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Abstract

Increasing concerns for the security of the national infrastructure have led to a growing need for
improved management and control of municipal water networks. To deal with this issue, optimization
offers a general and extremely effective method to identify (possibly harmful) disturbances, assess the
current state of the network, and determine operating decisions that meet network requirements and
lead to optimal performance. This paper details an optimization strategy for the identification of source
disturbances in the network. Here we consider the source inversion problem modeled as a nonlinear
programming problem. Dynamic behavior of municipal water networks is simulated using EPANET. This
approach allows for a widely accepted, general purpose user interface. For the source inversion problem,
flows and concentrations of the network will be reconciled and unknown sources will be determined at
network nodes. Moreover, intrusive optimization and sensitivity analysis techniques are identified to
assess the influence of various parameters and models in the network in a computational efficient manner.
A number of numerical comparisons are made to demonstrate the effectiveness of various optimization
approaches.

1 Introduction

Water distribution networks are highly vulnerable to chemical and biological terrorist attacks. Physical
security can only be enforced to a limited extent, primarily confined to the external boundaries of a distri-
bution system and perhaps exclusively applied to storage tanks and treating facilities. Other access points
remain relatively unprotected such as fire hydrants or even households taps. Once this physical security has
been breached, the only line of defense may be our ability to monitor disturbances associated with chemical
concentrations and hydraulics. This assumes that in-situ sensors are available and capable of measuring
important quantities such as hydraulic velocities and in particular chemical concentrations. Given these
observations, our research effort considers the use of optimization algorithms to locate the original points of
attack and help mitigate the effects of such an attack.
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In addition, we investigate efficient algorithms to address inversion of large datasets. In an “all pipe model”
of large cities not only will the forward simulation be computationally expensive but certainly an inversion
process where all the nodes are possible inversion parameters may be intractable using traditional “black box”
optimization methods. The primary source of the computational expense is the finite difference method to
calculate the objective function gradient. To avoid these costly gradient calculations which require converging
many forward simulations, intrusive methods can be considered. For example, sensitivity information could
be formulated within the simulation code and be used to calculate the objective function gradient. The
underlying assumption of intrusive methods is that certain linear objects can be accessed (such as the stiffness
matrix). Chemical transport in state-of-the-art water distribution simulation codes, such as EPANET [9],
use explicit solution schemes never allowing the access of such linear objects. This suggests the need to
consider a reformulation so that an implicit solution scheme solves at least the chemical transport part of
EPANET and makes the linear algebra suitable to intrusive methods.

In this report, we first review categorization of intrusive optimization algorithms and we demonstrate the
computational efficiencies of each of these levels using a simple convection-diffusion system. Source inversion
is applied to a water distribution model and several scenarios are investigated. Finally, we discuss a new
formulation for handling the chemical transport calculation in a water distribution system that can take
advantage of the computational efficiencies associated with intrusive methods.

2 Background

Relatively little work has been done on source inversion for water distribution systems. Most optimization
studies have dealt with discrete variables requiring non-gradient based methods, including simplex methods
[11], particle backtracking [10], feedback and auto-calibration methods [14]. All of these studies appear
to be conducted on small datasets in serial mode. Inversion of large datasets with a large number of
inversion parameters is an intractable problem for non-gradient based methods and we therefore concentrate
on gradient based methods.

Gradient based methods can be classified into Nested Analysis and Design (NAND) and Simultaneous
Analysis and Design (SAND) [1] [8]. Each classification can be further subdivided depending primarily
on how the sensitivity information is calculated. In total, seven levels can be identified [12]. The NAND
classification, which is also referred to as the black box approach, is limited to smaller design spaces but can
be interfaced easily assuming very little about the internal workings of the simulation code. Difficult and large
problems can be solved by utilizing powerful frameworks such as DAKOTA [5]. However, large design spaces
as in the case of source inversion, require either very large computational resources or intrusive approaches.
These methods have great potential for solving large problems but there are many assumptions associated
with the application of SAND algorithms. Probably the most obvious disadvantage is the implementation
cost necessary to equip PDE solvers with the necessary facilities to compute gradient information.

