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Abstract

Three years of large-scale PDE-constrained optimization research and development are
summarized in this report. We have developed an optimization framework for 3 levels of
SAND optimization and developed a powerful PDE prototyping tool. The optimization
algorithms have been interfaced and tested on CVD problems using a chemically reacting
fluid flow simulator resulting in an order of magnitude reduction in compute time over a
black box method. Sandia’s simulation environment is reviewed by characterizing each dis-
cipline and identifying a possible target level of optimization. Because SAND algorithms
are difficult to test on actual production codes, a symbolic simulator (Sundance) was de-
veloped and interfaced with a reduced-space sequential quadratic programming framework
(rSQP++) to provide a PDE prototyping environment. The power of Sundance/rSQP++ is
demonstrated by applying optimization to a series of different PDE-based problems. In ad-
dition, we show the merits of SAND methods by comparing seven levels of optimization for
a source-inversion problem using Sundance and rSQP++. Algorithmic results are discussed
for hierarchical control methods. The design of an interior point quadratic programming
solver is presented.
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Chapter 1

Introduction

This report presents the results of a three-year research project to investigate algorithms
and software for the solution of optimization problems constrained by partial differential
equations (PDE). We refer to these problems as PDE-constrained optimization problems,
or PDECO. Our emphasis has been on developing algorithms for large-scale problems and
the use of parallel computers.

Several examples of PDECO are optimal estimation of material parameters, given ex-
perimental data and a physical model; optimal design of a device given a simulator and
the definition of an objective; nondestructive detection of defects; and determination of the
source of a contaminant, given a flow and dispersion model. All of these problems exhibit
large numbers of state and design variables and can be stated in the general form

minimize f(y,u)

subject tox(y, u) = 0 (PDECO)

whereu is the set of parameters to be determined@aisthe vector of “state” variables for

the PDE system represented by the constedintu) = 0. The objective function measures

the discrepancy that we wish to reduce or, in other problems, the design criteria we wish
to improve. In this report, we concentrate on equality constraints; our work on inequality
constraints is less well developed. We assume that given any value of the parameters,
we can compute the corresponding state variables

Two general approaches for solving such problems are available. The first is to use
an existing PDE solver for the constraints to compyt@s a function ofu and evaluate
f(y(u),u). This approach, referred to as the “black-box” approach, is easy to use because
it requires no modification to an existing PDE simulator, but restricts the choice of opti-
mization algorithm to those that are slowly convergent for PDECO type problems. Ideally,
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we would like to use a method that converges quickly to the optimum value, but rapid con-
vergence usually requires the computation of the gradient of the objective furfctith
respect tou . The computation of this gradient, however, requires the knowledge of the
derivative ofy(u) with respect ta: and this information is not often available from many
traditional PDE solvers. Furthermore, it is often extremely difficult, if not impossible as
a practical matter, to modify the PDE solver to compute this information. For these and
other reasons (detailed in chapter 2) black-box methods are typically restricted to smaller
size problems, in particular smaller design spaces.

The second possibility is already suggested by the above discussion, namely, to modify
the PDE solver to obtain the needed gradient, sensitivity, and adjoint information. The
ability to do this opens up a wide variety of more efficient optimization techniques and
provides the tools to address much larger problems. The demonstration of the power of
this approach was the major thrust of our work. The conclusion to draw is that PDE and
simulation software should be designed with optimization in mind to enable this power to
be applied to the many interesting and important SNL problems described below. One facet
of our research has been to develop a PDE framework that gives optimization algorithms
unprecedented control over the PDE processes.

Black-box methods are also referred to as nested analysis and d¥aiyiD( and char-
acterize the majority of current SNL approaches. The ability to interface seamlessly with
any simulation code is an obvious key strength of the black-box methods and, coupled with
a range of algorithms and frameworks, such DAKOTA [37, 38, 39], have been able to solve
complex engineering design problems. As noted above, however, many limitations to this
strategy remain, but the continued existence of PDE codes for which gradient informa-
tion is not available has spurred other research at SNL in pattern search methods to try to
improve the efficiency of these solvers for problems where there are no other choices [57].

Optimization methods that are able to obtain gradient, adjoint, and sensitivity informa-
tion from the PDE solver can often be even more successful by not requiring exact solution
of the constraint equations at each iteration. This is especially important in problems where
the PDE constraints are nonlinear. In such cases, the constraints are only completely sat-
isfied in the limit as convergence to the optimal parameters is achieved. Thus this strategy
is called simultaneous analysis and desi§AND) [94] [83]. These methods have great
potential for solving large PDECO problems. There are many assumptions associated with
the application o6AND algorithms to production simulation codes and probably the most
obvious disadvantage is the implementation cost necessary to equip PDE solvers with the
necessary facilities to compute gradient information. Nevertheless, PDECO may be the
only option to address large design spaces.
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1.1 State of the Field

To put our work into context, we briefly survey the historical development and current state
of algorithms and software for PDECO.

1.1.1 Algorithms and applications

Several areas of research have motivated the development of PDE constrained optimization,
including shape optimization in computational fluid dynamics [2] [8] [43] [44] [21] [22]
material inversion in geophysics [81] [82] [3], data assimilation in regional weather predic-
tion modeling [124] [74], structural optimization [86] [92] [93], and control of chemical
processes [17]. A complete discussion of all the aforementioned disciplines is beyond the
scope of the report. Shape optimization in computational fluid dynamics (CFD), however,
has arguably made the largest contributions toward direct and adjoint sensitivities, which is
one of the important pieces of information needed3&ND algorithms, and we therefore
provide a brief background of some key developments.

In general, the shape optimization problem for CFD is extremely expensive since the
standard solution approach requires the complete solution of computationally expensive
flow equations for each optimization iteration. Pironeau first studied derivative-based shape
optimization using the adjoint formulation for minimum drag for both Stokes and incom-
pressible Navier-Stokes flow [90]. Jameson applied the adjoint method to shape optimiza-
tion using the Euler equations [62]. Numerous results have since been published on shape
optimization [79] [5] [6] [7] [14] [32], including compressible Navier-Stokes simulations
shape optimization of three dimensional wings [75] . Different solution procedures have
been attempted to try to improve the convergence of shape optimization algorithms. A
“one-shot-method” was introduced early in the 1990’s which used multi-grid methods
where the optimization and forward problems were solved with different levels of grid
fidelity [114]. Typically, the optimization problems were solved on coarser meshes. These
methods still required complete convergence of the flow code for each optimization iter-
ation, but could be considered the first attempt towdAIND methods. The result was a
significant reduction of the overall solution time.

SAND was introduced in the early eighties and nineties [52] [94] [83] and has devel-
oped momentum as the state-of-the-art methodology for optimization of large-scale simula-
tion problems. Significant results have been generate8AND methods, in particular for
the serial case [2] [61] [8] [43] [114] [12] [67]. Less rapid advances have been made in the
area of parallel PDE-constrained optimization. The primary reason for this slow progress
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is that forward simulation code development has only recently reached a high level of ma-
turity. Combined with the continuing growth in computer capabilities, large-scale PDECO
for parallel applications is now an important area of research [44] [20] [21] [22]. Most
parallel developments, however, involve specialty simulation codes connected to tailored
optimization methods, thereby avoiding some of the interfacing issues that are encountered
with legacy production codes. One of our primary goals was to address these interfacing
issues, and although interfacing remains problematic, we have made significant progress in
our software tools and general understanding of production PDE simulators.

Transient simulation poses yet another level of difficulty to large-scale PDE-constrained
optimization. One of the main obstacles is the efficient calculation of sensitivities in a
time-stepping scheme for large design spaces. Several approaches can be considered, one
of which is to utilize sensitivity calculations for differentiable algebraic equations (DAE)
for reduced-gradient calculations. By converting a PDE system to DAES, various methods,
such as multiple shooting, can used to discretize in time [89] [46]. Even though large DAE
systems can be solved, these methods are limited to small number of design parameters.
For alarge number of design variables, adjoint sensitivity in transient simulations have been
considered but are not efficient because of the large storage requirements. This results from
the need to integrate backward in time to calculate the adjoint vector, which requires storage
of the forward problem’s solution at every time step [64] [53]. A recent and most promising
result from Akcelik et al [3] demonstrated a full space Gauss-Newton method in which
they efficiently solved a 2.1 million variable inversion problem using the transient wave
equation. Finally, work in the area of time decomposition and control also has produced
promising algorithms and results [54].

1.1.2 Software

While progress has been made in developing algorithms for PDECO, the spread of these
algorithms to production software has been slow because of the tight coupling required
between optimizer and PDE simulation software. Although little work has been done on
software frameworks for PDE-constrained optimization and, with the exception of the work
presented in this report, virtually no work has been done on object-oriented frameworks
for PDECO, several attempts have been made to collect PDECO algorithms in libraries
(Veltisto and TRICE) [21] [22] [34]. An encouraging trend is that optimization codes are
starting to be written in terms of flexible linear algebra interfaces such as PETSc [9], the
Equation Solver Interface (ESI) [103], the Hilbert Class Library (HCL) [51], rSQP++ [10],
Trilinos [55] and the Trilinos Solver Framework (TSF) [56]. Similarly on the PDE sim-
ulation side, the state of the art is evolving away from codes specialized to a particular
discipline and toward general-purpose frameworks such as SIERRA and Nevada [111].
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Identifying the additional changes to the design of both optimization software and PDE
simulators that will be required for the use of PDECO has been a major focus of this LDRD
project.

1.2 Accomplishments of this Project

1.2.1 Classification of PDECO Problems

Large-scale PDE-constrained optimization comes in many forms and the variety of algo-
rithms and interfacing mechanisms presents a complex range of options for a heteroge-
neous simulation environment such as the one that exists at SNL. To achieve a general
approach foSAND optimization for a large range of simulation codes is a lofty challenge,
because by definitioBAND methods leverage the linear algebra of the simulation code
and therefore each interface needs to be custom designed. This research project addresses
these interfacing problems through a variety of software tools and establishes a system-
atic nomenclature and approach for the consideratioBAIXID optimization. Chapter 2

will introduce a sequence of levels of coupling between PDE solver and optimizer, with
Level 0 being the most loosely coupled and Level 6 being the most tightly coupled and po-
tentially yielding the highest performance. Currently, most Sandia applications are capable
of Levels 0 and 1 only.

Chapter 2 contains a discussion of the mathematical foundations of PDECO, and a
systematic enumeration of the levels at which PDE and optimization codes can be cou-
pled. Briefly, Level 0 is the most loosely coupled black-box algorithm and Level 6 is
the most tightly coupled full-space algorithm, which potentially yields the highest perfor-
mance. Currently, most Sandia PDE applications are capable of Levels 0 and 1 only. In
Chapter 3 we discuss the general simulation environment at Sandia and possibilities for
PDECO in various disciplines. In Chapter 7 we show performance results for different
levels of PDECO.

1.2.2 Software Development

Software is a major challenge in PDECO, and much of our work has been to develop
software tools that will aid the exploration of research ideas in PDECO, provide guidance
for future development of production-quality PDECO capability, and provide immediate
PDECO capability for Sandia problems. These tools have been designed from the start
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with PDECO and interoperability in mind. We have developed:

e A software framework (rSQP++) for solving reduced-space PDECO problems.

e A software framework (Split/O3D) for solving full-space and inequality-constrained
PDECO problems.

e A PDE simulation component system (Sundance) that is capable of providing the
additional operations required by the more strongly coupled levels of PDECO.

e Aninterface between rSQP++ and an existing production PDE code, MPSalsa, which
allows SAND capability through Level 4.

All of these tools have been implemented in C++, all inter operate via the Trilinos linear
algebra components, and all have parallel capability.

1.2.3 Numerical Experiments

We have conducted numerical experiments to evaluate the different levels of PDECO. In
Chapter 5, we show results of Level 4 (c.f. Chapter 2) coupling between the rSQP++
optimizer and a Sandia production code, MPSalsa. This resulted in an order of magnitude
speedup relative to a Level 1 “black box” method. These experiments have also given us
insight into the accuracy required in Jacobian calculations. In Chapter 7, we present a
survey of PDECO problems solved using rSQP++ and Sundance. Because of Sundance’s
very flexible nature, we have been able to explore all levels of coupling for PDECO; as
with MPSalsa, going to Level 4 yields an order of magnitude speedup relative to Level 1,
and then going to the highest degree of coupling (at this point, possible only through using
Sundance as the PDE solver), Level 6 yields a further order of magnitude speedup beyond
Level 4. Figure 1.1 and 1.2 show the results of a numerical experiment solving a source
inversion problem constrained by a convection diffusion problem. Large differences in
numerical efficiencies can be be observed at each level of optimization.

