
UNIFIED EMBEDDED PARALLEL FINITE ELEMENT
COMPUTATIONS VIA SOFTWARE-BASED FRÉCHET

DIFFERENTIATION

KEVIN LONG∗, ROBERT KIRBY† , AND BART VAN BLOEMEN WAANDERS‡

Abstract. Computational analysis of systems governed by partial differential equations requires
not only the calcuation of a solution, but the extraction of additional information such as the sensitiv-
ity of that solution with respect to input parameters or the inversion of the system in an optimization
or design loop. Moving beyond the automation of discretization of PDE by finite element methods,
we present a mathematical framework that unifies the discretization of PDE with these additional
analysis requirements. In particular, Fréchet differentiation on a class of functionals together with
a high-performance finite element framework have led to a code, called Sundance, that provides
high-level programming abstractions for the automatic, efficient evaluation of finite variational forms
together with the derived operators required by engineering analysis.

Key words. finite element method, partial differential equations, embedded algorithms

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Advanced simulation of realistic systems governed by partial
differential equations (hence PDE) can require a significant collection of operators
beyond evaluating the residual of the nonlinear algebraic equations for the system
solution. As a first example, Newton’s method requires not only the residual evalua-
tion, but also the formation or application of the Jacobian matrix. Efficient solution
of the underlying linear systems may be facilitated by additional operators introduced
by physics-based preconditioning. Beyond this, sensitivity analysis, optimization and
control require even further operators that go beyond what is implemented in stan-
dard simulation codes. We describe algorithms requiring additional operators beyond
a black-box residual evaluation or system matrix as embedded.

Traditional automatic differentiation (AD) tools [15] bridge some of the gap be-
tween what is implemented and what modern embedded algorithms require. For ex-
ample, AD is very effective at constructing code for Jacobian evaluation from code for
residual evaluation and finding adjoints or derivatives needed for sensitivity. However,
AD tools can only construct operators that are themselves derivatives of operators
already implemented in an existing code.

Further, implementing these operators efficiently and correctly typically presents
its own difficulties. While the necessary code is typically compact, it requires the
programmer to hold together knowledge about meshes, basis functions, numerical in-
tegration and many other techniques. Current research projects aim to simplify this
process. Some of these, such as the widely used Deal.II library [3], provide infrastruc-
ture for handling meshes, basis functions, assembly, and interfaces to linear solvers.
Other projects, such as Analysa [2] and FFC [20, 21] use a high-level input syntax
to generate low-level code for assembling variational forms. Yet other projects, such

∗Department of Mathematics and Statistics, Texas Tech University (kevin.long@ttu.edu). Au-
thor acknowledges support from NSF award 0830655.
†Department of Mathematics and Statistics, Texas Tech University (robert.c.kirby@ttu.edu).

Author acknowledges support from NSF award 0830655.
‡Applied Mathematics and Applications, Sandia National Laboratory (bartv@sandia.gov)- San-

dia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company,
for the United States Department of Energy under Contract DE-AC04-94AL85000, PO Box 5800,
Albuquerque, NM 87122.

1

2 K. Long, R. Kirby, and B. van Bloemen Waanders

as as LifeV [26] and FreeFEM [17] provide domain-specific language for finite ele-
ment computation, either by providing a grammar and interpreter for a new language
(FreeFEM) or by extending an existing language with library support for variational
forms (LifeV).

Our present work, encoded in the open-source project Sundance [23, 24], uni-
fies these two perspectives of differentiation and automation by developing a theory
in which formulae for even simple forward operators such as stiffness matrices are
obtained through run-time Fréchet differentiation of variational forms. Like many
finite element projects described above, we also provide interfaces to meshes, basis
functions, and solvers, but our formalism for obtaining algebraic operators via dif-
ferentiation appears to be new in the literature. While mathematically, our version
of AD is similar to that used in [15], we differentiate at more abstract level on ab-
stract representations of functionals to obtain low-level operations rather than writing
those low-level operations by traditional means and then differentiating. Also, we re-
quire differentiation with respect to variables that themselves may be (derivatives
of functions) and rules that can distinguish between spatially variable and constant
expressions. These techniques are typically not included in AD packages. While this
complicates some of our differentiation rules, it provides a mechanism for automat-
ing the evaluation of variational forms. Sundance is a C++ library for symbolically
representing, manipulating, and evaluating variational forms.

Automated evaluation of finite element operators by Sundance or other codes
provides a smooth transition from problem specification to production-quality sim-
ulators, bypassing the need for intermediate stages of prototyping and optimizing
code. When all variational forms of a general class are efficiently evaluated, each
form is not implemented, debugged, and optimized as a special case. This increases
code correctness and reliability, once the internal engine is implemented. Generation
and optimization of algorithms from an abstract specification receives considerable
research activity. The Smart project of Püschel et al. [11, 12, 27, 28, 29] algebraically
finds fast signal processing algorithms and is attached to a domain-specific compiler
for these kinds of algorithms. In numerical linear algebra, the Flame project led by
van de Geijn [4, 16] demonstrates how correct, high-performance implementations of
matrix computations may be derived by formal methods. Like these projects, Sun-
dance uses inherent, domain-specific mathematical structure to automate numerical
calculations.

In this paper, we present our mathematical framework for differentiation of vari-
ational forms, survey our efficient software implementation of these techniques, and
present examples indicating some of the code’s capabilities. Section 2 provides a unify-
ing mathematical presentation of forward simulation, sensitivity analysis, eigenvalue
computation, and optimization from our perspective of differentiation. Section 2.2
provides an overview of the Sundance software architecture and evaluation engine, in-
cluding some indications of how we minimize the overhead of interpreting variational
forms at run-time. We illustrate Sundance’s capabilities with a series of examples in
Sections 2.3.1 2.4.1, 2.5.1 and 3 then present some concluding thoughts and direc-
tions for future development in Section 4. A complete code listing is included as an
appendix.

2. A Unified Approach to Multiple Problem Types through Functional
Differentiation.

2.1. Functional differentiation as the bridge from symbolic to discrete.
We consider PDE on a d-dimensional spatial domain Ω. We will use lower-case italic

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 3

symbols such as u, v for functions mapping Ω → R. We will denote arbitrary func-
tion spaces with upper-case italic letters such as U, V. Operators act on functions to
produce new functions. We denote operators by calligraphic characters such as F ,G.
Finally, a functional maps a function to R;we denote functionals by upper-case letters
such as F,G and put arguments to functionals in square brackets. As usual, x, y and
z represent spatial coordinates.

Note that the meaning of a symbol such as F(u) is somewhat ambiguous. It
can stand both for the operator F acting on the function u, and for the function
F(u(x)) that is the result of this operation. This is no different from the familiar
useful ambiguity in writing f(x) = ex, where we often switch at will between referring
to the operation of exponentiation of a real number and to the value of the exponential
of x.

To differentiate operators and functionals with respect to functions, we use the
Fréchet derivative ∂F

∂u (see, e.g., [8]) defined implicitly through

lim
‖h‖→0

‖F(u+ h)−F(u)− ∂F
∂u h‖

‖h‖
= 0.

