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Abstract
In recent years, significant advances have been made in the development of gradient-
based optimization algorithms and their application to inverse problems in water 
distribution systems.  We apply a gradient-based optimization procedure to the 
problem of identifying the location of a contaminant injected into a distribution 
system based on data collected at a finite number of sensors.  The solution of this 
problem is complicated by uncertainty in the instantaneous water demands occurring 
at nodes throughout the distribution system.  We characterize the effect of this 
demand uncertainty on the ability of the inversion algorithm to accurately and 
precisely identify the correct source location by varying the time step at which the 
variable demands are aggregated from 30 minutes to 24 hours.  These calculations 
determine the effect of demand aggregation on the inversion results by comparing the 
results across time step sizes to the results achieved at the smallest time scale (30
minutes).  In a distribution system the true water demands at any time step are 
unknown and represent irreducible uncertainty.  We show how large of an effect this 
irreducible uncertainty has on our ability to locate the source location of contaminants 
within a distribution system.  The calculations are done on a moderately sized 
distribution system network and the stochastic demands are generated using a 
recently developed Poisson Rectangular Pulse (PRP) demand generator.  The 
contaminant is simulated with tracer transport using EPANET.  Results for the 
example problem examined herein using 100 sensors show that the inverse approach 
is capable of identifying the correct source node at all time step aggregations.
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Introduction
The threat of accidental contamination of water distribution systems is not new. 
However, in the past few years, concern over malevolent contamination of municipal 
water networks has increased consideration of novel protection measures for 
distribution systems. Water distribution networks are especially vulnerable to 
biological and chemical attack due to the distributed nature of the network over large 
spatial areas and the large number of access points within a network. Any water 
outlet, such as a hydrant or even a household water faucet, can be an access point for 
backflow contamination into the network. Physical security can only provide a 
limited amount of protection. As an alternative to physical security alone, sensors 
can be installed in the network to detect contamination and initiate a containment and 
restoration strategy.

Given the necessity of applying a limited number of sensors within a distribution 
system to detect a contamination event, the optimal location of sensors within 
networks has been an area of active research.  Much of this research effort has been 
focused on development of algorithms for both the optimal placement of water 
quality and, eventually, contaminant specific, sensors within water distribution 
systems as well as inversion algorithms for using information from sensor networks 
to identify the source location of the contaminants.  The sensor placement algorithms 
include both heuristic sensor location optimization schemes (e.g., Ostfeld and 
Salomons, 2004; Uber et al, 2004) and exact solution techniques including integer 
programming approaches (e.g., Berry et al., in press).  Relatively less attention has 
been paid to the source location inversion problem, but in recent years advances in 
the application of gradient-based optimization to solve this problem have been 
realized (Laird, et al., 2005; van Bloemen Waanders et al., 2003).

An aspect of water distribution systems that has not yet been considered as part of the 
source location inversion process is that demands within the system are unknown and 
typically of a much shorter time scale than the length of the hydraulic time step used 
in distribution system models.  Over the past decade, considerable effort has gone 
into characterizing small-scale demands within networks.  Buchberger et al (2003) 
monitored demands in a small neighborhood at a one-second time interval for a 
period of nine months.  This extensive data set was used to corroborate the Poisson 
Rectangular Pulse (PRP) model of residential water use, first proposed by Buchberger 
and Wu (1995).  This model has been used to examine the effect of fine scale demand 
patterns on the transport of tracers within distribution systems (McKenna, et al., 
2004).  Errors in the prediction of tracer concentrations can occur when the true fine 
time scale demands are averaged over larger and larger time steps.

Here we examine the ability of a contaminant source location inversion approach to 
correctly identify the source location using a network model with larger hydraulic 
time steps than those used in the true contaminant transport.  This work combines 
recently developed source location inversion algorithms for water distribution 
networks with a new PRP-based demand simulator.  The goal of this work is to 



identify how well the inversion algorithm can identify the true source location as the 
variable demands are aggregated over larger and larger time steps.

Simulation Approach
This paper brings together two distinct lines of research: characterization of 
instantaneous water demands and non-linear inversion schemes for source location 
identification.  Stochastic simulation is used to generate water demands at different 
scales of temporal discretization and dynamic optimization techniques are used to 
solve the source location problem in real time.  A brief background on each of these 
simulation approaches is given below along with references where more detail can be 
obtained.

