoint solution maskgbrpentine feature similar to the forward solution.

Total Computational Time [s]
DoFs | J(c) x 1e3 | % Error | BB-FD | BB RS
893 4.99553 147.6 | 1537 176 24
3217 2.61738 29.75 | 3646 | 461 41
12161 | 2.15112 6.64 9253 | 1283 264
47233 2.05408 1.83 - 12077 3481
186113| 2.01717 - - - 73101

Table II. Optimization results for the contact tank using garameters and uniform meshes. The error is with

respect to the 186113 Dof case as the truth model. BB-FD septs the black box finite difference interface, BB

represents the black box with analytic sensitivity casd,RS represent the reduced space optimization approach.

All our numerical results were performed on a Intel Xeon 238z processor, running RedHat Linux Enterprise
release version 4.0.

box implementations [23, 2]. It is clear that avoiding thpettion of converging the forward simulator provides the
SAND approach with significant computational advantages.

However, another advantage to the SAND approaches is thatigaily can be implemented. We compared the RS
approach for both uniform and adaptive grids, with adaptidriven by the error estimator defined in Section 3. In
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Table 11l we report the values and relative error of the obiyecfunction. We clearly see that with adaptivity, the
accuracy in the objective function is improved by orders afgmitude over what is computable using uniform grids.
Moreover, optimization under adaptivity is more efficiehd. reach approximately two percent relative error using
uniform grids takes about one hour (3481 s); using adapti&isimilar accuracy can be obtained in about one to three
minutes.

RS, Uniform Refine RS, Adaptive Refine
DoFs | J(c) x 1e3 | % Error | Time [s] | DoFs | J(c¢) x 1e3 | % Error | Time [s]
893 4.99553 147.6 24 1425 3.79773 | 88.26 27
3217 2.61738 | 29.75 41 2896 2.35480 16.73 40

12161 2.15112 6.64 264 5020 2.09260 3.73 65
47233 | 2.05408 1.83 3481 10724 | 2.01748 0.012 172
186113 2.01717 - 73101 | 24166 2.02137 0.20 702
- - - - 34796 2.01767 0.02 2763
- - - - 119322 2.01726 - 14437

Table IIl. Optimization results for the two dimensional tact tank using six parameters and adaptive meshes. The
Reduced Space (RS) is used to compare the accuracy andpanfme for uniform and adaptive mesh refinement.
The error is with respect to the finest grid.

To appreciate the improvements in efficiency and accuraeyrelative error versus computational cost is plotted
for all the approaches — BB-FD, BB, and RS (both uniform arabtide refinement) — on a single graph in Figure 7.
Several conclusions can be drawn: first, the restrictionrtiboun meshes results in a limiting slope (dashed line)

—&— BB-FD, Uniform
~——@— BB, Uniform

—@— RS, Uniform
—aA—— RS, Adaptive

% Error in Objective Function

102 0— 11

Ll ol Ll L]
10° 10° 10° 10°
Total Computational Cost [s]

Figure 7. Cost versus accuracy for the BB, BB-FD and RS (amifand adaptive) strategies. The dashed line
represents the limiting slope for uniform refinement.

for the error reduction (when plotted as log-log). This €dp a function of the smoothness of the exact forward
and adjoint solutions, which is reduced in this case becatifee number of geometric singularities in the problem

occurring at re-entrant corners. Second, the slope is matterowhen adaptive refine is used, actually closer to the
optimal second order slope that is observed for problemis sritooth solutions on uniform meshes. As a result, the
adaptive approach can realize levels of accuracy not padlgtiobtainable using uniform meshes. The RS adaptive
results exhibit an anomalously low objective function exralue at approximately 200 seconds. We believe this to be
a result of the somewhat random nature of the adaptivitygsec
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Figure 8. Adaptive meshes used at optimal value of reactitngarameters for 10,724 dofs (top) and 34,796 dofs
(bottom)

Two of the adaptive grids used for refinement levels four anége shown in Figure 8. Adaptivity is concentrated
along the reaction surfaces and in regions where the adjolntion plumes are located. No adaptivity occurs near the
outlet because the adjoint is approximately zero.

6.4. Large Scale Optimization of a 3D Contact Tank Model

Although a detailed three dimensional study is beyond topesof this paper, the implementation of any algorithms
in our computational framework must be functional in mu#igimensions and operate in parallel. Therefore, in this
section our algorithms are demonstrated on a subsectiothoéa dimensional contact tank dataset (Figure 9) with an
increased number of inversion parameters (eighteen) datvparallel using eight Intel Xeon 2.66 GHz processors.
For this 3D case, the optimization is performed to match tediht constant constant value on the uppe®)(and
lower (0.8) reaction surfaces. The solution concentration is platteigure 9.

