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Abstract

This research effort was motivated by ongoing developmtensecure water distribution net-
works which are extremely vulnerable to contamination &verAlthough research efforts are
being devoted to early warning systems, the mitigation@seaeeds more attention. Regardless
of the efficiency of a detection system, controlling, nelignag or flushing have to be eventually
addressed to restore water quality after a contaminatientevlhese processes however suffer
from uncertainties associated with unknown contaminaatadteristics, changing demand pat-
terns, questionable pipe characteristics, modeling aqpitions, and unpredictable behavior of
biofilms. It is the uncertainty of biofilms that motivatessiesearch with a specific goal of devel-
oping a simulation foundation and experimental procedfroes which field deploy-able numeri-
cal tools can eventually be developed.

Biofilms are a combination of bacteria and polymeric substadhered to an external surface
and in a continuous state of flux. They are ubiquitous in ags@mvironments, such as water dis-
tribution networks, but also important to many other aggilans ranging from the food industry to
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human physiology. Biofilms are essentially collections atteria intertwined in a polymeric ma-
trix that exhibit complicated behavior at various spatiadl &emporal scales. The numerical goals
consisted of developing flexible software capabilities iffecent spatial scales but also develop
algorithms that could help calibrate our implementatioits wxperimental observations.

This research project produced fundamental simulatioaluéipes to help characterize biofilms
for water distribution systems. Algorithms were develoggdnultiple spatial scales. At the
molecule-scale, Density Functional Theory was investigab characterize density variations
of bacteria attached to external surfaces. The intent waelip calibrate convection-diffusion-
migration dynamics in which the migration operator repr¢s@ balance of electrostatic and van-
derWaal forces. Effective diffusion could then be up-sddte biomass growth models at larger
spatial scale. Significant effort was devoted on biomassiranodels including verification pro-
cedures using experimental observations. A level set agproombined with diffusion-reaction
dynamics was developed to predict the growth of interfacga/éen biofilm and bulk fluid. To
verify model parameters with confocal microscope images developed adjoint capabilities to
invert for initial conditions. Significant algorithmic clenges had to be addressed, including han-
dling of nonlinear inversion, addressing renormalizatbirevel set interfaces, and finite element
stabilization of convective processes.

New laboratory protocols and procedures were designed attampt to grow biofilms in cap-
illary tubing as part of a continuous confocal microscopeaiwring setup. Significant variation in
the behavior of the bacteria and equipment precluded densiseplication of local biofilm char-
acteristics within acceptable statistics. Instead, @abharacteristics such as average roughness
coefficients, biomass, and thickness, were quantified amgbaced to numerical results.

At the water distribution network scale, Navier Stokes dedpo convection-diffusion-reaction
equations were applied to predict the behavior of contantiaad neutralizing chemical transport
in simple and complicated geometries. Adjoint based erstimation methods were developed
to help refine meshes for computational efficiency and acguradditional experimental studies
were conducted at this spatial scale using an annular reacto

Given the range of uncertainties and the modeling compésxivhich force approximations,
stochastic inversion methods were developed. Bayesiamtiveas used to calculate posterior
distribution of reaction coefficients given observatioAsViarkov Chain Monte Carlo algorithms
solved this stochastic problem. A newly funded LDRD projeittcontinue this part of the project
and investigate efficient algorithms to apply Bayesian theéo large multi-scale parameter infer-
ence.

Even though this project fell short of producing a final nuitartool ready for field deploy-
ment, we helped develop software tools that enable effidemélopment and rapid deployment.
Furthermore, uncertainty quantification methods were @amanted to help address experimental
variabilities and errors associated with numerical appnaxions.
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Chapter 1

Introduction

Significant research has recently been devoted to devetbmdéogies for protection of water
distribution networks against contamination events, Wiuan be devastating as past events have
demonstrated. Most notably in Milwaukee with an outbreakmyptosporidiosis, an estimated
403,000 persons became ill, of whom 4,400 were hospitalizéee number of deaths were es-
timated at about 100. The cost associated with decontaimmaquipment upgrades and legal
suites were on the order of $100M. Although the Milwaukeedeant was one of the worst in-
cidents in recent history, smaller events pose similarsrisitd are equally difficult to mitigate.
Considering the relatively frequent occurrence of conteation events, it is surprising how little
effort is being devoted to the development of numericalgdol guidance in mitigation proce-
dures. Currently public utility companies have an ovenmtief task of controlling further spread,
neutralizing with Chlorine, and manually sampling for wageality. Without numerical tool sup-
port, such as accurate simulators, optimization algosthuncertainty quantification methods, and
other analysis capabilities, managing such a process lEsctime-consuming, expensive and is
error-prone. The goal of this research was to develop dlgos, methods, and software to serve as
a foundation from which real time, multi-scale, multi-plggs inversion, control, uncertainty quan-
tification capabilities can eventually be built in suppdridecontamination of water distribution
networks.

Nearly unlimited access points render water distributigsteans vulnerable to intentional and
accidental contamination events. Although physical sgcprotects large components, such as
storage tanks and pumping stations, common householdsrard/firants remain accessible. In
recognition of this vulnerability, a range of technologies/e been developed over the last five
years to support the possibility of detecting contaminémisugh the use of general water quality
sensors as part of an early warning system. Only a sparsé sensors can be installed however
throughout a water distribution system because of limitedillation possibilities, expanse of the
network, and high cost associated with installation andnteaance. This limitation therefore
requires careful sensor placement for optimal detectiofopeance which has been the subject of
several research efforts [21, 20, 26]. Current sensingitdolgy is limited to detecting fluctuations
in standard water characteristics (Ph, Chlorine, Oxyglnsphates, etc) and in combination with
numerical algorithms, anomalous intrusions can be idedt{#6, 45]. Furthermore optimization
algorithms have been developed comparing sparse senseurageents to numerical predictions
to determine the location and magnitude of the contaminaource [15, 42, 47]. This approach
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has demonstrated accurate inversion results with rea-penformance and robustness even when
subjected to sparse and error induced measurements.

Unfortunately, installing sensors in every water disttibo network will not occur anytime
soon and even if real-time early warning system existed,pteta prevention is still not possi-
ble. Consequently, the mitigation of contamination isicaily important and therefore additional
research and development is necessary to support the titigihase. The primary goals of a
mitigation process consist of minimizing the spread andigng that all contaminants have been
removed. The first goal can be achieved by locating and remgdtie source of the contamination
and then manipulating the velocity field of a network to cohthe spread, although instanta-
neously halting the spread by simply closing valves is ne&distic and practical option. Besides
the time-consuming logistics of manipulating any mechalrpart of the network, valves may not
exist in certain locations or they may not have been recdotlgver) exercised. Controlling the
spread will therefore involve complicated manipulatiofshe velocity field to achieve a desired
affect. A combination of optimization algorithms and nuroal simulation tools, validated with
field measurements need to be considered to efficiently éx@cuntrol procedures. The second
goal of ensuring that all contaminant have been removed eacbomplished by again manip-
ulating the velocity field to divert the contaminants to aprapriate disposal site. In addition,
Chlorine or other appropriate agents can be injected tomalralize the contaminants. Accord-
ingly, numerical algorithms are essential in support ole@olip process which will involve a range
of complicated choices to manipulate the velocity field anddminister the neutralizing agents.

Another major challenge is that numerical tools will be piad by uncertainties from unknown
contaminant characteristics, changing demand patteuestignable pipe characteristics, and un-
predictable behavior of biofilms. Over time, many of theseautainties may be resolved though a
combination of repeated application of numerical tooldhwilidation of manual testing of water
quality however the usefulness of any numerical tool willdetermined by its ability to verify
results or quantify the uncertainties with predictionsofiéms will likely impose significant and
unpredictable behavior. Biofilms are essentially colmusi of bacteria intertwined in a polymeric
matrix that can potentially act as repositories for contants with the unknown behavior one of
which could be the release of contaminants at a later timsugk, contaminants can find refuge in
a biofilm, protected from any flushing or neutralization s, and then later to be released when
portions of biofilms are sheared off. To further complicatatters, the dynamics of biofilms are
extremely variable and depend on many factors, ranging fipa material, bulk fluid flow char-
acteristics, chemistry of species, corrosion, multipletbaal species, and availability of nutrients.
Central to this research therefore was to help diagnosetbef biofilms during a contamination
event using numerical modeling tools validated througlotatory experiments.

The scope of characterizing biofilms however is complicated depends on multi-physics
coupled with chemical processes at several orders of $patlaiemporal scales. At the smallest-
scales, the deposition of bacteria requires molecularyhteopredict the variation in certain pa-
rameters that at higher spatial scales are most commontp seinstant. These parameters then
need to be upscaled to be incorporated into transport dyesaahhigher spatial scales. Once bacte-
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ria are deposited, multiple processes are responsibledorass growth including cell replication,
excretion of extracellular polymer substance, and vagiabitrient consumption.

Although multiple approaches could be considered inclgdiscrete methods such as cellular
automata and agent based algorithms, continuum approacbeisie a mechanism from which
phenomena can be explained from first principles in additoproviding a foundation that can
be used with large scale optimization and embedded unegrtquantification algorithms. The
topology of the biomass which depends strongly on react@fficients, will be indicative of how
solutes are transported into and retained by biofilms. Kiélthe network spatial scale, biofilms
can be represented as reactive boundary conditions, butafholrtransport need to be resolved
for complex flow geometries. Even though the majority of floecars in straight pipes, it the
flow junctions, storage tanks, and processing facilitieengttomplicated flow dominate. Biofilm
deposition and interaction with the bulk fluid will likely lBfficult to predict and require accurate
resolution of flow and transport phenomena. This projectibashed development of simulation
at all the above mentioned spatial scales.

A critical component of simulation development is the needdlidate algorithms and im-
plementation. Unfortunately, very little work has been @octed in the area of biofilms. Most
of the calibration work has relied on general and qualieatbservations. This clearly is an ex-
tremely difficult problem, requiring sophisticated nuncatipredictions, large scale optimization
methods, quantification of error and variability at mukiglpatial and temporal scales and finally,
repeatable and robust experimental capabilities to grama@asure certain features of biofilms.
In this project, we have developed new experimental proe=dio grow and visualize/measure
certain features of biofilm with the goal to help calibraterasical simulations. In addition, we
have developed large scale optimization methods to efflgieaconcile the differences between
observations and predictions.

The remainder of the report is organized as follows. We frss@nt some background informa-
tion on biofilms; how they are formed, what physics and chémis involved, and what numerical
tools have been developed to help characterize them. Asfide background section we discuss
some preliminary work in which we investigated density fiimeal analysis to determine the vari-
ation in density of biofilm molecules. Our goal was to devedfiective diffusion coefficients at
various spatial scales that could then be upscaled to ancaumti fluid flow model. Unfortunately,
that work was never completed as a result of a loss of persandeexpertise. Next is a discussion
of a level set methodology to predict the transport of therfiate between biofilm mass and the
bulk fluid. In this part, coupled equations for diffusioraction and convection combined with a
level set approach was used to predict biofilm growth and imquéar demonstrate the mushroom-
ing behavior that is typical of biofilms. To validate the reac coefficients and initial conditions
of the numerical model, large inversion was developed terdahe appropriate initial conditions
of bacterial deposition. The next chapter describes exygrial procedures to grow biofilms in a
capillary tube under a confocal microscope. One of the mairtitisions from the experimental
work was that biofilms exhibit tremendous variability. Acdmgly, a stochastic inference capabil-
ity to address the many uncertainties from experimentalramderical models is discussed next.
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Baseyian theory is leveraged to calculate a posteriorbigion from prior information and sparse

observations. Macro-scale modeling using the Sierra-girraulator is presented. The subject of
this portion of the research is the resolution of flow andgpamt in the context of representing

biofilms as a reaction term on the boundaries. Adaptivity @pitmization are combined through

adjoints to demonstrate computational efficiency gainsomgarison to calculating sensitivities

via finite differences and in comparison to using uniformmefinent low and transport of solute is
resolved. An experimental chapter follows which ideallpsld have driven the validation of the

macro-scale modeling. This was unfortunately beyond tbpeof the project. Finally, our desire

to develop many different simulation capabilities and mpavate complex embedded algorithms
has motivated the use of high level abstraction softwarghiBichapter we discuss some of our
development and use of Trilinos and the Sundance softwal® to

1.1 Biofilm Characterization Background

Biofilms are structured communities of microorganisms psaéated within a self-developed ex-
tracelluar polymeric substance (EPS) and are attachedfiaces. These biofilms are ubiquous
in nearly any aquous system and therefore affect a wide rahggplications, including food
processing, cooling systems, marine vessels, human pbggicewage treatment, petroleum re-
covery, and water distribution systems. Estimating lasgtpredicting mass, minimizing growth,
controling interactions with chemicals and biological @ige are all examples of critically im-
portant information required to determine the impact orfggarance, health, efficiency of any
affected application. A complete characterization of nadi however entails an understanding of
multi-physics, chemistry, and biology for multi-speciexcteria at different spatial and temporal
scales. As such, a comprehensive review of biofilms inclyidihthe associated technical aspects
are clearly beond the scope of this report. The purpose ®ttiapter is to provide the reader with
some background on biofilms. Additional background infaiorais provided in each subsequent
chapter but more specific to algorithms, computationalg@eand experimental procedures.

Biofilms consist of an accumulation of bacteria adhered taurdase encapsulated by ex-
opolysaccharides (a.k.a. EPS). Multiple phases make upf¢hef a biofilm: 1) adhesion to a
surface, 2) growth through duplication, 3) consumption ofrients, 4) excretion of a polysac-
chride that acts as a cement 5) additional collection ofdy&t6) death of bacteria from lack of
nutrients, and 7) seperation of biofilms as shear forcesabthk fluid exceed the integrity of the
biomass. Figure 1.1 shows a simple cartoon depiction o¢wdifft processes in biofilms. In each
phase, complex phenomena occur at possibly multiple $atthtemporal scales. For examples,
adhesion of bacteria to a surface is dominated by a balaredeaifostatic and van der Waals forces
whereas growth of biofilms depend on flow, transport and cbaimneactions. Within the growth
process diffusive behavior is instantaneous compared toch temporal range for convection.

Most of the biofilm physical properties come from the EPS amatobably the most important
feature to characterize. There are at least three condeptukels for the structure of biofilms: het-
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Figure 1.1. Schematic biofilm processes

erogeneous mosaics, structures penetrated by water dbaand dense confluent biofilms [56].
The exopolysaccharides (EPS) synthesized by microbilalaly greatly and have different chem-
ical and physical properties. It has been shown that difteregions can be hydrophobic and others
hydrophyllic, resulting in drastic different transportiaior. In addition EPS contributes to the
structural integrity of the biofilm enabling a capabilitywosthstand considerable shear forces. It
is possible that either highly viscous solutions or locadigels are formed allowing plastic like
deformation properties under shear stresses. The preséuldéerent chemicals can determine
the quality of the bacterial adhesion to external surfaéasthermore, these chemicals also dictate
how biofilm interact with different molecules. Despite thdarge range of varaible properties,
different numerical simulation approaches have been atieh{25]

The EPS contribute to the properties of biofilms because ¢haybind enormous amounts of
water. For example, hyaluronic acid can bind up to 1000 tiitseseight in water. On the other
hand, some can exclude water, such as cellulose. The EP8aaisthute to mechanical stability
by allowing the biofilm to withstand shear forces. Activitythin a biofilm increases with the
thickness up to a determined level after which the nutrieatsot diffuse far enough citeLaMa95.

There are three distinct phases to the formation of biofitmasisting of attachment, coloniza-
tion, and mature growth. Each phase involves complex phlaitd chemical phenomena making
the numerical prediction of biofilm dynamics a challengiagkt
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1.1.1 Molecular Theory

Our research started with an investigation of moleculaothén an attempt to understand the
behavior of colloid stability, bacteria adhesion onto ex#t surfaces and the density variation
at equilibrium for a biofilm. However due to loss of key pemseh this work was discontinued
and we have no substantial results to report. However, thegition phase is important and we
have developed large scale optimization algorithms tortrfee the initial deposition condition.
Therefore we include a brief discussion of key phenomena.

A variety of technologies can be applied to help understhedieposition physics of bacteria,
including Derjaguin, Landau, Verwey and Overbeek (DVLQjaxthms, convection-diffusion-
migration (CDM) equations, Possion-Boltzmann and DenBiinctional Theory (DFT). These
mechanisms play a key role in the ultimate characterizatidmofilms from the deposition onto an
external surface to the material properties that contebtiowth patterns. DVLO is used to predict
the stability of colloids and can therefore help explain vlgteria do not adhere to each other and
why they adhere to certain external surfaces. CDM incotpsreonvective and diffusive properties
to predict the deposition onto surfaces. The migration tenoapsulate DVLO like properties.
Finally, DFT predicts the variation of density of fluids tteae adhered to external surfaces. In the
biofilm case it can predict the variation of material projgertalthough these continuously change
as the biofilm thickens and DFT is only appropriate at equiiin. Although our initial phase
of our research was focussed on the development of molesuaration capabilities and some
numerical capabilities were developed, our efforts wessgieed for the purposes of establishing a
basic understanding for the development of numerical dipeb at the next larger spatial scales.
Accordingly this part of the background section is reldgeief and can be skipped without loss
of understanding for the remainder of the report.

Derjaguin, Landau, Verwey and Overbeek (DVLO) theory déss the stabiliy of a particle
in solution being dependent on total potential energy e@sdlnconsisting of a balance between
van der Waal attractive and electrical double layer repal&rces [61]. DVLO is the foundation
to predict colloid dispersion characteristics and appbegsarticles at a length scale froME — 9
to 10F — 6 meters. Industries range from food processing to eleatroranufacturing where
mixing of particle is a critical phenomena. A balance ofaative forces, known as van der Waals
forces, and repulsive forces, such as those encounterddatnastatics, determine to adhesion
between particles and possibly surfaces. Das et al. [2€¢udsdouble layer forces between
spherical particles and planar substrates. The convedtffusion-migration equation provides a
mechansim to combine transport and deposition/adhesisurfaces [54].

Density Functional Theory (DFT) provides an approach tostiuey of materials that is inter-
mediate between macroscopic thermodynamic approachdsuychicroscopic simulation-based
methods. They incorporate molecular-level detail but argke enough that calculation time is
modest and physical insight is retained even in complexasdns. Density functional theory
(DFT) can be applied both to equilibrium problems (phaseistence lines, interfacial structure
and free energy, effects of walls and external fields) and/t@aohic problems (rates of nucleation
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and growth of new phases).

DFT concepts are based on statistical mechanics ([8], BW)fundamental variational princi-
ples which states that at equilibrium the functional deeaof the free energy with respect to the
density is zero. This gives a nonlinear integrodifferdmgpation that can be solved for the density.
This material is from Evans . DFT is based on the idea thatrémdnergy of the inhomogenous
fluid can be expressed as a functionap@f) [34]. From the knowledge of this functional all the
relevant thermodynamic properties can be calculated sdaeghsions can be computed for the in-
terface problems, solvation forces can be determined fromfireed fluids, and phase transitions
can be investigated for various types of inhomogeneity. @kect free energy is equivalent to
solving the statistical mechanics for the particular fliddET however offers functional integration
and differentiation to calculate formally exact resultsdorrelation functions and thermodynamic
functions. Statistical methods that use partition funtiiare less elegant and less efficient.