Demand Simulation
Residential water demands at single family homes are assumed to behave as a 
nonstationary PRP process (Buchberger and Wu, 1995).  Under the PRP hypothesis, 
the frequency of residential water use follows a Poisson arrival process with a time 
dependent rate parameter.  This process produces an exponential distribution of 
arrival times.  When a water use occurs, it is represented as a single rectangular pulse 
of random duration and random but steady intensity, or consumption rate.  When a 
home draws a pulse of water from the supply network, it is considered to be "busy"; 
otherwise, the home is considered "idle".

Buchberger and Wells (1996) found that over 80 percent of indoor residential water 
demands occur as single pulses and that complex demand patterns are easily 
converted to an equivalent single pulse.  By virtue of the Poisson assumption, it is 
unlikely that more than one pulse will start at the same instant.  Owing to the finite 
duration of each water pulse, however, it is possible that two or more pulses with 
different starting times will overlap for a limited period.  When this occurs, the total 
water use at the residence is the sum of the joint intensities from the coincident 
pulses.  Owing to its simplicity and versatility, the PRP approach offers an effective 
new way to model the temporal and spatial variability of residential water demands 
across a municipal distribution system.  

A computer program PRPsym was developed to simulate residential water demands 
at various time averaging intervals for each node in a municipal distribution system.  
The simulation process involves three steps:

Step 1:  Generate instantaneous PRP water demands at a 1-second resolution.
a) Draw the time, T, to the next demand from the exponential distribution of times 

between demand, φT(t), consistent with the specified Poisson arrival process.
b) For each new demand pulse draw the duration, D [T], and the intensity, Q [L3/T], 

from their respective log-normal distributions, φD(d) and φQ(q).
c) Check for end of simulation time, if not then return to step 1a.



Step 2:  Integrate the instantaneous demands.  Some water demand pulses at a node 
will overlap.  Add the coincident pulses to get the total instantaneous demand at a 
node.  

Step 3:  Convert the total instantaneous water demands to an equivalent series of 
time-averaged intensities.  Divide the total volume of water use during a specified 
time step by the duration of the time step to get the time-averaged water demand.

Scaling of the Poisson arrival parameter allows for demand nodes to be configured to 
represent from 1 to over 1,000 homes.  Each node requires a PRP pulse template to 
specify statistical properties of indoor and outdoor water demands and a multiplier 
pattern to define the hourly variation in arrivals for indoor and outdoor water use that 
occur throughout the day.  

Non-Linear Optimization for Source Location
Details on the application of non-linear optimization approaches to the problem of 
identifying the location of a contaminant source within a water distribution network 
can be found in Laird et al (2005).  The approach is outlined briefly below. 

With known flow rates and velocities as inputs, the water quality model for the 
network, using P, J and S to refer to the complete sets of all pipes, junctions, and 
storage tanks, respectively, is developed.  The concentration in the pipes is denoted as 
cp

i(x; t); i ∈ P and cn
k(t); k ∈ N represents the concentration at the nodes, where N = J 

∪ S is the complete set of all nodes, including junctions and storage tanks. Here, t ∈
[0::tf ] is time, and x ≥ 0 is the displacement of flow along a pipe. In developing the 
model, we refer to connections and concentrations at pipe boundaries.  Note that these 
designations are time dependent and change with the flow direction. Pumps and 
valves are modeled as zero length pipes, and reservoirs are modeled as junctions with 
known external sources. We assume there is no decay reaction for the contaminant, 
although first order decay can easily be included in the formulation.  Consistent with 
the transport formulation within EPANET, plug flow and perfectly mixed 
concentrations, no dispersion, are assumed.

The goal of the optimization algorithm is to minimize and objective function, Ψ, that 
is the weighted sum of squared errors between predicted and observed concentrations 
at the nodes:
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Where m(t) is the unknown contaminant mass flow rate, wk(t) is a time dependent 
flow based weighting scheme for each node – this weighting shifts the errors from 
being between measured and predicted concentration to mass, cn*

k(t) is the measured 
concentration at node k, δ(t) is the Dirac delta function, tf is the final simulation time 
and r indicates the time step at which concentrations at sensors are evaluated.  This 



function is minimized subject to physical constraints on transport of the contaminant 
within the pipes:
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As well as conservation of mass within the tanks and nodes.  Additionally, a 
regularization term is added to the overall objective function to force a unique 
solution to the inverse solution.  The discrete forms of the objective function and the 
physical constraints on mass transport as well as the equations for conservation of 
mass are solved using a direct simultaneous method (see Laird et al., 2005).