The seven categories are briefly described. Level 0 is a NAND non-gradient approach where the optimizer
does not require any information from the PDE code other than the objective function value per optimization
iteration. Lewvel 1 is a NAND gradient-based approach where the optimizer requires the objective function
gradient per optimization iteration. The gradient is typically calculated using a finite difference method. The
interfacing cost for both levels 0 and 1 is minimal, often utilizing file system type communication. Level 2,
3 are NAND gradient-based methods that use direct sensitivities and adjoints from the simulation code [6]
[7]. Level 4, 5 are SAND gradient-based methods dependent on direct and adjoint sensitivities, respectively



[3]. Instead of passing this information to a black-box optimizer, it is passed directly to algorithms closely
coupled to the simulation. Level 6 is known as the full-space method [4] and has the most computational
potential for very large design spaces. This level of optimization is the most intrusive as it requires assembly
and solution of a full Karush-Kuhn-Tucker (KKT) system. In the next section we present numerical results
for a simple convection-diffusion source inversion problem in a single pipe.

3 Optimization for Source Inversion of a Convection Diffusion System

A comparison of execution time for source inversion of a convection-dispersion system is presented. The
selection of this example was based on our ability to apply all seven levels of optimization to the same
problem, implementation software considerations, and the relation to water distribution simulation. The
primary goal of this numerical experiment is to determine the computational efficiencies of more intrusive
methods.

By specifying a limited number of state values (concentrations) at various points in the domain as targets,
a nonlinear least-squares formulation constrained by a convection-diffusion PDE is used to determine the
location of the original sources on the boundary. From a forward simulation we obtained 16 “sensor”
locations out of 1600 grid points as targets, which were used in the inversion problem. Since this is an
ill-posed problem, a regularization term needs to be added to the objective function. Three obvious options
can be considered: the square of f, the square of Vf and finally the square root of Vf. Unfortunately as
a result of an implementation limitation, the boundary inversion can not make use of gradient based terms
for the regularization and therefore the numerical experiments were conducted with the square of f. Our
formulation allows locating the source term anywhere on one of the boundaries (i.e. I'g):
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where:

where §(x —x;) is a delta function that specifies the location of the sensors, c is the vector of calculated state
value (concentrations), c* is the vector of concentration measurements (or targets), p is the regularization



parameter which is set to 1E-5 for our numerical experiments, f is the source/inversion term, k is the
diffusivity constant, and v is the velocity field. The velocity field is given for this problem and makes (2)
linear in ¢ and therefore no further linearization is required. Figure 1(a) shows the forward simulation on a
40x40 grid (i.e. n, = 40 and ny, = 40 finite elements per dimension) for a Gaussian-like source on the left
boundary. The convection-diffusion PDE is discretized in space using a finite element Galerkin method.
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Figure 1: (a) Forward Simulation (b) Inverse Solution, for 40x40 grid. The axes from left to right are ¢, y
and z.

Figure 1(b) shows the solution for the inversion problem defined in (1)—(5) on a 40x40 grid. A Sequential
Quadratic Programming (SQP) algorithm was able to successfully solve the problem and recover the entire
profile. Small oscillations on the boundary are observed which may be reduced by choosing a different
regularization term. Additional experiments were conducted to evaluate different terms but are beyond the
scope of this article.

The source inversion problem was used to demonstrate the numerical efficiencies of the 7 optimization
levels by inverting for the boundary source using different grid resolutions. For Levels 1-3 we used an SQP
algorithm through the DAKOTA framework and for Levels 4 and 5 we used an intrusive reduced space SQP
algorithm. Level 6 was not solved for the boundary inversion problem because of implementation limitations.
Instead an inversion problem was solved using the full space method where inversion parameters are located
within the domain. As the formulation in (5) suggests, the number of inversion parameters scales with the
size of the boundary. Each optimization level was used to complete the inversion for a grid size of 10x10,
20x20, 40x40, 80x80, and a 160x160 grid. The number of inversion parameters matched the size of the grid
dimension of a single sided boundary (10, 20,40,80 and 160 inversion parameters). The convergence criteria
are controlled by various tolerances, but in our experiment we choose to match objective functions as closely
as possible. Table 1 shows CPU times for various levels of optimization methods.