One key result of DFT is that the Helmholtz free enefgy) is a unique functional for a given
interatomic or intermolecular potential energy. That pdithe free energy not associated directly
with the external/(r) producing inhomogeneity, has the same dependenggrgrfor all V' (r).
Thus theF (r) should be valid for a large range of problems.
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Chapter 2

Numerical Modeling of Biofilms Using Level
Set Methods

2.1 Introduction

Simulation to predict biofilm dynamics can be classified imto types of categories. The first con-
sist of discrete methods such as agent-based and celldtanata approaches. These approaches
offer considerable flexibility and adaptability to prodwceange of topological characteristics that
at least qualitatively resemble laboratory and field obestgons. However, heuristics and mathe-
matically non-rigorous approaches often are used, whialodéend themselves to a fundamental
understanding of the underlying processes. In additiorfinafl goal is to calibrate models with
respect to material properties and initial condition, vilboth demand large inversion spaces, and
therefore require efficient embedded optimization alfpong. These approaches depend on the
equations of the forward simulation to be differentiabléjat is not the case for discrete meth-
ods. The second category is based on continuum mechaniahemdore relies on differential
equations and other differentiable mathematical prifsipa achieve numerical representations.
Although the ability for this method to match all detailedsebvations from the laboratory and the
field is less flexible than discrete methods, a continuumagdr allows for the use of large scale
optimization, error estimation, and potentially embeddedertainty quantification methods.

Continuum modeling have been applied to estimate bactdhasaon, EPS characterization,
transport of solutes into biofilms, representation of bmftransport in porous media flow, and
growth of biomass. In this chapter we focus on developinglumental capabilities to support the
prediction of biomass growth which is considered one of gdmechanisms indicative of mate-
rial propertied within a biofilm. Although the grow processpgnds on many things, it possible as
a first cut, to encapsulate the general behavior with a servigpdifferential equations. In partic-
ular, a range of chemical-physico processes can be caftyrednvective, diffusive and reactive
operators. The simulation of biomass therefore can bededaas an interface propagation or front
tracking exercise between biomass and bulk fluid. Fronkingcand simulation of interfaces have
been the subject of research to address a number of impertgimteering problems, ranging from
viscous fingering to foam injection. Techniques such as &agjan methods that use marker par-
ticles and Riemann problem solutions, have been appliechtor@er of applications. The use of
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level sets is probably one of the more popular and flexible@gghes [55] and has been applied to
combustion, medical imaging, fluid flow, and various biotajiproblem, including biofilms [30],
[28], [4], [5], [41].

Dockery and Klapper [29] consider the modeling of biofilm agiscous fluid. Darcy’s law
is used with a growth function which essentially represens®urce term. This work was moti-
vated by the recognition that biofilms have complicatedriméstructures which require accurate
resolution for forward predictions. Understanding theseetogeneities is important for transport
predictions within the biofilm. The model comprises of Dasdgr pressure, steady state diffusion
equation for substrate transport and an evolution equé&tiothe interface. An analytic solution
is presented for a 1D linear form of the equation. A level sgtlementation is presented for a
2D nonlinear equation. Alpkvist et al. [5] present a level &gproach to predict biofilm inter-
face growth. Conservation of mass is expressed in terms ohanuity equation and the flow
field is assumed to be in the direction of the nutrient gradi&happer [41] discusses the use of
level set methods and finite difference discretization m@s$hto predict the movement of a single
species biomass interface. Alpkvist and Klapper [4] preaanultidimensional model with multi-
ple species and multiple substrates. Conservation of ntasgiens are used to describe biomass
growth and substrate concentration. The time scale of thstsate transport is argued to be steady
state relative to the biomass dynamics. A volume fractigrdftierent species is incorporated in
the biomass flux term.

Substrate exchange from bulk fluid to biomass depends onetyaf chemical-physico phe-
nomena including convection and diffusion. One of the piadig dominant forces is convection
and as pointed out by Picioreanu et al. [53], convection geabin the valley but dominant at
the peaks. These topological variations exhibited by nmawhs shapes is referred to the general
roughness metric. In this chapter, we present a level sdtaddb predict the movement of the
interface between biomass and bulk fluid. Although our teqples are similar to previous work,
we differentiate our work in two ways. Instead of structufimite differences discretization, we
use the more flexible and theoretically more robust finitenelet unstructured discretization with
Streamline Upwind Petrov Galerkin (SUPG) stabilizatiamatldition, in the next chapter we de-
rive the inverse problem in which the interface becomes aergion parameter and can therefore
be used to calibrate the numerical model with experimeriiséovations.

2.1.1 Formulation

Biofilm growth is represented as an interface between bisraad bulk fluid in which the biomass
starts from a collection of bacteria adhered to an extemnddse. The growth process is driven
by the consumption of nutrients by bacteria that then dafi@nd produce polymeric material.
These dynamics are formulated as a set of PDEs consistingfudidn-reaction and convection.
The level set function represents the biomass density asréftre the interface is equal to the
contour of the level set function is equal to zero. Figureshow the the computational domain.
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bulk fluid

v Jovel set interface. L

biomass

rDZ
Figure 2.1. Computational domain

We assume that we have a problem donfaithat can be decomposed iy, a subdomain
containing only the bulk fluid, an€l,, a subdomain containing only the biofilm. Within this
system, we assume there is a single nutrient of concentratwailable for consumption by the
biofilm. The distribution of the nutrient withif? is represented by a diffusion-reaction model:

%—DAC =r e Q)
¢ =cp1 €Il'p,
¢ =cps €l'p,
c =¢ €Qx(0,7)

where the reaction termrepresents Monod kinetics and can be defined as

r= &mccﬁkg +c (2.1)

o

In our formulation, maximum biomass growth rate, yield of biomass on oxygef,, and
biomassn, are lumped together into the maximum oxygen consumpti@wkiatD is the diffusion
coefficient of the nutrient in the bulk fluid; is the maximum rate at which the nutrients are
consumed, anél, is the nutrient half-saturation constant. We defirees

- . Pb forx € Qb(t)
plx.t) = { 0 forx e Qg(t)

wherep, is the density of the biofilm. Assuming that all consumed ieuts are transformed
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into biomass, conservation of mass dictates that withirdtdmains?,
24V (pu) = flc,p) €Q

P = pPp1 cIl'p,
P = pPp2 € I'p,
P = po € Qx(0,7)

whereu is the velocity of the biofilm front and(c, p) is the reaction term chosen for the nutrient
consumption, in this case the Monod kinetics term. Furtloeemif we assume that the biofilm
grows in the direction of increasing nutrient concentmatiben we can conclude that the velocity
of the biofilm front should be

D
u=—Vec.
Pb
to maintain the conservation of mass, simplifying 2.2 to
dp D
— + —Vp -Ve=0.
ot " Pb pove

For additional details of this derivation, see [6].

2.1.2 Discretization and Implementation Details
Level Set Method

Many numerical techniques have been suggested for repirggéine motion of a dynamic inter-
face. In general, these methods can be distinguished bylibe/ing characteristics.

e The definition of the interface and its deformatidine interface is either defined explicitly,
also known as front-tracking, or implicitly, sometimesledlfront-capturing. An explicit
method, through the use of marker particles or grid pointsntains the interface as a sharp
discontinuity andexplicitly tracks its motion. An implicitly scheme, which does not eézpl
itly locate the interface, solves an additional set of fiedldaions describing the motion of
the interface.

e The coordinate framework and discretization of the domdaenerally, a choice is made
between a Lagrangian (material) framework and an Eulesgatial) framework. In the
Lagrangian framework, motion is observed by a set of padiembedded in the material
motion. Most often, the topology of the dynamic interfacensbedded in the discretization
of the domain. As the interface deforms, the material pamés’e with that deformation,
maintaining a sharp interface. However, from a finite elenpanspective, large deforma-
tions may result in degenerate elements necessitatingcestization of the domain. In an
Eulerian framework, motion is observed from a set of fixedigpaoints, eliminating the
need for remeshing. The resulting challenge is to resolgadimamic interface which is
generally not embedded in the domain discretization.
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In this work, we capture the dynamic interface between tlodéilbi and the bulk fluid using
a level set method, a front-capturing method in an Eulemaméwork. The level set variable,
¢(x,t) is defined for this system as

>0 x € Q)
o(x,t) = { =0 xeTyu)
<0 x € Q)

Realizing that thenaterial timederivative of¢(x(t), t) is zero yields

1) gix(e) 1) (1) = 0 22)

Note that the Heaviside functioH of ¢ can be related to the biofilm density a&,t) =
prH(¢(x, 1)).

Finally, we summarize the equations for the forward modglin

de _ kipc 4
5 — DAc = Tl € Q

¥ +Lvp.ve =0 €N
¢ =cpl €TIp
¢ =cp2 c FD2
c =q e Qx(0,T)

The convective nature of the level set equation and the udmitéd element discretizations
require stabilization. We implement the Streamline Upwitedrov Galerkin (SUPG) [22] by ex-
pressing the solution to the convective equation of the Imodiet of equations defined by (2.3)
in weak form. To do this, we define the function spatess {v € H'(Q) : v\pin = cipt and

W={ve HY(O): v\pin = 0}. The weak solution is then defined by: find V'

Ble.w) = (pw) + <§w Ve, w) (2.3)

to derive the SUPG stabilized version of (2.3):

BT(Ch,’LUh) == 0, wp, € Wh. (24)

Here the stabilized bilinear form is defined by

D D
B, (c,w) = B(c,w) + (p + p—Vp - Ve, Tp—Vc -Vw) (2.5)
b b
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2.2 Numerical Results

The level-set approach is implemented using high leverabisbn methods and additional details
are provided in Chapter 8. Our primary goal was to replicaegpper’s results [41] so that we
could then formulate an inversion problem and evaluateehsisvity of the reaction and diffusion
coefficients. Figure 2.2 shows an example simulation wiittiens coefficientg1 and£2 set at
1000 and 1, respectively. A polynomial equation is used &sgribe initial conditions consisting
of four simple domes:

0.944133 4 20.0787 x x — 388.802  pow (z, 2.) — 444.205 % pow(z, 3.) + 30580.6 * pow(x, 4.) —
181036.0 * pow(z, 5.) + 445133. * pow(x, 6.) — 348158. * pow(x,7.) — 647104.0 * pow(zx, 8.) +
1.87644¢€6 * pow(x,9.) — 1.964€6 * pow(x, 10.) + 987296.0 * pow(x, 11.) — 198341. * pow(z, 12.)

Figure 2.2. 2D biofilm interface for a) t=0 and b) t=20 timesteps

A three dimensional simulation shows similar features & 2B dataset (Figure 2.3) but
perhaps demonstrates a more realistic depiction of thedggreity of the biofilm topography,
which ultimately needs to be calibrated with experimentseyvations. Although the simulation
is considerably more computationally expensive, our immaetation has been parallelized and
has demonstrated efficient convergent properties. A thimerdsional dataset can therefore be
considered to drive an optimization or perhaps even an taiogr quantification problem.

Parameter studies show different levels of sensitivibeeaction coefficient1, k2, and the
diffusion coefficientD. A two parameter study was conducted by perturbing the imacbeffi-
cients. Figure 2.4 shows an array of interface figures in whjandk, have been perturbed from
1 to 1000. As the figures show high values result in more pronounced mushrooming behavior
whereas high values &2 counteract this behavior. This appears the be generakimith the
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Figure 2.3. 3D Biomass transport at a) initial conditions, b) time
step 70.
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reaction term in the equations. These experiments weremantax64 grid for 30 timesteps with
a 0.005 delta timestep.

Ly
L]
L]
]

Figure 2.4. Parameter study of biofilm reaction coefficientsl-
varies horizontally 1, 10, 100, 1002 varies vertically 1, 10, 100,
1000

The diffusion coefficient also has a significant effect on ititerface behavior. Figure 2.5
shows different interface behavior for diffusion coeffitie set at 1,2, and 3.

The variation in interface behavior is large and manuallyuypbing parameters and initial con-
ditions is not a tractable strategy. Accordingly, the néwpter discusses a large scale optimization
derivation and implementation to address the calibratiayuo numerical model using potentially
laboratory observations.
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Figure 2.5. Parameter study of biofilm diffusion coefficients a)
1.0,b)2.0,¢) 3.0
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2.3 Conclusions

A forward modeling capability in 2D and 3D using level set hegts has been developed and
demonstrates the unique mushrooming shape at certairtisele€ reaction coefficients. Unfor-
tunately, there an infinite number of parameter combinagiach of which results in a different
biofilm topology. A parallel SUPG stabilized finite elemeppaoach was developed to eventually
enable large scale optimization for model calibration pggs. This is the subject of the next few
chapters consisting of experimental results for capiltabe experiments, optimization techniques
for initial condition inversion and stochastic inversiar material properties.
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Chapter 3

Large Scale Inversion for Material
Properties and Initial Conditions for
Biofilms

3.1 Introduction

Next, we discuss the development of an inversion capaldibelp calibrate the numerical model.
The intent of this work is to infer initial conditions and reatl properties of a biofilm given ex-
perimental observations. In our foward simulation, seveasameters control the behavior of the
biomass interface. First, the reaction coefficiencontrols the rate at which nutrients are con-
sumed and if sufficient nutrients are available has sukiatamipact on the growth of the interface.
The diffusion coefficient is equally important because ftuences the extent that nutrients are
transported to the interface. The higher the diffusion fés¢éer and more pronounced the growth.
The second reaction parametegiin the reaction term is referred to as the half saturatiofficoent
and it corresponds to the concentration at which the entwadd reaction term is one-half of its
maximum. In the previous chapter, all these parametersamfeneous throughout the compu-
tational domain. However, at least both reaction coeffisishould be considered as anisotropic
variables in the biomass controlled by a variety of processsch as the birth and death of bacterial
cells. The inversion problem therefore requires largeesafgorithms since potentially different
materials coefficients could exist at each discretizatmintp Furthermore, the initial conditions to
the level set simulation that dictate the number of mushrebaped growths, also motivate large
scale optimization methods since initial conditions limethe entire computaional domain. This
then makes an inversion problem computationally challeggind requires the use of efficient
and scalable algorithms. We appeal to partial differeegpiation (PDE) constrained optimization
methods in which a least squares functional is constraiyetthdo dynamcs — the level set based
simulator in this case — and make use of appropriate opttroizanethods to solve the resulting
optimality conditions. To the best of our knowledge, aniahitondition inversion for a biofilm
growth has not been investigated.

Large scale inversion has been investigated for a variepraflem including contamination
events for different fluid flow problems [2, 3, 42].
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PDE-constrained optimization offers computationallyoedincy at the cost of signficant imple-
mentation costs. Sensitivity information typically is taed from the forward model and for large
scale inversion problems this motivates the use of adjoMtsst forward simulator are not devel-
oped with the appropriate infrastructure which typicallgans a complete refactor or significant
implementation to access and manipulate the linear algafitze forward model. In this work,
our implementation leverages high level abstraction cptscerhich is described in chapter 8. The
requirement for using this approach is to write the dynanmdbe weak form. The software un-
derstands differentiable operators and test functiong. afjoint equation therefore also needs to
be derived in the weak form and is consequently a continuetsian and only equivalent to the
discrete adjoint as the mesh refinement variabi@es to zero.

Our apporach follows the general algorithmic strategy atfiahcondition inversion meth-
ods described in [3], although instead of implementing thatigrid preconditioning for CG, a
QuasiNewton Sequential Quadratic Programming solver eésl.ug his chapter first presents the
inversion formulation and associated optimality conaisipfollowed by a description of the im-
plementation and a numerical example using the 2D bioflm lsitau

3.2 Large Scale Inversion Formulation

In this work, we are primarily interested in recovering amliea state of the biofilm based on
sparse observations, or measurements. This problem carsbd ps a partial differential equation
(PDE) constrained optimization problem where we seek disolthat minimizes the least-squares
functional

) 1 N T 2 ﬁ 2
F =— E —p)0(x —x; + = :
min F(p, po) 2 /0 /Q(p P 0(x — x;) dx dt 5 /on dx (3.1)

PsP0 2

subject to the physical constraints

& —DAc =22 €Q
c =¢Cp EFD
0
FHDVp-Ve =0 eQxt

p =po €Qx(t=0).

In this formulation, the first term in the function& minimizes the difference between the ob-
served valuegp* measured at locations; and the predicted valuggx). The second term is a
regularization term with a regularization parametethat forces the solution to be unique. The
constraints in this problem are just the original physicaldei for biofilm evolution and nutrient
distribution, combined with appropriate boundary andahitonditions.

The inverse problem is then to recover an earlier state diitsfém such that the time-evolution
of the biofilm matches with the observed measurements. T $bis optimization problem, we
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construct a Lagrangian functionélsuch that

k:lcﬁ
k2'+'C

+/ A1 (DAc —
Q

N : B[
= p—p)o(r — x; dxdt+—/p dx
22/ o= Psta =) 5 | o

>+/FDA1<c—cD>

0 D
+//A2 (a—i+—Vc-Vp)+/Az (P — po)li=o
QJr Pb Q

where )\, is the Lagrange multiplier associated with the nutrientogmration and\, is the La-
grange multiplier associated with the biofilm.

Taking variations with respect to the nutrient concentrati and the biofilm density, the
Lagrange multipliers\; and \,, and the initial state of the biofilm,, respectively, yields the

first-order optimality conditions

The forward problem

DAc = ,f;—ffc
cC = Cp
0
5+ 2Vp-Ve = 0
P Po
The adjoint problem
ki1kap
DAM = Trlp
Al = O
DVA-n = 0
MAp+Vp-Viy = 0
ﬁ)\z(vﬂ 'm) =0
The inverse problem
Bpo — A2 = 0.

The equivalent weak forms are
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The forward problem

_DVe.ve— Py (3.5)
Q 2+ ¢
/ ¢(Ve-n)=0 (3.6)
/ ¢lc—cp)=0 (3.7)
8 D
//(af+Dvc Vp)p =0 (3.8)

=0 (3.9)

The adjoint problem

. ok
/(—le-wl (kl S ) // (VA -Vp) =0 (3.10)
Q 2

P
/ /A1A1 _ 0 (3.11)
I'p

8)\2 D ]4310)\1 ~ (9p
g )\2+ AQ(VAQ Vc)—/k2+c 9— //Zp p") a:—xz))\

(3.12)
JREAEEY (3.13)
Q
The inverse problem
/ Bpo— Ao =0 (3.14)
Q

3.3 Numerical Results

To again leverage our high level abstraction software, a@iwoous adjoint was implemented. Al-
though our software is capable of extracting Jacobian éopeszadditional work on the boundary
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conditions would be required to get the correct matrix. Weokled out our adjoint by finite dif-
ferencing the the objective gradient and comparing it todhjective function calculated by the
innner product of the adjoint and the parameter sensgwiti

A large range of experiments were conducted and were redgperiesr many bug fixes, for-
mulation modifications, and implementation changes. Algtothe continuous adjoint is easily
derived and implemented —essentially mimicing the forwsotver implementation— one has to
careful with initial conditions and boundary conditiondthugh the adjoint can be checked with
finite difference techniques, it is not always clear whatdmifference steps to use, whether the
finite difference algorithms has been implemented propartg what an acceptable tolerance is
between the finite difference and adjoint based gradients.

A numerical inversion experiment was conducted by forwardugating with a particular initial
guesses, followed by extracting a set of density valueshwimcurn are used as observations in
the inversion problem. The forward simulation were exedutéh nx=80, ny=40, Nts=20 D=1.0
deltaT=0.00025 k1=100.0 k2=1.0 rhoB=1.0 The inversion magormed with a regularization
coefficient of 0.00001. Figure 3.1 shows the inversion tesant a 80x80 grid for different number
of sensors. Using sensors at all grid points, the optimigeovers the target solution very well.
However, using only 121 evenly distributed sensors, thevoper still locates the main amplitude
locations of the target solution but produces a blurredfate. We note that to avoid “inversion
crimes” we should run the truth model on a finer grid. Howewerr, efforts were dedicated to
building efficient inversion software and we simply ran oftime to perform such inversion tests.