The Fréchet derivative of an operator is itself an operator, and thus as per the pre-
ceding paragraph, when acting on a function, the symbol ∂F

∂u can also be considered
a function. In the context of a PDE we will encounter operators that may depend
not only on a function u but on its spatial derivatives such as Dxu. As is often done
in elementary presentations of the calculus of variations (e.g. [33]), we will find it
useful to imagine u and Dxu as distinct variables, and write F(u,Dxu) for an op-
erator involving derivatives. Differentiating with respect to a variable that is itself
a derivative of a field variable is a notational device commonly used in Lagrangian
mechanics (e.g., [1], [30]) and field theory (e.g., [5], [7]) and we will use it throughout
this paper. This device can be justified rigorously via the Fréchet derivative.

We now consider some space U of real-valued functions over Ω. For simplicity
of presentation we assume for the moment that all differentiability and integrability
conditions that may arise will be met. Introduce a discrete N -dimensional subspace
Uh ⊂ U spanned by a basis {φi(x)}Ni=1, and let u ∈ Uh be expanded as u(x) =∑N
i=1 uiφi(x) where {ui} ⊂ RN is a vector of coefficients. The spatial coordinates are

represented as usual by x, y, When we encounter a functional F [u] =
∫
F(u) dΩ,

we can ask for the derivative of F with respect to each expansion coefficient ui. Formal
application of the chain rule gives

∂F

∂ui
=
∫
∂F
∂u

∂u

∂ui
dΩ (2.1)

=
∫
∂F
∂u

φi(x) dΩ, (2.2)

where ∂F
∂u is a Fréchet derivative.

The derivative of a functional involving u and Dxu with respect to an expansion
coefficient is

∂F

∂ui
=
∫
∂F
∂u

φi(x) dΩ +
∫

∂F
∂(Dxu)

Dxφi(x) dΩ. (2.3)

Equation 2.3 contains three distinct kinds of mathematical object, each of which
plays a specific role in the structure of a simulation code.

4 K. Long, R. Kirby, and B. van Bloemen Waanders

1. ∂F
∂ui

, which is a vector in RN . This discrete object is typical of the sort of
information to be produced by a simulator’s discretization engine for use in
a solver or optimizer routine.

2. ∂F
∂u and ∂F

∂(Dxu) , which are Fréchet derivatives acting on an operator F . The
operator F is a symbolic object, containing by itself no information about
the finite-dimensional subspace on which the problem will be discretized. Its
derivatives are likewise symbolic objects.

3. Terms such as φi and Dxφi, which are spatial derivatives of a basis function.
Equation 2.3 is the bridge leading from a symbolic specification of a problem as a
symbolic operator F to a discrete vector for use in a solver or optimizer algorithm. The
central ideas in this paper are that (1) the discretization of many apparently disparate
problem types can be represented in a unified way through functional differentiation
as in Equation 2.3, and (2), that this ubiquitous mathematical structure provides a
path for connecting high-level symbolic problem representations to high-performance
low-level discretization components.

2.2. Software Architecture. Equation 2.3 suggests a natural partitioning of
software components into loosely-coupled families:

1. Linear algebra components for matrices, vectors, and solvers.
2. Symbolic components for representation of expressions such as F and eval-

uation of its derivatives. We usually refer to these objects as “symbolic”
expressions, however this is something of a misnomer because in the context
of discretization many expression types must often be annotated with non-
symbolic information such as basis type; a better description is “annotated
symbolic expressions” or “quasi-symbolic expressions.”

3. Discretization components for tasks such as evaluation of basis functions,
computation of integrals.

In the discussion of software in this paper we will concentrate on the symbolic compo-
nents, with a brief mention of mechanisms for interoperability between our symbolic
components and third-party discretization components.

We require a data structure for symbolic expressions that provides several key
capabilities.

1. It must be possible to compute numerically the value of an expression and
its Fréchet derivatives at specified spatial points, e.g., quadrature points or
nodes. Such computations must be done in-place in a scalable way on a static
expression graph; that is, no symbolic manipulations of the graph should be
done other than certain trivial constant-time modifications.

2. This numerical evaluation of expression values should be done as efficiently
as possible.

3. Functions appearing in an expression must be annotated with an abstract
specification of their finite element basis. This enables the automated associ-
ation of the signature of a Fréchet derivative, i.e., a multiset of functions and
spatial derivatives, with a combination of basis functions. If, for example, the
function v is expanded in a basis {ψ} and the function u in basis {φ}, the
association

∂2F
∂v ∂(Dxu)

→ ψDxφ

can be made automatically. It is this association that allows automatic bind-
ing of coefficients to elements.

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 5

4. It must be possible to specify differentiation with respect to arbitrary combi-
nations of variables.

2.2.1. Evaluation of symbolic expressions. A factor for both performance
and flexibility is to distinguish between expression representation and expression eval-
uation, by which we mean that the components used to represent an expression graph
may not be those used to evaluate it. We use Evaluator components to do the
actual evaluation. In simple cases, these form a graph that structurally mirrors the
expression to be evaluated, but when possible, expression nodes can be aggregated for
more efficient evaluation. Furthermore, it is possible to provide multiple evaluation
mechanisms for a given expression. For example, in addition to the default numerical
evaluation of an expression, one can construct an evaluator which produces string
representations of the expression and its derivatives; such string evaluations are of
practical use for debugging.

Another useful alternative evaluation mechanism is to produce, not numerical
results, but low-level code for computing numerical values of an expression and its
derivative. Thus, while the default mode of operation for Sundance components is
numerical evaluation of interpreted expressions, these same components could be used
to generate code. We therefore do not make a conceptual distinction between our
approach to finite element software and other approaches based on code generation,
because the possibility of code generation is already built into our design.

Other applications of nonstandard evaluators would be to tune evaluation to hard-
ware architecture, for example, a multithreaded evaluator that distributes subexpres-
sion evaluations among multiple cores.

2.2.2. Interoperability with discretization components. A challenge in
the design of a symbolic expression evaluation system is that some expressions depend
explicitly on input from the discrete form of the problem. For example, evaluation of
a function u at a linearization point u0 requires interpolation using a vector and a set
of basis functions. Use of a coordinate function such as x in an integral requires its
evaluation at transformed quadrature points, which must be obtained from a mesh
component.

A guiding principle has been that the symbolic core should interact with other
components, e.g., meshes and basis functions, loosely through abstract interfaces
rather than through hardwired coupling; this lets us use others’ software components
for those tasks. We have provided reference implementations for selected compo-
nents, but the design is intended to use external component libraries for as much as
possible. The appropriate interface between the symbolic and discretization compo-
nent systems is the mediator pattern [14], which provides a single point of contact
between the two component families. The handful of expression subtypes that need
discrete information (discrete functions, coordinate expressions, and cell-based expres-
sions such as cell normals arising in boundary conditions and cell diameters arising in
stabilization terms) access that information through calls to virtual functions of an
AbstractEvaluationMediator. Allowing use of discretization components with our
symbolic system is then merely a matter of writing an evaluation mediator subclass
in which these virtual functions are implemented.