Figure 2 shows the numerical results, graphically. Level 0 used a local coordinate pattern search and it is
the least efficient algorithm for this problem. These methods are obviously not preferred for smooth and
differentiable processes but we have included the results for completeness. Level 1 shows a considerable
improvement over Level 0 as a result of using gradient information. Direct sensitivities for both NAND and
SAND show significant improvements over Level 1 because the reduced gradients for Level 1 are calculated
through finite differences which requires the convergence of a simulation for each inversion parameter. Cal-
culating reduced gradients with direct sensitivities avoids this numerical overhead. Additional separation
between NAND and SAND methods using direct sensitivities can be expected if this had been a non-linear
problem.

The adjoint sensitivities are by far the most efficient method to calculate the reduced gradient. There is
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Method | ny =ny =10 | Nz =ny =20 | Nz =ny =40 | ng =ny =80 | ny =ny = 160
Sim 0.591 2.119 8.214 32.831 134.396

L-0 Inv 13974.8 31239.3 - - -

L-1 Inv 1278.63 1642.32 5385.14 27128.3 -

L-2 Inv 58.5 182.5 293.4 1840.8 22003.2

L-3 Inv 55.1 165.8 465.8 882.8 3620.4

L-4 Inv 9.47 17.32 55.87 835.65 13911

L-5 Inv 8.6 13.0 26.6 151.1 986.5

Table 1: Summary of CPU times (secs) on a boundary.

a significant difference between NAND and SAND because of the simulation overhead that NAND incurs
at each optimization iteration. This difference is better observed in the right graph (Figure 2). One would
expect that a non-linear simulation problem would incur additional Newton iterations which would add
to the NAND expense for each optimization iteration and the gap between Levels 3 and 5 would be even
greater. Estimated times for Level 6 are presented that equals three times the forward simulation cost. This
is a conservative estimate considering the full space inversion of a 40x40 grid with 1600 inversion parameters
required less than 10 seconds to converge.
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Figure 2: Numerical Results for Levels 0-5 (left) and Levels 3, 5 and 6 (right)

4 Optimization Interface For Water Distribution Systems

For the water distribution system, our initial objective is to test our source inversion algorithms and con-
duct numerical experiments to evaluate the sensitivity of various model parameters on the optimization
algorithms. Our long term interest is to eventually interface water distribution simulation with intrusive
optimization in an attempt to achieve the highest possible computational efficiencies for a source inversion
problem. However, intrusive optimization algorithms need access to various linear objects in the simulation
code that do not exist in the state-of-the-art water distribution models, such as EPANET. The solution
methods of these models have evolved to efficient and stable techniques for the forward simulation mode.
One of the more popular techniques, which is currently the preferred solution method in EPANET, is the



Lagrangian discretization and associated solution method. Although efficient, it is not obvious how it would
allow intrusive solution methods to access implicit linear objects and to consider design, control, or inversion
problems with a number of state and design parameters. The current implementation of the Lagrangian
solution technique only allows a non-intrusive optimization interface. Before considering intrusive sensitivity
calculations for higher optimization interface levels, we therefore investigate the performance of a NAND
gradient based interface (Level 1). This level of optimization treats the simulation as a black box and re-
quires no additional information from the simulator. In addition, we can make use of powerful optimization
frameworks, such as DAKOTA, utilizing a variety of capabilities and course grained parallelism.

Our numerical experiments are based on the source inversion concepts in the previous section, with the
EPANET model replacing the convection diffusion system. Our assumption is that an attack occurs at zero
time at a nodal point in the network, and a finite number of sensors record concentration values at specified
time intervals. Performance of our source inversion algorithm is evaluated both serially and in parallel.
Other issues are investigated, such as source location, number of sensors, and finite difference step.