There are some additional implementation issues that reebé tesolved. In particular the
interface diffuses as a result of the level set algorithm aodonger admits a signed distance
function. The diffusive behavior creates problems for theersion algorithm which performs
optimally for convective dynamics. A special algorithms lieeen developed to renormalize the
interface after a certain number optimization iteratidng,has not yet been implemented.

3.4 Conclusions and Future Work

Large scale inversion capabilities have been developedeoinitial conditions for biomass trans-
port given experimental observations. Our software andempntation can easily be applied to
material property inversion or modified to include more ctiogted physics.

The inversion results indicate several areas that need itofr®ved upon. We speculate that
one of the reasons for the oscilatory inverse solution widrse sensors is that the level set in-
terface needs to be normalized to maintain a signed distammtion. Currently the interface
becomes very diffuse, which is problematic for the invamnsio
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Figure 3.1. Inversion Results for a 80x80 grid a) target solu-
tion, b) inversion using all sensors, c¢) inversion using ¢@dsors
evenly distributed
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Chapter 4

Biofilm Growth Experiments

4.1 Introduction

Biofilm growth is known to be variable and unpredictable, mgkmodeling of biofilms compli-
cated. Our premise is that biofilm modeling should be apgredadn a statistical fashion with
probabilistic sampling of parameters needed to model bofitowth. To do this, a quantitative
assessment of the variability of biofilm structure is needdt aim is to define metrics for biofilm
structure and link these metrics to the critical model patans to define biofilm growth. This
section describes a series of experiments where biofilme gi@wn under identical conditions.
Images of the biofilms were taken over the duration of the empnts. Rates of change for spe-
cific parameters used to describe the biofilms were calaibte assessed. Suggestions are made
on how to use these data in biofilm growth numerical models.

4.2 Methods

4.2.1 Biofilm Growth

Biofilms were grown in square, glass capillary tubes with@side dimension of 1 mm 1 mm
and a wall thickness of 0.15 mm (Friedrich & Dimmock, Inc. BM€15-100). The flow system
is presented in Figure 4.1. A syringe pump (Harvard Appar&idD 2000) was used to control
the flow rate and allow for a continuous feed of bacteria. Toe flate was set at 0.05 ml/min.
This converts a linear velocity of 8.3 10-3 m/s and a Reynalgisiber of 9 (laminar flow). A
bubble trap was placed between the syringe pump and thdasgidiibe to minimize bubbles in
the tube that could disrupt the biofilm growth. The systemplased directly on the laser scanning
confocal microscope (LSCM) (Zeiss LSM-510) so that imagadd be taken without disturbing
the system.

The fluid transported through the capillary tube consisted100 (by volume) Trypticase Soy
Broth (TSB) and green fluorescent protein (GFP) labeled dseonas fluorescens mut3. The
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| Syringe Pump

==

Microscope

Figure 4.1. Photograph of biofilm growth experiment set-up

inoculum (0.5 ml) were mixed with 60 ml of the TSB in the 60 mtisge. Inoculum counts for

the 8 experiments that were run are summarized in Table 1. ¥ metailed description of the
biofilm growth protocol is included in Appendix A. Once thepdkary tube was filled, image ac-

quisition started. Images were acquired using the CarlsZ&i§l software. Images were obtained
approximately every 15 minutes for up to 6 hours. X-Y slicesavobtained every 1.31 m using
a 20 objective for images of dimensions 642 642 m with voxatsiof 1.26 1.26 m in the X-Y

dimensions.

4.2.2 Data Analysis

Data acquired from the LSCM was analyzed using COMSTAJ).(The metrics used to quantify
the biofilm growth were biovolume, average thickness, roagls coefficient and surface area to
biovolume area. Biovolume is defined as follows:

,um3] _ (number of biomass pivels in images) @.1)

Biovolume {

pm? (voxel volume)substratum area

To calculated the average thickness, the highest point bidmass above each x,y pixel is
determined and the height of these points are averaged.s Bartkvoids within the biofilm are
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Date Experiment Run Inoculum Concentration (CFU/ml
07/11/2008 1.32 109
07/18/2008 1.57 109
07/29/2008 1.45 109
08/28/2008 1.42 109
09/10/2008 1.64 109
09/11/2008 1.50 109
09/16/2008 2.89 109
09/17/2008 1.68 109

Table 4.1.

ignored. Average thickness is a metric of the spatial siz@biofilm.

The roughness coefficient is defined as:

N —
LS g = Lyl

Ry=+) I (4.2)

i=1

whereLy; is the ith individual thickness measuremehtis the mean thickness, arid is the
number of thickness measurements. The roughness codffci®rnides a measure of how much
the thickness of the biofilm varies and thus is an indicatathefbiofilm heterogeneity. Finally,
the surface area to biovolume area reflects the portion obitbi@m that is exposed to nutrient
flow. The surface area is the summation of all biomass vokelshiave a surface exposed to the
background (not adjacent to another biomass voxel). THigevia divided by the total volume of
biomass. Biomass, average thickness, roughness codffasidnsurface area to biovolume area
were plotted against time for qualitative comparisons ehdis of the metrics. Rates of change
were calculated by fitting the data with linear regressidadidagraph 4.03). Data at each time
point were also averaged to determine trends in mean andneariof the data as a function of
time. Cumulative probability plots for the rate constanesevcalculated by Kaleidagraph 4.03.

4.2.3 Results and Discussion

Quantitative analysis of the biofilms show that both the biomne and average thickness of the
biofilm increases over the duration of the growth experimaricating that the biofilm is still

in a growth phase (Figure 4.2). The roughness coefficientedsed over the duration of the
experiments, indicating that the biofilm is becoming morembgeneous (Figure 4.3). Finally, for
four of the experiments the surface area to biovolume rawehsed, indicating decreasing access
of nutrients to the biofilm, or that the biofilm is filling in (Gure 4.3). However, for the other four
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experiments the surface area to biovolume ratio appearsthyorelatively constant, despite the
decrease in roughness coefficient. Trends were relativedai for seven of the eight experiments
indicating a constant rate of change for the given metrigfés 4.2 and 3).

The rates for each metric were variable between experimé&¥iigen the data for the experi-
ments were averaged together, this linear trend becamenesenpronounced. The linear model
for both biovolume and average thickness, can lead to a wigdlynegative intercept for some
of the experiments. Thus, a different rate might exist faywvearly times. The exception to the
constant rate was for the experiment run on July 18th, 2008. thits experiment, biovolume,
average thickness and roughness coefficient stayed eatonstant for the first three hours of
the experiment. During this same time, the surface areacwohime ratio decreased. Thus, it
appears at earlier time the growth of the biofilm is nutriénited. After three hours, the decrease
in surface area to biovolume ratio starts to level off andater three parameters start following
the trends of the other three experiments. Images of therh®fre presented in Appendix B.
For the experiment run on July 18th, there are clear areaarbt ttmes where there are much
less bacteria than other areas. The biofilm appears to beyfiliiaround the time that the trends
in the metrics match those of the other experiments (Figdr2sand 4.3). Experiments run on
July 29th, August 28th, and September 17th appear to hasel&ese biofilms than the other two
experiments. This observation correlates to the highdasararea to biofilm volume calculated
for these biofilms (Figure 4.3). Bacteria of biofilms tramgliin the fluid phase can be observed at
early times for experiments runs on September 10, 11, andQ&. This is most likely biofilms
sloughing of from upstream of where the images were coliecnalyses indicate that there is
not a significant change in the metrics when the areas aredeifrom the calculations. Given
that a linear model fits most of the experimental results ag wssumed that a constant rate could
be used in the numerical modeling for which these data asmd®d. As the intercepts calcu-
lated for biovolume and average thickness for many of thggereanents assuming a constant rate
are negative and thus non-physical, the model for theseregdeas are forced through the origin.
Probability graphs were generated based on the experihttiéga(Figure 4.4 ). If the distributions
were Gaussian, the lines shown on the probability graphsdimrilinear. The rates for biovolume
appear to be bimodal. More experiments need to be run in ¢odgenerate smoother trends and
determine whether or not the distributions are Gaussiamo#dal, or another distribution.

4.3 Recommendations for Model Input

The intention of these experiments is to provide experiglenput to assist in biofilm growth nu-
merical models. Linear models have been used to descrilm#mgye in metrics for characterizing
biofilms as a function of time. Note that these models are ¢oyearly time growth (up to 6
hours) under very specific experimental conditions. Yedyttio describe the variability in growth
for these specific experiments.

The first step in using these experimental data as input fdrbigrowth models is to link the

40



metrics measured in these experiments to relevant modahygders. What parameters are used
will be numerical-model dependent. We suggest running dmdgation routine to determine
which model parameters are sensitive to biofilm growth argktermine a numerical relationship
between these parameters and the experimental metricsba®babove. The optimization prob-
lem should be able to provide parameter values with confel@rervals that in turn can be used
for forward, probabilistic simulations to model biofilm gvth. As we do not have the information
from the optimization runs, for further discussion, it isased that the rates presented in Figure
4.4 are direct inputs into the biofilm growth model.

The probability distributions presented in Figure 4.4 carubed to randomly sample rates for
the four different metrics. Low probability rates would leav lower chance of being selected than
rates with a 50randomly selected, the model can be run insi@hmode. For the modeling to be
significant, many realizations are needed so that a regesensampling of the parameter space
is made. Note that an average biofilm could also be run usengaties measured from the averages
of the experiments shown in Figures 4.2 and 4.2.

One thing that has not been examined is correlation betweedifferent metrics. To more
accurately model biofilm growth it is important to determimeether or not the metrics are corre-
lated with each other. If a correlation is found, it must bestainto account. These experiments
were run for a short duration, using one microorganism underset of environmental conditions.
In reality, biofilm growth is much more complicated as manygasrisms can be involved and envi-
ronmental conditions can vary. However, we believe that skt of experiments is a good starting
point for testing a biofilm growth model.

4.4 Conclusions

The analysis of these experiments demonstrates how trenbifilm growth can be observed
from experiment to experiment and how these trends and thabi#y in these trends can be
guantified. Quantification of the metrics characterizingfibih growth can be used in numerical
modeling as described above. It should be noted that thistiigation was only performed on
eight experiments. To develop a more realistic statisticatlel, many more experiments need
to be run. The next step to better quantify biofilm growth vibbe to change variables in the
experiment (e.g., flow rate, nutrient concentration, inasuconcentration) to determine how the
metrics vary with changes in experimental conditions. Tine span the experiments are run could
also be increased in order extrapolate the model over ldilgerspans.
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Chapter 5

Stochastic Inversion for Reaction
Coefficients

5.1 Introduction

As discussed in previous chapters, the goal is to ultimataljprate numerical models with lab-
oratory observations. However, our inversion strategylagyed by considerable uncertainty as
a result of the complexities associated with accuratelgiptiag biofilm dynamics and with the
variability of experimental biofilm growth. Multi-physigghenomena, chemical and electrostatic
behavior at multi-spatial and temporal scales, and unditim@ogical phenomena force simpli-
fications to enable practical simulation development witittable computational requirements.
In addition, growing biofilms in the laboratory present diffit challenges in particular achieving
repeatable results, despite efforts to simplify and rafyustte process. Given these sources of
uncertainty, it seemed appropriate at some level to adtliesguantification of uncertainty as part
of our numerical development even though UQ was outsidedbpeesof the Idrd.

Uncertainty quantification is a difficult topic encompagsanlarge range of algorithms, tech-
niques and strategies. However, a logical step to apply Uisoproject would be to maintain
the general theme by building basic infrastructure fromohtiurther developments can be made
in the future. Leveraging as much from the deterministievliad simulation and in line with our
inversion theme, we have developed the basic infrastra¢tuperform stochastic inversion using
Bayesian theory, adaptive Markov Chain Monte Carlo (AMCN@Y our level set simulator. The
goal was to develop basic capabilities to infer certaintsagstic properties of the level set simulator
given information from experimental observations. IndtBawever of inferring for initial condi-
tions which would be computationally intractable in thecstastic setting, reaction coefficients are
selected as target inference parameters.

Perhaps the biggest challenge with Bayesian methods isothewtational expense for large
numbers of inversion parameters. Several methods to retheceost of a posterior evaluation
can be considered such as model reduction of the forwardaiimw including coarse grids, sur-
rogate models, proper orthogonal decomposition, and agtichfinite elements. In this project,
we explored reduced order modeling for the deterministielision case and we implemented a
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prototype stochastic finite element capability into SuregaThese capabilities have not been ap-
plied to the biofilm problem, but have been tested on basitopme problem (heat equation and
convection-diffusion) and we refer the reader to [17, 24ddditional details of our reduced order
modeling approach and to code examples in the Sundanceatmp§43].

Bayesian inference methods have received much attentoemtlg [48, 7, 40], with applica-
tions ranging from geophysics [36, 44] and climate mode[B®] to heat transfer [63, 64]. For
additional details we refer the interested reader to séearllent references [40, 57, 48]. Our
solution approach consists of the adaptive Markov Chaintel@arlo method and an overview of
this and related techniques can be reviewed in [1].

5.2 Formulation

Consider a forward problem defined as follows:
d ~ G(m) (5.1)

Herem is a vector of model parameters or inputs aht a vector of observable quantities, or
data; for simplicity, we let both be real-valued and finiteadnsional. The forward mode&k
yields predictions of the data as a function of the pararsetir the Bayesian settingn andd
are random variables. We use Bayes’ rule to define a postobeability density foim, given an
observation of the datd:

p(m[d) o< p(d|m)p,, (m) (5.2)

In the Bayesian paradigm, probability is used to expressvienge about the true values of the
parameters. In other words, prior and posterior probaslitepresentlegrees of beliedbout
possible values afn, before and after observing the data

Data thus enters the formulation through the likelihoodtion p(d|m), which may be viewed
as a function ofn: L(m) = p(d|m). A simple model for the likelihood assumes that independent
additive errors account for the deviation between prediated observed values df

d=G(m) +n (5.3)

where components of are i.i.d. random variables with densjty. The likelihood then takes the
form

L(m) = p,(d — G(m Hn7 Gi(m)). (5.4)

In this simple modely may encompass both measurement error (e.g., sensor nodst)eaextent
to which forward model predictions may differ from “true” lues because of some unmodeled
physics of the system.
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Additional information on the model parameters may enterfttmulation through the prior
density,p,,(m). Prior models may embody simple constraintsransuch as a range of feasi-
ble values, or may reflect more detailed knowledge about éinenpeters, such as correlations or
smoothness. In the absence of additional information, caeahoose a prior that iminformative
Here we will focus on uniform prior with simple bounds.

If parameters,, of the prior density,,(m|¢y,) or parameters,, of the error modep,, (;|¢,)
are not knowra priori, they may become additional objects for Bayesian infereimcether words,
thesehyperparametermay themselves be endowed with priors and estimated froan[d&}:

p(m, dm, ¢y|d) o p(d|m, ¢p)pm(m|dm)P(¢y)P(dm)- (5.5)

The resulting joint posterior over model parameters andelpgrameters may then be interro-
gated in various ways—e.g., by marginalizing over the hgyasrmeters to obtaipn(m|d); or first
marginalizing ovemm and using the maximizer of this density as an estimate of ypertparam-
eters; or by seeking the joint maximuaposterioriestimate or posterior mean of, ¢,,,, and¢,,
[48]. In the present study, our implementation can easiboatmodate hyperparameters to help
describe aspects of the prior covariance.

5.3 Numerical results for a single parameter prototype

We leverage our high level abstraction software for the &diyproblem simulation but have cre-
ated an interface with python scripts that communicatels separate C programs for the adaptive
MCMC process.

Our deterministic forward simulatio6: is represented by the dynamics of biofilm growth in
the form of convection and diffusion-reaction PDEs:

%—DAC =r e
c =cpl el'p,
c =cp2 el'p,
c =q € Qx(0,7)
L+V-(pu) = f(e,p) e
p =ppl €l'p,
p = pp2 €l'p,
P = po € Qx(0,7)

where the reaction termis defined as:

r= &mccﬁkg +c (5.6)

o
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Figure 5.1. Posterior distribution from a parameter study with
k1 = 1000

The goal of this work is to calculate posterior distribusdor a multivariate parameter space
consisting of the diffusion coefficient and both reactiamigk, andk1 which is a lumping of max-
imum biomass growth rate,, yield of biomass on oxygen,, and biomassn.. As a transition,

a single parameter case is first implemented to verify thdampntation by simply conducting a
parameter study and plotting the solution versus iterdtiess. then should present the posterior dis-
tribution and serve as verification to approximate soluterhniques which needs to be deployed
for the multivariate case.

In the uni-variate case, a simple parameter study will gtexthe exact posterior distribution
5.1 and therefore can serve as the target solution for the MEGolution approach. Figure 5.2
shows the histogram obtained from running AMCMC 4000 iferet. Figure 5.3 shows the corre-
sponding chain position with good mixing. These resultsamngbly interesting but demonstrate a
fundamental capability that can be easily applied to thetivaulate case.

5.4 Conclusions

A basic stochastic inversion capability was implementedddress the significant amount of un-
certainty with the numerical models and experimental pgec&\Ve solve a simple one parameter
inversion that leverages the level set simulator and usgsdtan inference theory. An adaptive
MCMC routine is used to solve for the posterior distributiddthough this is simple example, the
implementation allows for multi-variate problems and isigeed to take advantage of stochastic
finite elements in addition to goal oriented reduced ordedefing.
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Chapter 6

Macro Scale Modeling Using SIERRA/Aria

In this chapter macro-scale fluid flow and transport phen@aeainvestigated for typical and non-
standard geometries of a water distribution network. Aldig the majority of fluid flow occurs
in straight pipe segments, problematic areas for biofilmodémn and interaction with chemicals
will occur where geometries are more complicated. For msathe flow at junctions, storage
tanks, and processing facilities will exhibit recircutatipatterns, diffusion dominated regions and
specific convective paths. Biofilm formation, growth, dét@ent, and interaction with chemicals
and biological agents in the bulk fluid will consequentlyuiegn unpredicatable behavior. At this
scale, we simply represent biofilms as reaction terms at dlomdaries and avoid multi-spatial
scale phenomena. The focus here is on resolving macro-8caleand transport for relatively
complicated geometries.

Contamination events in distribution systems pose a paatiy difficult challenge to utility
companies. Even though contamination in the bulk fluid caftuséed or neutralized, biofilms can
act as temporary repositories with possible releases daoanants at random times. Mitigation
procedures need to compensate for these release possbWihere biofilms are deposited, how
they grow, and what interaction they might have with the Bluld need to be answered. The first
two questions are beyond the scope of this work. Conseqguémtl deposition location of biofilm
was predetermined based on qualitative selection critamesiting of geometry and convective
forces. In addition, the growth and interaction are represtby reaction terms.

Our primary goal of this part of the research is to resolvadpart of a solute assuming that
the interaction of biofilm with bulk fluid occurs via a reactiterm on a subset of the boundary.
Several challenges arise however, consisting of 1) resgflow on complex geometries, 2) pro-
viding stabilization to offset high Peclet values in a finlement discretization, 3) reconciling
adjoint based formulations for adaptivity using stabtiiaa schemes, and finally, 4) developing
appropriate adjoint based optimization algorithms fob#itzed transport.

This chapter first presents an investigation of flow and artswith low Reynolds and Peclet
numbers, less than 300 and 100, respectively. The objsctireto properly resolve fluid flow,
develop reasonable solute transport, and perform opttraizaising adjoint based sensitivities.
Secondly, a streamline upwind Petrov Galerkin (SUPG) agugiras tested to investigate higher
convection dominated processes. Thirdly, ajoint caloutstare discussed in the context of error

51



estimation, adaptivity, optimization and SUPG.