Our numerical experiments are limited to a comparison ofarm refinement and adjoint based adaptive refinement,
all within the reduced space SAND optimization context. Aswgn in Table 1V, the adaptive refinement algorithm
achieves the same error as the uniform refinement, but withr@er of magnitude less number of degrees of freedom.
This translates then into more than an order of magnitudedasgment in computational efficiency. It should be noted
that the total cost of the adjoint based error estimatorgiie recovery post-processing approach was generally less
than 10 percent of the total computational cost.

As a final calculation, a comparison was performed to as$esbdnefits of re-using the reduced Hessian matrix,
which in this problem is ari8 x 18 dense matrix. When the reduced Hessian is not re-used,nttiglized as an
identity matrix. We see in Table V that even for uniform prefols, computational cost savings of a single optimization
solve on the finest mesh can be as much as 60%. When adaptiennefit is used, the cost savings can be as high
as 70%. Since most of the computation is done on the finest wadconclude that re-use of objects such as the
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oz 0.769 0.827 0.885 0.942 1.00

Figure 9. Three dimensional dataset for a subsection of dhéact tank; 18 reaction sites are indicated by the
colored squares (top). Concentration profile is shown atbeg:enterline (bottom).

RS, Uniform Refine RS, Adaptive Refine
DoFs | J(c) x 1e3 | % Error | Time [s] | DoFs | J(c¢) x 1e3 | % Error | Time [s]
532 1.23231 | 56.43 18 532 1.23231 | 56.43 18
3367 3.12091 | 10.34 69 1260 2.74336 3.01 39

23725 | 3.06178 8.25 995 4473 2.97430 5.16 118
177625 2.92271 3.33 8441 15237 | 2.89203 2.25 364
- - - - 60047 | 2.84875 0.72 1587
- - - - 234159| 2.82843 - 9812

Table IV. Optimization results for the 3D contact tank usii®parameters using Reduced Space (RS) comparing
both uniform and adaptive refinement. Error are calculatil respect to the finest grid.

reduced Hessian, in addition to the state, between levetsesh refinement can significantly improve the efficiency
of algorithms for optimization under adaptivity.
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RS, Uniform Refine RS, Adaptive Refine
DoFs | Re-use| Iden| DoFs | Re-use| lden
550 26 26 550 26 26
3385 18 19 914 21 22

23743 26 30 | 2722 17 30
177643 12 31 9517 12 29
- - - 36098 9 29

Table V. Comparison of iteration counts for both re-use eftduced Hessian and initialization with an identity
matrix for both uniform and adaptive refinement

7. CONCLUSIONS

We have presented an approach for implementing goal-@deatlaptivity and optimization in a production finite
element code. The adjoint is central to both calculating gtimal solution and error estimation for mesh adaptivity.
To avoid finite element orthogonality, ideally the adjoiot festimating errors should be determined on a higher
functional space than the corresponding adjoint for seitgitcalculations. This poses more computational demands
and therefore we have developed a recovery process thassat@ higher functional space adjoint to be approximated
by polynomial projection. This error indicator avoids afituial adjoint calculations and was shown to be a viable
tool for driving adaptivity. Numerical experiments showtbat effectivity could not be relied upon to terminate the
adaptivity loop. However future work is planned to inveatgimprovements.

The SAND optimization approach provides significant comagiohal advantages over a black-box interface, in
addition to a convenient environment for adjoint basedrestimator for adaptivity. The SAND optimization interac
was shown to be compatible with adaptivity using a nestedagmh. Moreover, reduced space optimization methods
can be accelerated through the re-use of the state and pararagables, as well as the approximate reduced Hessian
when transferred from coarse to fine grids.

We outlined the implementation requirements needed to lenaptimization under adaptivity in production
simulation codes. This was accomplished through a Moddliatar abstract interface from the Trilinos library. The
ModelEvaluator interface provides a conduit between adedmumerical algorithms and the underlying linear algebra
native to the simulator. Besides enabling off-the-shelgénaization libraries, other numerical algorithms can be
efficiently interfaced including those algorithms that essential to the forward simulator, such as nonlinear sslve
and time integration methods. Not only are duplicate im@etation efforts avoided but this interface is more likely
to be maintained by those responsible for the forward sitrariacodes.

Finally, the effectiveness of our approach was demonstiatea 2D convection-diffusion-reaction problem from the
water treatment community. It should be noted however thantethods and interfaces are generally applicable to a
wide variety of physics and production simulation codestltrmore, our numerical tests showed improved accuracy
in the optimization solution. Finally, we demonstrated algiorithms on a 3D parallel dataset with an increased number
of optimization parameters.
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