We start with a mathematical description of the non-linear least squares problem which is used to minimize
the difference between the calculated and target concentrations:
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Given the sensor measurements c* at times ¢;, we need to determine the unknown source terms f; that are
specified as initial conditions for the concentration variables. Here the constraints are the primary chemical
transport equations, I is the set of pipe segments, S is the set of source tanks, I is the set of pipes flowing
into tank s, Oy is the set of pipes flowing out of tank s, ¢;(z,t) are the pipe concentrations at time ¢ and
position z € [0, L;], Vs,c5(t) are the tank volumes and concentrations and r(c) are reaction rates that occur
in tanks or pipes. The external flowrates Q.;;+ and concentrations ce,:(t) are specified and the velocity
u; and flowrates, (); are obtained by first solving the hydraulic equations over the time period. For an
inversion problem in one spatial dimension, recovering small scale features at the source is not needed and
the requirement for regularization is not anticipated. The term § is therefore set to zero.

4.1 Numerical results

We describe several results to establish the performance of source inversion for a water distribution system.
A dataset from a local industrial area (LIA) was used to perform numerical tests. Figure 3(a) shows the
general outline of the network and Table 2 describes some of the details. Figure 3(b) shows the scenario for
the first experiment, in which the point of attack is at the main feeder tank. Approximately one fourth of
the entire top half of the grid is contaminated (colored red) after 15 hours. Only the top portion of the total
network is shown because the spread of the chemical is limited to that area.

With an attack initiated from the main feeder tank (i.e., all f;,4 € I are zero and all but one f;,s € S are
zero) all of the nodal concentrations are calculated from a forward simulation in EPANET and a subset



Item Description Item Description
Number of Junctions 466 Maximum Trials 40
Number of Tanks 4 Quality Analysis Chemical
Number of Pipes 621 Total Duration 15.00 hrs
Number of Pumps 3 Water Quality Time Step 5.00 min
Number of Valves 12 Water Quality Tolerance 0.01 mg/L
Headloss Formula Hazen-Williams Specific Gravity 1.00
Hydraulic Timestep 1.00 hrs Relative Kinematic Viscosity 0.98
Hydraulic Accuracy 0.001 relative Chemical Diffusivity 1.00

Table 2: Operating conditions for the LIA dataset

Day 1, 2:00 PR

Figure 3: (a) LIA network (b) Attack Scenario (top half of LIA shown)

of these was measured to sense the original location of the attack. An SQP algorithm was able to find
the location and magnitude of the source with two gradient calculations and 14 function evaluations, for a
total of 954 function evaluations. For this attack scenario, a relatively small number of sensors are actually
needed. The accuracy of the solution and the efficiency of the algorithm were not affected by reducing the
number of sensors from 470 to 31 sensors.

At each iteration of the Level 1 optimization, the EPANET model is solved and a post-processor routine
evaluates the nonlinear least squares objective function by summing over the sensor locations, 7 € T U S.
To test for a smaller number of sensors in the nonlinear least squares calculation, we selected summation
elements of I U S that were separated uniformly by a specified number of elements. These results are shown
in Table 3. With this selection criterion, an incorrect source inversion was obtained only when fewer than
31 sensors were selected. On the other hand, a strategic placement of sensors, such as in pipes where
the volumetric flow rates are high, may allow the use of even fewer sensors. Optimal sensor placement is
currently being investigated [2].

Optimization of a 470 node and 470 parameter inversion model using a NAND gradient based method took
1544 secs on a single processor (Pentium 3, 500 Mhz). The majority of the work is in the calculation of the
objective gradient through a finite difference method which is embarrassingly parallel. If sufficient computer
resources are available and the overall serial work is minimal, substantial speedups should be possible through



Run No. | Number of Sensors | Error of source | Optimization Iter | Wall clock (sec)
1 470 0 5 1051
2 235 0 2 857
3 117 5.0E-3 5 1137
4 78 5.1E-1 5 1141
5 58 4.3E-2 7 1582
6 47 0 2 420
7 39 4E-2 6 1296
8 10 0.41 7 1491

Table 3: Inversion Numerical Results DAKOTA /EPANET

a parallel implementation. Experiments showed excellent scalability up to 4 processors (1 proc - 1544 secs, 2
procs - 854 secs, 4 procs - 401 secs). However, significant serial work is associated with Level 1 optimization
in handling globalization through a line search method. Although the gradient calculations can be done in
parallel, a single function evaluation is executed serially at the end of each optimization iteration, in addition
to other serial tasks such as managing parallel processing and pre/post-processing. Even though additional
experiments are necessary to quantify the serial overhead for large numbers of processors, we do not expect
good parallel speedup with this approach.