A use case of the mediator is shown in figure 2.1. Here, a product of a coordinate
expression x and a discrete function u0 is evaluated. The product evaluator calls the
evaluators for the two subexpressions, and their evaluators make appropriate calls to
the evaluation mediator.

6 K. Long, R. Kirby, and B. van Bloemen Waanders

Product
Evaluator

EvalMediator CoordExpr
Evaluator

DiscreteFunc
Evaluator

E
va

lu
at

io
n

of
 p

ro
du

ct
 e

xp
re

ss
io

n
(x

 *
 u

0) evalLeft()

evalRight()

evalCoordExpr()

evalDIscreteFunction()

values at quad pts

values at quad pts

values at quad pts

values at quad pts

Fig. 2.1. UML sequence diagram showing the evaluation of a product of two framework-
dependent expressions through calls to an evaluation mediator. Components in blue boxes are
framework-independent. Red text indicates function calls, and blue text indicates data returned
through function calls. The returned information, marked “values at quad points,” need not be
numerical values; it could be, for instance, a string, or possibly generated code.

With the above overview of mathematical foundations and software architecture
in mind, we proceed to show how these principles apply in several types of embedded
analysis problems.

2.3. Illustration in a scalar forward nonlinear PDE. The weak form of a
scalar PDE for u ∈ V in d spatial dimensions will be the requirement that a functional
of two variables

G [u, v] =
∑
r

∫
Ωr

Gr ({Dαv}α, {Dβu}β , x) dµr (2.4)

is zero for all v in some subspace V̂ . The operators Gr are homogeneous linear func-
tions of v and its derivatives, but can be arbitrary nonlinear functions of u, its deriva-
tives, and the independent spatial variable x ∈ Rd. We use the notation Dαf to
indicate partial differentiation of f with respect to the combination of spatial vari-
ables indicated by the multiindex α. When we use a set {Dαu}α as the argument to
Gr we mean that Gr may depend on any one or more members of the set of partial
spatial derivatives of u. The summation is over geometric subregions Ωr, which may
include lower-dimension subsets such as portions of the boundary. The integrand Gr
may take different functional forms on different subregions; for example it will usually
have different functional forms on the boundary and on the interior. Finally, note that

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 7

we may use different measures dµr on different subdomains; this allows, for instance,
the common practice of enforcing Dirichlet boundary conditions by fixing values at
nodes.

As usual we discretize u on a finite-dimensional subspace V h and also consider
only a finite-dimensional space V̂ h of test functions; we then expand u and v as a
linear combination of basis vectors φ ∈ V h and ψ ∈ V̂ h,

u =
N∑
j=1

ujφj(x) (2.5)

v =
N∑
i=1

viψi(x). (2.6)

The requirement that (2.4) holds for all v ∈ V is met by ensuring that it holds for
each of the basis vectors ψi. Because each G has been defined as a homogeneous
linear functional in v, this condition is met if and only if

∂G

∂vi
=
∑
r

∑
α

∫
Ωr

∂Gr
∂(Dαv)

Dαψi dµr = 0. (2.7)

Repeating this process for i = 1 to N gives N (generally nonlinear) equations in the
N unknowns uj . We now linearize (2.7) with respect to u about some u(0) to obtain
a system of linear equations for the full Newton step δu,

∂G

∂vi
+

∂2G

∂vi∂uj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
u

(0)
j

δuj = 0. (2.8)

In the case of a linear PDE (or one that has already been linearized with an alternative
formulation, such as the Oseen approximation to the Navier-Stokes equations [13]),
the “linearization” would be done about u(0) = 0, and δu is then the solution of the
PDE.

Writing the above equation out in full, we have[∑
r

∑
α

∫
Ωr

∂Gr
∂(Dαv)

Dαψi dµr

]
+

+
∑
j

δuj

∑
r

∑
α

∑
β

∫
Ωr

∂2Gr
∂(Dαv) ∂(Dβu)

DαψiDβφj dµr

 = 0. (2.9)

The two bracketed quantities are the load vector fi and stiffness matrix Kij , respec-
tively.

With this approach, we can compute a stiffness matrix and load vector by quadra-
ture provided that we have computed the first and second order Fréchet derivatives
of Gr. Were we free to expand Gr algebraically, it would be simple to compute these
Fréchet derivatives symbolically, and we could then evaluate the resulting symbolic
expressions on quadrature points. We have devised an algorithm and associated data
structure that will let us compute these Fréchet derivatives in place, with neither

8 K. Long, R. Kirby, and B. van Bloemen Waanders

symbolic expansion of operators nor code generation, saving us the combinatorial ex-
plosion of expanding Gr and the overhead and complexity of code generation. The
relationship between our approach and code generation is discussed further in sec-
tion 3.

It should be clear that generalization beyond scalar problems to vector-valued
and complex-valued problems, perhaps with mixed discretizations, is immediate.

2.3.1. Example: Galerkin discretization of Burgers’ equation. As a con-
crete example, we show how a Galerkin discretization of Burgers’ equation appears in
the formulation above. Consider the steady-state Burgers’ equation on the 1D domain
Ω = [0, 1],

uDxu = cDxxu. (2.10)

We will ignore boundary conditions for the present discussion; in the next section we
explain how boundary conditions fit into our framework. The Galerkin weak form of
this equation is ∫ 1

0

[vuDxu+ cDxvDxu] dx = 0 ∀v ∈ H1
Ω. (2.11)

To cast this into the notation of equation 2.4, we define

G = vuDxu+ cDxv Dxu (2.12)

The nonzero derivatives appearing in the linearized weak Burgers equation are shown
in table 2.1. The table makes clear the correspondence between differentiation vari-
ables and basis combination and between derivative value and coefficient in the lin-
earized, discretized weak form.

Derivative Multiset Value Basis combination Integral

∂G
∂v {v} uDxu φi

∫
uDxuφi

∂G
∂Dxv

{Dxv} cDxu φi
∫
cDxuφi

∂2G
∂v ∂u {v, u} Dxu φiφj

∫
Dxuφiφj

∂2G
∂v ∂Dxu

{v,Dxu} u φiDxφj
∫
uφiDxφj

∂2G
∂Dxv ∂Dxu

{Dxv,Dxu} c DxφiDxφj
∫
cDxφiDxφj

Table 2.1
This table shows for the Burgers equation example the correspondence, defined by equation 2.12,

between functional derivatives, coefficients in weak forms, and basis function combinations in weak
forms. Each row shows a particular functional derivative, its compact representation as a multiset,
the value of the derivative, the combination of basis function derivatives extracted via the chain rule,
and the resulting term in the linearized, discretized weak form.

The user-level Sundance code to represent the weak form on the interior is

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 9

Expr eqn = Integral(interior, c*(dx*u)*(dx*v) + v*u*(dx*u), quad);
where interior and quad specify the domain of integration and the quadrature
scheme to be used, and the other variables are symbolic expressions. Example re-
sults are shown in section 2.4.1 below in the context of sensitivity analysis.