6.1 Background

Significant research has been conducted in the area of adjaged error estimation for finite
element discretizations [16, 14, 9, 10, 18, 19, 35, 39, 4958260]. The goal of adjoint based error
estimation and adaptivity is to reduce the discretizatiwardgor a specific output functional. This
dual-weighted residual approach has been applied to a @reblems including viscous fluid
flow, chemically reacting flows, elasto-plasticity, andiadigte transfer. Much less work however
had been done on adjoints for the simultaneous use of eltioragsn and optimization. Bangerth
[12] presents a framework in which continuous function gsaare used to formulate a nonlinear
inverse problem. The Newton step and line search algoritte®rmulated as continuos functions
to allow for adaptation of the mesh.

An additonal implementation challenge for finite elemersicdetizations is highly convective
flows. Stabilization is typically required which also neg¢d$e applied to the adjoint calculation.
Brooks and Hughes [23] introduced streamline upwindingo@s in a Petrov Galerkin formula-
tion.

6.2 Model Formulation and Verification

In this section we present the model formulation for the flow &ansport in a contact tank. We
begin with the model equations and boundary conditions &h low and transport. A simple
1D problem is used to illustrate the problem and provide #aia for basic code verification.
Then we discuss the numerical stabilization using SUPG etridnsport equation in the case of
large Peclet numbers. We present the adjoint transporttiegsaand define goal-oriented error
estimators based on the adjoint problem.

6.2.1 Equations for the Forward Model of the Contact Tank

The mathematical model for the flow is defined by the statipmarompressible Navier Stokes
equations along with appropriate boundary conditions s€lean be formulated on a domélras
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follows.

pu-Vu—pAu+Vp = pg in €,
Veu = 0 in €,
U = Ujp on I, (6.1)
u = 0 on I'rxnUI'o,
{=pI+p(Vu+Vu)}-n = pun-Vu' on Tyt

The dominant dimensionless group for this model is the Rielgyaumber Re, which is defined

as
UL
o PUL

ol
whereU and L are representative velocities and lengths.

R

Y

The stationary transport of a species by convection didfugs defined as:

u-Ve—DAc = 0 in Q,
c = ¢p on Ly,
—DVe-n = 0 on I'oU Fout,
—DVe-n = ke on I'rxn.

(6.2)

The dominant dimensionless group for this model is the Pacieber Pe, which is defined as

UL
Pe= —.
D
A secondary dimensionless group is
kL
IIH=—.
D

For the contact tank, the boundary= 92 is divided into four parts: the inflow;,, the
outflow I'gyt, the surface reactiohirxn, and the remaining surfadg.

e OnTj,, we specify the fluid velocity and species concentration,

e On I'gyt, we specify an open flow boundary condition on the flow and a ziffusive
condition on the species concentration.

e OnTI'rxn we specify a first order reaction for the species The flow bamwndondition is no
slip.

¢ Finally, on the remaining surfad&,, we also specify a zero diffusive condition on the species
and a no slip condition on the flow.
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We can express the solution to the steady state convecfifisidn problem defined by (6.2)
in weak form. To do this, we define the function spatess {v € H'(Q) : v\pin = ¢ip} and

W={ve HY(O): v\pin = 0}. The weak solution is then defined by: find V'
B(c,w) =0, weW. (6.3)
Here the bilinear form is defined by

B(c,w) = (u-Ve,w) + (DVe, Vw) + (kc,w) (6.4)

Trxn’

where we have used the usual notations for intedrale) = [, vw dz, etc.

By choosing appropriate finite dimensional spakgs- V andW,, C W for the trial and test
functions, respectively, we can define the Galerkin finiegrednt approximation: find, € Vj,:

B(ch,wh) =0, wye W, (65)

In order to verify our algorithms, we now introduce a dimeméess convection-diffusion prob-
lem on a 1D domaif? = (0, 1):

d—e =0 in Q,
c(0) =0, (6.6)
c(l)=1.

where the parameter = Pe ! is the inverse Peclet number. This has the following anzdyti
solution:

1— et/

This problem will be used throughout this section and has lnsed as a standard test problem for
convection-diffusion algorithms.

6.2.2 SUPG stabilization

When the problem in (6.3) is convection-dominated, thedsdash Galerkin finite element formula-
tion (6.5) is often unstable. This can be determined by t¢afitiy the local mesh Peclet number,
defined by

po = UP
8 = D
whereh is the local mesh size aridis the local velocity magnitude. When Pe> 1, itis common
to use some form of stabilization, such as Streamwise UpWieilov-Galerkin (SUPG)?] or
Galerkin Least Squares (GLS).

(6.8)
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The SUPG stabilized version of (6.5) that we use is defined by
B (cp,wp) =0, wp € W, (6.9)

Here the stabilized bilinear form is defined by
B.(c,w)=(-DAc+u-Ve,w+T1u-Vw) + (DVe, Vw) + (ke,w)

Frxn (6.10)
= B(c,w) + (=DAc+u-Ve,Tu-Vw).

The functionr is mesh-dependent, decreasing with the local mesh size. aWe two forms of
7 available, one from the original paper of Brooks and Hugl233, [and another developed by
Dr. Farzin Shakib. In the code that we are using (SIERRA/Atize term

(=DA ¢, Tu-Vuw) (6.11)

has been neglected. Sintec is zero for linear elements, this can only affect higher oeggorox-
imations.

Figure 6.1 shows the H1 and L2 norm of the error for differemsimsizes for a Galerkin,
Classic SUPG stabilized, and Shakib SUPG stabilized dizatens. It is clear that for linear
elements (Q1), optimal rates in both norms are achievedl|ftirae discretizations. However, for
guadratic elements (Q2), the rates for the two SUPG stablilimethods are suboptimal in the L2
norm. We hypothesize that this is a result of the neglectexd (6.11) in the stabilization, resulting
in an inconsistent method.

6.2.3 Equations for the Adjoint Model

For calculation of both parameter sensitivities and erstin@ators, we will need the associated
adjoint problem to (6.2), along with the appropriate bougd@nditions. We also need to specify
the linear functional that will drive the adjoint problenori&he contact tank problem, we consider
the average species concentration leaving the tank, whicharacterized by the linear functional

1
T wds = Ywds, (6.12)

J(w) =

wherey = 1/|Tgutl-

For this choice of functional, the adjoint model correspogdo the convection diffusion
model (6.2) is the following:

—u-Vo—(V-u)¢p—DA¢p = 0 in Q
¢ = 0 on I,
(=DVop—ud)-n = —i on Doyt (6.13)
(=DVop—ud)-n = ko on I'rxn
(=DV¢—u¢p)-n = 0 on I'o
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Figure 6.1. Verification of global error rates for 1D convection
diffusion. (left) H1 norm of the error verus number of elertsen
(right) L2 norm of the error versus number of elements.

To derive the adjoint model in (6.13), we first introduce theational form of the adjoint: find
e W:

B(w,¢) = J(w), weW. (6.14)
By applying integration by parts, we can rewrite this probles

—(u-Vo+(V-u)p+ DAG, w)

+((DVo+ud) nwyr
+((DVo+ud): n+k¢,w>prxn (6.15)
+((DV¢+ug) n,whr,

< >F0ut‘

By varying the test functiom we can show that the variational (6.14) and strong forms3(6ot
the adjoint are equivalent.

If we also make use of the fact the velocity is divergence &eé satisfies no slip boundary
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conditions on'rxn U ', the adjoint problem can be reduced further to

—u-Vo—DAp = 0 in
o = 0 on T,

(=DVop—udp)-n = —i on I'out (6.16)
—DVo-n = ko on I'rxn
—DV¢-n = 0 on I'o

Of interest is the fact that the velocity still appears in bleg&indary condition on the outlet.

For the 1D model problem (6.6), the corresponding adjointa¢iqn for the average value on
Qis:

—¢ — e =1 in Q,
¢(0) =0, (6.17)
o(1) = 0.

This has the following analytical solution:

e

1 —e 1/

o(z) = —x + (6.18)

Figure 6.2 shows the H1 and L2 norm of the error in the discaéfeint for different mesh
sizes for the Galerkin, Classic SUPG stabilized, and Sh8kiBG stabilized discretizations. The
error rates for the discrete adjoint are essentially theesasifor the discrete forward problem.

6.3 Error Estimation

In order to estimate the error in solution responses of @steio design and optimization, we use
the adjoint approach. The error in the model problem is défine

e=c— . (6.19)
We also make use of the error orthogonality relation
B(e, wh) =0, wpeW,. (620)
Let J be a linear functional of interest, and consider the satutibthe adjoint problem: find

o eW:
B(w,¢) = J(w), weW. (6.21)
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Figure 6.2. Verification of global error rates in the adjoint for
1D convection diffusion. (left) H1 norm of the adjoint ernersus
number of elements. (right) L2 norm of the adjoint error uers
number of elements

The adjoint solution can be used to derive an error estinuat#hé error in the linear functional
as follows.

J(c) = J(cn) = J(e)

= B(e, ¢)

6.22
- B(ev 925 - ¢h) ( )
= —B(ch, ¢ — ¢h)

Here ¢, € W, is an arbitrary finite element test function. In practice, take ¢, to be the
interpolant of¢ in W. Substituting the definition of the bilinear form, we obtae tspecific error

formula

J(e) = J(en) = —(u-Ver, 6 — &) — (DVe, V(o = 6n) = (ke 6 — uryyyy  (6:23)

In order to derive a computable error indicator, we must axiprate the solution to the ad-
joint problem (6.21). To do this, we consider two approachBse first is to compute a higher
order approximation to the adjoint solution. For examgdlge solve (6.5) using linear elements,
then we approximate an approximate adjainising quadratic elements. Then we compute the
approximate error estimate using the adjoint weight fuorcti

¢—Ino

58



wherel;, : W — W, is the interpolant into the linear finite elements.

An alternate approach is to first compute the finite elemeptagpmationg, € W, using the
same space as for the forward problem:

B(vn, ¢n) = J(v), v € Wh.
Then we use recovery operatdegfor value and gradients to compute the adjoint weight fumcti

Ry (én) — o

We note that for both approaches, we neglect any residusdeiased with surface flux bound-
ary conditions. In general these weighted residual camiivbs should be included.

For our test 1D problem, we compare the effectiveness ofweapproaches for Pe 400.
The relative error versus number of elements is first pldtiedoth linear and quadratic elements.
This problem exhibits superconvergence in the averageeyaince the error rate is greater than
O(h*?), wherep is the polynomial degree. This may indicate that this is ngoad test problem.
We then compare the ratio of the error indicator to exactréaioboth methods of approximating
the adjoint weights. The approach using a higher order dalva&lable only for linear elements)
generally produces error ratioes much closer to one. Inrashtthe recovery based approach
intially produces somewhat reasonable ratios, but thenadeg as the mesh is refined. It is not
clear if this is a result of the superconvergence or the éndicator.

6.4 Numerical Results for a Prototype 2D Problem

6.4.1 Implementation Details

The numerical models were implemented in the finite elemedecAria, which is part of the
SIERRA Mechanics family of codes developed at Sandia. Ar@apable of first and second order
finite elements on locally refined{adaptive) meshes.

The adjoint solver capability was achieved by using cagadsilfrom the Trilinos solver library.
This involved creating a stateless interface to the fingeneint model residual and Jacobian. This
interface, called the Model Evaluator, was then availabtetlie forward solve, or for use in the
adjoint solve. The forcing data for the adjoint solve, whiehs typically the average value on a
volume or surface, was generated by the SIERRA library Eacor

In the near future, the Model Evaluator interface will emabb-called intrusive analysis ca-
pabilities that require access to the application codeitefelement residual vector and Jacobian
matrix. These include high level code for time integratioptimization, error estimation, and
uncertainty quantification.
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Figure 6.3. Verification of adjoint error indicator for 1D con-
vection diffusion. (left) Exact relative error for Q1/Q2eebents.
(right) Ratio of error estimator to exact error.

6.4.2 Solution Verification for a Prototype 2D Problem

In preparation of simulating a large scale 2D dataset, wwoluterification is first applied to a
simplified 2D model. Absent an exact analytic solution, autht model consist of a fine grid
solution whereby errors are computed by subtracting imeolutions at coarse grid resolutions.

For our test problem, we considered a single channel witbgpitged parabolic velocity in the
positivex direction (see Figure 6.4). The intent of the prototype ienaulate a subportion of a
more complicated geometry with similar dynamics. The peobls specified by (6.2), now with
reactions specified on the entire channel sidigs= 0).

Figures 6.5-6.6 show the forward and adjoint solutions aategbon the fine (truth) mesh in the
case of Re= Pe= 100. In Figure 6.5, reactions on the boundary consume specresotration
resulting in a reduction in average concentration from &.@kout 0.8125. The adjoint solution
in Figure 6.6 is driven by the objective function which is theerage value at the outlet boundary
condition. As illustrated in (6.13), this objective furari becomes a flux boundary condition at
the outlet. The intersection of the reaction boundary domicauses large spikes in the adjoint
solution.

The ideal convergence rates for finite element approximatmf polynomial degree are
shown in Table 6.7. In practise and for more complicatedsgdsa the rates are typically lower
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rxn
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rxn

Figure 6.4. Computational domain for a 2d channel.

—————

B

Concentration
0.617 0.713 0.809 0.904 1.00

Figure 6.5. Forward solution (concentration) to prototype 2D
problem with Re= Pe= 100.

Figure 6.8 demonstrates the observed convergence ratiee flsrward and adjoint solution in
both thed ! andZ? norms. For linear elements, the forward solution conveagése optimal rates.
However, quadratic elements exhibit anomolies that eithezlated to code implementation or is
related to the solution regularity. The adjoint solutiopagrs to be optimal for linear elements but

also exhibits the same anomolies for quadratics.

Convergence rates for the objective function is shown iukegd.9. For uniform refinement
the linear elements demonstrate optimal rates, quadiativemts initial show optimal behavior but
then degrades. This again points to either regularity ofthetion or code implementation issues.
H-adaptivity clearly results in more efficient convergemceomparison to the uniform refinement

with linear elements.
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Figure 6.6. Adjoint solution to prototype 2D problem with Re
Pe= 100.
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Figure 6.7. Optimal convergence rates for finite elements of de-
greep.
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The H-adapted meshes for this 2D channel problem are showigume 6.10. The efficiency
gains are a result of adaption in key local areas with coanserelsewhere.

6.5 Optimization and adaptivity

The optimization problem is formulated as

1 N
min (e, k) = 52

=0

/ (c—c*)?6(x — x;) dx + b / k* dx (6.24)
Irxn 2 Ja

subject to the physical constraints

B(c,w) =0, weW. (6.25)

We solve this constrained optimization problem by deriving first order optimality condi-
tions. Introducing Lagrange multipliers the contrainedlpem can be combined into a single

functional:
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AVAVS

Figure 6.10. Adapted meshes using adjoint error indicator. Top
solution is 4x refined, bottom solution is 8x refined.

L(c,\, k) =F(c,k)+ AB(c,w) (6.26)

First order optimality conditions are obtained by takingiatons of the Lagrange functional
with respect ta;, A, k. Taking variations with respect to the Lagrange multigliand equating the
results for all admissible variations, recovers the foohaoblemB ¢, w). Taking variations with
respect ta: and integrating by parts results in the adjoint equatioméendtrong form:

—u- VA — DA —0 in Q (6.27)
N

A =) (c—c)i(x—x%;) on I'rxn (6.28)
i=0

A =0 on T, (6.29)

(6.30)

Although we have implemented the continuous adjoint for garison purposes, our numerical
experiments were conducted with the discrete adjoint, wisobtained by simply transposing the
forward jacobian. It is the discrete adjoint that is exaat parefered for optimization ([50]) even
though the continous and discrete adjoint are equivaletih@snesh parametér goes to zero.
Details on a general derivation of the discrete adjoint Gafolind in [58].
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For completeness, we show the inversion equation whicHtsefsam taking variations with
respect to the inversion parameter

/Qﬂk - /Frxn Ac=0 (6.31)

These optimality conditions are semilinear, which requaeonlinear solver. A SQP method
has been used from the NPSOL library which was accessedgintbe DAKOTA toolkit [33].

6.6 Numerical Results - contact tank

Wang et al. [62] developed a 2D numerical model to investigetnport of a tracer in a contact
tank and focused primarily on resolving the fluid flow withfdrent turbulence models. The paper
concludes that solute transport predictions depend oncitieacy of the hydrodynamics. A finite
difference method was used to spatially discretize the &i&diokes and the convection-diffusion-
reaction. Although in Wang’s study the flow is turbulent, veeré reduced Reynolds number to the
laminar case to allow for a more focused investigation ofp&iddy and optimization for SUPG
stabilized flows.

The contact tank consists of a flow domain with a single inted autlet. The domain has
multiple turns at right angles to form a serpentine strieetiie plot two computed flow fields for
Re = 100 and500 in Figure 6.11. The outlet channel was extended (not shawajder to allow
the fluid to return to a near fully developed flow at the outl€he reaction zones were located
where the flow would be in closest proximity to the walls, id@rto increase mass transport. The
chemical reactions which consume the reactant speciesasstened to be first order linear.

Our goal was to investigate the ability to solve inverse faols for the reaction coefficients
based on either

e a prescribed average concencration at the outlet, or

e a prescribed concentration profile on the reaction surfaces
For the first case, we chose to fit only a single global congtanttion rate, in order that the
problem be well-posed. In the second case, we allowed tltoaaate to take on three different
values on segments of the reaction surface. More genenadlyiope to use these results to drive

work on large scale optimization where the reaction ratéccbe optimized as a discrete function
that varies at all nodal locations on the reaction surface.
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Our optimization procedure was multilevel, with optiminatdriven by DAKOTA at the outer
loop. For each step of the SQP method, the value and gradéthe objective function were
computed by the application code Aria. The gradients weneptded using the adjoint approach.

In order to insure accuracy of the simulation, an adaptivehmefinement loop was used by
Aria. This could be performed for either uniformly or adapty. In the latter case, the adjoint
based error estimator was used to drive the adaptivity. &hesnwith high error contributions
(in absolute value) were subdivided into child elementse $blution was recomputed and the
procedure repeated for a fixed number of iterations.

While this approach to combining adaptive error control aptimization may not be the most
efficient approach, our results below will demonstrate ihatpreferrable to performing optimiza-
tion on uniform fine grids. Essentially, the adaptive apploean produce accurate results for the
optimization problem at a fraction of the cost of using umfdine grids. In the near future, we
hope to implement a more tightly coupled version of optiia@awith adaptive error control.

6.6.1 Optimization of a Single Reaction Parameter for an Ouet Response

Ouir first application will be to solve the inverse problem bbosing a single reaction parameter
so that the average concentration at the outlet is a spevdied. This problem is always mathe-
matically solvable as long as the value to fit lies in the waé(0, 1). We chose the value to fit to
be 0.5.

Using a very fine uniform mesh with 366,592 elements, we ¢aleuhe optimal reaction rate to
be 2.21861e-05. In Figure 6.12 we plot the forward solutemnentration) as well as the adjoint
solution computed on this fine grid for RePe= 100. The structures of the forward solution and
the adjoint solution (near the outlet) are similar to thased in the 2D straight channel prototype
problem shown previously in Figuf?.

Next we compare the optimization with adaptive grids to cameghe efficiency and accuracy
tradeoffs. In Table 6.1 we plot the value of the optimal paetenvalue for both uniform and
adaptive meshes. The uniform approach requires about 3igéhkeats to get an error of about one
percent. In contrast, the adaptive approach achievesewet bf accuracy with only about 75K
elements.