The performance of the algorithm is also affected by changing the location of the source to an internal
node. Additional optimization iterations are needed to invert for the source in this new attack scenario.
The gradient calculation in the first iteration identifies the main feeder tank as a possible source location
with some gradient, in addition to the internal node where the source is actually located. Eventually the
algorithm finds the correct solution but requires more optimization iterations, gradient calculations and
function evaluations.

For the internal node attack scenario the usage of different sensor locations produces somewhat unpredictable
results (Table 3). It appears that the influence of the main feeder locations on the overall optimization algo-
rithm is relatively large and affects the convergence efficiency. The most likely reason for the unpredictable
behavior is inaccurate gradients. A relatively large finite difference step of 10% is required to produce a
change in EPANET. In an attempt to calculate more accurate gradients, smaller finite difference steps were
used but the smaller perturbations did not change the performance of EPANET. Although inversion for a
water distribution network is possible with EPANET in its current form and with Level 1 optimization, dif-
ficult attack scenarios will be difficult to resolve and the convergence rates will be very poor. Exact gradient
calculation through direct or adjoint sensitivities will greatly improve the performance of the optimization
algorithm.

The Level 1 optimization interface has demonstrated an inversion capability and identified several issues
associated with source inversion for large datasets. Even though parallel speedup appears capable of reducing
the execution time for small numbers of processors, parallel speedup will be limited as a result of significant
serial overhead associated with Level 1 optimization methods. Even if this serial overhead could be reduced,
an all-pipe model for large cities will require a computer resource too large to be practical. The different
behavior of the optimization algorithm caused by the more difficult inversion scenario, suggests the need
for careful investigation of numerics associated with EPANET in the context of optimization. Both these
factors potentially justify the use of a formulation for the chemical transport that would lend itself to the
calculation of exact and more efficient intrusive inversion algorithms.



5 DAE and Adjoint Formulation

To develop a higher level optimization method intrusive sensitivities are needed, and a rewrite of at least
the chemical transport formulation needs to be considered. Within a hydraulic time step, the chemical
transport can be formulated as a DAE system, and by utilizing existing time integrators which also have
sensitivity calculation capabilities such as CVODE or DASSPK [6], modifications can be made within the
existing EPANET framework without a tremendous effort. This should allow not only more efficient gradient
calculations but also more accurate calculations. We briefly describe the proposed formulation.

Equations (7), (8), (9) can written as a general differential algebraic equation:
F(p,Y,Y,t) =0 (11)

where Y = [c, Vics]7, Y = [é, V;:cs]T, and p is a vector of inversion parameters. Given an objective function
given by G(p,Y) = fOT g(p,Y,t)dt we are interested in finding %. In this form, an adjoint formulation can
be derived as follows [13]:

Ty BFg T — T
(Fy)li=r =0 (13)

and the following equation for % can be obtained:

dG T T T

o= (gp — A" Fp)dt + (A FYY;”t:O (14)
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As Figure 2 indicates, the adjoint approach can significantly improve the computational efficiencies and the
modification to the current Lagrangian solution technique for the forward solution may be warranted.

6 Conclusions and Future Work

This initial investigation demonstrates the use of optimization techniques to locate potential chemical /biological
attacks given a concentration and velocity profile for a time history. Performance measures for a source inver-
sion on a prototype convection-diffusion system established computational advantages to intrusive methods.

A relatively small number of sensors are needed to invert for the source location in a water distribution
model; even fewer sensors may be allowed if they are placed strategically. The performance of the optimiza-
tion algorithm and quality of the solution of the inversion problem is affected by source location. Parallel
scalability was demonstrated in the Level 1 mode for the source inversion problem for 4 processors. Several
shortcomings associated with the numerics of Level 1 optimization for a water network have been identified
that suggest reformulating the current Lagrangian solution technique with an implicit DAE formulation.
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