2.3.2. Representation of Dirichlet boundary conditions. Dirichlet bound-
ary conditions are usually described conceptually in terms of a restriction of the space
of trial functions, but in practice they are often handled in a somewhat ad hoc manner
by simply replacing rows in the resulting linear system with a trivial equation that sets
values at the specified boundary nodes. This procedure gives correct results (though
can affect conditioning and hence solver scalability) and is easy to program for for-
ward problems; however, in an optimization or sensitivity problem, when Dirichlet
boundary conditions depend on a design variable in a nontrivial way the code must
be modified to supply the correct boundary conditions. Therefore, it is essential to
present Dirichlet boundary conditions so that they can be implemented automati-
cally in terms of Fréchet derivatives; by doing so, correct boundary conditions for
optimization and sensitivity problems fall into place immediately.

Dirichlet boundary conditions can fit into our framework in several ways, includ-
ing the symmetrized formulation of Nitsche [25] and a simple generalization of the
traditional row-replacement method. The Nitsche method augments the original weak
form in a manner that preserves consistency, coercivity, and symmetry; as far as soft-
ware is concerned, the additional terms require no special treatment and need not be
discussed further in this context.

Handling Dirichlet boundary conditions by row replacement does impact the soft-
ware design and user interface. At the user level, a simulation developer simply “tags”
certain expressions for replacement by creating them with EssentialBC functions
rather than Integral functions. Thus, Dirichlet boundary conditions are encom-
passed by our differentiation-based approach to computing discrete equations; the
only difference from any other kind of expression is that Dirichlet terms must be
tagged as such so that the replacement procedure can be carried out.

2.4. Sensitivity Analysis. In sensitivity analysis, we seek the derivatives of
a field u with respect to a parameter p. When u is determined through a forward
problem of the form (2.4), we do implicit differentiation to find

∑
r

∑
β

∫
Ωr

[
∂Gr
∂Dβu

Dβ(
∂u

∂p
) +

∂Gr
∂p

]
dµr = 0 ∀v ∈ V̂ . (2.13)

Differentiating by vi to obtain discrete equations gives

∑
r

∑
α

[∫
Ωr

∂2Gr
∂Dαv ∂p

Dαψi dµr

]
+

+
∑
j

∂uj
∂p

∑
r

∑
α

∑
β

∫
Ωr

∂2Gr
∂Dαv ∂Dβu

DαψiDβφj dµr

 = 0 (2.14)

This has the same general structure as the discrete equation for a Newton step; the
only change has been in the differentiation variables. Thus, the mathematical frame-
work and software infrastructure outlined above is immediately capable of performing
sensitivity analysis given a high-level forward problem specification.

10 K. Long, R. Kirby, and B. van Bloemen Waanders

2.4.1. Example: Sensitivity Analysis of Burgers’ Equation. We now show
how this automated production of weak sensitivity equations works in the context of
the 1D Burgers equation example from section 2.3.1.

To produce an easily solvable parametrized problem, we apply the method of
manufactured solutions [31, 32] to construct a forcing term that produces a convenient,
specified solution. We define a function

f(p, x) = p
(
px
(
2x2 − 3x+ 1

)
+ 2
)

where p is a design parameter. With this function as a forcing term in the steady
Burgers equation,

uux = uxx + f(p, x), u(0) = u(1) = 0

we find that the solution is u(x) = px(1− x). The sensitivity ∂u
∂p is x(1− x).

Now consider the sensitivity of solutions to equation 2.11 to the parameter p.
The Fréchet derivatives appearing in the second set of brackets in equation 2.14 are
identical to those computed for the linearized forward problem; as is well-known, the
matrix in a sensitivity problem is identical to the problem’s Jacobian matrix. The
derivatives in the first set of brackets are summarized in table 2.2. Notice that in this
example, the derivative {Dxv, p} is identically zero; this fact can be identified in a
symbolic preprocessing step, so that it is ignored in all numerical calculations.

Derivative Multiset Value Basis combination Integral

∂2G
∂v ∂p {v, p} ∂f

∂p φi
∫
∂f
∂pφi

∂2G
∂Dxv ∂p

{Dxv, p} 0 Dxφi 0

Table 2.2
This table shows the terms in the first brackets of equation 2.14 that arise in the Burgers

sensitivity example described in the text.

The user-level Sundance code for setting up this problem is shown here.
/* Define expressions for parameters */
Expr p = new UnknownParameter("p");
Expr p0 = new SundanceCore::Parameter(2.0);

/* Define the forcing term */
Expr f = p * (p*x*(2.0*x*x - 3.0*x + 1.0) + 2.0);

/* Define the weak form for the forward problem */
Expr eqn = Integral(interior,

(dx*u)*(dx*v) + v*u*(dx*u) - v*f, quad);
/* Define the Dirichlet BC */
Expr bc = EssentialBC(leftPoint+rightPoint, v*u, quad);

/* Create a TSF NonlinearOperator object */

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 11

Fig. 2.2. Solution and sensitivity for steady Burgers equation. The sensitivity is with respect
to the parameter p defined in the text. The symbols indicate the numerical results computed by
Sundance; the solid and dashed lines indicate the exact curves for the solution and sensitivity.

NonlinearProblem prob(mesh, eqn, bc, v, u, u0, p, p0, vecType);

/* Solve the nonlinear system for the forward problem */
NOX::StatusTest::StatusType status = prob.solve(solver);

/* compute sensitivities */
Expr sens = prob.computeSensitivities(linSolver);

Note that the user never explicitly sets up sensitivity equations; rather, the forward
problem is created with the design parameters defined as UnknownParameter expres-
sions. The same NonlinearProblem object supports discretization and solution of
both the forward problem and the sensitivity problem. Numerical results are shown
in figure 2.2.

2.5. PDE-Constrained Optimization. PDE-constrained optimization meth-
ods pose difficult implementation issues for monolithic production codes that from
initial conception have not been instrumented to efficiently access certain linear alge-
braic objects. For instance, the gradient of the objective function can be calculated
using forward sensitivities or adjoint-based sensitivities which require access to the
Jacobian, transposes and the calculation of additional derivatives. Our mathematical
framework and software infrastructure completely avoid such low level details. By
applying Fréchet differentiation to a Lagrangian functional the optimality conditions
are automatically generated.

To more concretely explain these ideas, we formulate an optimization problem
constrained with simple dynamics and follow the typical solution strategy of taking
variations of a Lagrangian with respect to the state, adjoint and optimization vari-
ables. First, we formulate the minimization of a functional as:

F (u, p) =
∑
r

∫
Ωr

Fr(u, p, x) dµr (2.15)

12 K. Long, R. Kirby, and B. van Bloemen Waanders

subject to equality constraints written in weak form as

λTG(u, p) =
∑
r

∫
Ωr

Gr(u, p, λ, x) dµr = 0 ∀λ ∈ V̂ . (2.16)

The constraint densities Gr are assumed to be linear and homogeneous in λ, but can
be nonlinear in the state variable u and the design variable p. We form a Lagrangian
functional L = F −λTG, with Lagrangian densities Lr = Fr−Gr. It is well-known [8]
that the necessary condition for optimality is the simultaneous solution of the three
equations

∂L

∂u
=
∂L

∂p
=
∂L

∂λ
= 0. (2.17)

In a so-called “all-at-once”’ or simultaneous analysis and design (SAND) method [34]
we solve these equations simultaneously, typically by means of a Newton or quasi-
Newton method. In a reduced space or nested analysis and design (NAND) method
we solve successively the state and adjoint equations, respectively ∂L

∂λ = 0 and ∂L
∂u = 0,

while holding the design variables p fixed. The results are then used in calculation
of the reduced gradient ∂F

∂p for use in a gradient-based optimization algorithm such
as limited-memory BFGS. In either the SAND or NAND approach, the required cal-
culations still fit within our framework: we represent Lr symbolically, then carry out
the Fréchet derivatives necessary to form discrete equations. In a SAND calculation,
derivatives with respect to all variables are computed simultaneously, whereas in each
stage of a NAND calculation two of the variables are held fixed while differentiation
is done with respect to the third.