Example Problem
The problem of inverse source location using different hydraulic time step length
under conditions of variable demand is illustrated with a set of calculations on an 
example distribution network.  The distribution network is shown in Figure 1 and has 
1 tank, 394 nodes and 534 pipes.  The base demands are shown in Figure 1.  Base 
demand at any one node ranges from zero to over 150 gpm.  The base demand at each 
node has a periodic trend throughout the day.  The PRPsym code is used to generate 
demand multipliers that are then applied to these base demand values.

The concentration is injected at node # 435 (Figure 1) as a square wave at hour 6 with 
a duration of 1 hour.  EPANET is used to solve the hydraulic and transport equations.  
A 5 minute water quality time step is used in all simulations and the hydraulic time 
step is varied as discussed below.  A total of 100 sensors are distributed randomly 
throughout nodes in the system with the probability of selecting any given node as a 
sensor location being approximately proportional to the amount of flow though that 
node.  The sensors are assumed to provide error and noise free readings of the actual 
concentrations.  

The parameter values for residential water demand simulations done herein are listed 
in Table 1.  Two types of output are produced by the PRPsym software for each 
node: (i) water demand time series and (ii) water demand simulation statistics.  The 
PRPsym code is used to generate demands for 0.5, 1, 2, 4, 6, 12 and 24 hour time 
step lengths.  The base case simulation used as the ground truth in this work simulates 
instantaneous demands using the parameters in Table 1 and then aggregates these 
demands over 30 minute time steps.  These aggregated demands are used in 
EPANET for simulation of the transport from node 435.  The concentrations 
observed at the nodes with sensors are then recorded as the observed concentrations.  

The same demand generation parameters, Table 1, are then used to generate demands 
aggregated over 1, 2, 4, 6, 12 and 24 hour time steps.  The base demand at each node 
is the same for all simulations and the total demand across the entire network is 



preserved across all aggregation levels.  The random number seed used to generate 
the stochastic demands is also kept the same across all time step sizes.

Figure 1.  Example network used in simulations.  The color scales show the base 
demand (gpm) at the nodes and the flow (gpm) in the pipes.  The red circle shows the 
location of node 435, the contaminant source.

Table 1.  Input parameters for the PRP demand simulator, PRPsym

Demand Characteristic Indoor Use

Intensity: mean 
variance
coef of var
distribution

2.00 gpm
1.56 gpm2

0.62
log-normal

Duration: mean
variance
coef of var
distribution

1.00 min
4.00 min2

2.00
log-normal

(*) Values are derived from Buchberger and Wells [1996] and Buchberger et al [2003].

The inverse source location approach minimizes Equation 1 by matching the data 
observed in the base case simulation with 30 minute time steps with each of the 
models having larger time steps.  The inverse approach optimizes the source location 
to achieve this minimization.  Only a single EPANET simulation is necessary to 
provide the hydraulic information for each time step size.  For each time step length, 



the ability of the inverse approach to identify the correct source node is quantified as 
discussed below.

Results and Discussion
For each inverse estimation, the fraction 
of the total contaminant mass in the 
source term is partitioned to different 
nodes within the network.  An exact 
solution would assign a fraction of 1.00 
to the true source node.  The inverse 
approach with regularization results in a 
very small fraction of mass being 
assigned at all nodes in the network; 
however, here we only identify the 
nodes in the solution that are assigned 
a mass fraction of at least one percent 
of the maximum mass fraction 
assigned to any node.  For example,
Figure 2 shows the scaled mass fraction for an inverse solution with 2 hour time 
steps.  Four nodes are assigned a significant fraction of the source mass, nodes 435, 
2301, 431 and 2401, with the majority of the mass assigned to the true source node 
(435).  

The results of the inverse source location calculations are summarized using three 
different quantities.  The final value of the objective function (Equation 1) indicates 
the ability of the inverse model to match the concentrations observed at the sensor 
locations through adjusting the location of the source.  These final objective function 
values are shown in the left image of Figure 3 and show that the sum of the squared 
errors between the observed and modeled concentrations increases linearly with 
increasing time step size up to time steps of six hour length.  