Two of the adaptive grids used for refinement levels threesandre shown in Figure 6.13.
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Uniform Refinement Adaptive Refinement
Refine Level| Elems | Optimalk | Elems| Optimalk
883 | 1.9993e-05 1431 | 1.8586e-05
3217 | 2.3077e-05 4000 | 1.9248e-05
12161 | 2.2455e-05 8008 | 2.0684e-05
47233 | 2.2237e-05 16717| 2.1433e-05
366592| 2.2186e-05 35374 | 2.1828e-05
74857| 2.1992e-05

OO0, WN PR

Table 6.1.Optimization results for the contact tank using a single
parameter

6.6.2 Optimization of a Multiple Reaction Parameters to Fita Prescribed
Concentration on the Reaction Surfaces

Our second application will be to solve the inverse probléchoosing a multiple reaction param-
eters in order to fit a prescribed concentration on the r@actirfaces. The function that we fit is
a linear function ofr that decreases along the overall flow direction

erxn(z) =1 —z/4. (6.32)

Since the length of the domain in thedirection is two, this should result in a concentrationfipeo
from one to one half in the-direction. The response function in this case is defined by

1

J(c) == / lc — crxnl|* d. (6.33)
2 Irxn

The solutions to the forward and adjoint problem are showkiguare 6.14 for Re= Pe= 100.
The forward solution has a similar general profile as in Feghil 2, but now takes on a minimum
value near the outlet closer to one half. The adjoint is véfgrént, exhibiting plumes that flow off
the reaction surface in the upwind direction. Since thealhje function is nonlinear (quadratic),
the adjoint is now a function of the forward solution.

As before, we compare the optimal parameter values compittezt by using uniform meshes
or adaptive meshes obtained from the adjoint based errionast. In Table 6.2 we present the
optimal values computed using either uniform meshes ortagameshes. As in Table 6.1, the
adaptive case is again more accurate, this time by aboutar faicthree in terms of number of
elements.

Again we plot in Figure 6.15 the adapted mesh used for thengptralues in Table 6.2. Again,
adaptivity is concentrated along the reaction surfacesvever, there is also increased adaptivity in
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Uniform Refinement
Refine Level| Elems| Optimalk, | Optimalk, | Optimalks
1 883 | 4.9566e-06 7.9407e-06 1.0656e-05
2 3217 | 4.7849e-06 8.0191e-06 1.1157e-05
3 12161| 4.6785e-06 7.8340e-06 1.0907e-05
4 47233| 4.6506e-06 7.7810e-06 1.0829e-05
Adaptive Refinement
Refine Level| Elems| Optimalk; \ Optimalk, | Optimal ks
1 2173 | 4.9121e-06 7.7475e-06 1.0611e-05
2 4459 | 4.8848e-06 7.9435e-06 1.0813e-05
3 7879 | 4.6882e-06 7.7049e-06 1.0671e-05
4 17185| 4.6630e-06 7.7061e-06 1.0687e-05

Table 6.2. Optimization results for the contact tank using multi-
ple parameters

regions where the adjoint solution “plumes” are locatedoAbecause the adjoint is approximately
zero near the outlet, no adaptivity occurs there.

6.6.3 Optimization for High Peclet Numbers

Finally, we present some optimization results for high Peelimbers. Throughout this section, we
fix Re = 100. We first verified that for the moderate value of Pd 00, we obtain consistent results

with and without SUPG stabilization. This was done by agdtm§ the average concentration at
the outlet to the value of 0.5.

Next we increased the Peclet number to be closer to the actliad for a contact tank con-
taining water as the fluid. The outlet value used in the oatdn was also increased with Pe in
order to make the problem more feasible. The results are suined in Table 6.3.

6.7 Conclusions

In this chapter we presented a macroscale model and for tbataat tank water treatment ap-
plication with microscale surface reactions representdgumacroscale chemistry. We verified
the forward and adjoint solutions to the transport equatsnwell as the SUPG stabilization for
moderate Peclet numbers. Efficient optimization of ma@pgxrreaction parameters with adaptive
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Pe | Elems| Average Value to Fif Optimalk

le+2| 10117 0.5 2.1655e-05
le+3| 14404 0.9 7.9533e-06
le+4| 39331 0.95 4.9624e-4

Table 6.3. Optimization results using SUPG stabilization and
adaptivity

error control was demonstrated. Finally we provided ihdi@a on extension of the approach to
high Peclet numbers found in a realistic contact tank prable
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Velocity Magnitude
0.00 0.000228 0.000457 0.000685 0.000913

Velocity Magnitude
0.00 0.00262 0.00525 0.00787 0.0105

Figure 6.11.Contact tank flow fields for Re- 100 (top) and500
(bottom).
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I

Concentration
b 0.459 0.640 0.821

Adjoint Concentration
0.00 2.78e+04 5.65e+04 8.33e+04 1.11e+06

*—»

Figure 6.12.Concentration (top) and adjoint concentration (bot-
tom) for the single parameter case.
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Concentration
0.531 0.649 0.766 0.883 1.00

Adjoint Concentration
-6.09e+03 -3.64e+03 -1.19e+03 1.25e+03 3.70e+03

Figure 6.14.Concentration (top) and adjoint concentration (bot-
tom)

for the multiple parameter case.
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Chapter 7

Integration and decontamination of Bacillus
cereusin Pseudomonas fluorescermofiims

7.1 Introduction

The Environmental Protection Agency stated that a betteéergtanding is needed regarding which
contaminants may attach to the interior of the water distidm system and how they can best be
removed as a key research need . To gain insight on this topie knowledge is needed on the
integration of potential biological pathogens in biofilmi$e interiors of pipes in water distribution
systems are often covered with biofilms . The questions thaé anclude: 1) if a biological
pathogen is introduced into a drinking water system willatbme integrated and retained in the
biofilms on the pipe-wall surfaces?, 2) if so, what fractidran introduced pathogen is retained
in the biofilm?, 3) once integrated into the biofilms, how lomidj the pathogens persist in the
biofilms?, 4) what variables impact the pathogen integn&icand 5) can the biofilms protect
the pathogens from disinfection, or will traditional difgotion methods be able to remove the
pathogens.

Szabo et al. found that Klebsiella pneumoniae persisteg tenhporarily (9 - 17 d) in both
chlorinated and dechlorinated drinking-water biofilmsvgnamn corroded iron surfaces in annular
reactors. In contrast, these same authors found that Baailtophaeus subsp. globigii, a surrogate
for Bacillus anthracis, persisted under the same conditionup to 70 days with target chlorine
concentrations as high as 70 mg I-1 . Likewise, Langmark.etoaind that 1-m hydrophilic and
hydrophobic microspheres, Salmonella bacteriophagesap8B_egionella pneumophila persisted
in drinking-water biofilms that were monitored for over 38/daln this case, the drinking-water
biofilms were grown on a 1-km long, 50-mm diameter pilot-eadistribution system and glass
coupons were used for sampling. These varying resultsatglihat more studies are needed to
better address the key EPA need.

This study examines the integration and retentiorBatillus cereusATCC14579) spores
and polystyrene microspheres Rseudomonas fluoresce(8TCC700830) biofilms grown on
polyvinyl chloride (PVC) coupons in annular reactors inaihie-free water. P. fluorescens was
chosen as the biofilm organism because it has been foundnkinlyi water biofilms , the ease of
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growth and because it is Gram negative, in contrast to thenGasitiveB. cereusallowing for
straightforward distinction between the two organisrBs.cereuswas chosen as a surrogate for
Bacillus anthracis, the causative agent for anthrax. T 2@stal anthrax attacks brought atten-
tion to the ease of dissemination and potential lethalitg.ainthracis in small doses. Carboxylate-
modified microspheres were chosen because of the simitdrsize (1 m diameter) and the nega-
tive surface charge at the pH of our system [Molecular Prolgd#s05001]. Use oB. cereusand
microspheres allow for a comparison of living, reprodueipérticles to inert particles. Polyvinyl
chloride coupons were chosen because water distributgiersg contain PVC pipes, their ease of
use, and demonstration that significant biofilms could grovhe pipe material .

Three variables were examined as to their effect on pathogegration and retention: shear
stress or Reynoldss number (Re) in the system during and@thogen introduction, number
of B. cereusspores and polystyrene spheres introduced to the systaimngial bacterial cell
density in the biofilms. After examination of the above dgtarameters, preliminary experiments
investigating the effects of adding sodium hypochloritéwe goal of free chlorine concentrations
in the reactor between 2 and 3 mg |-1 were conducted. Changesfluorescens and pathogen
surface density in the biofilms and reactor water were oleserv

7.2 MATERIALS AND METHODS

7.2.1 Cultivation, preparation and enumeration of microorganisms

Bacillus cereugATCC14579) was initially grown on 2X SG sporulation agar fiwe days at 30C

. After scraping the cells off the agar, the remaining vetetaells were killed through repeated
washing, centrifuging and suspension of centrifuged peile 50% ethanol. The pellets were
suspended in 50% ethanol solution with overnight storagkCatSpores were washed three times
in deionized (DI) water to remove the ethanol. To kill remagnvegetative cells, the pellets were
suspended in 2 ml of 20% meglumine diatrizoate (Sigma). Timel Bf suspension was then
combined with 10-20 ml of 50% meglumine diatrizoate and gfrged for 30 minutes at 14,500g.
The presence of spores was confirmed using phase-cont@stsecopy. The spores were washed
four times to remove the excess chemical and stored in DInvedtdC until use. Prior to use,
the spores were vortexed and enumerated on Trypticase Smy(A§A) to determine the correct
volume to add to the reactor. Spores were also vortexedforiatroduction to the reactor in order
to minimize coagulation of the spores .

For each experiment, a new stockRdeudomonas fluoresce@rCC700830) was prepared
using a CryobankTM (Copan Diagnostics Inc) bead with theiBréiscens culture. The beads were
stored in a -20 C freezer prior to use. The bead was placed ino® Tnypticase Soy Broth (TSB)
and incubated for 24 hours at 30 C. Two of these samples werevitrtexed and centrifuged and
the pellets combined and reconstituted in 9 ml of sterile Btex.
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P. fluorescens surface density and the amour.afereusin the biofilms and reactor water
were quantified using traditional pour plating methods. rRdating was chosen because when
spread or drop plating was used the P. fluorescens colomeadspvhich interfered with enumer-
ation. Quadruplicate plates were prepared for each diutiBlates were incubated at 30C for
approximately 24 hours for th. cereusand 48 hours for the P. fluorescens prior to enumerating.
Results are reported as the mean plus and minus the starelaatiah of the counts from the four
plates when the results for one sample are reported. Rdsultsultiple samples are reported as
the mean plus and minus one standard deviation of the cowamsdll the plates. Trypticase Soy
Agar was used to culture both organisms. Triphenyl TetragolChloride (BD Biosciences) was
added to the TSA at a final volume of 0.01% to facilitate P. #isoens enumeration. TSA mixed
with Polymyxin B (an antibiotic that inhibits Gramx negagigrowth) was used to plai cereus

To enumerate cells in the biofilms the coupons were first edrayth a sterile polypropylene
cell lifter (Corning 3008) into 9 ml of sterile DI water . Thewpon was then rinsed with the
diluent that was transferred into a sterile test tube. Onefrsterile DI water used to rinse the
beaker and then water poured into the test tube. Cells wepedied using established methods
of sonication for 5 to 10 minutes and vortexing . From thispgmsion, two samples of 3 ml each
were used for spectrophotometric analysis and 1 ml was usquldting. The detection limit for
B. cereusn the biofilms was 1 CFU on the first dilution, converting t8 &FUcm-2.

7.2.2 Experimental apparatus and setup

Experiments were conducted with annular reactors (BiagerTechnologies, Corporation, Model
DFR 110) to simulate a water distribution system. Unused ¥@pons that had been disinfected
in a 20% bleach solution were used for each experiment. Esadtor has 20 15 1.25 cm coupons
in the inner rotating cylinder, which has a diameter of 13m@ €oupons constituted approximately
25% of the surface area of the reactor. The volume of the asnuas approximately 1 L. Prior
to running the experiment, the reactor was first sterilizedn autoclave at 121C and 15 pounds
per square inch (psi) for 30 minutes. After sterilizatidme reactor was filled with 10% bleach
solution and the coupons placed in the inner cylinder. Bintle reactor was rinsed by circulating
sterile DI water through the system until free chlorine @ntcations in the outflow solution were
less than 0.01 mg I-1.

The correlation between Reynolds number (Re), shear stresginer cylinder rotation speed
as a function of pipe diameter were calculated based on tlieoaie suggested by BioSurface
Technologies, Corporation (B. Warwood, personal comnmatimn). Shear stress at the wall sur-
face (w) was calculated assuming turbulent flow as follow:

s
2

(7.1)

Tw
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Wheref is the Fanning friction factop is the water density andis the average water velocity
through the pipe. The friction factor was calculated usheyBlasius formula:

0.0791
f= 702 (7.2)
Finally, the RPM was calculated from the shear stress asvasll|
RPM = (1023.377,, — 3.05579)°-77628 (7.3)

7.2.3 Operation of reactor

Pseudomonas fluorescebmfilms were grown under the same conditions to form repcdile
biofilms. A nutrient solution was transported through thacters for the duration of each experi-
ment at concentrations of 5, 2.5, and 1.25 mg I-1 of glucos®(&o Dextrose, BD Biosciences),
peptone (Fisher Scientific), and yeast extract (Fishernfii®, respectively. NaOH was also
added to the reactor for the duration of the experiment frea@parate container to maintain a con-
centration of 2.0 mgl-1 NaOH (Lab Chem, Inc.) to sustain anmapH. The reactor was first filled
with the nutrient and NaOH solutions. Five ml of the P. flugsess inoculum was then pipetted
into the reactor along with 9 ml of sterile TSB. The inoculurasaallowed to sit in the reactor for
approximately four hours prior to initiating flow. The flowteavas then maintained at 1.2 mimin-
1 (residence time = 13.9 h) for 10 days. Then, to minimize tlosvth of planktonic bacteria in
the reactor water, the flow rate was increased to 15.6 minfresidence time = 1 h) for another
seven days prior to adding the microspheres and sporesioBsesxperiments demonstrated that
this was sufficient time to reach a steady-state bacterlabeasity in biofilms on the order of
105 to 107 CFUcm-2 . The observed range of P. fluorescensyotamts was similar to those of
biofilms grown with drinking water . The rotation speed of theer cylinder was maintained at
60 revolutions per minute (RPM) during the P. fluorescenglbyigrowth phase.

Just prior to surrogate pathogen introduction, two coupogr® sampled from the annular re-
actor, the inner cylinder rotation speed was adjusted togpecified for the specific experiment,
and the flow rate of the reactor was decreased to 2.6 mimiesid@nce time = 6 h). Micropsheres
andB. cereuswvere then introduced separately and almost simultanemislyhe reactor. The 6 h
residence time was maintained for 24 hours after pathogesdnction to increase the initial resi-
dence time of the pathogens in the reactor. Twenty-fourdafier the pathogens were introduced
the flow rate was increased again so that the residence tisienehour.

A total of eight experiments were conducted with differamtial amounts of introduceé.
cereusspores and 1 -diameter TransFluoSpheres carboxylatefisbéluorescent microspheres
(Molecular Probes, # T8883), and different shear stressespntrolled by the inner cylinder rota-
tion speeds (Table 7.1). Table 7.2presents the correlagbmeen the inner cylinder rotation speed
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Average

(Standard Average
Deviation) P. (Standard Start of
fluorescens Deviation) B. Chlorination
Surface cereus Spores  Microspheres (Days after
Density Introduced Introduced pathogen T-Test F-Test
Experiment Number (CFU cm™) (CFU) (spheres) RPM intro) Results Results
50 RPM 7.5 = 10° 7.0 x 107 9.1 = 10° 50 36.0 1.8x10% 7.7 x10%
(3.8 x 10%), n=4 (2.7 = 10%), n=4
100 RPM August 2.8 % 10° 9.9 % 10° 1.4 x 108 100 15.0 1.0x 107 5.0x10%
(2.5 % 10°),n=8 (9.5 x 10%), n=4
100 RPM March 1.6 x 10° 1.0 x 10° 4.2 x 10° 100 14.0 N/A N/A
(6.4 % 10%), n=8 (2.0 % 10%), n=4
150 RPM May 7.9 % 10° 4.4 =107 1.2 = 10° 150 14.1 1.5=10% 2.2x10%

(45 % 10°), =8 (8.1 x 10°), n=4

150 RPM July” 8.3 % 10° 2.6 % 10° 9.5 % 107 150 3.0 N/A N/A
(9.9 % 109, n=8 (9.3 % 10°), n=4

150 RPM August 25x=10° 8.2 % 10° 5.0 = 10° 150 140 0.19 0.14
(4.9 % 10Y), =8 (8.6 x 107), n=4

300 RPM Jan 35x%10° 7.6 %107 7.3 % 10° 300 35.0 0.96 0.70
2.5% 109, n=4 (3.7 % 10°), n=4

LUNN

- P fenainsdesl omadyy D= sl T

Figure 7.1. Experiment variables and statistical test results

and shear stress, Re, average linear velocity and flow ratéfferent pipe diameters.

Samples of reactor water and biofilms were collected througthe duration of the experi-
ment. Ten ml of reactor water was collected at each samplat éveanalysis of P. fluorescens,
B.cereusand microspheres as described below. Reactor water samgiesollected periodically
both before and after pathogen introduction. After patimoigéroduction only one coupon was
collected at each time interval. Each coupon was analyzqddatify P. fluorescen®.cereusand
microspheres.

Approximately 14 days after the pathogens were introduntmthe reactors, chlorine treat-
ment began for four of the experiments. The goal of the chéotieatment was to maintain free
chlorine concentrations in the reactor between 2 and 3 m@his range was chosen because it is
below the EPA allowable level for drinking water of 4 mg |-1@R.

Chlorine was added to samples of reactor water to deterrhi@edncentration of sodium
hypochlorite that would be added to the system for the amotreatment. Between 5 and 10
times (depending on the experiment) prior to starting tHerate treatment, reactor water samples
were collected with a sterile pipette. Sodium hypochlonits added to the sample until the free
chlorine levels were within the desired range between 2 anth3-1. The amount of sodium
hypochlorite that was added was recorded and used to estimatesired sodium hypochlorite
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Shear Stress Reynolds Number (Re) Avg. Linear Vel. (m s?) Flow (gpm)

(Nm?) |
R Djarll'll'liie;( in) 2 4 8 2 4 8 2 4 8
50 0.154 10,833 12951 52,872 0.20 0.22 0.24 6.40 28.31 125.0
100 0.372 17,939 39,621 87457 033 0.36 0.40 10,60  46.84  206.8
150 0.624 24,134 53,286 - 0.44 0.49 0.54 14.26 63.0 278.2
300 1.52 40,134 - - 0.74 - - 23.72

Figure 7.2. Correlation of inner cylinder rotation rate and
Reynolds number, average linear velocity and flow rate.

concentration in the annular reactor.

At the start of the chlorine treatment, a third container w@snected to the system contain-
ing the desired concentration of a sodium hypochloritetsmiu This solution was continuously
pumped through the system for 7 to 8 d. Sampling of reactoemeaintinued and the concentration
of sodium hypochlorite was adjusted to attain the desired &hlorine range in the reactor. After
chlorine treatment was terminated, additional samplesaxtor water and biofilms were collected
and analyzed.

Unfortunately, it was difficult to maintain stable free chie concentrations. For this reason,
our results related to the chlorine treatment should beidered preliminary. In some experiments
it took approximately one day until the free chlorine cortcations reached the specified range. In
one experiment, free chlorine concentrations exceeded Kinag one time.

One experiment was conducted to determine whddheereuslone could form a biofilm. The
experiment was conducted as described in the first paragmnajbis section, except the annular
reactor was inoculated witB. cereusspores instead of P. fluorescens. Samples were collected
after the increase in flow rate and for 17 more days. In thie,ca# coupons were collected at
each sampling time.