For example, the discrete adjoint equation in a NAND calculation is[∑
r

∑
α

∫
Ωr

∂Lr
∂(Dαv)

Dαψi dµr

]
+

+
∑
j

λj

∑
r

∑
α

∑
β

∫
Ωr

∂2Lr
∂(Dαv) ∂(Dβλ)

DαψiDβφj dµr

 = 0. (2.18)

The state and design equations are obtained similarly, by a permutation of the differ-
entiation variables. In a SAND approach, the discrete, linearized equality-constrained
KKT equations are  Lλu Lλλ Lλp

Luu Luλ Lup
Lpu Lpλ Lpp

 δu
δλ
δp

+

 Lu
Lλ
Lp

 = 0 (2.19)

where the elements of the matrix blocks above are computed through integrations
such as

Lλiuj
=
∑
r

∑
α

∑
β

∫
Ωr

[
∂2Lr

∂(Dαv) ∂(Dβu)
DαψiDβφj dµr

]
(2.20)

Note that because we form discrete problems using expressions that have already
been differentiated, our framework leads naturally to the “optimize then discretize”
formulation of a discrete optimization problem. The “discretize then optimize” for-
mulation has been more commonly used because it requires fewer modifications to a
forward solver, but is known [10] to have inferior convergence properties compared to
“optimize then discretize” on certain problems.

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 13

2.5.1. Example: PDE-constrained optimization problem. To demonstrate
this capability we consider a contrived optimization problem in which a least squares
objective function is constrained by simple dynamics. This problem is formulated as:

min
u,α

1
2

∫
Ω

(u− u∗)2
dΩ +

R

2

∫
Ω

α2 dΩ

subject to

∇2u+ 2π2u+ u2 = α

and Dirichlet boundary conditions u(∂Ω) = 0. The Lagrangian for this problem is,
after integration by parts,

L =
∫

Ω

[
1
2

(u− u∗)2 +
R

2
α2 +∇λ · ∇u− λ

(
2π2u+ u2

)
+ λα dΩ

]
+
∫
∂Ω

λu dΩ

The Sundance code for this problem is:
Expr mismatch = u-uStar;
Expr fit = Integral(interior, 0.5*mismatch*mismatch, quad);
Expr reg = Integral(interior, 0.5*R*alpha*alpha, quad);

Expr g = 2.0*pi*pi*u + u*u;

Expr constraint = Integral(interior, (grad*u)*(grad*lambda)
- lambda*g + lambda*alpha, quad);

Expr lagrangian = fit + reg + constraint;

Expr bc = EssentialBC(top+bottom+left+right, lambda*u, quad);

Functional L(mesh, lagrangian, bc, vecType);
Even such a simple problem is analytically intractable, so rather than choose a

target u∗ and then attempt to solve a nonlinear PDE, we again use the method of
manufactured solutions to produce the target u∗ that yields a specified solution u.
From the assumed solution u = sinπx sinπy we derive, successively,

α = sin2 πx sin2 πy (2.21)
λ = −R sin2 πx sin2 πy (2.22)

and finally

u∗ = 2π2R cos2 πy sin2 πx+ sinπy(sinπx+ 2π2R cos2 πx sinπy

− 2π2R sin2 πx sinπy + 2R sin3 πx sin2 πy). (2.23)

Figure 2.3 shows the state, adjoint and inversion solutions. As expected, the
adjoint demonstrates similar in nature but inverted dynamics as the forward equation.
The opposite dynamics of the adjoint is a result of different signs for the diffusive
operators from the integration by parts process. The solution of the optimization
problem is shown in the far right window pane.

14 K. Long, R. Kirby, and B. van Bloemen Waanders

Fig. 2.3. State, adjoint, and optimization solutions

3. Numerical Results.

3.1. A Simple Example. We first introduce a simple example to cover the
fundamental functionality of Sundance.

V · ∇r − k ·∆r = 0 ∈ Ω (3.1)
r = 0 on Γ1 (3.2)
r = x on Γ2 (3.3)
r = y on Γ3 (3.4)

where r represents concentration, k is the diffusivity, and V is the velocity field,
which in this case is set to potential flow:

∆u = 0 ∈ Ω (3.5)

u =
1
2

(x2 − 1.0) on Γ1 (3.6)

u = −1
2
y2 on Γ2 (3.7)

u =
1
2

(1.0− y2) on Γ3 (3.8)

In weak form the advection-diffusion is written as:

∫
Ω

∇s · ∇r +
∫

Ω

s · V · ∇r = 0 ∈ Ω (3.9)

where V = ∇u and s is the Lagrange polynomial test function. The dynamics is
defined in one line this is represented verbatim as:

Expr adEqn = Integral(Omega, (grad*s)*(grad*r), quad2)
+ Integral(Omega, s*V*(grad*r), quad4);

The internal mesher is used to create a finite element domain of 50 ∗ 50 simplicial
elements in 2D. Figure 3.1 shows the final concentration solution. The complete

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 15

Fig. 3.1. Advection Diffusion Solution

Sundance code is included in the Appendix which includes basic boiler plate code to
enable boudary conditions, meshing, test and trial function definitions, quadrature
rules, interface for linear solver, and post processing.

3.2. Single-processor timing results. While the run-time of simulations is
typically determined largely by the linear and nonlinear solvers, the extra overhead of
interpreting variational forms during matrix assembly could conceivably introduce a
new bottleneck into the computation. Here, we compare the performance of Sundance
to another high-level finite element method tool, DOLFIN [22], to assembling linear
systems for the Poisson and Stokes operators. All of our DOLFIN experiments use
code for element matrix computation generated offline by ffc rather than the just-
in-time compiler strategy available in PyDOLFIN, so the DOLFIN timings include
no overhead for the high-level representation of variational forms. Sundance and
DOLFIN runs assemble stiffness matrices into an Epetra matrix, so the runs are
normalized with respect to linear algebra backend. The timings in both cases include
the initialization of the sparse matrix and evaluation and insertion of all local element
matrices into an Epetra matrix. Additionally, the Sundance timings we report include
the overhead of interpreting the variational forms. In both libraries, times to load and
initialize a mesh are omitted. It is our goal to assess the total time for matrix assembly,
which will indicate whether Sundance’s run-time interpretation of forms presents a
problem, rather than report detailed profiling of the lower-level components. All runs
were done on a MacPro with dual quad-core 2.8GHz processors and 32GB of RAM.
Both Sundance and DOLFIN were compiled with versions of the GNU compilers using
options recommended by the developers.