1.2.4 Hierarchical Control

Although not originally part of the proposal, an interesting class of problems arose that
we spent some time considering. In particular, it often occurs in applications that there is
more than one objective. The so-called “multi-objective” optimization problem has some
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special properties when the constraints are PDEs. Suppose, for example, one wants to drill
a well into an aquifer to help in preventing contaminants from entering a city water system.
The primary objective is to reduce the contaminants in the system below a given threshold.
Secondary objectives may include minimizing cost, minimizing the time to completion, and
minimizing the amount of water taken out of the aquifer. There is no single way to handle
the multi-objective problem, but, building on work done in the area, we were able to show
how a formulation, called “hierarchical control,” that takes into account an ordering of the
objectives can yield solutions that are significantly smoother and thus more useful in many
applications. This work is described in Chapter 8 where we demonstrate the effectiveness
of our full-spaceSAND approach on a problem with significant inequality constraints.

1.3 Conclusions and Recommendations

With the increasing power of our massively parallel computing platforms and the increasing
sophistication of our PDE-based simulations comes an increasing demand for optimization
procedures that can exploit this power to improve designs significantly, to control processes
better, and to solve complex inversion problems more rapidly. As we have indicated above,
traditional, NAND approaches to solve PDECO problems are not up to the task and tradi-
tional PDE solvers are not designed with optimization in mind and thus are difficult to use
with faster methods. The major result of this research project is a demonstration that the
potential speedup resulting from mode&SAND approaches can be achieved. This demon-
stration was made possible by developing a powerful PDE environment and two advanced
optimization codes, which were to nontrivial problems. For SNL to realize fully this poten-
tial will require changes in how SNL develops its simulation codes and PDE solvers. The
following recommendations address these issues.

1.3.1 Recommendations

1. Because of the large speedup resulting from sensitivitiesS&NID optimization,
future simulators and PDE solvers should be designed with optimization in mind and,
in particular, with enhancements that include gradients, sensitivities, and adjoints.
These features are difficult to add as an afterthought. Along these same lines, Sierra
and Nevada should be extended to include these capabilities.

2. rSQP++ and Split/O3D should be further developed and also interfaced with DAKOTA.
DAKQTA is already interfaced with SIERRA, and will eventually be interfaced to
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Nevada, so the rSQP++/Split/O3D interface to DAKOTA will facilitate PDECO with
SIERRA and Nevada.

. The development of Sundance as a prototyping and rapid development environment
for parallel PDECO should be continued. In addition, the possibility of interfacing
the Sundance symbolic problem definition capability with Sierra and Nevada should
be explored as a path to providing improved PDECO capability to those frameworks.

. SNL should emphasize the development of frameworks and tools in C++ in a true
object-oriented manner. Developers should be encouraged to exploit existing frame-
works such as DAKOTA, rSQP++, Trilinos, and TSF and to develop inter-operable
components.

. Incorporate the sensitivity procedures that we have demonstrated with MPSalsa into
on-going projects such as Xyce and Premo.

. Extend the research and tools begun here to transient problems, inequality con-
straints, and real-time optimization.

. Apply PDECO technology to homeland security applications such as improving the
response to chemical/biological/radiological attacks on facilities, water distribution
networks, and urban facilities.
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Figure 1.1. Numerical Results for Source Inversion for Convec-
tion Diffusion for levels 0-5
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Chapter 2

Mathematical Overview: Sensitivities
and Levels of Optimization

2.1 Overview

An introduction of the appropriate mathematics is presented to emphasize the important
linear algebraic components that are necessary for interfacing various levels of optimiza-
tion methods. This discussion is primarily designed to provide the PDE developer with the
fundamental knowledge for considering more efficient ways of solving optimization prob-
lems. Optimization methods are classified into two main categddasiD and SAND,

each of which are further broken down to additional levels. The optimization levels de-
fine different interfaces for achieving higher efficiency. The calculation of the derivatives
(sensitivities) of “state” variables with respect to “design” variables is a crucial step toward
more efficient levels of optimization using so-called reduced-space methods. The incor-
poration of different types of sensitivities determine which leveldN&éIND and SAND
optimization are possible.

We consider equality-constrained nonlinear programs (NLPs) of the form

min  f(y.u) (2.1.1)
st e(y,u) = (2.1.2)
where:
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y € R™

u € R™

fy,u): ROwtn) R
c(y,u) : Rwimd) _ RM,

Equation (2.1.2) represents a set of nonlinear simulation equations which we refer to as
theconstraints In this notation¢(y, ) is a vector function where each componerty, u),
j = 1...n,, represents a nonlinear scalar function of the variaplasd«. Here,u are
often called the design (or control, inversion) variables whikre referred to as the state
(or simulation) variables. Note that the number of sta@nd design. variables aren,
andn, respectively. A typical simulation code requires that the user specify the design
variablesu and then the square set of equatiefg u) = 0 is solved fory. In the opti-
mization problem in (2.1.1)—(2.1.2f(y, u) is a function that we seek to minimize while
satisfying the constraints; this function is called tigective functioror just theobjective
In an optimization problem, the design variableare left as unknowns which are deter-
mined, along with the states in the solution of (2.1.1)—(2.1.2). In some application areas,
the partitioning into state and design variables is fixed and known a priori, while in other
application areas the selection may be arbitrary.

Here we discuss the issues involved in modifying an existing simulation code or devel-
oping a new code that can be used to solve optimization problems efficiently using various
levels of gradient-based methods.

The development effort required to implement the needed functionality for a simulation
code to be used in a gradient-based optimization algorithm varies depending on the level
of optimization method. The goal of this discussion is to be precise about what the require-
ments are for a simulation code for different levels of intrusive optimization. We define
intrusive optimization as methods that require more information from the simulation code
and may require more effort to interface. We start with sensitivities for the lower-level op-
timization methods and then move on to the sensitivities for the more invasive, higher-level
methods. This discussion should give the reader some idea what the expected improve-
ments in performance can be by going to higher-level optimization methods. An additional
goal of this treatment is to motivate simulation application developers to consider the po-
tential of higher-level optimization methods and to study optimization methods in further
detail. References are made to more thorough discussions of specific optimization methods
and results from various application areas for the interested reader.

We should also mention that all of the various levels of optimization methods that
are discussed here can also handle extra constraints beyond the state constraints shown
in (2.1.2). From the standpoint of an application developer, the sensitivity requirements for
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these extra constraints are the same as for the objective function. In general, the same types
of computations that must be performed for the objective function must also be performed
for the extra constraints. The handling of these extra constraints is not described here, but
is described in the context of reduced-space SQP in Section 4.1.3.

2.2 Implicit State Solution and Constraint Sensitivities

The set of nonlinear equation§y, u) = 0 can be solved foy using a variety of methods.
Using the solution method it is possible to define an implicit function

y=1y(u), st.c(y,u) = 0. (2.2.3)

The definition in (2.2.3) simply implies that for any reasonable selection of the design
variablesu, the solution method can compute the statedNote that evaluating this im-
plicit function requires a complete simulation or “analysis” to be performed by the solution
method. The cost of performing the analysis may only b&&m,) computation in a best-
case-scenario, but for many applications the complexity of the analysis solution is much
worse.

In the remainder of this section, we derive the sensitivities of the spateth respect
to the designs as related through the implicit function (2.2.3). We begin with a first-order
Taylor expansion of(y, u) about(yo, u) given by

Oc Oc
c(y,u) = ¢(yo, uo) + 6_y5y + %(511, + O(/|5yl]*) + O(]|6ul?) (2.2.4)

where:

g—; is a squardk "v-by-R™ Jacobian matrix evaluated @, uo)

¢ is a rectangulaR " -by-R ™" Jacobian matrix evaluated @, uo).

In this notation, the Jacobian matr% is defined element-wise as

Jde 8(37' .
(83/) o ory Ny Ty

If the matrlx ¢ exists and is nonsingular then the implicit function theorem [80, B.9]
states that the |mpI|C|t function in (2.2.3) exists and is well defined in a neighborhood of
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a solution(yo, ug). In some applications, the matr% is always nonsingular in regions

of interest. In other application areas where the selection of state and design variables is
arbitrary, the variables are partitioned into states and designs based on the non-singularity
of g—;. Note that the only requirement for the latter case is for the Jacobiafyof) to

be full rank. In any case, we will assume for the remainder of this discussion that, for the
given selection of states and designs, the mﬁfiﬂs nonsingular for every pointy, u)

considered by an optimization algorithm. The non-singularit%‘bhllows us to compute
a relationship between changesyimvith changes in.. If we require that the residual not
change (i.ec(y, u) = c(yo, uo)) then for sufficiently smalby anddu the higher order terms
can be ignored and (2.2.4) gives

oc oc
—0y + —ou=0. 2.2.
3y Y+ 5,0t 0 (2.2.5)

If % is nonsingular then we can solve (2.2.5) for
Y

oy =—— —du. (2.2.6)

The matrix in (2.2.6) represents the sensitivityyofvith respect tou (for c(y,u) =
constant which defines

9y _ _g¢ "o 2.2.7)

We refer to the matri% in (2.2.7) as thalirect sensitivity matrix

2.3 NAND

Now consider how the above can be used to help solve optimization problems of the form
(2.1.1)—(2.1.2). The implicit functiog(«) allows the nonlinear elimination of the state
variablesy and the constraintgy, u) = 0 to form thereduced objective function

flu) = f(y(u),u). (2.3.8)

This nonlinear elimination leaves the following unconstrained optimization problem in the
space of the design variables only: )
min f(u). (2.3.9)

The unconstrained optimization problem in (2.3.9) can be solved using a variety of
methods. Note that each evaluationfdf:) requires the evaluation @f(«) which involves
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a complete simulation or analysis to sol(g, «) = 0 for y. Therefore, a complete analysis
is nested inside of each optimization or design iteration. Optimization approaches of this
type are broadly categorized assted analysis and designNAND.

NAND optimization approaches that do not compute gradients will be referred to as
level-0 approaches and, as mentioned in the chapter 1, are generally restricted to search
methods. These will not be discussed further here. As we will see below, there are several
higher-level approaches that use sensitivities (i.e. derivatives).

Gradient-based optimization methods for (2.3.9) require the computation ieftheed
gradient

g e R, (2.3.10)
ou

There are several relatively fast optimization methods that rely only on the reduced gradient
in (2.3.10) such as quasi-Newton methods (i.e. BFGS [85, Chapter 8]). These methods can
achieve superlinear rates of convergence wheas of moderate dimension. A general
outline for these optimization algorithms is given next in Algorithm 2.3.1.

Algorithm 2.3.1 : Outline for NAND Algorithms for Unconstrained Optimization

1. Initialization: Choose tolerance € R and the initial guess,, € R, setk = 0
2. Sensitivity computation: Compute the reduced grad%;éir&ty = y(ug), u = uy
3. Convergence check: |I|fg—£|| < 7 then stop, solution found!

4. Step computation: Compuie € R" s.t. g—iéu <0
5. Globalization: Find step length that ensures progress to the solution

6. Update the estimate of the solution:

Ugy1 = U + @ du
k=k+1
goto step 2

A simple choice for the step computation in step 4 of Algorithm 2.3.1 is the steepest

T
descent directionu = —gj: for which the required descent property holds

~ ~ AT
of . 0fdf
%(5” = *%% <0
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if g—f # 0. Most quasi-Newton methods compute a search direétioby maintaining a

;T
positive-definite matrix3 and then computingu = —B*l% (which is also easy to show

has the descent property).

The simplest way to compute the reduced gradient is to use finite differences. For
example, using one-sided finite differences, each component of the reduced gradient can
be approximated as

(a_f) o Wl ¥ o) us + cer) = Flyludw) 5y (2.3.11)
ou | €

NAND optimization approaches that use finite differences as in (2.3.11) will be referred to
aslevel-lapproaches.

2.3.1 Exact Reduced Gradients

The major drawback of optimization approaches that rely on the finite-difference reduced
gradientin (2.3.11) is that, analyses are required per optimization iteration and the accu-
racy of the computed optimal solution is degraded because of the truncation error involved
with finite differences.

An alternative approach is to compute the reduced gradient in a more efficient and
accurate manner. The exact reduced gradielfitof = f(y(u), u) is

of _ofon of

ou  Oyodu  Ou (2.3.12)

where:
f,—f is aR " row vector of the gradient w.r.i; evaluated aty;, u;,)
% is aR " row vector of the gradient w.r.t; evaluated aty;,, u;,)

andg—-z is the direct sensitivity matrix defined in (2.2.7). By substituting (2.2.7) into (2.3.12)

we obtain .
of  0fdc toc of

ou oydy ou  ou
The first term in (2.3.13) can be computed in one of two ways. The first approach, called

the direct sensitivity approaghis to compute the direct sensitivity matr% = —2—;71%

(2.3.13)
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first and then compute the produ%ﬁ%. The advantage of this approach is that many

simulation codes are already setup to solve for linear systemsg,giiﬂrince they use a
Newton-type method to solve the analysis problem. The disadvantage of the direct sensi-
tivity approach is that to forng%, n, linear systems must be solved with the Jacotggm

for each column O% as a right-hand side. This is generally a great improvement over
the finite-difference reduced gradient in that the solution of, inear systems witig—; is
cheaper than a full simulation to evaluate:) and the resulting reduced gradient is much
more accurate. Optimization algorithms that use this direct sensitiAtiD approach

will be referred to asevel-2optimization methods.