7.2.4 Analytical methods

Fluorescence spectrophotometry (Varian Cary EclipsereE&gsence Spectrophotometer, system
ID Eclipse was used to measure the amount of microspherdsineactor water and biofilms.
Standards between 5103 and 106 spheres/ml were used tatgeleear calibration curves be-
tween log concentration (spheres/ml) and log measuredsitye(arbitrary units). The detection
limit for the microspheres was assumed to be the concemrtrafi the lowest standard, which is
the equivalent to a surface density of 2.7 103 spherescmi&obphere concentrations from the
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biofilms samples collected prior to pathogen introducti@menconsistently measured at below the
detection limit.

Periodic biofilm samples were collected for visualizatising a Nikon 80i Epifluorescent
microscope. Samples were examined with 10, 20, and 100tolgec Molecular Probes LIVE
BacLight Bacterial Gram Stain Kit (L-7005) was used to diffietiate Gram-positive from Gram-
negative organisms. SYTOO9 labels both live Gram-negatiae@ram-positive bacteria. In con-
trast, hexidium iodide preferentially labels Gram-pagitbacteria. The hexidium iodide will dis-
place the SYTOQ9 stain, thus Gram-negative bacteria shaubdefsce at a wavelength of 500 nm
(green) and the Gram-positive bacteria should fluorescanén (red). Biofilms were stained
with a mixture of 25 L of SYTO9 and 5 L of hexidium iodide mixed 9970 L of sterile DI. 0.5
ml of the stain was pipetted on the coupon and incubated fout in the dark. The coupons were
then rinsed three times with 500 L of sterile DI for each riasd viewed immediately.

Periodic pH measurements were made of the reactor wateg asi®rion 520A+pH meter. At
the same time the pH measurements were made, the room teéorpevas recorded. Free chlorine
measurements were made using a HACH Pocket Chlorimeter II.

7.2.5 Data Analysis

The percent of introduced pathogens that were integratédetained in the biofilms was calcu-
lated by multiplying the measured surface densit ofereusor microspheres by the total surface
area of the coupons and normalizing by the number of spores@ospheres introduced. This
value represents the average percentage of the pathodenahde captured and retained on the
PVC. It does not account for the surface area of the outendgtfi of the reactor and the spaces
between the coupons, which may also have biofilms on them.tésfland an F-test was used to
compare the mean and variance, respectively, of the pes€temasured. cereusand the micro-
spheres in the biofilms (Microsoft Excel 2003). Results assgnted as the probability that the
samples from each experiment came from the same underlgipglgtion. Regression analyses
were run using Kaleidagraph (version 4.03).

7.3 RESULTS

Both plating (Fig. 7.3) and microscopy (Fig. 7.4) give evide of pathogens - microspheres
andB. cereusbecoming integrated and retained in biofilms. For the mogt g amount of the
pathogens in the biofilms for each individual experimentagrad relatively constant (Fig. 7.3).

For this reason, when comparisons were made between exgregsnthe average surface den-
sity of the pathogen in the biofilm for the samples collectiéergpathogen introduction and before
chlorine treatment were used.
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Figure 7.3. Surface densities of microsphere quantified by fluo-
renscence spectrophometry (left) @idcereusquantified by pour
plating (right) in biofilms over 14 days prior to chlorine @tenent

A clear correlation between the amount of surrogate pathogeoduced to the system and the
surface density of integrated pathogens in the biofilm isoked (Fig. 7.5A). As the number of
spores or spheres introduced into the system increasedoasge of four orders of magnitude,
the surface density of the spores or spheres also increasedproximately three orders of mag-
nitude. The R2 value of 0.73 for the regression through tHas®supports the positive correlation.
As the regression gives a negative intercept, it is posHilaiewhen smaller numbers of pathogens
are introduced into the system a linear relationship is m@tbiest model for the correlation.

There is also an indication that, under the conditions adeélexperiments, a threshold amount
of pathogens must be introduced to get detectable integratio the biofilm. Not included in
Fig. 7.5 is theB. cereussurface density from the 100 RPM March experiment where 106 1
spores were introduced into the systddncereusvas only occasionally detected in the biofilms at
the detection limit with 1 CFU counted in the first dilutiorr f@ surface density of 5.3 CFUcm-2.
These surface densities were only measured in one of fotasdiar two biofilm samples collected
0.05 and 2.0 days after pathogen introduction.

With the exception of two outliers, the percent of pathogaessured in the biofilms was 3%
or less of the amount introduced (Fig. 7.5B). The absoluligevaf 3% should not be extrapolated
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Figure 7.4. Epifluorescent images of P. fluorescens biofilms
stained with LIVE BacLight Becterial Gram Stain Kit with mi-
crospheres (red) arl. cereug(orange) integrated within. Upper
image shows clustering of biofilm organisms. Lower imagensho
area with concentrateB. cereus Images taken with a 100objec-
tive.

to other systems. In the annular reactor, the PVC couporauated for approximately 25% of
the available surface area on which biofilms can grow. Biofjhmwth on the glass of the outer
cylinder or the space between the coupons was not monitored.

The B. cereuscolony counts from two experiments (100 RPM August and 150 RRay)
show that a larger percentage (10% and 21%) of integratipogsible (Fig. 7.5B). As the amount
of B. cereusn the biofilm does not increase significantly over the dorabf the experiment (Fig.
7.3), we assume, for these two experiments, that thereignifisant netB. cereuggrowth in the
biofilm. However, it is possible that there is growth and dktaent at steady state with no net
increase oB. cereus

The growth ofB. cereusiofilms in our annular reactors when inoculated alone gevédence
that theB. cereuspores can germinate to grow into biofilms. Counts ranged 8®105t0 5.7106
with an average of 1.9106 and a standard deviation of 1.3410lé 16 coupons sampled and the
64 plates counted. The number of spores introduced intoghetor was approximately 4.1105.
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Figure 7.5. Relationship between the number of spheres or
spores introduced to the system and the amount integratecean
tained in the biofilms as surface density (A) and percent ef th
guantity introduced (B). Regression line and equation imdsfar
data with percent captured less than 10.

Strong trends in the amount Bf cereusneasured in the biofilm over the 17 days that the biofilms
were monitored were not observed.

There appears to be a slight correlation between the P. #ce@ns colony counts just prior to
pathogen introduction and the percent of pathogens mehsuthe biofilms (Fig. 7.6A), with
greater capture associated with the higher P. fluorescefaxswdensity. There is a positive slope
for the regression through the non-outlier points and thasR241. As our experiments were
designed to grow repeatable biofilms, the density of baatedlls in biofilms only span approx-
imately one order of magnitude, thus whether our measurgélagon can be extrapolated to a
broader range of colony counts is uncertain. Also, sinceliear stress was increased just prior to
pathogen introduction and biofilm sloughing may have o@djrthese initial P. fluorescens colony
counts may not be indicative of the biofilm configuration enmgered by the pathogens. While
the cell numbers in our biofilms are in the same range of thosed in drinking-water biofilms,
we recommend running experiments in the future under high&tent conditions to determine
whether the increasing trend we observed can be extradolate

A linear relationship between shear stress at the surfadbeobiofilm and the amount of
pathogens captured and retained in the biofilms is not obdgiMg 7.6B). A regression through
the non-outlier points yielded a very slow R2 value and aesldpse to 0. However, a larger per-
centage of pathogens appear to be captured and retaindeefaridl-shear stress ranges of these
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experiments.

Statistical analyses indicate that cereusmay behave differently than the microspheres. In
half of the six experiments that had enough data to do a statignalysis, there is a less than
1% probability that thé. cereusand microsphere data came from the same underlying popuailati
(Table 7.1, T-Test Result). Thus, in these three experispents likely that theB. cereuswas
either captured or behaved differently in the biofilm thae mhicrospheres. For all three of these
experiments, the percentageBfcereugneasured in the biofilms was greater than the percentage
of microspheres. Two of these experiments are the ones it we called outlier points for the
percent ofB. cereuscapture. The third experiment, 50 RPM, had less than 1% d&f Botereus
and microspheres captured. In this experiment, the amduBt cereusmeasured in the biofilm
increased by approximately one order of magnitude throbgtduration of the experiment. The
probability that the variances of th& cereusand microsphere populations came from the same
underlying populations followed the same patterns as ttesfldata (Table 7.1, F-Test Results).

As mentioned in the Materials and Methods Section, our gitdm maintain free chlorine
levels between 2 and 3 mg I-1 for the duration of the chloniaattnent portion of the experiments
was not entirely successful. For this reason, we preseulisgsom only two experiments, one of
which had the most constant free chlorine concentratiodst@other had the most data after the
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termination of the chlorine treatment. The other three arpents are discussed where applicable.
Because of the small number of experiments, interpretasbiould be considered preliminary.

For the experiments with a sufficient concentration of frekne (greater than 1 mg I-1),
surface density of the microspheres ddcereusin the biofilms decreased during the chlorine
treatment portion of the experiment (e.g. Fig. 7.7A and Bie P. fluorescens colony counts also
decreased. Concurrently, the concentration of microgshandB. cereusin the reactor water
increased immediately after the start of the chlorine tnesit, presumably due to the release of
the pathogens from the biofilms (Fig. 7.7C). Concentrataifrise pathogens then decreased in the
reactor water. After termination of the chlorine treatmesotrface density of the pathogens in the
biofilm appeared to level off or increase slightly (Fig. 7)7Bowever, the counts of P. fluorescens
increased significantly to counts higher than that befoeepéithogen introduction.

7.4 DISCUSSION

Our results demonstrated the integration of pathogensexigiing biofilms, with approximately
3% or less of the pathogen introduced to the system becomiagrated. Results give evidence
that B. cereusbehaves differently than the microspheres and that shesgssinay impact the
amount of pathogens captured and retained by the biofilmsalli results of one experiment
demonstrated that both the biofilms and pathogens withibitiféms can recover after a chlorine
treatment.

7.4.1 Comparison ofB. cereusto abiotic microspheres

An understanding is needed for why much larger amountB8.afereuswhere observed in the
biofilms for two experiments. One explanation is that Bheereusspores are germinating in the
reactor water and the planktonic cells are either captuiféelently than the spores or there are
more cells to capture. There are five lines of evidence tr@Bthcereusspores germinate: 1)
the observation that biofilms could be grown when dBlyereusspores were introduced into the
reactor and 2) the fact that we could stain and visualizeslahgsters oB. cereusn the biofilms
(Fig. 7.4), something we did not observe when we stainedbees alone (data not shown), 3)
the observation that the stain®&d cereusin the biofilms was more rod-shaped (Fig. 7.4) than
the spherical-shaped spores observed with the phaseasbmicroscopy, 4) the results of the
statistical analyses showing tiBe cereusbehaves differently than the microspheres, and 4) the
observation that we could not completely flush Biecereusout of the reactor water, in contrast
to the microspheres. We assume the germination is mostiydmapg in the reactor water as we
do not see a significant increaseBn cereuscolony counts in the biofilms over the time of the
experiment. The exception is the 50 RPM, where the amouBt oéreusneasured in the biofilm
increased by approximately one order of magnitude throbgtdtrration of the experiment. This
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observation suggests that eitlgercereusnultiplied in the biofilms or mor®. cereusvas captured

allowing for an increase in the number of cells. Why Biecereussurface density in the biofilms
are so much higher for these two particular experiments ¢ean In comparing conditions of
these two experiments versus the others, there are no chivends.

7.4.2 Impact of Shear Stress

If the explanation for the T-statistic resultBf cereusehaving differently than the microspheres is
that theB. cereusspores are germinating and multiplying, then this studygsests that the capture
of planktonic cells or germination of spores in the biofilmyriee more likely with lower shear
stress.

Studies have been conducted showing that the shear enwrdrgan control the amount of
bacteria in a biofilm , biofilm structure , and biofilm detacimhe With the exception of the
findings of Peyton , it is generally thought that biofilms b@eothinner and denser with increasing
shear force . In addition, the adhesive strength of a biofiloneéases with increasing shear and
also increases towards the substratum to which the biofilatte&shed . However, we have not
seen studies demonstrating the impact of shear environometiite integration of pathogens in a
biofilm.

In this study, more pathogens are measured in the biofilmeanid shear (100 and 150 RPM)
ranges, however, not all the data are consistent. Fig. &\8sthat the greatest amount®fcereus
detected in the biofilms were both run at 150 RPM. The 150 RP#189 RPM August exper-
iments had the greatest percent of captured microsphergsheAhighest amounts of pathogens
appears to be in the mid range of the shear environmentsnhitisurprising that a regression
through the non-outlier points of RPM versus amount of pgéms in the biofilm yielded a very
low R2 value and a slope close to O (Fig. 7.6B).

The change in shear stress immediately prior to adding ttleogans may have some impact
on the existing biofilms. Ramasamy and Zhang postulate thahwhe shear stress of an annu-
lar reactor increases, sloughing may occur and then thesaotharides in the EPS increases to
re-establish the biofilms. At a later time, when the biofilns macovered, the secretion of EPS
diminished to its original level and shear stress no longeardn impact on the biofilm structure.
The shear environments in our experiments bound those #ragRamy and Zhang used 100 to
200 RPM.

We hypothesize that for shear stresses in the range of tharkdd050 RPM experiments, there
was some sloughing that led to an increase in EPS produdtadnrt turn led to greater pathogen
capture. At 50 RPM and the March 100 RPM experiment the changjeear environment was not
great enough to change the biofilm structure and capturasss Knally, at the shear stress of the
300 RPM experiments, it is possible for the sloughing of tioéilm to be so large that the capture
of pathogen is, for the most part, less than the 100 RPM andRE3@ experiments. As noted
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above, understanding captureEfcereuds more complicated as the spores may be germinating
in the reactor water or the biofilm. More studies examinirggtructure of the biofilms soon after
the pathogen introduction are needed to confirm this hypathe

7.4.3 Impact of Chlorination

Even in our simple system, we show that biofilms and pathogeb®films can persist in a chlo-
rinated system. The chlorine is effective in decreasingateunt of pathogens in the biofilms.
However, the chlorination did not always completely eraticthe pathogens from the biofilms,
or the biofilms themselves. In one case, the P. fluorescenalado recover to colony counts
higher than the original counts after termination of theodnlation treatment. At the same time,
the pathogen surface density in the biofilms remained veligtconstant or increased slightly, as
in the case oB. cereusafter termination of the chlorine treatment (Fig. 7.7C).

Our system had relatively simple geometry and biology caegb#o drinking water distribu-
tion systems. We grew single-species biofilms on PVC in amulanmeactor. Yet, integration of
pathogens in biofilms and recovery of the pathogens and miefdfter chlorine treatment were
observed. A water-distribution system will have pipes dfedent materials, including concrete
and iron, which can corrode and generate a physically anthicaly much more complicated
environment. Szabo et al. show that spores of C. atrophagsp sglobegii are able to persist in
corroded iron coupons in annular reactors with chlorineceatrations as high as 70 mg I-1. In
addition, pipe junctions and changes in flow rates can leadagnant regions and difference in
chlorine concentration as a function of geometry. Thisnmfation indicates that biofilms may act
as a safe harbor for bio-pathogens in drinking water systamaking it difficult to decontaminate
the systems.

88



5 ral T 10°

25 A B Microsphere jpart cm’) 0

A Fre # B cereus (CFUem?) )

20l H T, AP fluorescens (CFU cm) 9 £
- ! Y. a
= ! i £ 4
> ; A i |k
East i N i3 s 38
P i b ie {100 B3
L - [ ] ¥ §§ g =
o ‘ A =2 4 o
S 1.0 - .’ | | . “."5 10 % §
g 05 1 Y Eg

i & A 4% o

i 4 -l 8
----- Free Chiorine .
a0 | ' | M 140
1] 2 4 ] 8 10
Time Since Start of Cl 4 Treatment (d)
T T : — 10" @
E - - P. fluorescens E
= Aikidebliniiies ikl s
s Aoa 3
o f o 110° &
. : : ®
z N
y ¥ w
2 ] al107 &
D ! =3
a M
o 3
o \ ~#- Microspheres (part cm?) 10° O
‘g \\ #- B, cereus [CFU em™) E g
7] B A A o 9
s102L 1, ) S ‘—-,* <
g’ Ve ~j\ ior - 2 105 —
8 A " (3]
£ | \’.\’ il
= ¢+ E
Qo 43
10 1 1 L Il Il 10 A
0 5 10 15 20 o
Time Since Start of Cl, Treatment (d)
Mt T ——1 1¢*
g IS -
+ B Microspheres g
a ® B cereus ]
- {100 &
5 10° : o
=
g J 2
g im £ J110° 2
g ¢ 4| 2
2 ——
‘é 10° L S 5 ]
2 - 3z {09
- m
) f 8 =
o < 2
7] 3 A
ERTY i AT T T I
b EE L L 10

-25 -20 15 10 -5 0 5 10 15
Time Since Start of CIzTreatment (d)

Figure 7.7. Impact of chlorine treatment on P. fluorescens and
pathogen surface density in biofilms for 300 RPM January (&) a
150 RPM August (B) experiment. Impact of chlorine treatnmmnt
pathogen concentration in reactor water for 300 RPM Janesary
periment (C). Note that concentrations or surface dessiteow
the microsphere detection limit are plotted as 1 103 CFUmi-1
10 spherescm-2, respectively. No detectionBocereuss plotted

as 1 CFUmI-1.

89



90



Chapter 8

High Level Abstraction Software

8.1 Introduction

Besides forward discretization of a various models and Iproldormulation, Advanced simula-
tion of realistic systems governed by Partial Differenkgluations (PDES) frequently require the
discretization of operators appearing neither in the gaobstatement nor in a traditional solution
of the system. As a simple example, a residual-based impil&men of a nonlinear problem may
not provide for the evaluation of a Jacobian matrix. Cenpaomising physics-based precondition-
ers for the Navier-Stokes equations require a discreteciidvediffusion equation in the pressure
space. Optimization algorithms require adjoints of cosicfionals. Such algorithms requiring
such additional operators may be caliettusivein that they require the user to modify their code
base before using them.

We may view Newton’s method as a canonical example of angiveualgorithm. Typically,
legacy codes for nonlinear PDE provided a residual evalnaieeded to solve sonié(z) = 0
but did not provide a capability for evaluating the Jacobvaatrix F’(z) or its action on a vector.
Obtain superior convergence offered by Newton-type selvequired significant additional code
development. This is the original motivation for sourcestarce automatic differentiation (AD),
which allows users to gain extra mileage from legacy codegamerating new programs that eval-
uate gradients without modifying the original source cotleese techniques are quite successful
at obtaining Jacobians for Newton-based nonlinear sobassitivity analysis, and certain opti-
mization algorithms. These tools, however, are inherditiited to finding operators which are
derivatives of operators that are already implementedistiag code.

A complementary technique to AD receiving recent reseattemtion is the generation of the
numerical operators from a mathematical description,autldirectly writing traditional low-level
code. Such techniques may involve actual code generatidrcampilation (Analysa, FFC) or
interpretation of a formal grammar or embedded languadeVikreeFEM). Such codes typically
allow users to define variational forms at a high level of edution, greatly reducing development
time. The capability to define basic linear problems seentetthe most mature aspect of these
projects; users typically must provide their own lineati@a for a nonlinear problem or adjoint-
based optimization, albeit at a high syntax level.
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Our work in Sundance fuses the insights of these projeasaiigh-performance finite simu-
lator with unified capabilities for intrusive techniquesith\high-level PDE projects, we maintain
that modern PDE codes should provide syntax comparablestprtthlem description. Like AD,
we derive important operators from other operators via ags® of differentiation. Going beyond
this, the contribution of our work is the recognition thatextremely wide class of finite element
operators required for everything from simple forward soluof linear problems to complex in-
trusive optimization techniques can be derived from a siabkstract kind of Fréchet differentiation
of variational forms. In this chapter, we present our mataigral framework for variational forms
and their differentiation to obtain required operatorsalie the software implementation of this
technique, and present examples indicating some of théscoalgabilities.