The ability of the inverse approach to find the correct source node is quantified by the 
fraction of the total mass that is assigned to the true source node (middle image, 
Figure 3).  For time step lengths of 2 hours or less, over 90 percent of the total mass is 
assigned to the correct source node.  For longer time steps, the mass fraction correctly 
assigned to the source node decreases to less than 50 percent for all time step lengths 
greater than 6 hours.  The assigned mass fraction results in the middle image of 
Figure 3 do not directly address the number of nodes to which a significant amount of 
mass is assigned.  For example, in cases where the mass fraction correctly assigned to 
the source node is less than 50 percent it is not clear whether the majority of the mass 
was incorrectly assigned to a different node, or if the largest proportion of the mass 
was still assigned to the correct node, but the remaining amount of mass was spread 
over a greater number of incorrect nodes.  All results were checked and in each case, 
the true source node was the node assigned the largest amount of mass.  In general, 
the larger the time step length, the larger the number of nodes that were assigned a 
significant fraction of the mass.  

Figure 2.  Example output showing amount 
of source mass assigned to different nodes.



Ideally, the amount of mass assigned to the correct node and the number of nodes 
over which the mass is spread could be summarized in a single term.  Toward this 
goal, a measure of entropy is introduced as a way to quantify the uncertainty in 
assignment of a single node as the source node.  The entropy is calculated as (after 
Harr, 1987):
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where mk is the mass fraction assigned to the kth node out of a total of g nodes 
assigned a significant fraction of the mass.  As mk → 1.0 for any k, H → 0.  
Conversely, H reaches a maximum value of 1.0 when all mk are equal and the 
determination of the most likely source node is highly uncertain.  The entropy of 
mass fraction provides a convenient single measure of uncertainty and is adopted 
from similar approaches with classification probabilities; however, it is noted that the 
mass fraction is not directly equal to the probability of the node being the true source 
location.  This change in entropy definition will be examined further in future work.  
Here, g is set to equal the total number of nodes with a mass fraction that is at least 
one percent of the maximum mass fraction assigned to any node.  Therefore, g varies 
in these calculations from 3 to 14.  The calculated entropy value increases to nearly 
0.80 with increasing time step size up to a time step size of 6 hours after which it 
decreases slightly (Figure 3, right image).  An alternative calculation for entropy 
would be to set g to the total number of nodes in the distribution system for all 
calculations.  This approach will be also be explored in future work.

Figure 3.  Summary of results showing the objective function value (left), the mass 
fraction assigned to the correct source node (middle) and the entropy (right) all as a 
function of time step size.

Conclusions and Future Work
The results above show that the inversion approach is capable of identifying the 
correct source node over all time step sizes investigated.  These results indicate that 
an actual contamination event that is responding to the very fine-scale demands 
within a distribution system could be identified using a simulation model with much 
larger time steps.  The ability of the inverse source location identification approach to 
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find the true source node becomes less certain for larger time steps, see the measures 
plotted in Figure 3, but for all of the cases examined here, the identification was 
accurate – the approach assigned the majority of the source mass to the correct source 
node across all time step sizes.

The results show that, in general, the quality of the source identification using the 
inverse approach degrades with increasing aggregation of fine-scale demands up to a 
time step size of approximately 6 hours.  The quality of the source identification, 
whether measured in terms of the objective function, the fraction of the total mass 
assigned to the true source or the entropy, is roughly constant for the time step sizes 
beyond 6 hours (Figure 3).  The reasons for this asymptotic behavior in the results 
will be examined in future work.  The results in Figure 3 suggest that the solutions 
become less unique with larger time steps.  One way to examine the uniqueness of 
these results with respect to the aggregated demands will be to generate multiple 
stochastic demand patterns for each time step size and characterize the range of 
objective function, mass fraction and entropy values across all simulated demands.  
Other simulations that can be done to assess the sensitivity of the results presented 
here include varying the parameters used in PRPsym (Table 1) to generate the 
demands and to vary the number of sensors within the network.  Rapid assessment of 
these additional simulations is feasible due to the minimal computational burden that 
can be achieved by the inversion approach used herein.
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