The second approach for evaluating (2.3.13), calledatljeint sensitivity approachis
to compute

A=— 2L cR™ (2.3.14)

first, followed by the formation of the produafr%. The column vecton is called the
vector ofadjoint variables(or the Lagrange multipliers, see (2.4.16)). The advantage of
this approach is that only a single solve with the ma@{yz is required to compute the
exact reduced gradient. This removes thé:,) complexities of the level-1 and level-

2 optimization approaches. However, at least one complete analysis is still required per
optimization iteration to compute= y(uy) in step 2 of Algorithm 2.3.1. The disadvantage

of the adjoint sensitivities approach is that simulation codes which solve linear systems
with the Newton Jacobia% may not be able to solve a linear system efficiently with its
transpose. It can be a major undertaking to revise a simulation code to solve with transposed
systems, especially if the Jacobian is a parallel objd&tiND approaches that use adjoint
sensitivities will be categorized #svel-3optimization methods.

2.4 SAND

To this point we have only consider®RND optimization approaches that require at least
one full simulation problena(y, u) = 0 be solved at every optimization iteration. There
are also optimization approaches starting with an initial gugssad) wherec(yo, ug) # 0

that will solve the simulation (analysis) problem and the optimization (design) problems
simultaneously. These higher-level optimization approaches are referresitowdsaneous
analysis and desigor SAND. Many of theSAND approaches require the same reduced
gradient in (2.3.13). We refer t8AND methods that use direct sensitivities lagel-4
methods and those that use adjoint sensitivitie¢easl-5 methods. In addition to the
reduced gradient, level-4 and leveBRAND methods also require that the simulation code
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(now to be referred to as the application) be able to compute Newton steps of the form

—1
dyn = @ c (2.4.15)
9y

Whereg—f1 andc are the Jacobian and the residual of the constraipts:) computed at
the current estimate of the solutidn,, ux). This is usually not a very difficult extra re-
quirement given the requirements for the reduced gradient. In addition to the requirement
that the reduced gradlegi vanishesSAND methods must also be responsible for solving

c(y,u) = 0 to an acceptable tolerance. The condition thdt, «)|| (where||.|| is some
norm) must be reduced below a small tolerance is known afe#sbility condition When
we say that an optimization step improves feasibility, we mean that it decreasetethe
sibility ||¢(y,w)||. In addition to design variables SAND methods must also explicitly
handle the stategas optimization variables. The number of state variablesan be very
large and this has a significant impact on the methods and implementation approaches that
can be used faBAND methods. In some applications (e.g. those requiring time-dependent
simulations), the amount of storage just needed to store vectors ofigizan exhaust
the RAM of even high-end supercomputers. Algorithm 2.4.1 gives the outline for a basic
level-4/level-5SAND method.

Algorithm 2.4.1 : Outline of a Basic Level-4/Level- SAND Optimization Algorithm
1. Initialization: Choose toleranceg.,n; € R and the initial guesg, € R" and
ug € R"™, setk =0

2. Sensitivity computation: Compute the reduced gradl%nand the residuak: at
(yka uk)

3. Convergence check: |I|1g—£|| < nsand||c|| < 7. then stop, solution found!
4. Step computation:

(a) Feasiblity step: Compute Newton step; = g—;f]c at (yr, ug)

(b) Optimality step: Computé: € IR" s.t. 2—5511, <0
5. Globalization: Find step length that ensures progress to the solution

6. Update the estimate of the solution:
Yer1 = Yp + ((53/1\7 + y(SU)
Ugy1 = U + @ du
k=k+1
goto step 2
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Note that Algorithm 2.4.1 has the same basic steps as Algorithm 2.3.1 and that these
steps are common to many optimization algorithms. However, the first major difference is
that the reduced gradient computed in step 2 is computed at the current estimate of the so-
lution y, instead of the fully converged solutign= y(u,) as in Algorithm 2.3.1. Another
major difference is the explicit handling of the state variallaad the constraints This is
seen in the sensitivity computation and the convergence check. The same methods that can
be used in &AND algorithm to computéu, such as steepest descent and quasi-Newton,
can also be used in step 4b. While the globalization method usedAND algorithm
may be fairly simple, more sophisticated globalization strategies are neededfi and
these strategies may have to be application dependent. The last major distinction to point
out between Algorithm 2.3.1 and 2.4.1 is the update of the state varigimestep 6. It is
easy to see that the updatgd ; satisfies the linearized constraints shown in (2.2.4) (with
the higher-order terms dropped out and setiiig v) = 0 anddy = (yrs1 — yr)/).
Therefore, one iteration of Algorithm 2.4.1 is essentially a Newton iteration for the equa-
tionsc¢(y,u) = 0 where bothy andu are modified. Hence, maryAND methods show
guadratic rates of local convergence in the constraints (which is common for Newton meth-
ods).

What differentiates a level-4 from a levelSSAND method in Algorithm 2.4.1 is how
the reduced gradient in step 2 and the update for the states in step 6 are computed. The
SAND algorithm shown in Algorithm 2.4.1 is essentially equivalent to a reduced-space
SQP method that uses a coordinate variable-reduction null-space decomposition (see Sec-
tion 4.1.3). While there are other examples of level-4 and lev@ABID methods than the
one shown in Algorithm 2.4.1, the major types of computations remains the same (i.e. in-
tialization, sensitivity computation, convergence check, step computation and globaliza-
tion).

It has been shown in many different application areas that level-5 optimization methods
can compute a solution for optimization problems of the form in (2.1.1)—(2.1.2) at cost
which is a small multiple of the cost of solving a single analysis probiemu) = 0 for
NLPs with a moderate nhumber of design variables @.e.= O(100)). However, these
methods, which use quasi-Newton or similar techniques (for step 4b in Algorithm 2.4.1),
generally require more and more optimization iterations to solve an NLP as the number of
design variables,, is increased. The total number of optimization iterations required to
reach an acceptable solution tolerance is genef&(y.,)“?~ ) wherea) y is some number
greater than 0 but generally less than 2.
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2.4.1 Full Newton SAND

All of the level-2 through level-5 optimization methods only require first derivatives in the
form of the Jacobian matric% and% and objective gradient%g and %. However, if
second derivatives for the constraints and objective function are available, then potentially
more efficient higher-level optimization methods are available. Before discussing these
higher-level methods and the requirements from application codes we must first present the
formal optimality conditions for a solution to (2.1.1)—(2.1.2).

We begin with the definition of an important aggregate function called #uygangian
given by
L(y,u, \) = f(y,u) + N c(y, u) (2.4.16)

where:
A € R™ isthe vector olagrange multipliers

Given the definition of the Lagrangian, the optimality conditions (also known as the KKT
conditions [85]) state that the following are necessary requirements for the solution of
(2.1.1)—(2.1.2):

L
9 of | \rie

Ew = oM £ =0 (2.4.17)
oL of roc

5 = Bu + A Evi 0 (2.4.18)
oL

U c(y,u) =0. (2.4.19)

All SAND methods seek a solution of this set of nonlinear equations. Note that (2.4.17)
can be solved foh and then substituted into (2.4.18), yielding the definition of the reduced
gradientin (2.3.13). Therefore, the optimality conditions in (2.4.17) and (2.4.18) are equiv-

alent tod. = 0.

The system of nonlinear equations in (2.4.17)—(2.4.19) can be solved using Newton’s
method which has the following linear subproblem (known as the KKT system)

9%I a2r, T 8cT 5 or.T

oy? Oydu Oy ’V Y -| By

o' orn ocT || gy | = | orT | (2.4.20)
Oyodu Ou? ou ou

YA 7 S\ .

Oy ou -
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The above Hessians of the Lagrangian function are composites of the following Hessian
matrices for the objective and the constraints:

2
Z_UJ; R
Pf o Ruxn. (2.4.21)
dyou
an Ny XN
ou?
.
620j
_J Rnyxny
oy? <
d%c; 0y j=1...n,. (2.4.22)
Oyou
aQCj Ny XN
w € R ) )

Optimization methods that use second derivatives, or approximations to them, will be clas-
sified aslevel-6 methods. These optimization methods are among the most sophisticated
gradient-based methods developed to date and continue to be a topic of active research
throughout the scientific community. The general outline for a lev@ABID optimization

method is given in Algorithm 2.4.2.

Algorithm 2.4.2 : Outline of a Level-@AND Optimization Algorithm

1. Initialization: Choose tolerances,.,n,.n, € R and the initial guesg, € R",
ug € R™ and )y € R, setk =0

2. Sensitivity computation: Compufg, 2= 5, 25 2% andc at (y, u)

3. Convergence check: |I|f‘3—2|| < ny, ||| < n, and||c|| < 7. then stop, solution
found! ’

4. Step computation: Solve the KKT system in (2.4.20pf@rdu, 6\)
5. Globalization: Find step length that ensures progress to the solution

6. Update the estimate of the solution:
Yk+1 = Yr + a0y
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Upy1 = U + @ du
)‘k—|—1 = )\k + oA
k=k+1

goto step 2

Note that a level-6AND method must also maintain estimates of the Lagrange multi-
pliers in addition to estimates of the staieand the designs. Level-4 and level-5SAND
methods usually do not need an initial guessXpand do not maintain estimatesafThe
same globalization strategies used in level-4 and lev@hBID methods can be used, un-
altered, in a level-6AND method. In many applications areas, these level-6 optimization
methods are quadratically convergent with algorithmic complexities that scale indepen-
dently of the number of design variables [20]. One of the main disadvantages of this
level of invasiveness is that it is difficult for many different types of application codes to
generate accurate second derivatives in a reasonably efficient manner. Therefore, there can
be a large development overhead and computational expense involved in applying level-6
methods. The KKT system in (2.4.20) is expensive to solve and its solution is a bottleneck
in a level-6SAND method. Therefore, the most critical part of a levebAND method is
how the KKT system in (2.4.20) is solved and there are many different direct and iterative
approaches; the best approach is, of course, application dependent.

2.5 Implementation Issues and Summary

In this section, we discuss several issues that relate to the implementation of sensitivities,
the overall optimization method complexities/scalabilities, and the interface to optimization
methods. First the 7 levels of optimization are summarized below:

Level 0 is aNAND nongradient “black box” approach where the optimizer does not
require any information from the PDE code other than the objective function value per op-
timization iteration. This zero level is perfectly suited for simulation problems and codes
that are complex and do not calculate exact Jacobians and do not require the investigation
of large design spaces. Level 0 may be the only option for PDE codes where the complexity
of the physics precludes the calculation of analytic derivatives and where standard approx-
imations are poor. The interfacing cost is minimal, because most black-box methods can
communicate through the file system.

Level 1is aNAND gradient-based “black box” approach where the optimizer requires
that the PDE code compute the objective function value and the gradient per optimization
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iteration. The gradient is typically calculated using a finite difference method. Level 1
is suited for simulation codes that are complex, but smooth enough to allow reasonable
accuracy in the finite difference calculation. Level 1 is also suitable for problems that
pose an insurmountable software challenge and/or do not require the investigation of large
design spaces. Similar to level O approaches, the interfacing effort is minimal.

Level 2is aNAND gradient-based method that uses direct sensitivities from the simu-
lation code. There are a few simulation codes at Sandia that calculate direct sensitivities.
Black-box approaches can typically take advantage of these sensitivities to calculate the
objective function gradient. The cost of this calculation is more than repaid by the fact that
no extra simulations are needed, unlike the use of finite differences. Besides the computa-
tional efficiency, direct sensitivities are more accurate, which results in a faster convergence
rate and better solutions. The level of effort to develop direct sensitivities is highly depen-
dent on the design of the simulation code. However, it is the obvious first step to improve
efficiency and the obvious first step towa&BAND optimization. As explained in chapter 2,
most simulation codes are already designed to solve the linear system and the implementa-
tion of direct sensitivities requires solving this system with different right hand sides.

Level 3is aNAND gradient-based method that uses adjoint sensitivities from the sim-
ulation code. Black-box approaches can again take advantage of these sensitivities to cal-
culate the reduced gradient of the objective function. There are significant computational
savings because it requires only one solution involving the transpose system of the Jacobian
of the forward simulation (independent of the number of design variabjesSimilar to
direct sensitivities, the adjoint method produces accurate gradients. The effort to develop
direct sensitivities is highly dependent on the design of the simulation code. If the simu-
lation code has access to the Jacobian for the forward simulation and the simulation code
solvers can be used on the transpose of the Jacobian, then the implementation is relatively
inexpensive and straightforward. The adjoint formulation is a necessary step tSAMIK
optimization methods. Once the adjoint vector can be calculated, a considerable amount of
the implementation effort is complete folSSAND method.