In two dimensions, a unit square was divided into an N ×N square mesh, which
was then divided into right triangles to produce a three-lines mesh. In three dimen-
sions, meshes of a unit cube with the reported numbers of vertices and tetrahedra were
generated using cubit [9]. At this point, Sundance does not rely on an outside ele-
ment library and only provides Lagrange elements up to order three on triangles and
two on tetrahedra, while DOLFIN is capable of using higher order elements through
ffc’s interface to the FIAT project [19]. The Poisson equation had Dirichlet boundary
conditions on faces of constant x value and Neumann conditions on the remaining.
The Stokes simulations we performed had Dirchlet boundary conditions on velocity
over the entire boundary.

16 K. Long, R. Kirby, and B. van Bloemen Waanders

Fig. 3.2. Timing results for Sundance and Dolfin assembly comparisons using the Poisson
operator

Figure 3.2 and table 3.2 show times required to construct the Poisson global
stiffness matrices in each library. In all cases, the DOLFIN code actually takes some-
where between a factor of 1.3 and 6 longer than the Sundance code. Figure 3.3 and
table 3.2 indicate similar results for the Stokes equations, with the added issue that
the DOLFIN runs seemed to run out of memory on the finest meshes. It is inter-
esting that, even including symbolic overhead, Sundance outperforms the DOLFIN
programs. We believe this is because Sundance makes very careful use of level 3 BLAS
to process batches of cells during the assembly process. It may also have to do with
discrete math/bandwidth issues in how global degrees of freedom are ordered. We
plan to report on the implementation details of the Sundance assembly engine in a
later publication.

Poisson assembly timings, 3D
vertices tets p = 1 p = 2

Sundance Dolfin Sundance Dolfin
142 495 0.003626 0.0194 0.01544 0.03146
874 3960 0.02283 0.1536 0.129 0.2607

6091 31680 0.1761 1.246 1.04 2.149
45397 253440 1.449 10.11 8.617 17.44

3.3. Parallelism. A design requirement is that efficient parallel computation
should be transparent to the simulation developer. The novel feature of Sundance,
the differentiation-based intrusion, requires no communication and so should have
no impact on weak scalability. The table below shows assembly times for a model
convection-diffusion-reaction problem on up to 256 processors of ASC RedStorm at

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 17

Fig. 3.3. Timing results for Sundance and Dolfin assembly comparisons using the Stokes operator

Stokes assembly timings, 3D
verts tets p = 2; 1

Sundance Dolfin

142 495 0.07216 0.3362
874 3960 0.6677 2.793

6091 31680 5.521 22.57
45397 253440 45.97 crash

Sandia National Laboratories.

Processors 4 16 32 128 256
Assembly time (s) 54.5 54.7 54.3 54.4 54.4

As expected, we see weak scalability on a multiprocessor architecture.
The scalability of the solve is another issue, and depends critically on problem

formulation, boundary condition formulation, and preconditioner in addition to the
distributed matrix and vector implementation. An advantage of our approach is
that it provides the flexibility needed to simplify the development of algorithms for
scalable simulations. To provide low-level parallel services, we defer to a library such
as Trilinos [18].

3.4. Thermal-fluid coupling. As we have just seen, the run-time interpreta-
tion of variational forms does not seem to adversely impact Sundance’s performance.
Moreover, defining variational forms at run-time provides opportunities for code reuse.
Sundance variational forms may be defined without regard to the degree of polyno-
mial basis; efficiency is obtained without special-purpose code for each polynomial
degree. Besides this, the same functions defining variational forms may be reused in
a variety of ways, which may be useful in the context of nonlinear coupled problems.

18 K. Long, R. Kirby, and B. van Bloemen Waanders

Namely, we may use the object polymorphism of the Expr class to define variational
forms that can work on trial, test, or discrete functions uniformly.

We apply this concept to a nonlinear coupled system, the problem of Benard
convection [6]. In this problem, a Newtonian fluid is initially stationary, but heated
from the bottom. Because of thermal effects, the density of the fluid decreases with
increasing temperature. At a critical value of a certain parameter, the fluid starts
to overturn. Fluid flow transports heat, which in turn changes the distribution of
buoyant forces.

In nondimensional form, the steady state of this system is governed by a coupling
of the Navier-Stokes equations and heat transport. Let u = (ux, uy) denote the
velocity vector, p the fluid pressure, and c the temperature of the fluid. The parameter
Ra is called the Rayleigh number and measures the ratio of energy from buoyant forces
to viscous dissipation and heat condition. The parameter Pr is called the Prandtl
number and measures the ratio of viscosity to heat conduction. The model uses the
Boussinesq approximation, in which density differences are assumed to only alter the
momentum balance through buoyant forces. The model is

−∆u+ u · ∇u−∇p− Ra

Pr
ĉj = 0

∇ · u = 0

− 1
Pr

∆c+ u · ∇T = 0.

(3.10)

No-flow boundary conditions are assumed on the boundary of a box. The temperature
is set to 1 on the bottom and 0 on the top of the box, and no-flux boundary conditions
are imposed on the temperature on the sides.

This problem may be written in the variational form of finding u, p, c in the
appropriate spaces (including the Dirichlet boundary conditions) such that

A[u, v]−B[p, v] +B[w, u] + C[u, u, v] +D[c, v] + E[u, c, q] = 0, (3.11)

for all test functions v = (vx, vy), w, and q, where the bilinear forms are

A[u, v] =
∫

Ω

∇u : ∇v dx

B[p, v] =
∫

Ω

p∇ · v dx

C[w, u, v] =
∫

Ω

w · ∇u · v dx

D[c, v] =
Ra

Pr

∫
Ω

cvx dx

E[u, c, q] =
∫

Ω

∇c · ∇q + (u · ∇c) q dx

(3.12)

This standard variational form is suitable for inf-sup stable discretizations such as
Taylor-Hood. Convective stabilization such as streamline diffusion is also possible,
but omitted for clarity of presentation.

While the full nonlinear system expressed by (3.11) may be directly defined and
differentiated for a Newton-type method in Sundance, typically a more robust (though
more slowly converging) iteration is required to reach the ball of convergence for

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 19

Newton. One such possible strategy is a fixed point iteration. Start with initial
guesses u0, p0 and T 0. Then, define ui+1 and pi+1 by the solution of

A[ui+1, v]−B[pi+1, v] +B[w, ui+1] + C[ui, ui+1, v] +D[ci, v] = 0, (3.13)

for all test functions v and w, which is a linear Oseen-type equation with a forcing
term. Note that the previous iteration of temperature is used, and the convective
velocity is lagged so that this is a linear system. Then, ci+1 is defined as the solution
of

K[ui+1, ci+1, q] = 0, (3.14)

which is solving the temperature equation with a fixed velocity ui+1.
We implemented both Newton and fixed-point iterations for P2/P1 Taylor-Hood

elements in Sundance, using the same functions defining variational forms in each
case.