Computational science is continuously changing as exddhlity evolving hardware architec-
tures, maturing simulation technologies and advancingyarsaalgorithms. One of the more no-
table changes is the emergence of efficient and high levéd tapable of producing complete
and fully functional simulation software. This new devetognt paradigm leverages high level
abstraction concepts and emphasizes a focus on compleysmnahd design algorithms. His-
torically, simulation development consisted of implenwegialgorithms for individual supporting
services (i.e. assembly, linear/nonlinear solver, pig/pmcessing, parallelism, etc) to collectively
generate a complete simulation capability. This processaxiemely time-consuming as each in-
stantiation of physics required duplication of underlymgdules. However, with the maturation of
simulation technologies many of these supporting sendee bhecome available as robust libraries
or software components. Consequently, the technical sitioal community is transitioning to a
process in which simulators are created in less time by &gWeg existing and tested software
modules. Not only is this a much more time efficient develophpeocess, but the much wider
use has automatically verified and robustified these commsn&his process has further evolved
into a top-down approach that continuously seeks to drigauter to higher levels of abstraction,
thereby isolating the user from as much low level prograngnais possible.

The purpose of this chapter is to highlight our developmémniear-real time simulation capa-
bilities which enables sophisticated and computatioreffigient analysis capabilities. Our toolkit
is called “Sundance”. The key idea is to transform high levathematical notation into fully func-
tional simulators and thereby avoid the time-consuming@mgntation of underlying services as-
sociated with solving discretized sets of partial différ@grequations (PDEs). Our approach allows
the replication of the finite element weak form notation iHC-Sets of PDEs are thereby easily
specified and in combination with additional transitionatle, transformed into fully functional
simulators. This is not entirely a new concept as severatiaes in the technical community
have attempted to achieve similar goals. However, the pyirddferentiating technology of our
approach is an emphasis on massively parallel scalabiyeefocus on large scale analysis algo-
rithms including optimization, uncertainty analysis, aaduced order modeling.
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8.2 Efficient Development

One of the compelling features of Sundance is the abilitytamnly prototype dynamics efficiently
but provide a convenient transition to production qualitgidators. By virtue of eliminating sig-
nificant software implementation efforts typical of PDE éyghevelopment processes, the user can
now focus on complex physics enhancements and on the analysolutions, such as optimiza-
tion, uncertainty quantification, and error estimatiorstéad of analysis serving a secondary role
and often an afterthought, this can be a primary focus. Arontamt distinction for the Sundance
simulators is that the “products” are based on native C++@dl are not a result of a code gen-
eration process. The clear benefit is that developers hdivieifietionality available to consider
modifications and complex enhancements.

Modularity of software is an important consideration anatowously drives our toolkit de-
velopment. Our goal is to eventually produce modular coreptsat the lowest possible levels,
even though the toolset in its current form already congibthree distinct packages: symbolic
services, framework, and meshing (see Figure 8.1). Theglerencept of our design is to provide
users and developers convenient interface access poiatgythwhich modules can be extended,
replaced or modified. The quality of these interface arectliyeelated to the efficiency of the
transition from prototyping to production. It is beyondghahapter however to describe the in-
terface syntax but in forthcoming sections the descrigtiohthe toolkit design should provide
insight into the current extent of software modularity awevifurther the ideal modularity can be
accomplished within Sundance.

Sundance Sundance
Symbolic Services StdMesh

Celljacobians

Evaluates functional Topological entity relations
derivatives WMesh input

Viz output

[ Epetra HTSFExtendedH Thyra ]

Figure 8.1. Package design

The two aspects of the Sundance architecture relevantdptbject are
e Symbolic representation and abstract evaluation.A user specifies a PDE and boundary
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conditions in weak form using a suite of high-level symbaologects which build, internally,
an expression graph representing the problem. Evaluatittmsoexpression, or of auxiliary
guantities derived from it, is done in-plades( without symbolic transformations) using a
hierarchy ofEval uat or objects. Enhancements to this system for optimal perfoocman
with stochastic projection are described below.

e The abstract assembly loop. Several different types of operations must be carried out
by an intrusion-enabled finite element code: Jacobian dsgemesidual assembly, ob-
jective function evaluation, and sensitivity and gradieamputation. Additionally, one
might want to compute the action of a Jacobian without expfiforming it. Sundance
uses an abstragissenbl yKer nel interface through which these operations can be man-
aged by a unified assembly loop; operation-specific detelsaecessed via callbacks to the
Assenbl yKer nel subtypes, and operation-specific data structures are ana@atas data
members of théssenbl yKer nel subtype implementation.

8.3 A survey of high-level PDE codes

Implementing finite element methods is notoriously congiid, and Sundance is by no means
unique in using advanced programming techniques to siynibld process.

Several projects have developed domain-specific langdagksite element methods. Analysa[11]
is an early attempt at such a language. Scott and Bagheriogeeka variant of Scheme that in-
cluded grammatical support for variational forms and aslpyt-degree Lagrange elements. This
Scheme dialect is then compiled to C++ code and executedmitas spirit, FreeFEM [51] pro-
vides a domain-specific language by interpreting a Bisomgrar. The GetDP [31] project also
includes a domain-specific language The FENnICS projectif@Rjdes FFC, a Python module that
allows the definition of variational forms that are compitedow-level code. A just-in-time com-
pilation mode allows these forms to be run within Python. &nte is more similar to the LifeV
project, which embeds the language for variational form€++. While Sundance uses a C++
class hierarchy with a sophisticated evaluator to handbeessions, LifeV relies on expression
templates. LifeV provides some support for automatic déffeiation, but this has not been fully
developed in the case of nonlinear problems or optimizat8ort of domain-specific languages,
many packages provide high-level support for possibly tethpnite element meshes, basis func-
tions, and solver interfaces. We include the widely-used|Ddibrary [13].

While many of these projects surpass Sundance in certate 8fe@ment functionality in the
sense of more kinds of discretizations and adaptivity, 8ood tackles a larger overarching prob-
lem such as the automated support for automatic functioifi@rentiation greatly simplifying
nonlinear problems, PDE-constrained optimization, anceuainty quantification. This capabil-
ity allows Sundance to go beyond a linear forward solve taowp the capacity to efficiently solve
scientific and engineering. Other projects do not prohhig,tbut they do not provide the same
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level of functionality.

8.4 Discretization as Functional Differentiation

Sundance is a toolkit for the development of high-perforoealARDE simulation codes based on a
high-level description of a problem and its discretizatidhwas designed specifically to enable
intrusive algorithms for optimization and uncertainty gtification with a minimum of developer
effort beyond that needed to write a deterministic forwanabfem.

Sundance is based on the insight that a major step in buikliingte element simulator, that
of associating coefficient functions with element integmatfunctions, can be represented as a
mathematical problem. Computational solution of that pgobthen provides automation of that
step. For example, in computing a residual, we can compwealénivative of a functional’
involving v and D, v with respect to an expansion coefficient is

oF OF OF
5. = | o ¢i(x) dQ + / a(Dov) Dy ¢i(x) deL. (8.1)

Differentiation thus automatically associates coeffitsemith derivatives of basis functions. Equa-
tion 8.1 contains three distinct kinds of mathematical objeach of which plays a specific role in
the structure of a simulation code.

1. gF which is a vector irR". This discrete object is typical of the sort of informatiankte
produced by a simulator’s discretization engine for usesolaer or optimizer routine.

2. %€ and %, which are Frechet derivatives of the operafar The operatotF defines
the functional; it is a symbolic object, containing by ifseb information about the finite-
dimensional subspace on which the problem will be discedtizNumerical evaluation of
and its derivatives is equivalent to coefficient evaluation

3. D.,¢;, which is a spatial derivative of a basis function.

Equation 8.1 is the bridge leading from a symbolic specificabf a problem as a symbolic op-
eratorF to a discrete vector for use in a solver or optimizer algonithThe central ideas behind
Sundance are that (1) the discretization of many appareigparate problem types can be rep-
resented in a unified way through functional differentiatas in equation 8.1, and (2), that this
ubiquitous mathematical structure provides a path for eoting high-level symbolic problem
representations to high-performance low-level discagittn components.

By streamlining and partially automating the creation ofighkperformance simulator, Sun-
dance greatly simplifies the deployment of stochastic ptmja algorithms for UQ.
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The weak form of a scalar PDE far € V' in d spatial dimensions will be, in a very abstract
form, the requirement that

Gu) = 32 [ (Duvher (D) di =0 82)

for all v in some subspac@. The functionsF, are homogeneous linear functions:ofnd its
derivatives, but can be arbitrary nonlinear functions aihd its derivatives as well as the indepen-
dent variabler € RY. We use the notatioP,, f to indicate partial differentiation of with respect

to the combination of spatial variables indicated by thetiintlexa. When we use a s¢tD,u},,

as the argument té, we mean that, may depend on any one or more members of the set of
partial spatial derivatives af. The summation is over geometric subregiohs The integrand-,

may take different functional forms on different subregipfor example it will usually have dif-
ferent functional forms on the boundary and on the intefarally, note that we may use different
measuredy,. on different subdomains; this allows, for instance, the iwam practice of enforcing
Dirichlet boundary conditions by fixing values at nodes.

As usual we discretize on a finite-dimensional subspabé and also consider only a finite-
dimensional spack™” of test functions; we then expandandv as a linear combination of basis
vectorsp € V" andy € V",

N
=2 uid;(a) (83)

N
v = vaz(x) (8.4)

The requirement that (8.2) holds for alke V' is met by ensuring that it holds for each of the basis
vectorsy;. Because&s has been defined as a homogeneous linear functiontims condition is

met if and only if
o =Xy || Sy et =0 8.5)

where (8F’“ ) is the derivative off” with respect to the formal variablB,v. Differentiating with
respect to a variable that is itself a derivative of a fieldalale is a notational device commonly
used in Lagrangian mechanics and we will use it throughasittiapter. Repeating this process for
i = 1to N givesN (generally nonlinear) equations in theunknownsu;. We now linearize (8.5)
with respect ta: about some:(?) to obtain a system of linear equations for the full Newtorpste
ou,

oG . G
an c%,»auj

Suj = 0. (8.6)

u®

In the case of a linear PDE (or one that has already beenimeelvith an alternative formulation,
such as the Oseen approximation to the Navier-Stokes egsathe “linearization” would be done
aboutu®) = 0, andédu is then the solution of the PDE.
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Writing the above equation out in full, we have

b

Do dpy | +

+Z(5u3
J

O*F,
zr:za:zﬁ:/QT a(Dav)a(Dﬁv)DawiDﬁ¢j d,Ur =0. (87)

The two bracketed quantities are the load ve¢i@nd stiffness matrix<,;, respectively.

With this approach, we can compute a stiffness matrix and \@&tor by quadrature provided
that we have computed the first and second order functiomzédiges of F,.. Were we free to ex-
pandF;. algebraically, it would be simple to compute these fundalaterivatives symbolically, and
we could then evaluate the resulting symbolic expressiorguadrature points. We have devised
an algorithm and associated data structure that will letampute these functional derivatives
using a variant of AD at the symbolic level, saving us the comatorial explosion of expanding
F,.

Finally, we note that the method above generalizes immelgiad problems with multiple
unknown fields. In addition sensitivity analysis seeks tbavatives of a field: with respect to a
parametep. Whenu is determined by (8.2), we do implicit differentiation todin

au OF, .
ZZ/ [aDgu )+ o du, =0 YveV. (8.8)

Differentiating byv; to obtain discrete equations gives

ZZ [/ 9D.vdp 0 awidur} +
Z % [;ZZ/ 9D, vdDsu vaDﬁ DeiDsd; dpr |- (8.9)

Sundance has basic support for stochastic projection metoboUQ. This prototype capability
is implemented through transformation of the DAG for thegyoral deterministic problem. A more
efficient implementation would be to do stochastic profatiin-place without expansion of the
DAG, just as is already done for differentiation in Sundasmtieearization and optimization capa-
bilities. The abstradEval uat or system provides a natural way to incorporate this enhaneeme
into the existing system.
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Figure 8.2. Sundance Package Overview

8.5 Modular Design

Sundance provides high level abstraction methods to wamsa finite element based weak form
of a set of PDE based equation into C++ code. Sundance casmithree major packages, 1)
the symbolic system, 2) the mesh systems, and the finite atemadule. The job of the symbolic
system is to evaluate functional derivatives and provi@dithite element package the appropriate
integral coefficients. The finite element package is alserredl to as the Standard framework
(StdFwk) consist of a facility to calculate basis familipsyform element integration, manage the
degree of freedom mapping, perform the assembly routineagethe top level interfaces, and
provide the functionality to interact with solver routindhe meshing package (stdMesh) consists
of facilities to calculate cell Jacobians, manage the megblbgy, store mesh input, and provide
visualization output. Each of these packages are relgtimelependent from each other. Within
each package, multiple services and supporting functiomsnaplemented in a modular design
fashion. The general architecture is presented in figureaB@®highlights the major and most
important package components. This figure presents iatetiwnship only in a general way and
forthcoming descriptions will further elaborate on theenworkings of the design.
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8.5.1 Symbolics

The purpose of the symbolic package is to represent andateadll functional and spatial deriva-
tives and mixtures thereof such as the partial deriva%% and—2Lf2_ inthe following simple

ODavODgu
example:

(%Z = (> / Do, +2Au] ZZ / aDavaDﬁ DoV Do, (8.10)

Several classes within the symbolic package provide thmegygi functionality. The Expr class
is a user-level representation of the symbolic expressaoilsis a handle to a reference-counted
pointer to the ExprBase subtype. A range of subtypes aresstggpincluding unknown functions,
test functions, derivatives, coordinate expressionscatidiiameters. It supports overloaded oper-
ators and has the necessary hooks to apply transformates ttishould be noted that expression
copied and assignments are shallow.

Mathematical objects such as weak forms, boundary comditior postprocessing operations
are assembled from expressi&x pr ) objects, subtypes of which include test functions, unkmow
functions, discrete functions, products, sums, spatialakves, nonlinear operators, integrals,
and others; the generic expression is a directed acyclghgramposed of expressions. These are
referred to as “symbolic” expressions, however this is 9bimg of a misnomer, as in the context
of discretization many expression types must often be at@divith non-symbolic information; a
better description is “annotated symbolics expressionsgoasi-symbolic expressions.”

The EvaluatableExpr class is a ExprBase subtype that defieasterface for evaluation and
preprocessing. Figure 8.3 shows an interaction diagranmefassembly routine in which the
EvaluatableExpr::evaluate() function is called for eadrkset. Constant and vector coefficients
are returned and then used in the integral evaluation.

The EquationSet class is the interface for clients of thelsyio system.

A schematic of the asbtract assembly loop is show in the UMjusace diagram in figure 8.4.

8.6 Numerical Examples

In this section a range of numerical examples are presentdehbonstrate the core feature set. We
start with a relatively simple and familiar example usingeation-diffusion physics. The primary
purpose of this example is to expose the more fundamentgbaoemts common to all simulator
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instantiations. Following this relatively example, mooaplicated features are discussed, includ-
ing nonlinearities, time integration, and optimization.

We first introduce a simple example to cover the fundamentaitfonality of Sundance.

V-Vr—k-Ar=0 € (8.11)
r=0 only (8.12)
r=x only (8.13)
r=vy onl;y (8.14)

wherer represents concentratiohjs the diffusivity, andl” is the velocity field, which in this
case is set to potential flow:

Au=0 €9 (8.15)
1
u= 5(1’2 —1.0) onIy (8.16)
u= —%yQ on I’y (8.17)
u= %(1.0 —y*) onT; (8.18)

In weak form the advection-diffusion is written as:

/Vs-Vr—i—/s-V-Vrzo e (8.19)
Q Q

whereV = Vu ands is the Lagrange polynomial test function. The dynamics fined in
one line this is represented verbatim as:

Expr adEgn = Integral (Onmega, (grad*s)=*(grad*r), quad2)
+ Integral (Onmega, s*V+(grad*r), quad4);
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Figure 8.5. Advection Diffusion Solution

The internal mesher is used to create a finite element donh&iin-050 simplicial elements in
2D. Figure 8.5 shows the final concentration solution. Themete Sundance code is included in
the Appendix which includes basic boiler plate code to em@blundary conditions, meshing, test
and trial function definitions, quadrature rules, inteef&ar linear solver, and post processing.

8.6.1 Thermal-fluid coupling

As an example of a nonlinear coupling between processeson&der the problem of Benard
convection []. In this problem, a Newtonian fluid is initiaBtationary, but heated from the bottom.
Because of thermal effects, the density of the fluid decseasth increasing temperature. At a
critical value of a certain parameter, the fluid starts tortwre. Fluid flow transports heat, which
in turn changes the distribution of buoyant forces.

In nondimensional form, the steady state of this systemvsiged by a coupling of the Navier-
Stokes equations and heat transport. ket (uz,uy) denote the velocity vectoy the fluid
pressure, and’ the temperate of the fluid. The parametgr is called the Rayleigh number and
measures the ratio of energy from buoyant forces to viscasspation and heat condition. The
parametePr is called the Prandtl number and measures the ratio of vtgdasheat conduction.
The model uses the Boussinesq approximation, in which tedsierences are assumed to only
alter the momentum balance through buoyant forces. The insde

R ~
—Au+u-vu—vp—P—“Tj:o
T

V-u=0 (8.20)
1
——AT VT =0.
Pr +u-V 0

No-flow boundary conditions are assumed on the boundary oka Bhe temperature is set to 1
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on the bottom and 0 on the top of the box, and no-flux boundangitions are imposed on the
temperature on the sides.

We implemented this problem in Sundance by discretizingflthd equations with standard
Taylor-Hood elements (quadratic velocity and linear puessand the temperature equation with
piecewise linear elements. The tight coupling between thé #ind thermal unknowns means that
Newton’s method requires a rather accurate initial gues®itverge. This requires us to deploy
two different solution strategies. First, we implementddral of nonlinear Gauss-Seidel iteration
in which the fluid equations are solved with a fixed tempegafigld, and then the temperature
equation is solved with the updated fluid velocity. Moregweravoid a nonlinear solve at each
iteration, we lagged the advective velocity in the fluid dgpres, so that our iteration is to start
from some initiak:’, p°, 7" and then compute

. ) . ) Ra .-

i+1 i, i+1 _ (il . - (T% —

(Vu'™ Vo) + (u' - Vu'™" v) — (p, V- v) Pr(lj’v) 0 (8.21)
(V-u' q)=0
The new temperaturg*! is computed using the newly found valuewf' by
1 , . .
P—(VT’“, V) + ('t vTt) =0 (8.22)
”

After someN such steps, the valug¢s™, p™v, V) are used as a starting guess for a full Newton
method.