Level 4 is aSAND gradient-based method dependent on direct sensitivities. The im-
plementation effort associated with direct sensitivities is the same as described for level
2. Instead of passing this information to a black-box optimizer, it is passed directly to al-
gorithms closely coupled to the simulation. Additional implementation effort is therefore
involved to make use of a closely coupled algorithm. The extent of the effort depends
highly on how amenable a code is to coupling with other algorithms.

Level 5 is a SAND gradient-based method that is dependent on the “adjoint formu-
lation”. These algorithms require the solution of systems involving the transpose of the
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state Jacobian. This method is similar to level 3, except that for a nonlinear problem it is
considerably more efficient.

Level 6is known as the full-space method [20] and has the most computational potential
for very large design spaces. The level of intrusiveness is the highest as a result of having
to assemble and solve the full KKT system or the related QP subproblem. A full-space
algorithm generally requires the calculation or approximation of second derivatives in the
form of Hessian matrices.

It is very important to understand the implications of computing an accurate reduced
gradient in (2.3.13) that is used in level-2 through level-5 methods and how this differs
from the way that simulation codes are usually implemented. In a simulation code that
uses Newton’s method to solvéy, uy) = 0, it is not critical that exact solves wit% be
performed, even near the solution. All that is required is a solution that improves feasibil-
ity (i.e. decreaseBc(y, u)||). Therefore, many advanced simulation codes are designed to
compute approximate Jacobians (i.e. operator splitting and other inexact methods) to make
the computation of the solutions cheaper. For optimization this is generally unacceptable.
Any significant error in the Jacobians will be reflected in the reduced gradient. In other
words, inaccurate Jacobian information is reflected in inaccurate solutions to the optimiza-
tion problem. This also applies to the Jacobian magﬁx While a simulation code may
be designed to use exact Jacobians and to solve linear systems accuratgg/avimmay

even be able to solve systems mvolw@ﬁ; accurately, such a code is certainly not de-

signed to compute efficient sensitivities for the design vanagﬂles‘r his matnx can be
approximated using finite differences, but this will potentially impose an addlt(O(M)

cost per optimization iteration, even for the level-3 adjoint sensitivity approach. In addi-
tion, this sensitivity matrix must be exact (or as accurate as possible) or the wrong reduced
gradient is computed. In some types of applications, the development effort and computa-
tional resources required to comptg{;acan be quite small, while in other areas computing
this matrix can be difficult and/or expensive.

While exact first derivatives are essential for level 2-5 methods, exact second derivatives
for level-6 methods are not as critical since second derivatives do not alter the optimality
conditions, but only the efficiency of the optimization algorithm. Quasi-Newton approx-
imations, for example, may not be accurate at all, but they have drastically reduced the
computational time on many problems [85, Chapter 10]).

In general, going from one level of optimization method to the next, interfacing a sim-
ulation code gets more difficult, but the resulting optimization algorithm becomes more
efficient. Therefore, the real trade-off usually between different levels of intrusive opti-
mization is that of developer (i.e. human) resources versus computational resources. For
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applications with fewer design variables, level-5 methods may actually be faster than level-
6 methods because of the cost of computing (or approximating) and using second deriva-
tives. For many other applications, reductions in computational time (which may not be
very significant) do not justify the sometimes substantial investment in developer resources
needed to implement a level-6 method. However, in cases with large numbers of design
variables, level-6 methods offer the only hope of being able to solve difficult optimization
problems using reasonable amount of computing resources.

Tables 2.1 and 2.2 summarize the various levels of intrusive optimization and the gen-
eral requirements from simulation codes BAND andSAND optimization methods. One
of the more significant pieces of information in these tables is the specific requirements
from simulation codes to be used with a particular level of intrusive optimization. The ap-
plication requirements in each table are additive. For example, all of the requirements for
level-2 methods are included in the requirements for level-3 methods. However, the avail-
ability of a quantity from a lower-level method in a higher-level method does not mean that
that quantity will actually be computed. For example, the ability to compute the direct sen-
sitivity matrix % in a level-5 method does not mean that this matrix is actually computed.

To computeg% in a level-5 method defeats the whole purpose of the adjoint computation.

Note that the complexity per optimization iteration and the general number of opti-
mization iterations for level-2 methods is the same as for level-4 methods and the same
comparison applies for level-3 and level-5 methods. The difference is that the higher-level
methods have a smaller constant than the lower-level methods and these constants are not
shown inO(...) notation. The ratio oNAND versesSAND solution times will be appli-
cation dependent, but there can be an order of magnitude difference or more with many
applications for various reasons that we cannot discuss in detail here. In other applications,
the differences in performance will be smaller.

The last issue is how the requirements listed in Tables 2.1 and 2.2 can be met by an
application code and how this functionality can be used by an optimization algorithm. One
of the major complications is that these simulation codes run in a variety of computing
environments that range from simple serial single-process programs to massively parallel
programs. Furthermore, the way that a linear system is solved may vary greatly among ap-
plication areas. In some application areas, direct sparse solvers may be preferable (e.g. in
chemical process simulation) while massively parallel preconditioned Krylov-subspace it-
erative solvers (e.g. in many PDE simulators) are the preferred methods. Or the linear
adjoint equation in (2.3.14) could be solved using a nonmatrix-based method (e.g. using a
time-stepping adjoint solver). Matrix operator invocations can also be performed in a vari-
ety of ways using different data structures. In addition, specialized data structures can be
used in many application areas and can greatly improve performance. Therefore, a linear
algebra interface that is flexible enough to allow for all of this variability is key to success-
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Approximate

Approximate

Optimization Application requirements complexity per number of
level (additive between levels) optimization optimization
iteration iterations
Evaluation of objective .
polynomial to
f(y, u), see (2.1.1) exponential in
level-0 | Analysis solution O(nyn) P
y(u), see (2.2.3) u
level-1 | Smoothness of (y, u) andy (u) O (nyna) O((nw)ee)
Evaluation of direct sensitivity matrix
% see (2.2.7)
level-2 Evaluation of objective gradients O(nyna) O((na)*e™)
5L and3., see (2.3.12)
Computation of adjoints

~ 3y by

Table 2.1. Summary of level-0 to level-NNAND optimization

methods.
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Optimization
level

Application requirements
(additive between levels)

Approximate
complexity per
optimization
iteration

Approximate
number of
optimization
iterations

level-4

Evaluation of objective

fly,u), see (2.1.1)

Evaluation of constraints residual
c(y,u), see (2.1.2)

Evaluation of direct sensitivity matrix
% see (2.2.7)

Evaluation of objective gradients

0 0

5L andgL, see (2.3.12)

Evaluation of Newton step

@710(31, u), see (2.4.15)

(5y:8y

O((nu)*e~)

level-5

Action of g—z‘;*l on arbitrary vectors
see (2.4.15)

Action of g—g‘;*T on arbitrary vectors
see (2.3.14)

Action of % on arbitrary vectors
Action of %T on arbitrary vectors

O((ny)*e™)

level-6

Evaluation of (or matrix-vector prod
ucts with) Hessians

2 2 2

%yc.;, gyg?,,- 0 forj =1...n,, see
(2.4.22)

o’y o°f 9°f
dy? " Oyou’ du?’

see (2.4.21)
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fully being able to interface an advanced simulation code to a general purpose optimization
algorithm. The details of one such interface are described in Section 4.2.3.
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Chapter 3

PDE Environment

3.1 Overview

The engineering community has a critical need to simulate complex physics and, for the
last few decades, has developed numerous production simulation codes to address high
fidelity problems. Most of these codes have been parallelized and scale to hundreds and
some to thousands of processors. This monumental development and parallelization effort
has consumed developers for the last ten years with the somewhat unfortunate absence of
any capabilities to address SAND optimization, although some codes can produce limited
sensitivity information, which as previously discussed is an initial requirement for SAND
optimization. The use of NAND methods in combination with large scale PDE simulation
codes are limited to order ten design variables for the foreseeable future assuming the
current trends in computer hardware growth do not change. PDECO is therefore a critical
development strategy for those interested in the combination of large design space and
gradient based optimization of large scale complex problems. Using the seven levels of
optimization, we review the different simulation disciplines for SNL and attempt to identify
appropriate optimization levels.

Before categorizing SNL simulation codes, additional issues regarding simulation codes
need to be discussed:

1. Implicit vs explicit - The more efficient methods assume that the solution mech-
anism is implicit and that a Jacobian is formed so that Newton’s method can be
applied. Explicit codes depend on using solutions from the previous time step and
Jacobians are never formed.
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. Exact or inexact Jacobian- The theoretical optimality conditions require that the
Jacobian is exact. Robustness of the optimization algorithm depends on the accuracy
of the gradient calculations. Any use of approximations could significantly affect the
solution. Nevertheless, useful solutions have been obtained for many problems with
finite-difference, or other approximate, gradients.

. Transient vs steady state- Although methods have been developed for transient
PDECO, significant efficiency problems still need to be resolved for the general op-
timization algorithms.

. Continuum or non-continuum - SAND methods require smooth problems; to date,
there is no reasonable way for non-continuum codes to take advantage of SAND
based technologies. A classic example of hon-continuum methods is the direct sim-
ulation Monte Carlo technique [18] [4] [77].

. Level of multi-physics - Coupling different types of physics codes creates difficult
issues for the higher level SAND methods. Issues such as explicit solution procedures
and operator splitting are major hindrances to SAND methods.

. PDE smoothness Gradient methods require smooth behavior. Applications involv-
ing chemical reactions and state changes typically make use of database information
and impose additional non-differentiable functions. Another example that gives rise
to nondifferentiabilities is the gain or loss of material during the course of the com-
putations.

3.2 Sandia Applications and Classifications

At Sandia, a large range of complex simulation codes have been developed to address a
variety of high fidelity, complex physics problems in the area of structural dynamics, solid
mechanics, thermal/radiation transport, computational fluid dynamics, fire, shock physics
and electrical simulation. The scope of providing large-scale optimization capabilities to
this engineering community in an efficient and practical fashion is considerable and con-
tinues to be a source for future research.

The following sections discuss general characteristics for each discipline and an attempt

is made to identify the potential optimization level.
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3.2.1 Structural Dynamics

Finite-element structural-dynamics simulation capabilities have been developed that are
able to perform static analysis, direct implicit transient analysis, eigenvalue analysis, modal
superposition-based frequency response, and transient response. Nonlinear capabilities are
currently being developed. Shape optimization problems are the ultimate design target for
structural dynamics and at Sandia there are a multitude of structural design challenges.
The structural integrity of electronic packages for re-entry vehicles is an example of an
important design problem. Although the number of design parameters are on the order of
a hundred, as more sophistication to the structural design is added, the desire to investigate
larger design spaces will increase.

Static analysis with nonlinear material behavior is another aspect of structural dynamics
that can benefit from a SAND formulation. So-called inversion techniques to find the most
likely materials in a medium is a potential area of interest that could lead to large number of
design variables. However, the ultimate goal for structural dynamics is shape optimization
where SAND methods can have a significant impact. Developing efficient optimization
methods for transient problems remain a significant research challenge.

3.2.2 Solid Mechanics

Nonlinear solid mechanics is fundamental for investigating manufacturing and geomechan-
ical issues. Finite-element codes have been developed that can handle large deformations,
temperature dependency, and quasi-static mechanics problems in three dimensions. A ma-
terial model for elastic and isothermal elastic-plastic behavior with combined kinematic
and isotropic hardening is available. An eight node Lagrangian uniform-strain element is
employed with hourglass stiffness to control the zero-energy modes. Highly nonlinear ef-
fects include material nonlinearities, geometric nonlinearities due to large rotations, large
strains, and surfaces that slide relative to each other. Element birth and death algorithms
are available to handle manufacturing situations where material is either added or removed,
such as soldering and milling. Contact between surfaces can also be modeled with or
without friction, which allows for simulating many difficult processes, such as connector
insertion.

In addition to manufacturing examples, these codes are used to model geological sys-
tems subject to a variety of stresses. The Yuca Mountain nuclear storage facility is an
example where the maximum safety margins for stresses need to be calculated as a func-
tion of various deformations to the storage facility and as a function of various loads onto
the facility.

41



Although significant optimization issues exist in solid mechanics in addition to large
design spaces, there a number of issues that prevents consideration of intrusive methods.
Perhaps the most obvious impediment to SAND methods is the fact that solid mechanics
codes do not for a Jacobian and use an explicit pseudo time stepping scheme to converge to
a solution. Non differential quantities as a result of severe material deformation also poses
a problem. There may be some possibilities for calculating direct sensitivities for a subset
of problems, but presumably this would require restructuring the typical solid mechanics
code. Certainly, birth/death algorithms are not differentiable and would require a complete
new approach.

3.2.3 Thermal

Thermal simulation capabilities handle analysis of systems in which the transport of ther-
mal energy occurs primarily through a conduction process. This nonlinear, finite element,
multi-dimensional capability has been extended to handle solid phase chemical reactions
and radiation transfer. A steady-state, nonlinear thermal problem without a chemical reac-
tion is well suited for any SAND level optimization scheme. However, the usual difficulties
are associated with the multi-coupled physics and transient analysis.