Using the run-time polymorphism of Expr, we wrote a function flowEquation
that groups together the Navier-Stokes terms and buoyant forcing term, shown in
Figure 3.4. Then, to form the Gauss-Seidel strategy, we formed two separate equa-
tions. The first calls flowEquation the actual UnknownFunction flow variables for
flow and the previous iterate stored in a DiscreteFunction for lagFlow and for the
temperature. The second equation does the analogous thing in tempEquation. This
allows us to form two linear problems and alternately solve them. After enough iter-
ations, we used these same functions to form the fully coupled system. If ux,uy,p,T
are the UnknownFunction objects, the fully coupled equations are obtained through
the code in Figure 3.4.

Benard convection creates many interesting numerical problems. We have already
alluded to the difficulty in finding an initial guess for a full Newton method. Moreover,
early in the iterations, the solutions change very little, which can deceive solvers into
thinking they have converged when they have not actually . A more robust solution
strategy (which could also be implemented in Sundance) would be solving a series of
time-dependent problems until a steady state has been reached. Besides difficulties
in the algebraic solvers, large Rayleigh numbers can lead to large fluid velocities,
which imply a high effective Peclet number and need for stabilized methods in the
temperature equation.

Figure 3.7 shows the temperature computed for Ra = 5 × 105 and Pr = 1 on a
128x128 mesh subdivided into right triangles. We performed several nonlinear Gauss-
Seidel iterations before starting a full Newton solve.

4. Conclusions and Future Work. The technology incorporated in Sundance
represents concrete mathematical and computational contributions to the finite ele-
ment community. We have shown how the diverse analysis calculations such as sensi-
tivity and optimization are actually instances of the same mathematical structure of
differentiating particular kinds of functionals defined over finite element spaces. This
mathematical insight drives a powerful, high-performance code; once abstractions for
these functionals and there high-level derivatives exist in code, they may be unified
with more standard low-level finite element tools to produce a very powerful general-
purpose code that enables basic simulation as well as anaysis calculations essential for
engineering practice. The performance numbers included here indicate that we have
provided a very efficient platform for doing these calculations, despite the seeming
disadvantage of run-time interpretation of variational forms.

20 K. Long, R. Kirby, and B. van Bloemen Waanders

Expr flowEquation(Expr flow , Expr lagFlow
Expr varFlow , Expr temp ,

Expr rayleigh, Expr inv_prandtl ,
QuadratureFamily quad)

{
CellFilter interior = new MaximalCellFilter();
/* Create differential operators */
Expr dx = new Derivative(0); Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

Expr ux = flow[0]; Expr uy = flow[1]; Expr u = List(ux , uy);
Expr lagU = List(lagFlow[0] , lagFlow[1]);
Expr vx = varFlow[0]; Expr vy = varFlow[1];
Expr p = flow[2]; Expr q = varFlow[2];
Expr temp0 = temp;
return Integral(interior,

(grad*vx)*(grad*ux) + (grad*vy)*(grad*uy)
+ vx*(lagU*grad)*ux + vy*(lagU*grad)*uy
- p*(dx*vx+dy*vy) - q*(dx*ux+dy*uy)
- temp0*rayleigh*inv_prandtl*vy,quad);

}

Fig. 3.4. Flow equations for convection. The Expr lagFlow argument can be equal to flow to
create nonlinear coupling, or as a DiscreteFunction to lag the convective velocity. Additionally, the
temp argument may be either an UnknownFunction or DiscreteFunction

Expr tempEquation(Expr temp , Expr varTemp , Expr flow ,
Expr inv_prandtl ,

QuadratureFamily quad)
{
CellFilter interior = new MaximalCellFilter();
Expr dx = new Derivative(0); Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

return Integral(interior ,
inv_prandtl * (grad*temp)*(grad*varTemp)

+ (flow[0]*(dx*temp)+flow[1]*(dy*temp))*varTemp ,
quad);

}

Fig. 3.5. Polymorphic implementation of temperature equation, where the flow variable may
be passed as a DiscreteFunction or UnknownFunction variable to enable full coupling or fixed point
strategies, respectively.

Expr fullEqn = flowEquation(List(ux , uy , p) ,
List(ux , uy , p) ,
List(vx , vy , q) ,
T , rayleigh, inv_prandtl , quad)

+ tempEquation(T , w , List(ux , uy , p) , inv_prandtl , quad);

Fig. 3.6. Function call to form fully coupled convection equations.

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 21

Fig. 3.7. Solution of Benard convection on a 128x128 mesh subdivided into triangles with
Ra = 5× 105 and Pr = 1.

In the future, we will develop future papers documenting how the assembly engine
achieves such good performance as well how the data flow for Sundance’s automatic
differentiation works. Besides this, we will further improve the symbolic engine to rec-
ognize composite differential operators (divergences, gradients, and curls) rather than
atomic partial derivatives. This will not only improve the top-level user experience,
but allow for additional internal reasoning about problem structure. Beyond this,
we are in the process of improving Sundance’s discretization support to include more
general finite element spaces such as Raviart-Thomas and Nédélec elements, an aspect
in which Sundance lags behind other codes such as DOLFIN and Deal.II. Finally, the
ability to generate new operators for embedded algorithms opens up possibilities to
simplify the implementation of physics-based preconditioners.

REFERENCES

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1989.
[2] Babak Bagheri and L. Ridgway Scott, About analysa, Tech. Report TR-2004-09, The Uni-

versity of Chicago Department of Computer Science, 2004.
[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II — a general-purpose object-oriented

finite element library, ACM Trans. Math. Softw., 33.
[4] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn, Representing

linear algebra algorithms in code: The FLAME application programming interfaces, ACM
Transactions on Mathematical Software, 31 (2005), pp. 27–59.

[5] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical
Phenomena: An Introduction to the Renormalization Group, Oxford Science Publications,
1992.

[6] Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers, Recent developments in
rayleigh-bnard convection, Annual Review of Fluid Mechanics, 32 (2000), pp. 709–778.

[7] P. M. Chaikin and T. C. Lubensky, Principles of Condensed-Matter Physics, Cambridge
University Press, 1995.

[8] E. W. Cheney, Analysis for Applied Mathematics, Springer, 2001.

22 K. Long, R. Kirby, and B. van Bloemen Waanders

[9] B. W. Clark et al., Cubit geometry and mesh generation toolkit, 2008.
http://cubit.sandia.gov/.

[10] S. Scott Collis and Matthias Heinkenschloss, Analysis of the streamline upwind/petrov
galerkin method applied to the solution of optimal control problems, Tech. Report TR02-01,
Rice University Computational and Applied Mathematics, 2002.

[11] Sebastian Egner and Markus Püschel, Automatic generation of fast discrete signal trans-
forms, IEEE Transactions on Signal Processing, 49 (2001), pp. 1992–2002.

[12] , Symmetry-based matrix factorization, Journal of Symbolic Computation, special issue
on ”Computer Algebra and Signal Processing”, 37 (2004), pp. 157–186.