In order to minimize the code required, we made use of thdewg-polymorphism of Sun-
dance’'sExpr class. We wrote functions that form the weak form of the fluid &emperature
equations

Expr flowEquation( Expr flow , Expr |agFl ow
Expr varFlow , Expr tenp ,
Expr rayleigh, Expr inv_prandtl |,
QuadratureFam |y quad )

CellFilter interior = new Maximal Cel [ Filter();
/+ Create differential operators =/

Expr dx = new Derivative(0);

Expr dy = new Derivative(l);

Expr grad = List(dx, dy);

Expr ux = flow0]; Expr uy = flow1]; Expr u = List( ux , uy );
Expr lagU = List( lagFlow 0] , lagFlow1l] );

Expr vx = varFlow 0]; Expr vy = varFlow 1];

Expr p = flow 2]; Expr q = varFlow 2];
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Expr tenpO0 = tenp;
return Integral (interior,
(grad*vx)*(grad+~ux) + (gradxvy)=*(grad*uy)
+ vx*(lagUxgrad)~ux + vyx(lagU-grad)~*uy
- px(dx*vx+dyxvy) - gx(dx*xux+dy=*uy)
- tenpOxrayl ei ghxi nv_prandtl xvy, quad) ;
}
Expr tenpEquation( Expr tenp , Expr varTenp , Expr flow,
Expr inv_prandtl |,
QuadratureFam |y quad )

CellFilter interior = new Maximal Cel | Filter();
Expr dx = new Derivative(0); Expr dy = new Derivative(l);
Expr grad = List(dx, dy);

return Integral ( interior ,

inv_prandtl = (grad*tenp)=*(grad*varTenp)
+ (flow O] x(dx*tenp)+fl oW 1] x(dy*t enp)) xvar Tenp ,
quad );

Then, to form the Gauss-Seidel strategy, we formed two sépaguations. The first cafl$ owEquat i on
the actualunknownFunct i on flow variables forf | ow and the previous iterate stored in a

Di scret eFuncti on for | agFl ow and for the temperature. The second equation does the
analogous thing im enpEquat i on. This allows us to form two linear problems and alternately
solve them. After enough iterations, we used these samédumsco form the fully coupled system

by calling

Expr full Egn = fl owkEquation( List( ux , uy , p ) ,
List( ux , uy , p) ,
List( vx , vy, Q) ,
T, rayleigh, inv_prandtl , quad )
+ tenpEquation( T, w, List( ux , uy, p) , inv_prandtl , quad );

whereux, uy, p, T are theUnknownFunct i on objects.

Benard convection creates many interesting numericall@nod We have already alluded to
the difficulty in finding an initial guess for a full Newton nietd. Moreover, early in the iterations,
the solutions change very little, which can fool solver®ititinking they have converged when
they haven’t actually . A more robust solution strategy @bhcould also be implemented in
Sundance) would be solving a series of time-dependent gmubuntil a steady state has been
reached. Besides difficulties in the algebraic solvergiddRayleigh numbers can lead to large
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Figure 8.6. Solution of Benard convection on a 128x128 mesh
subdivided into triangles witiRa = 5 x 10°> and Pr = 1.

fluid velocities, which imply a high effective Peclet numlaed need for stabilized methods in the
temperature equation.

Here, we show the temperature computedi®ar= 5 x 10° andPr = 1 on a 128x128 mesh
subdivided into right triangles. We performed several m@dr Gauss-Seidel iterations before
starting a full Newton solve. Figure 8.6 shows the tempeegbuofile after the full Newton method
converged.

8.6.2 Level Set Biofilm with Adjoint Based Optimization

We refer the reader to Chapters 2 and 3 for a description algwithms, level set strategies, and
optimization approaches. In this section, we describe #rel implementation details of the
level set based biofilm simulator.

The internal mesh generation method is used and a xml inputdiket the values of com-
monly used parameters, such as grid spacing, time stepdjore@oefficients, etc. Cellfilters,
basis functions, quadrature rule follow the same syntakaa1s in previous examples.
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A special sensor location methods was implemented and Hog/fog code shows the general
strategy. Either the MaximalCellFilter method executeglfiter method to include all internal
discretization points as sensor information or a specidl e is read which contains sensor
locations.

if (sensor_flag)
{
cerr << "Sensors Everywhere" << endl ;
sensors = new Maximal Cel I Filter() ;
bool Exprdf _ = new Di screteFunction(di screteSpace, 1.0) ;

}

el se

{

cerr << "Sensors From Sensor File" << endl ;

/1 ldentify where the sensor locations are (in an xm file)
Fi | el nput Source fs("./sensors.xm");

XMLOhj ect sensorxm = fs.getObject();

Poi nt Dat a poi nt Dat a(sensorxm , nesh_);
sensors = poi ntDat a. sensor Locati ons();

bool Exprdf _ = new Di screteFuncti on(di screteSpace, 0.0) ;
Cel | Set sensorCells = sensors.getCells(nmesh_) ;

Vect or <doubl e> a =
Di screteFunction:: di scFunc(bool Exprdf_)->get Vector() ;
Ref Count Pt r <DOFMapBase> nap = Di screteFunction: : di scFunc(bool Exprdf _)->map();

Celllterator iter = sensorCells.begin() ;
Array<int> dofs(1) ;
while (iter!=sensorCells.end())

{
map- >get DOFsFor Cel | (O, *iter, 0, dofs) ;
a. set El ement (dofs[0], 1.0) ;

iter++ ;

}
bool Exprdf _->set Vector(a) ;

}

Initial conditions are set with special methods that arersslly stack several gaussian distri-
butions on top of each other with varying magnitude and looat

int ic_flag = xm .getRequiredint("initial_condition");
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switch (ic_flag)
{
case(0)
polynomi al I nitial Condition() ;
break ;
case(1)
gl uedPol ynom al I nitial Condition(2) ;
break ;
case(2)
gl uedPol ynom al I nitial Condition(8) ;
break ;
case(3)
cerr << "GAUSSI AN | C FLAG NOT | MPLEMENTED I N test.xm" << endl ;
/ I gaussi anl nitial Condition() ;
break ;
defaul t :
cerr << "UNKNOWN | C FLAG IN test.xm" << endl ;

An example methods for one of the initial condition case mghas follows:

voi d
Di stri bControl Poi ssonQbj:: pol ynom al I nitial Condition()
{

Expr x = new Coor dExpr(0);

Expr y = new CoordExpr(1);

Vect or Type<doubl e> vecType = new EpetraVect or Type();
Di screteSpace di screteSpace(nmesh_, new Lagrange(1l), vecType);

/'l Set up the Target Concentrations (i.e. the sensor neasurenents)

doubl e max_hei ght = maxHei ght _* 1.0;

Expr interface_fn = 0.944133+20. 0787*x-388. 802+ pow( X, 2. ) - 444. 205« powm X, 3.)
+30580. 6x pow( X, 4.)-181036. Oxpow X, 5.) +445133. *pow( X, 6.)
- 348158. *pow( X, 7.) - 647104. Oxpow( X, 8.) +1. 87644e6*pow X, 9.)
-1.964e6*pow x, 10.) +987296. 0 pow x, 11.)-198341. *pow( x, 12.);

Expr interface = -10.0*(y - 1.0+«max_height*interface_fn - 1.0+«max_height) ;

L2Proj ector projection(di screteSpace, interface) ;
Expr target = projection.project() ;

Vect or <doubl e> va
Vect or <doubl e> vb

Di screteFunction:: di scFunc(target)->getVector() ;
Di screteFuncti on::di scFunc(rhoTarget _)->getVector() ;

108



vb. accept CopyOF (va) ;
Di screteFunction::di scFunc(rhoTarget ) ->set Vector (vh)

return ;

Our implementation includes a forward simulation that isduto calculated the sensor infor-
mation. The equations are implemented as follows:

[l SUPG paraneter -- Brooks and Hughes, ' 84
Expr tau = sqrt(1.0/(4.0/(deltaT+«deltaT) + 4.x((grad+«t2)«(grad*t2))/(h_*h_))) ;

/'l Crank-Ni chol son tinme discretization

Expr targetEqgn = Integral (interior_, (trho - rhoTarget )=*trhoHat/deltaT
+0. 5+ (D_/rhoB_)*((grad*trho)*(grad«tc))=*trhoHat
+0.5+(D /rhoB ) *((grad+«rhoTarget )*(grad+~cTarget ))*trhoHat

+(trho - rhoTarget )/deltaT
*taux(D_/rhoB )+((grad+t2)+(grad+trhoHat))

+0.5+(D /rhoB_ )*((grad+trho)(grad+tc))
*taux(D_/rhoB )+((grad+t?2)+(grad+trhoHat))

+0.5+(D_/rhoB_)*((grad+«rhoTarget )=*(gradxcTarget _))
*taux(D_/rhoB )+((grad+t2)+(grad+trhoHat))

-D x(grad+tc)*(grad+tcHat)
-Htrhoxkl *tc/(k2 +tc) * tcHat

, hew Gaussi anQuadrature(2) );

To solve this problem we call upon a Newton based nonlindaesand use BiCGStab linear
solver. All this is wrapped in Crank-Nicholson time stegpstheme.

For the inverse problem, the continuous adjoint probleroiised:

Expr atau = sqrt(1.0/(4.0/(deltaT+deltaT) + 4.+((grad~at2)*(grad+at2))/(h_*h_)))
Expr adjointl = Integral (interior_, (lrho - Irhol_)=*lIrhoHat/deltaT *deltaT

+0.5+(D_/rhoB ) *((grad+lrhoHat)*(grad+c0O_)) | rhoxdel taT
-0.5+xk1l *dH rho*cO_/(k2_+cO_ )l c*I|rhoHat

+0.5x(D /rhoB )*((grad+lrhoHat)*(grad+cl_ ))*Irhol_ =deltaT
-0.5+k1l_*dH rholxcl /(k2_+c1 )=*Ilcx|rhoHat
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+(lrho - Irhol_ )/deltaT
*ataux(D_/rhoB ) *((grad~at2)=*(grad*|rhoHat))
+0.5+(D_/rhoB_ )*((grad+lrho)*(grad+c0O_))xlrho
*ataux(D /rhoB ) *((grad~at?2)*(grad+lrhoHat))
-0.5+%k1+xdH rhoxcO_/ (k2_+c0_ ) *lc
*ataux(D /rhoB ) *((grad~at?2)*(grad+lrhoHat))
+0. 5+ (D_/rhoB_)*((grad*lrhol_)x(grad+cl_))
*ataux(D /rhoB ) *((grad~at?2)*(grad+lrhoHat))
-0.5%kl1l+xdH rhol_*c1 /(k2_+cl )=*lc
*ataux(D /rhoB ) *((grad~at?2)*(grad+lrhoHat))

-D *(grad+lc)=*(grad+l cHat)
-H rhoxkl1l k2 /((k2_+c0_)*(k2_+c0_))=*Ic*| cHat
+(D_/rhoB_ )*Irhox((grad+l cHat)*(grad+«rhoO_))=*deltaT
,q2)
Expr adjoint2 = adjointl
+ Integral (interior_, 0.5«IrhoHat*(rhol_ - rhoTargetl )
*pool Expr _*del taT, g2)
+ Integral (interior_, 0.5+«lIrhoHat*(rho0_ - rhoTargetO_ )
*pool Expr _*del taT, g2)

This equation is solved by time integrating backward angbupg the state equation at each
time step. Finally, the gradient of the objective functisnobtained by forming the inversion
equation, setting up a “linearProblem” object, multiplyiby -1 and taking the right hand side.
Snippets of the code is show below:

/* Forminversion egn =/

Expr u = new UnknownFuncti on(new Lagrange(1));

Expr sens = Integral (interior_, -Reg_ * rhoO_xbeta + Irhol_xbeta + betaxu, q2);
Expr sensBC;

sensProb_ = rcp(new Li near Probl em(mesh_, sens, sensBC, beta, u, vecType));

gradF = - 1. 0+xsensProb_->get RHS() ;
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Appendix A

A.1 Capillary Tube Experiment Protocol

A.1.1 Day1l

Assemble the capillary tube apparatus. The capillary typatus contains tubing, bubble
trap, and a flow break. The inlet line contains the bubble @ag a Luer Lock fitting for the
syringe. The outlet line contains a flow break. Remove the pert from the bubble trap.
The vent port is not autoclavable.

Place size 13 MasterFlex tubing on the capillary tubes amthect to the inlet and outlet
tubing Place aluminum foil on the open ends of the tubing.

Autoclave the apparatus and capillary tubes at 121C for Tutes.
Attach the vent port to the bubble trap after the apparatdeng autoclaving.

Reconstitute GFP Pseudomonas fluorescens mut3 by placen@BR Pseudomonas fluo-
rescens mut3 cyrobead in 9mL TSB withg/mL kanamycin. Do this with two separate
vials of TSB with25.g/m L kanamycin. Incubate overnight 2a°C

A.1.2 Day?2

Combine the two vials of overnight growth bacteria into otezike conical vial. Centrifuge
at 10,000 g pour off solution and add sterile DI water, re@atThen add 5 mL sterile
DI water to the solution. (GFP mut 3 Pseudomonas fluoresaengsgat a slower rate then
normal Pseudomonas fluorescens, so only 5 mL is add to makeotidum)

Place the sterilized capillary tube in the capillary tubé&dea Secure it in place by dripping
hot wax over the ends.

Add 60 mL of 1:100 TSB to the 60 mL sterile syringe.
Take 0.5 mL of inoculant and add it to the syringe.

Attach the syringe to the inlet line of the capillary tube tha Luer Lock fitting.
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A.2

Place the capillary tube holder on the confocal microscope.

Secure the bubble trap by taping it upright to the microscope

Secure the flow break by taping it upright to the microscope.

Open up the vent port on the bubble trap.

Fill the bubble trap with 4 mL of liquid by depressing the syggé plunger manually.
Close the vent port on the bubble trap.

Connect syringe to the syringe pump.

Check to make sure that the infuse rate is 0.05 mL/min andythege diameter is set to
26.7 mm.

Start flow though the system. (It generally takes about 15utemfor the liquid to fill the
capillary tube.)

Begin collecting image stacks.

Stacks are collect by focusing on the bottom of bacteria anodmg the stage until the
bacteria are out of focus.

Stacks are collected every 15 for the first day.

Biofilm Images
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N/A

T=125hr

Confocal images of
biofilm grown on July
11,2008, X-Y
dimensions of images
are 642 x 642 pm with
a voxel size of 1.26x

T=4.50 hr

T=1.50hr T=175hr

T = 4.00 hr

Confocal images of
biofilm grown on July
18.2008. X-Y
dimensions of images
are 642 x 642 um with
avoxel size of 1.26x
1.26 pm.

T=4.50hr T=5.00 hr

Figure A.2.
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T=125hr

Confocal images of
biofilm grown on July
29,2008. X-Y
dimensions of images
are 642 x 642 pm with
a voxel size of 1.26x

1.26 pm.

Figure A.3.

T=125hr : T=150hr T=175hr T=2.00 hr T=225hr T=250hr

T =4.00 hr

Confocal images of
biofilm grown on
August 28, 2008, X-Y
dimensions of images
are 642 % 642 pm with
a voxel size of 1.26x
1.26 pm.

Figure A.4.
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T=150hr T=175hr

| Confocal images of

| biofilm grown on

| September 10, 2008.

| X-Y dimensions of

| images are 642 % 642

|| pm with a voxel size of
| 1.26% 1.26 .

T=425hr =450hr T=475hr U T=500hr  T=525hr

Figure A.5.

1.25 hr T=150hr T=175hr T=2000r T=225hr ~ T=250hr

T=275hr il o JI5hr T = 4.00 hr

Confoeal images of
biofilm grown on
September 11. 2008.

| X-Y dimensions of
images are 642 % 642
pm with a voxel size of
1.26% 1.26 pm.

Figure A.6.
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T=2.00hr T=225hr T=250hr

T=350hr ' T=4.00hr

Confocal images of
biofilm grown on
September 16, 2008.
X-Y dimensions of
images are 642 x 642
pm with a voxel size of
1.26% 1.26 um.

T=425hr ) ) T=525hr

Figure A.7.

T=125hr T=150hr T=175hr T=2.00 hr  T=225hr : =Z.50hr

T =4.00 hr

Confocal images of
biofilm grown on
September 17, 2008,
X-Y dimensions of
images are 642 x 642
um with a voxel size of
1.26% 1.26 pm.

T=5.25hr

Figure A.8.
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Appendix B

/1 Sundance AD.cpp for Advection-Diffusion with Potential flow

#i ncl ude Sundance. hpp’

CELL_PREDI CATE( Left Poi nt Test, {return fabs(x[0]) < 1.0e-10;})
CELL_PREDI CATE(Bot t omPoi nt Test, {return fabs(x[1]) < 1.0e-10;})
CELL_PREDI CATE( Ri ght Poi nt Test, {return fabs(x[0]-1.0) < 1.0e-10;})
CELL_PREDI CATE( TopPoi nt Test, {return fabs(x[1]-1.0) < 1.0e-10;})

int main(int argc, charx* argv)

{

try
{

Sundance::init(&argc, &argv);

int np = MPI Comm :worl d().getNProc();

[+ linear al gebra using Epetra */
Vect or Type<doubl e> vecType = new EpetraVect or Type();

[+ Create a nmesh =/

int n = 50;

MeshType nmeshType = new Basi cSinplici al MeshType();

MeshSour ce nesher new PartitionedRect angl eMesher (0.0, 1.0, n, np,0.0, 1.0,
Mesh mesh = nesher. get Mesh();

|+ Create a cell filter to identify maximal cells in the interior (Orega) of
CellFilter Onega new Maxi mal Cel | Filter();

Cell Filter edges new Di mensional Cell Filter(1);

CellFilter left = edges. subset (new Left PointTest());

CellFilter right = edges. subset (new Ri ght Poi nt Test());

CellFilter top = edges. subset (new TopPoi nt Test());

CellFilter bottom = edges. subset (new Bott onPoi nt Test ());

[+ Create unknown & test functions, discretized with first-order Lagrange i nt
int order = 2;
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Expr u
Expr v

new UnknownFuncti on(new Lagrange(order), "u");
new Test Functi on(new Lagrange(order), "v");

[+ Create differential operator and coordi nate functions */
Expr dx = new Derivative(0);

Expr dy = new Derivative(1l);

Expr grad = List(dx, dy);

Expr x = new Coor dExpr(0);

Expr y new Coor dExpr (1) ;

/* Quadrature rule for doing the integrations x/
QuadratureFam |y quad2 = new Gaussi anQuadrature(2);
Quadr at ureFani |y quad4 = new Gaussi anQuadrature(4);

[+ Define the weak formfor the potential flow equation */
Expr flowkEgn = Integral (Orega, (gradxv)x(grad+u), quad2);

/= Define the Dirichlet BC x/

Expr flowBC = Essential BC(bottom v=*(u-0.5*x*x), quad4)
+ Essential BC(top, v+x(u - 0.5+x(x*x - 1.0)), quad4)
+ Essential BC(left, v+(u + 0.5+xy*y), quad4)
+ Essential BC(right, v+x(u - 0.5%(1.0-y*xy)), quad4);

/* Set up the linear problem =*/
Li near Probl em f | owPr ob( nesh, flowkEgn, flowBC, v, u, vecType);

Par anet er XMLFi | eReader reader (searchForFil e("bicgstab.xm"));
Par anmet er Li st sol ver Parans = reader. get Paraneters();

cerr << "params = << sol ver Parans << endl;
Li near Sol ver <doubl e> sol ver = Li near Sol ver Bui | der: : creat eSol ver (sol ver Par ans)

[+ Solve the problem =/
Expr u0 = fl owProb. sol ve(sol ver);

/= Set up and solve the advection-diffusion equation for r x/
Expr r = new UnknownFuncti on(new Lagrange(order), "u");
Expr s = new Test Functi on(new Lagrange(order), "v");

Expr V = grad*u0;
Expr adEgn = Integral (Orega, (gradxs)=(grad+r), quad2)
+ I ntegral (Orega, s*V«(grad+r), quad4);

Expr adBC = Essenti al BC(bottom s+*r, quad4)

+ Essential BC(top, s*(r-x), quad4)
+ Essential BC(l eft, s*xr, quad4)
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+ Essential BC(right, s*(r-y), quad4);

Li near Pr obl em adPr ob( nmesh, adEqn, adBC, s, r, vecType);
Expr r0 = adProb. sol ve(sol ver);

FieldWiter w = new VIKWiter("AD 2D");

w. addMesh( mesh) ;

w. addFi el d("potential ", new ExprFi el dW apper (u0[0]));

w. addFi el d("potential 2", new ExprFi el dW apper (u0[1]));

w. addFi el d("concentrati on", new ExprFi el dWapper(r0[0]));
w.wite();

}

cat ch(excepti on& e)
Sundance: : handl eExcepti on(e);
Sundance: :finalize();

}
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