3.2.4 Computational Fluid Dynamics
3.2.4.1 Compressible Fluid Flow

Compressible fluid mechanics codes are needed to simulate accurately the aerodynamics
for subsonic, transonic and supersonic flight. Many configurations and flight situations
cannot be adequately tested because of high Mach numbers, high Reynolds numbers, and
enthalpy conditions. Aerodynamic simulations calculate pressures, shear stress fields, and
forces and moments exerted on a structure by the surrounding compressible fluids. If the
assumptions for a rigid body fail, the structural response of the system needs to be included.
This is often an explicit coupling and therefore a difficult issue for SAND optimization.
However, there are numerous design problems in compressible fluid flow, such as steady-
state Euler-based, shape optimization that can take advantage of any level of optimization
method. A potential problem with compressible fluid flow problems is that the preferred
solution mechanism is either matrix-free or pseudo time-stepping with multi-grid methods.
The Jacobian is not formed and sensitivities cannot be easily calculated.

As a result of this LDRD project, development of an adjoint formulation is underway
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for Sandia’s new compressible fluid flow code. The goal is to initially conduct shape opti-
mization with the steady state Euler equations. An adjoint formulation for the Roe scheme
has been developed and a forward Newton based solution is forthcoming.

3.2.4.2 Direct Simulation Monte Carlo

Computational fluid flow dynamics locally refines the simulation mesh in an attempt to
resolve small-scale phenomena. However, hydrodynamic formulations break down as the
grid spacing approaches the molecular scale. Direct Simulation Monte Carlo (DSMC)
methods [18, 4, 77] are used as an alternative to continuum formulations. In DSMC, the
state of the system is given by the position and velocities of particles, but the process de-
couples the movement from collisions and chemistry. First of all the particles are moved
within a time step along a grid independently of each other. At the end of the time step the
particles are sampled in each grid cell to determine collision behavior and species distribu-
tions using probabilistic techniques. At SNL, DSMC has been used to simulate low-density
applications with Knudsen numbers on the order of 0.2 subjected to electromagnetic fields.
Numerous other examples in the literature can be found [1, 107].

Clearly the lack of a continuum prevents the use of standard SAND methods and an
entire simulation needs to be solved for any aspects of an optimization algorithm to occur.
Sensitivity information will also be difficult to acquire by means other than the use of finite
differences.

At SNL there are large design codes that predict the affects of certain geometries on
the behavior of rarefied gases. These high-fidelity problems are computationally intensive;
applying shape optimization, even with a small number of design parameters, requires an
enormous amount of computational resources.

3.2.4.3 Incompressible Fluid Flow

Several Navier-Stokes codes have been developed to solve a number of complex design
problems. We describe one such code in Chapter 5 for a chemical vapor deposition reac-
tor problem. The general Navier-Stokes CFD simulator is well suited to take advantage
of SAND optimization methods. Even though several Navier-Stokes codes have been ex-
tended to include chemistry, turbulence, moving interfaces, and elasto-viscoplastic mate-
rials, great care has been taken to include capabilities to form a full and exact Jacobian.
These codes are complicated, however, and a level 6 interface may require a complete revi-
sion. Level-5 optimization is possible since the Jacobian in accessible and the solution of
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systems using its transpose is available.

3.2.5 Fire

The fire environment simulation software development project is directed at providing sim-
ulations for both open large-scale pool fires and building enclosure fires. One class of
codes includes turbulence, buoyantly driven incompressible flow, heat transfer, mass trans-
fer, combustion, soot formation, and absorption coefficient modeling. Another class of
codes represent the participating-media thermal radiation mechanics. These fire codes rank
as some of the more complex codes and are mostly developed with explicit solution meth-
ods to couple multi-physics, include approximations for different physics processes, use
inexact Newton methods, and accommodate the loss of material.

Theoretically, an implicit coupling of the different physics could make a fire simulation

a candidate for higher levels of optimization. The complexity of such a simulation suggests
complex design problems and compute intensive simulations. However, the most problem-
atic issue associated with fire simulation is the loss of material. As in solid mechanics, these
algorithms are not differentiable. Even assuming loss of material is not an issue , the cur-
rent explicit coupling still prevents the use of levels 3 or higher. Level 2 methods could be
considered but would require cross sensitivities to accommodate the many different physics
components. The calculation of cross sensitivities for multiple physics components is an
active area of research.

3.2.6 Shock Physics

Shock Physics is handled through a family of codes that model complex multi-dimensional,
multi-material problems that are characterized by large deformations and/or strong shocks.
The solution strategy consists of a two-step, second-order accurate Eulerian algorithm to
solve the mass, momentum, and energy conservation equations. Models exist for com-
puting material strength, fracture, porosity, and high-explosive detonation and initiation.
The problems that can be analyzed include penetration and perforation, compression, high
explosive detonation and initiation phenomena, and hypervelocity impact. Strong shock
simulations require sophisticated and accurate models of the thermodynamic behavior of
materials. Phase changes, nonlinear behavior, and fractures are important to predict behav-
ior accurately. Equation-of-state packages are used to predict phase changes.

More recently, Lagrangian solid mechanics capabilities were developed to include arbi-
trary mesh connectivity, superior artificial viscosity, and improved material models. Prob-
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lems can be solved using Lagrangian, Eulerian, or an arbitrary Lagrangian-Eulerian (ALE)
mesh that is based on a linear finite-element formulation and may have arbitrary connec-
tivity among the elements.

Many issues need to be addressed to implement any intrusive optimization algorithm
for Shock physics codes, including transient analysis, non-smooth behavior, explicit solu-
tion procedures, material addition and deletion mechanisms. Similar issues exist as in fire
simulation.

3.2.7 Electrical Simulation

A substantial number of electrical simulations are conducted at Sandia and a common prob-
lem is to match experimental data from a network of circuits to these simulations. Capa-
bilities to solve very large circuit problems are currently being developed. This effort will
support analysis of circuit phenomena at a variety of abstraction levels, including device-
level, analog signals, digital signals, and mixed signals. Although electrical simulation
should be smooth, old device models have been known to use limiter processes that are
non-differentiable. Typically, large-scale electrical simulation consists of millions of de-
vices each of which can host at least one design parameter. Therefore, electrical simulation
is a reasonably good SAND optimization candidate provided the device model issues can
be resolved and also provided optimization methods to handle transient models efficiently
can be developed. Algorithms to handle transient processes are available, but they are
memory and storage intensive since they require a large number of design variables and
large number of time steps.

The solution approach generates nonlinear systems of DAEs and uses Newton’s method
to solve the resulting nonlinear equations. Thus Xyce generates a Jacobian similar to those
required by PDE-based simulations and theoretically adjoint sensitivities can be calculated.
Similarly to compressible fluid, additional sensitivity development is underway to develop
higher optimization levels capabilities.

3.2.8 Geophysics

Geophysics has long been the source of large inversion problems that are solved to iden-
tify materials and related properties and to detect targets. Each of these problems deals
with large number of design/inversion parameters. They are often solved in the frequency
domain thereby avoiding the issues related to transient phenomena. Considerable research
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has been conducted at Sandia to solve inversion problems and, although the solution pro-
cedures are not entirely along the same lines described in this report, these codes do use
Gauss-Newton methods and conjugate gradient solvers [81] [82].

Seismic inversion, structural inversion, and source inversion are all important problems
that are amenable to the highest level SAND methods. In fact, the state-of-the-art SAND
methods have been applied to a seismic inversion problem where 2.1 million inversion
parameters were used for a transient simulation [3]. These problems are implicit, they use
exact Jacobians, and can be solved in either steady-state or transient mode. In addition,
they are single physics and their solutions are smooth.

3.2.9 Observations & Strategies

Several conclusions have been drawn from our review of the Sandia PDE environment:

1. A wide range of physics are simulated by a variety of methods incorporating both
linear and nonlinear solvers. An increasing number of complex design, control, and
inversion problems, involving a large number of design/control/inversion parameters
demand efficient optimization methods.

2. Most of the critical Sandia simulation codes run in parallel and thus new optimization
algorithms need to be designed with large-scale parallelism in mind.

3. The predominant programming language is C++; we strongly support the continued
development of frameworks, algorithms, and tools in C++.

4. High-fidelity, multi-physics simulations are crucial to solve Sandia’s science and en-
gineering problems. The initial step to create a multi-physics capability is to use
explicit solvers. However, as discussed above, this creates difficulties for a SAND
optimization method. Thus the use of implicit methods needs to be explored.

5. Transient simulation dominates the problem space at Sandia and SAND optimization
methods for transient problems need to be investigated.

6. Individual forward simulators are being consolidated into two principal frameworks,
namely, SIERRA and Nevada. Optimization methods and interfaces need to be con-
sidered as part of these frameworks.

Although implementing PDECO requires a custom design and an individual approach
to each simulation code, it has been our goal to develop methods, algorithms, and frame-
works that can be leveraged in other PDE simulation codes. Assuming that sensitivity
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information is available from the simulation codes and the simulation code conforms to the
SAND assumptions, we have developed a framework called rSQP++ that can be interfaced
with most codes. The strength of this state-of-art object oriented code is that algorithms
can be modified very quickly to adapt to the needs of the optimization problem. In addi-
tion, we have interfaced this code to a PDE prototyping code (Sundance) so that algorithms
can be easily tested for a range of PDE systems. The next few chapters are dedicated to
describing the rSQP++ framework, Sundance, and a full-space SQP method that relies on
solving quadratic programs.
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Chapter 4

rSQP++ Framework

Described herein is a new object-oriented (OO) framework for building successive quadratic
programming Algorithms, called rSQP++, currently implemented in C++. The goals for
rSQP++ are quite lofty. The rSQP++ framework is designed to incorporate many different
SQP algorithms and to allow external configuration of specialized linear algebra objects
such as vectors, matrices and linear solvers. Data-structure independence has been recog-
nized as an important feature missing in current optimization software [123]. In addition,

it is possible for an advanced user to modify the SQP algorithms to meet other specialized
needs without having to touch any of the default source code within the rSQP++ frame-
work.

Successive quadratic programming (SQP) methods are attractive mainly because they
generally require the fewest number of function and gradient evaluations to solve a prob-
lem as compared to other optimization methods [105]. Another attractive property of SQP
methods is that the structure of the underlying NLP can be exploited more effectively than
other methods [118]. A variation of SQP, known as reduced-space SQP (rSQP), works well
for NLPs where there are few degrees of freedom (dof) (see Section 4.1.1) and many con-
straints. Quasi-Newton methods for approximating the reduced Hessian of the Lagrangian
are also very efficient for NLPs with few dof. Another advantage of rSQP is that the decom-
position used for the equality constraints only requires solves with a basis of the Jacobian
(and possibly its transpose) of the constraints (see Section 4.1.3).
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4.1 Mathematical Background for SQP

4.1.1 Nonlinear Program (NLP) Formulation

The SQP algorithms implemented with rSQP++ solve NLPs in the standard form:

min  f(z) (4.1.1)
st ¢(x)=0 (4.1.2)
rr < x<apy (4.1.3)

where:

r, v, ry € X

f(z): X =R

clx): X = C

X CR"

C CR™

Above, we have been very careful to define vector spaces for the relevant vectors and
nonlinear operators. In general, only vectors from the same vector space are compatible
and can participate in linear algebra operations. Mathematically, the only requirement
for the compatibility of real-valued vector spaces should be that the dimensions match up
and that the same inner products are used. However, having the same dimensionality will
not be sufficient to allow the compatibility of vectors from different vector spaces in the
implementation. The vector spaces become very important later when the NLP interfaces
and the implementation of rSQP++ is discussed in more detail (see Section 4.2.3.2).

We assume that the operatofsr) andc;(z) for j = 1...m in (4.1.1)—(4.1.2) are
nonlinear functions with at least second-order continuous derivatives. The rSQP algorithms
described later only require first-order derivative informationfar) andc; () in the form
of a vectorV f(z) and a matrixVe(z) respectively. The inequality constraints in (4.1.3)
may have lower bounds equal ta>c and/or upper bounds equaltexc. The absences of
some of these bounds can be exploited by many SQP algorithms.
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It is very desirable for the functiong(x) andc(z) to at least be defined (i.e. no NaN or
Inf return values) everywhere in the set defined by the relaxed variable boynds <
r < xy + 6. Here,é (see the methothax.var _bounds viol()  in the NLP interface
in Section 4.2.3.2) is a relaxation (i.e. wiggle room) that the user can set to allow the
optimization algorithm to computg(x), ¢(x) andh(x) outside the strict variable bounds
x;, < x < zy in order to compute finite differences and the like. The SQP algorithms
will never evaluatef (x) andc(z) outside this relaxed region. This is an imporant issue to
consider when developing the model for the NLP.