[13] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Linear Solvers, Oxford
Science Publications, 2005.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[15] Andreas Griewank and Andrea Walther, Evaluating derivatives, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second ed., 2008. Principles and
techniques of algorithmic differentiation.

[16] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn,
FLAME: Formal Linear Algebra Methods Environment, ACM Transactions on Mathemat-
ical Software, 27 (2001), pp. 422–455.

[17] F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka, FreeFEM++ manual, 2005.
[18] M. Heroux, R. Bartlett, V. Howle, R. Heokstra, J. Hu, T. Kolda, R. Lehoucq,

K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, and A. Williams, An overview of trilinos, Tech. Report SAND2002-
2729, Sandia National Laboratories, 2003.

[19] R. C. Kirby, FIAT: A new paradigm for computing finite element basis functions, ACM Trans.
Math. Software, 30 (2004), pp. 502–516.

[20] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Transactions on Mathe-
matical Software, 32 (2006), pp. 417–444.

[21] , Efficient compilation of a class of variational forms, ACM Transactions on Mathemat-
ical Software, 33 (2007).

[22] Anders Logg et al., The FEniCS dolfin project, 2007. http://www.fenics.org/wiki/DOLFIN.
[23] Kevin Long, Chapter contribution in ”Large-Scale PDE-Constrained Optimization, L. Biegler,

O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders editors”, vol. 30 of Lecture
Notes in Computational Science and Engineering, Springer-Verlag, 2003.

[24] , Sundance, 2003. http://www.math.ttu.edu/ klong/Sundance/html/.
[25] J. Nitsche, ber ein variationsprinzip zur lsung von dirichlet-problemen bei verwendung von

teilrumen, die keinen randbedingungen unterworfen sind., Abhandlungen aus dem Math-
ematischen Seminar der Universitt Hamburg, 36 (1971), pp. 9–15.

[26] Christophe Prud’homme, A domain specific embedded language in c++ for automatic dif-
ferentiation, projection, integration and variational formulations, Scientific Programming,
14 (2006), pp. 81–110.

[27] Markus Püschel, Decomposing monomial representations of solvable groups, Journal of Sym-
bolic Computation, 34 (2002), pp. 561–596.

[28] Markus Püschel and José M. F. Moura, Algebraic signal processing theory: Cooley-Tukey
type algorithms for DCTs and DSTs, IEEE Transactions on Signal Processing, (2008). to
appear.

[29] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo, SPIRAL: Code genera-
tion for DSP transforms, Proceedings of the IEEE, 93 (2005). special issue on ”Program
Generation, Optimization, and Adaptation”.

[30] N. Rasband, Dynamics, Wiley, 1989.
[31] P. J. Roache, Verification and Validation in Computational Science and Engineering, Her-

mosa, Albuquerque, NM, 1998.
[32] , Code Verification by the Method of Manufactured Solutions, Transactions of the ASME,

124 (2002), pp. 4–10.
[33] H. Sagan, An Introduction to the Calculus of Variations, Dover, 1993.
[34] B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs, and A. Salinger, Large scale

non-linear programming for PDE constrained optimization, Tech. Report SAND2002-3198,
Sandia National Laboratories, 2002.

5. Appendix.

Unified Embedded Parallel FE Computations Via Software-Based Fréchet Differentiation 23

// Sundance AD.cpp for Advection-Diffusion with Potential flow

#include ‘‘Sundance.hpp’’

CELL_PREDICATE(LeftPointTest, {return fabs(x[0]) < 1.0e-10;})

CELL_PREDICATE(BottomPointTest, {return fabs(x[1]) < 1.0e-10;})

CELL_PREDICATE(RightPointTest, {return fabs(x[0]-1.0) < 1.0e-10;})

CELL_PREDICATE(TopPointTest, {return fabs(x[1]-1.0) < 1.0e-10;})

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

int np = MPIComm::world().getNProc();

/* linear algebra using Epetra */

VectorType<double> vecType = new EpetraVectorType();

/* Create a mesh */

int n = 50;

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new PartitionedRectangleMesher(0.0, 1.0, n, np,0.0, 1.0, n, meshType);

Mesh mesh = mesher.getMesh();

/* Create a cell filter to identify maximal cells in the interior (Omega) of the domain */

CellFilter Omega = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

CellFilter left = edges.subset(new LeftPointTest());

CellFilter right = edges.subset(new RightPointTest());

CellFilter top = edges.subset(new TopPointTest());

CellFilter bottom = edges.subset(new BottomPointTest());

/* Create unknown & test functions, discretized with first-order Lagrange interpolants */

int order = 2;

Expr u = new UnknownFunction(new Lagrange(order), "u");

Expr v = new TestFunction(new Lagrange(order), "v");

/* Create differential operator and coordinate functions */

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

/* Quadrature rule for doing the integrations */

QuadratureFamily quad2 = new GaussianQuadrature(2);

QuadratureFamily quad4 = new GaussianQuadrature(4);

/* Define the weak form for the potential flow equation */

Expr flowEqn = Integral(Omega, (grad*v)*(grad*u), quad2);

24 K. Long, R. Kirby, and B. van Bloemen Waanders

/* Define the Dirichlet BC */

Expr flowBC = EssentialBC(bottom, v*(u-0.5*x*x), quad4)

+ EssentialBC(top, v*(u - 0.5*(x*x - 1.0)), quad4)

+ EssentialBC(left, v*(u + 0.5*y*y), quad4)

+ EssentialBC(right, v*(u - 0.5*(1.0-y*y)), quad4);

/* Set up the linear problem! */

LinearProblem flowProb(mesh, flowEqn, flowBC, v, u, vecType);

ParameterXMLFileReader reader(searchForFile("bicgstab.xml"));

ParameterList solverParams = reader.getParameters();

cerr << "params = " << solverParams << endl;

LinearSolver<double> solver = LinearSolverBuilder::createSolver(solverParams);

/* Solve the problem */

Expr u0 = flowProb.solve(solver);

/* Set up and solve the advection-diffusion equation for r */

Expr r = new UnknownFunction(new Lagrange(order), "u");

Expr s = new TestFunction(new Lagrange(order), "v");

Expr V = grad*u0;

Expr adEqn = Integral(Omega, (grad*s)*(grad*r), quad2)

+ Integral(Omega, s*V*(grad*r), quad4);

Expr adBC = EssentialBC(bottom, s*r, quad4)

+ EssentialBC(top, s*(r-x), quad4)

+ EssentialBC(left, s*r, quad4)

+ EssentialBC(right, s*(r-y), quad4);

LinearProblem adProb(mesh, adEqn, adBC, s, r, vecType);

Expr r0 = adProb.solve(solver);

FieldWriter w = new VTKWriter("AD-2D");

w.addMesh(mesh);

w.addField("potential", new ExprFieldWrapper(u0[0]));

w.addField("potential2", new ExprFieldWrapper(u0[1]));

w.addField("concentration", new ExprFieldWrapper(r0[0]));

w.write();

}

catch(exception& e)

Sundance::handleException(e);

Sundance::finalize();

}