The Lagrangian functioi.(\, v, vy) (and the Lagrange multipliers\( v;,, vy)) and
its gradient and Hessian for this NLP are

Lz, \v,vy) = {f(@)+ N e(x)+v](z, —2)+ v (z —2p)} € R (4.1.4)

V.L(z, \v) ={Vf(z)+ Ve(z)\+v} € X (4.1.5)
V2,10, ) = {VQf(mHZA(.nVQCj(m)} e X\ (4.16)
where:
Viz): X - X
Ve(x) = { Ve (z) Ve(z) ... Vep(x) } X — X|C
Vi¢j(z): X = XX ,forj=1...m
Arec

v=vy —v;, € X.

Above, we use the notatioh ;) with the subscript in parentheses to denote ﬁﬂb
component of the vector and to differentiate this from a simple math accent. Wiso) :
X — X|C is used to denote a nonlinear operator (the gradient of the equality constraints
Ve(z) in this case) that maps from the vector spacéo a matrix spacet’|C where the
columns and rows in this matrix space lie in the vector spacesdC respectively. The
returned matrix objectd = Ve € X|C defines a linear operator whege= Ap maps
vectors fromp € C to ¢ € X. The transposed matrix objedt’ defines a linear operator
whereq = A”p maps vectors from € X toq € C.
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Note how the vector and matrix spaces in the above expressions match up. For example,
the vectors and matrices in (4.1.5) can be replaced by their vector and matrix spaces as

{Vf(x)+Ve(x)A+v} = {X+(XICO)C+ X} = X.

The compatibility of vectors and matrices in linear algebra operations is determined by
the compatibility of the associated vector spaces. At all times, we must know to which
vector or matrix space a linear algebra quantity belongs.

Given the definition of the Lagrangian and its derivatives in (4.1.4)—(4.1.6), the first-
and second-order necessary KKT optimality conditions [80] for a solyt#on\*, v}, v;)
to (4.1.1)—(4.1.3) are given in (4.1.7)—(4.1.13). There are four different categories of opti-
mality conditions shown here: linear dependence of gradients (4.1.7), feasibility (4.1.8)—
(4.1.9), non-negativity of lagrange multipliers for inequalities (4.1.10), complementarity
(4.1.11)—(4.1.12), and curvature (4.1.13).

V. L(x*, X v*) =V f(z") + Ve(z )N + v =0 (4.12.7)

c(z*) =0 (4.1.8)

v < at <y (4.1.9)

(v1)", (v)* >0 (4.1.10)

(ve) (i ((zr)@y — (27)@) =0, fori=1...n (4.1.11)
(vo) i (@) @y — (v0)@y) =0, fori=1...n (4.1.12)

d" V2 L(z*,\*)d > 0, for all feasible directiond € X. (4.1.13)

Sufficient conditions for optimality require that stronger assumptions be made about the
NLP (e.g. constraint qualification arfz) and perhaps conditions on third-order curvature
in casel is obtained in (4.1.13)).

To solve a NLP, a SQP algorithm must first be supplied an initial guess for the un-
known variables:, and in some cases also the Lagrange multipligrandv,. The opti-
mization algorithms implemented in rSQP++ generally require thaatisfy the variable
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bounds in (4.1.3), and if not, the elementsigfare forced in bounds. The matriXc(x)

is abstracted behind a set of object-oriented interfaces. The rSQP algorithm only needs
to perform matrix-vector multiplication wittW¢(z) and solve for a square, nonsingular
basis ofV¢(z) through aBasi sSyst eminterface. The implementation & ¢(z) is com-

pletely abstracted away from the optimization algorithm. A simpler interface to NLPs has
also been developed where the maWix(x) is never represented even implicitly (i.e. no
matrix-vector products) and only specific quantities are supplied to the rSQP algorithm (see
the “Tailored Approach” in [104] and the “direct sensitivity” NLP interface on page 81).

4.1.2 Successive Quadratic Programming (SQP)

A popular class of methods for solving NLPs is successive quadratic programming
(SQP) [26]. An SQP method is equivalent, in many cases, to applying Newton’s method to
solve the optimality conditions represented by (4.1.7)—(4.1.8). At each Newton itekation
for (4.1.7)—(4.1.8), the linear subproblem (also known as the KKT system) takes the form
W A d |
AT dy |

L
Va (4.1.14)

where:
d=zp —ap € X
dy=Meg1 — A € C
W~ V2, L(zg, \) € X|X
A= V(’(Tk) S X|C
c= (’(Tk) e C.

The Newton matrix in (4.1.14) is known as the KKT matrix. By substituting=
Akr1 — A Into (4.1.14) and simplifying, this linear system becomes equivalent to the opti-
mality conditions of the following QP
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min  g'd+ hd"Wd (4.1.15)
st. Ald+e¢=0 (4.1.16)

where:
g=Vfz) € X.

The advantage of the QP formulation over the Newton linear-system formulation is that
inequality constraints can be directly added to the QP and a relaxation can be defined which
yields the following QP

min = g'd+ hd"Wd+ M(n) (4.1.17)
st. ATd+(1-n)c=0 (4.1.18)
Ty — Tk S d S Ty — Tk (4119)
0<n<l1 (4.1.20)
where:

M(n) € R —R.

Near the solution of the NLP, the set of active constraints for (4.1.17)—(4.1.20) will be
the same as the optimal active-set for the NLP in (4.1.1)—(4.1.3) [85, Theorem 18.1].

The relaxation of the QP shown in (4.1.17)—(4.1.20) is only one form of a relaxation
but has the essential properties. Note that the solutien1 andd = 0 is always feasible
by construction. The penalty functial (n) is either a linear or quadratic term where if
m‘gé”) l,—o IS sufficiently large then an unrelaxed solution (he= 0) will be obtained if a
feasible region for the original QP exists. For example, the penalty term may take a form
such as\/ () = (M)n or M(n) = (M)(n+ Y%n?) wherelM is a large constant often called

“big M.”
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Once a new estimate of the solutiorn,(;, \.y1, vx11) iS computed, the error in the
optimality conditions (4.1.7)—(4.1.9) is checked. If these KKT errors are within some spec-
ified tolerance, the algorithm is terminated with the optimal solution. If the KKT error is
too large, the NLP functions and gradients are then computed at the newrpojnand
another QP subproblem (4.1.17)—(4.1.20) is solved which generates anothéasiggo
on. This algorithm is continued until a solution is found or the algorithm runs into trouble
(there can be many causes for algorithm failure), or it is prematurely terminated because it
is taking too long (i.e. maximum number of iterations or runtime is exceeded).

The iterates generated from,, = =, + d are generally only guaranteed to converge
to a local solution to the first-order KKT conditions when close to the solution. Therefore,
globalization methods are used to insure (given a few, sometimes strong, assumptions are
satisfied) the SQP algorithm will converge to a local solution from remote starting points.
One popular class of globalization methods are linesearch methods. In a linesearch method,
once the steg is computed from the QP subproblem, a linesearch procedure is used to find
a step lengthn such thatr, ., = z; + ad gives sufficient reduction in the value of a
merit functioné(z,11) < ¢(xx). A merit function is used to balance a trade-off between
minimizing the objective functiorf (x) and reducing the error in the constrain{s:). A
commonly used merit function is the defined by

O, () = f(x) + pllc(z)] (4.1.21)

wherep is a penalty parameter that is adjusted to insure descent along the SQP step
x + ad for a > 0. An alternative linesearch based on a “filter” has also been implemented
which generally performs better and does not require the maintenance of a penalty param-
eterp [122] . Other globalization methods such as trust region (using a merit function or
the filter) can also be applied to SQP.

Because SQP is essentially equivalent to applying Newton’s method to the optimality
conditions, it can be shown to be quadratically convergent near the solution of the NLP
[84]. It is this fast rate of convergence that makes SQP the method of choice for many
applications. However, there are many theoretical and practical details that need to be con-
sidered. One difficulty is that in order to achieve quadratic convergence the exact Hessian
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of the Lagrangiarl¥ is needed, which requires exact second-order informa&iéfi(z)
andV?¢;(z), j = 1...m. For many NLP applications, second derivatives are not readily
available and it is too expensive and/or inaccurate to compute them numerically. Other
difficulties with SQP include how to deal with an indefinite HessiEn Also, for large
problems, the full QP subproblem in (4.1.17)—(4.1.20) can be extremely expensive to solve
directly. These and other difficulties have motivated the research of large-scale decompo-
sition methods for SQP. One class of these methods is reduced-space (or reduced-Hessian)
SQP, or rSQP for short.

4.1.3 Reduced-Space Successive Quadratic Programming (rSQP)

In a rSQP method, the full-space QP subproblem (4.1.17)—(4.1.20) is decomposed into
two smaller subproblems that, in many cases, are easier to solve. To see how this is done,
first a null-space decomposition [85, Section 18.3] is computed for some linearly indepen-
dent set of the linearized equality constraidts € X'|C, wherec,(z) € C, € R " are the
decomposed ang,(z) € C, € R (™) are the undecomposed equality constraints and

o(z) = ["d('”) ] € CuxCy = Velzy) = | Vealwn) Veu(zr) ] - [ A, A, } € X|(CixC.).

Cy\T
(4.1.22)
Above, the vector spaae = C; x C, denotes a concatenated vector space (also known
as a product of vector spaces) with a dimension which is the sum of the constituent vector
spacesC| = |C4| +|Cu| = 7+ (m—r) = m. This decomposition is defined by a null-space
matrix Z and a matrixy” with the following properties:

7 € X|Z st (A)"Z =0
, . (4.1.23)
Y € X|Y st { Y Z} is nonsingular

where:
R (n—)
R".

N 1N

2
Y
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It is important to distinguish the spac€sand) from the the matriceg andY. The
null-space matrix, € X|Z is a linear operator that maps vectors from the space Z
to vectors in the space of the unknowns- Zu € X'. The matrixY’ € X|)Y is a linear
operator that maps vectors from the space ) to vectors in the space of the unknowns
v=Yu € X.

In many presentations of reduced-space SQP, the matisxreferred to as the “range-
space” matrix since several popular choices of this matrix form a basis for the range space
of A4. However, note that the matriXx need not be a true basis matrix for the range space
of A, in order to satisfy the nonsingularity property in (4.1.23). For this reason, here the
matrix Y will be referred to as the “quasi-range-space” matrix to make this distinction.

By using (4.1.23), the search directidoan be broken down intdo= (1—7)Yp,+Zp.,
wherep, € Y andp, € Z are the known as the quasi-normal (or quasi-range space) and
tangential (or null space) steps respectively. By substitutirg (1 — n)Yp, + Zp, into
(4.1.17)—(4.1.20) we obtain the quasi-normal (4.1.24) and targential (4.1.25)—(4.1.27) sub-
problems. In (4.1.25); < 1 is a damping parameter which can be used to insure descent
of the merit function (1 + ad).

Quasi-Normal (Quasi-Range-Space) Subproblem

py=-—R'cs €V (4.1.24)
where:R = [(4,)"Y] € C4|Y (nonsingular via (4.1.23)).

Tangential (Range-Space) Subproblem (Relaxed)

min  (¢" + Cw)"p. + hpl [Z"W Z]p. + M (n) (4.1.25)
st. Up,+(1-—nu=0 (4.1.26)
by, < Zp, — (Yp,)n < by (4.1.27)
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where:

g =7"g € 2
w=Z"WYp, € Z

¢ eR

U. =[(4.)"7] € C.|Z2
Uy = [(A)"Y] € C|Y

u=Uypy+c, € C,
b[[Eﬂ?L*.’Ek*Ypy e X
bUETU*Tk*YPUGX

By using this decomposition, the Lagrange multipli&ssfor the decomposed equality
constraints(4,)" d+c, = 0) do not need to be computed in order to produce stepg1—
n)Yp,+ Zp,. However, these multipliers can be used to determine the penalty parameter
for the merit function [85, page 544] or to compute the Lagrangian function. Alternatively,
a multiplier-free method for computing has been developed and tested with good results
[104]. In any case, it is useful to compute these multipliers at the solution of the NLP since
they give the sensitivity of the objective function to those constraints [80, page 436]. An
expression for computing, can be derived by applying (4.1.23)Yd VL (z, A, v) to yield

M=-RTY"g+v)+ U)\) € Ca (4.1.28)

There are many details that need to be worked out in order to implement a rSQP al-
gorithm and there are opportunities for a lot of variability. Some of the more significant
decisions that need to be made are: how to compute the null-space decomposition that de-
fines the matrice€, Y, R, U, andU,, and how the reduced Hessiad W Z and the cross
termw in (4.1.25) are calculated (or approximated).

There are several different ways to compute decomposition matrigexlY” that sat-
isfy (4.1.23) [105]. For small-scale rSQP, an orthonordandY (Z7Y = 0,277 =1,
YTY = I) can be computed using a QR factorizationdgf[84]. This decomposition gives
rise to rSQP algorithms with many desirable properties. However, using a QR factorization
whenA, is of very large dimension is prohibitively expensive. Therefore, other choices for
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7 andY have been investigated that are more appropriate for large-scale rSQP. Methods
that are more computationally tractable are based on a variable-reduction decomposition
[105]. In a variable-reduction decomposition, the variables are partitioned into dependent
xp and independent; sets

Tp € Xp (4129)
Tr € X (4130)
¢ = [m” ] € Xpx X (4.1.31)
xrr
(4.1.32)
where:
Xp C R
XI g R»r

such that the Jacobian of the constraintsis partitioned as shown in (4.1.33) where
C'is a square, nonsingular matrix known as the basis matrix. The variaplesdz; are
also called state and design (or controls) variables [20] in some applications or basic and
nonbasic variables [78] in others. What is important about this partitioning of variables
is that thex , variables define the selection of the basis matfixnothing more. Some
types of optimization algorithms give more significance to this partitioning of variables
(for example, in MINOS [78] the basic variables are also variables that are not at an active
bound) however no extra significance can be attributed here.

This basis selection is used to define a variable-reduction null-space atr{(}.1.34)
which also determines,, in (4.1.35).

Variable-Reduction Partitioning

(Ag)"
(A,)"

¢ N
E F

AT =

(4.1.33)
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where:
C € CylXp (nonsingular)
N € CylX;
E € C,|Xp
F € C,|X;.

Variable-Reduction Null-Space Matrix

N
Il

; (4.1.34)

U, = F-EC'N (4.1.35)

_C'N ]

There are many choices for the quasi-range-space mitthat satisfy (4.1.23). Two
relatively computationally inexpensive choices are the coordinate and orthogonal decom-
positions shown below.

Coordinate Variable-Reduction Null-Space Decomposition

I
Yy = 0] (4.1.36)
R = C (4.1.37)
Uu, = FE (4.1.38)
Orthogonal Variable-Reduction Null-Space Decomposition
o 1
Yy = NTOT (4.1.39)
R = C(I+C'NN'C™™) (4.1.40)
U, = E—-FN'C™T" (4.1.41)
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The orthogonal decompositio& (Y = 0, Z7Z # I, YTY # I) defined in (4.1.34)-
(4.1.35) and (4.1.39)—(4.1.41) is more numerically stable than the coordinate decomposi-
tion and has other desirable properties in the context of rSQP [105]. However, the amount
of dense linear algebra required to compute the factorizations needed to solve for linear
systems withR in (4.1.40) isO((n — r)?r) floating point operations (flops) which can
dominate the cost of the algorithm for larger — ). Therefore, for largefn — r), the
coordinate decompositio{Y # 0, Z1'Z # I, Y'Y +# I) defined in (4.1.34)—(4.1.35)
and (4.1.36)—(4.1.38) is preferred because it is cheaper but the downside is that it is also
more susceptible to problems associated with a poor selection of dependent variables. Ill-
conditioning in the basis matrik' can result with greatly degraded performance and even
lead to failure of an rSQP algorithm. See the optiange _space _matrix in Section
4.3.1.1.

Another important decision is how to compute the reduced Hes&la# Z. For many
NLPs, second-derivative information is not available to compute the Hessian of the La-
grangiani?’ directly. In these cases, first-derivative information can be used to approximate
B ~ Z"W Z using quasi-Newton methods (e.g. BFGS) [84]. Wkenr- r) is small, B is
small and cheap to update. Under the proper conditions the resulting quasi-Newton rSQP
algorithm has a superlinear rate of local convergence (even usm@ in (4.1.25)) [15].
Even when(n — r) is large, limited-memory quasi-Newton methods can still be used, but
the price one pays is in only being able to achieve a linear rate of convergence (with a small
rate constant hopefully). For some application areas, good approximations of the Hessian
W are available and may have specialized properties (i.e. structure) that makes computing
the exact reduced Hessigh= Z"W Z computationally feasible (i.e. see NMPC in [10]).
See the optionexact reduced _hessian andquasi _newton in Section 4.3.1.1.

In addition to variations that affect the convergence behavior of the rSQP algorithm,
such as null-space decompositions, approximations used for the reduced Hessian and many
different types of merit functions and globalization methods, there are also many different
implementation options. For example, linear systems such as (4.1.24) can be solved using
direct or iterative solvers and the reduced QP subproblem in (4.1.25)—(4.1.27) can be solved
using a variety of methods (active set vs. interior point) and software [106].
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| Null-Space Decompositions for Z and Y | | Reduced Hessian Approximations for B |

B

[ I 1
| Variable Reduction | | Orthonormal QR | | Quasi-Newton B | | Exact B || Finite-Diff B |

| Orthogonal | | Coordinate | BFGS
| QP Cross Term Approximations for w | | Dense BFGS | | Limited Memory BFGS |
[ I I ]
| w=0 | | Exact w | | Broyden w | | Finite-Diff w | Globalization
[ 1
L1 | Powell's L1 || Augmented Lagrangian | | Merit Func LS | | Filter LS | | Merit Func TR || Filter TR |

Figure 4.1. UML analysis class diagram : Different algorithmic
options for rSQP

Figure 4.1 summarizes five different categories of algorithmic options for a rSQP algo-
rithm, many of which were described above. This set of categories and the options in each
category is by no means complete and may other options have been developed and will be
developed in the future. In general, any option can be selected independently from each
category and form a valid algorithm with unique properties. An exception is that merit
functions are not used by the Filter line-search and trust-region globalization methods so it
makes no sense to select a merit function when using a Filter method. While some permu-
tations of options are not reasonable (i.e finite-differemagith an exact reduced Hessian
B), many permutations are. Just this set of options can produce 480 distinctly different
algorithms that may perform very differently on any particular NLP.

4.1.4 General Inequalities and Slack Variables

Up to this point, only simple variable bounds in (4.1.3) have been considered and the
SQP/rSQP algorithms have been presented in this context. However, the actual underlying
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NLP may include general inequalities and take the form

min  f(#) (4.1.42)
st ##) =0 (4.1.43)
hy < h(&) < hy (4.1.44)
¥ < ¥ < dy (4.1.45)

where:
ik, dy € X
f x): X - R
hz): X > H
hi hr € H

i( A ><r

m M m

o P
3 ¥ s

NLPs with general inequalities are converted into the standard form by the addition of
slack variables (see (4.1.49)). After the addition of the slack variables, the concatenated
variables and constraints are then permuted (using permutation mapjcasd().) into
the ordering of (4.1.1)—(4.1.3). The exact mapping from (4.1.42)—(4.1.45) to (4.1.1)—(4.1.3)

is given below
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r o= Q T] (4.1.46)
S
Z%L
2, = Q, i (4.1.47)
o= Q. Z“] (4.1.48)
_ é(x)
clx) = Qc[i)(?‘)é] (4.1.49)

Here we consider the implications of the above transformation in the context of rSQP
algorithms.

Note if ), = I and(@. = I that the matriXV¢ takes the form:

Vé Vh

5, (4.1.50)

Ve =

One question to ask is how the Lagrange multipliers for the original constraints can
be extracted from the optimal solutigm, \, v) that satisfies the optimality conditions in
(4.1.7)—(4.1.13)? First, consider the linear dependence of gradients optimality condition
for the NLP formulation in (4.1.42)—(4.1.45)

VoL@, XA, ) = V(#) + VEE)N + VRN, + i

0. (4.1.51)

To see how the Lagrange multiplés and»* can be used to compute, X, andv*
one simply has to substitute (4.1.46) and (4.1.49) with= I and(@. = I into (4.1.7) and
expand as follows
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V.L(z,\,v) =

Vf+Vel+v
- [ v Ve Vh A n Vi
[ Vi Ve + VRN, + v (4.1.52)
- —)\;L + vy ;

By comparing (4.1.51) and (4.1.52) it is clear that the mappingasi:, A\; = \; = v;
andr = v;. For arbitrary@, and(. it is also easy to perform the mapping of the solution.
What is interesting about (4.1.52) is that it says that for general inequa?ui}(e?s) that
are not active at the solution (i.e+);) = 0), the Lagrange multiplier for the converted
equality constraint);) ;) will be zero. This means that these converted inequalities can
be eliminated from the problem and not impact the solution, which is expected. Zero
multiplier values means that constraints will not impact the optimality conditions or the
Hessian of the Lagrangian.

The basis selection shown in (4.1.22) and (4.1.31) is determined by the permutation
matrices), and(@). and these permutation matrices can be partitioned as follows:

Qa

Qe

QCL’D
4.1.53
Q:L’[ ] ( )
QcD
. 4.1.54
QCU ] ( )

A valid basis selection can always be determined by simply including all of the slacks
s in the full basis and then finding a sub-basis Yo¢. To show how this can be done,

suppose thaV¢é is full rank and the permutation matr(xf)m)T =

(QmD)T (QmI)T

selects a basi§' = (V¢)"(Q.p)T. Then the following basis selection for the transformed
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NLP (with Q. = I) could always be used regardless of the properties or implementation of
Vh

[ QCL’D -|
Q. = I (4.1.55)
Qm[ J
G
C = ((g;'zv;))T 1] (4.1.56)
: )1V )T
N = ((ngv;))T (4.1.57)

Notice that basis matrix in (4.1.56) is lower block triangular with non-singular blocks
on the diagonal. It is therefore straightforward to solve for linear systems with this basis
matrix. In fact, the direct sensitivity matri® = —C ' N takes the form

(4.1.58)

o | @uvaT@wer
(QTDVh)T(QTDVé)7T(QTIVé)T _(QTIVh)T .

The structure of (4.1.58) is significant in the context of active-set QP solvers that solve
the reduced QP subproblem in (4.1.25)—(4.1.27) using a variable-reduction null-space de-
composition. The rows ab corresponding to general inequality constraints only have to be
computed if the slack for the constraint is at a bound. Also note that the above transforma-
tion does not increase the number of degrees of freedom of the NLPrsinece = 1 — m.

All of this means that adding general inequalities to a NLP imparts little extra cost for the
rSQP algorithm as long as these constraints are not active.

For reasons of stability and algorithm efficiency, it may be desirable to keep at least
some of the slack variables out of the basis and this can be accommodated also but is more
complex to describe.

Most of the steps in a SQP algorithm do not need to know that there are general in-
equalities in the underlying NLP formulation but some steps do (i.e. globalization methods
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and basis selection). Therefore, those steps in a SQP algorithm that need access to this in-
formation are allowed to access the underlying NLP in a limited manner (see the Doxygen
documentation for the cladélPInterfacePack:: NLP).

4.2 Software design of rSQP++

The rSQP++ framework is implemented in C++ using advanced object-oriented software
engineering principles. However, to solve certain types of NLPs with rSQP++ does not
require any deep knowledge of object-orientation or C++. Example programs can be simple
copied and modified.

4.2.1 An Object-Oriented Approach to SQP
4.2.1.1 Motivation for Object-Oriented Methods

Most numerical software (optimization, nonlinear equations etc.) consists of an iterative
algorithm that primarily involves simple and common linear algebra operations. Mathe-
maticians use a precise notation for these linear algebra operations when they describe an
algorithm. For exampley = Ax denotes matrix-vector multiplication irrespective of the
special properties of the matrix or the vectorg andz. Such elegant and concise abstrac-
tions are usually lost, however, when the algorithm is implemented in most programming
environments and implementation details such as sparse data structures obscure the con-
ceptual simplicity of the operations being performed. Currently it seems that developers
have to choose between easy to use interpretive environments or more traditional compiled
languages. Interpretive environments like Maffatare popular with users since the ab-
stractions they provide are very similar to those used in the mathematical formulation [33].
The problem with interpretive languages like Matlab is that they are not as efficient or as
flexible as more general purpose compiled languages. When these algorithms are imple-
mented in a compiled procedural language, like Fortran, the syntax is much more verbose,
difficult to read, and prone to coding mistakes. Every data structure is seen in intimate
detail and these details can obscure what may be an otherwise simple algorithm. While the
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level of abstraction provided by environments like Matlab is very useful, more elaborate
data structures and operations are needed to handle problems with special structure and
computing environments.

Modern software engineering modeling and development methods, collectively known
as Object-Oriented Technology (OOT), can provide much more powerful abstraction tools
[97], [96]. In addition to abstracting linear algebra operations, Object-Oriented Program-
ming (OOP) languages like C++ can be used to abstract any special type of quantity or
operation. Also OOT can be used to abstract larger chunks of an algorithm and provide for
greater reuse. While newer versions of Matlab support some aspects of OOT, its propri-
etary nature and its loose typing are major disadvantages. A newly standardized graphical
language for OOT is the Unified Modeling Language (UML) [96]. The UML is used to
describe many parts of rSQP++. Appendix F provides a very short overview to the UML.

There are primarily two advantages to using data abstraction: it improves the clarity
of the program, and it allows the implementation of the operations to be changed and
optimized without affecting the design of the application or even requiring recompilation
of much of the code. The concepts of OOT and data abstraction are discussed in more
detail later in the context of rSQP.

4.2.1.2 Challenges in Designing Implementations for Numerical SQP Algorithms

There are many types of challenges in trying to build a framework for SQP (as well as for
many other numerical areas) that allows for maximal sharing of code, and at the same time
is understandable and extensible. Specifically, three types of variability will be discussed.

First, we need to come up with a way of modeling and implementing iterative algo-
rithms, such as SQP, that will allow for steps to be reused between related algorithms and
for existing algorithms to be extended. This type of higher-level algorithmic modeling
and implementation is needed to make the steps in our rSQP algorithms more independent
so that they are easier to maintain and to reuse. A framework ca@kecbralltera-
tionPack has been developed for these types of iterative algorithms and serves as the
backbone for rSQP++.
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The second type of variability to deal with is in allowing for different implementations
of various parts of the rSQP algorithm. There are many examples where different imple-
mentation options are possible and the best choice will depend on the general properties
(i.e. sizes ofr, m, andn — r etc.) of the NLP being solved.

An example is the method used to implement the null-space matimx(4.1.34). One
option, referred to as the direct (or explicit) factorization, is to comgte —C ' N up
front. This method require: — r) solves with the basis matrik' and also the storage
of a dense" x (n — r) matrix D. Later, however, the tasks of performing matrix-vector
products of the fornZ? ¢ and Zp,, and building the inequality constraints in (4.1.27) are
implemented using the precomputed dense md¥iX herefore, no further solves with the
basis matrixC are required. The other option, called the adjoint (or implicit) factorization,
is to defineZ implicitly and then to compute products liké"g = —NT(C"¢¥) + g..
When there are few active variable bounds (i.e. # active bounds =nadtn — r)), the
adjoint factorization is guaranteed to require fewer solves witnd demand less storage
than the direct factorization. However, it is difficult to determine the best choice a priori.
See the optiomull _space _matrix in Section 4.3.1.1.

Another example is the implementation of the Quasi-Newton reduced HeBsian
ZTW Z. The choice for whether to stoi@ directly or its factorization (and what form of
the factorization) depends on the choice of QP solver used to solve (4.1.25)—(4.1.27). If
there are a lot of degrees of freedofn (- r) is large) then storing and manipulating the
dense factors o3 will become too expensive and therefore a limited-memory implemen-
tation may be preferred. See the optounsi _newton in Section 4.3.1.1.

Yet another example of variability in implementation options is in allowing for dif-
ferent implementations of the QP solver as described in Section 4.2.6 (See the option
gp _solver ).

A third source of variability is in how to exploit the special properties of an application
area. Issues related to the management of various algorithmic and implementation options
are more of a concern to the developers and implementors of the optimization algorithms
than to the users of the algorithms. As long as an appropriate interface is available for user
to select various options (see Section 4.3.1.1), the underlying complexity is not really their
concern. However, what is a concern to advanced users of optimization software is a desire
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to tailor the numerical linear algebra to the specific properties of their potentially very spe-
cialized application area. Data structures, linear solvers and even computing environments
(i.e. parallel processing using MPI) can be specialized for many applications. For example,
a NLP may have constraints where the basis of the Jacabisrblock diagonal. There-

fore, linear systems can be solved by working with the blocks separately and possibly in
parallel. Examples of these types of NLPs include Multi-Period Design (MPD) [118] and
Parameter Estimation and Data Reconciliation (PEDR) [116]. Another example of a spe-
cialized NLP is one where the constraints are comprised of discretized Partial Differential
Equations (PDEs). For these types of constraints, iterative solvers have been developed to
efficiently solve for linear systems with the basis of the JacoldiarAbstract interfaces

for matrices and linear solvers have been developed that allow the rSQP algorithm to be
independent of the implementation of these operations. The abstractions that allow for this
variability are described in Section 4.2.3.1.

For some NLPs, the matri¥¢(x;) can not even be formed implicitly (i.e. no matrix-
vector products). And, linear systems with the basis of the Jacabiari4.1.33) can not be
solved with arbitrary right hand sides. Or, solves with are not possible (see [104]). For
these types of NLPs, a special “direct sensitivity” interface has been developed (see Section
4.2.3.2). For a “direct sensitivity” NLP, the number of algorithmic and implementation
options is greatly constrained and is therefore an example of additional complexity created
by the interaction of all three types of variability.

Abstract interfaces to vectors and matrices have been developed and are described in
Section 4.2.3.1 that serve as the foundation for facilitating the type of implementation and
NLP specific linear algebra variability described above. In addition, these abstract inter-
faces also help manage some of the algorithmic variability such as the choice of different
null-space decompositions.

4.2.2 High-Level Object Diagram for rSQP++

There are many different ways to present rSQP++. Here, we take a top-down approach
where we start with the basics and work our way down into more detail. This discussion is
designed to help the reader to appreciate how a complex or specialized NLP is solved using
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rSQP++.

Figure 4.2 shows a high-level object diagram of a rSQP++ application, ready to solve
a user-defined NLP. The NLP objesdtiLP is created by the user and defines the functions
and gradients for the NLP to be solved (see Section 4.2.3.2). Closely associated with a
NLP is aBasi sSyst emobject. TheBasi sSyst emobject is used to implement the se-
lection of the basis matri’. ThisBasi sSyst emobject is used by a variable-reduction
null-space decomposition (see Section 4.2.5). Each NLP object is expected to supply a
Basi sSyst emobject. The NLP andBasi sSyst emobjects collaborate with the opti-
mization algorithm though a set of abstract linear algebra interfaces (see Section 4.2.3.1).
By creating a specialized NLP subclass (and the associated linear algebBasinsl-
Syst emsubclasses) the implementation of all of the major linear algebra computations
can be managed in a rSQP algorithm. This includes having full freedom to choose the data
structures for all of the vectors and the matrices”, N and how nearly every linear alge-
bra operation is performed. This also includes the ability to use fully transparent parallel
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linear algebra on a parallel computer even though none of the core rSQP++ code has any
concept of parallelism.

Once a user has developed NLP &asi sSyst emclasses for their specialized appli-
cation, a NLP object can be passed ont8@PppSolver object. TheSQPppSolver
class is a convenient “facade” [42] that brings together many different components that are
needed to build a complete optimization algorithm in a way that is transparent to the user.
The rSQPppSolver object will instantiate an optimization algorithm (given a default
or a user-defined configuration object) and will then solve the NLP, returning the solution
(or partial solution on failure) to the NLP object itself. Figure 4.2 also shows the course
grained layout of a rSQP++ algorithm. An advanced user can solve even the most com-
plex specialized NLP without needing to understand how these algorithmic objects work
together to implement an optimization algorithm. Understanding the underlying algorith-
mic framework is only necessary if the optimization algorithms need to be modified. The
foundation for the algorithmic framework is discussed in Section 4.2.4. A complete exam-
ple of a simple but very specialized NLP that overrides all of the linear algebra operations
is described in Section 4.4.

While rSQP++ offers complete flexibility to solve many different types of specialized
NLPs in diverse application areas such as dynamic optimization and control [16] and PDES
[19] it can also be used to solve more generic NLPs such as are supported by modeling
systems like GAMS [29] or AMPL [41]. For serial NLPs which can compute explicit
Jacobian entries fad, a user needs to to create a subclagsldPSerialPreproces-
sExplJac and define the problem functions and derivatives. For these types of NLPs, a
defaultBasi sSyst emsubclass is already defined which uses a sparse direct linear solver
to implement all of the required functionality.

Figure 4.3 shows a UML package diagram of all of the major packages that make up
rSQP++. At the very least, each package represents one or more libraries and the package
dependencies also show the library dependencies. In many cases, each package is actually a
C++namespace (e.g.namespace AbstractLinAlgPack { ... })and selected
classes and methods are imported into higher level packages with€g declarations.

The following are very brief descriptions of each package. The packages are described in
more detail in Sections 4.2.3-4.2.5 and in Appendix C.
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MemMngPackcontains basic (yet advanced) memory management foundational code
such as smart reference counted pointers and factory interfaces (see Appendix 8.8). These
classes provide a consistent memory management style that is flexible and results in robust
code. Without this foundation, much of the functionality in rSQP++ would have been very
difficult to implement correctly and safely.

RTOpPackis comprised of an advanced low-level interface for vector reduction/transformation
operators that allows the development of high-level linear algebra interfaces and numeri-
cal algorithms (i.e. rSQP++). The basic low-level operator interface is cRIlgdpwhich
allows the development of arbitrary user-defined vector operators. The design of this in-
terface was critical to the development of rSQP++ in a way that allows full exploitation
of a parallel computer and specialized application without requiring rSQP++ to have any
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concept of parallel constructs. The advanced concepts behind the desJrOpiPack
are described in more detail in [10].

AbstractLinAlgPack is a full-featured set of interfaces to linear algebra quantities
such as vectors and matrices (or linear operators). A vector interface is the foundation for
all numerical applications and provides some of the greatest challenges from an object-
oriented design point of view. The vector interfaceAbstractLinAlgPack is built
on the foundation oRTOpPack and allows the efficient development of many advanced
types of optimization algorithms. There are basic interfaces for general, symmetric and
nonsingular matrices. ThBasi sSyst eminterface mentioned above is also include in
this package. These linear algebra interfaces are devoid of any concrete implementations
and form the foundation for all the linear algebra computations in rSQP++. These interfaces
are described in more detail along with the NLP interfaces in Section 4.2.3

LinAlgPack contains concrete data types for dense BLAS-compatible linear algebra.
Part of this package is a portable C++ interface to a Fortran BLAS library. This package
forms the foundation for all dense serial linear algebra data structures and computations
that take place in rSQP++.

SparseLinAlgPack  includes many different implementations of linear algebra in-
terfaces defined idbstractLinAlgPack for serial applications. In addition to a de-
fault serial vector class, dense and sparse matrix classes are also provided. Several other
important matrix interfaces are also declared that are useful in circumstances where serial
linear algebra quantities are mixed with more general (i.e. parallel) linear algebra imple-
mentations. The implementations and the interfaces included in this package provide a
(nearly) complete linear algebra foundation for the development of any advanced opti-
mization algorithm.

SparseSolverPack  provides interfaces to direct serial linear solvers, subclasses
for several popular implementations (such as several Harwell solvers and SuperLU) and
includes a subclass &asi sSyst emthat uses one of these direct solvers.

NLPInterfacePack  defines the basic NLP interfaces that are needed to implement
various optimization algorithms (particularly SQP methods). These basic interfaces com-
municate to an optimization algorithm through linear algebra quantities usinétihe
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stractLinAlgPack interface. These basic interfaces are described along with the lin-
ear algebra interfaces in Section 4.2.3. This package also contains several NLP node sub-
classes for common types of NLPs. These subclasses make it very easy to implement a
serial NLP.

ConstrainedOptimizationPack is a mixed collection of several different types
of interfaces and implementations. Some of the major interfaces and implementations de-
fined in this package are for null-space decompositions, QP solvers, merit functions and
generic line searches.

GenerallterationPack is a framework for developing iterative algorithms. Any
type of iterative algorithm can be developed and there is no specialization for numerics
in the package. This framework provides the backbone for all rSQP++ optimization algo-
rithms and is described in more detail in Section 4.2.4

ReducedSpaceSQPPack is the highest level package (hamespace) in rSQP++. It
contains all of the rSQP specific classes and contains the basic infrastructure for building
rSQP++ algorithms (such as step classes) as well as other utilities. Also included are the
rSQPppSolver facade class and two built-in configuration classes for active-set rSQP
(rSQPAIgo _ConfigMamaJama ) and interior-point rSQPAlgo _ConfiglP ). Basic in-
teraction with a rSQP++ algorithm throughr8QPppSolver object is described in the
Doxygen documentation starting at

RSQPPEBASEDOC/ReducedSpaceSQPPack/html/index.html

It is not important that the user understand the deatils of all of these packages but some
packages are of more interest to an advanced user and these packages are described next.
Some of the other packages are described in Appendix C. For details on the installation of
rSQP++, see Appendix B.

4.2.3 Overview of NLP and Linear Algebra Interfaces

All of the high-level optimization code in rSQP++ is designed to allow arbitrary implemen-
tations of the linear algebra objects. It is the NLP object that defines the basis for all of
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the linear algebra by exposing a set of abstract “factories” [42] for creating linear algebra
objects. Before the specifics of the NLP interfaces are described, the basic linear algebra
interfaces are discussed first. These are the interfaces that allow rSQP++ to utilize fully
parallel linear algebra in a completely transparent manner.

4.2.3.1 Overview ofAbst r act Li nAl gPack Interfaces to Linear Algebra

Figure 4.4 shows a UML class diagram of the basic linear algebra abstractions. The foun-
dation for all the linear algebra is in vector spaces. A vector space object is represented
though an abstract interface calldct or Space. A Vect or Space object primar-

ily acts as an “abstract factory” [42] and creates vectors from the vector space using the
cr eat e_nenber () method.Vect or Space objects can also be used to check for com-
patibility using thei s_conpati bl e() method. Everyect or Space object has a
dimension. Therefore ®ect or Space object can not be used to represent an infinite-
dimensional vector space. This is not a serious limitation since all vectors must have a
finite dimension when implemented in a computer. Just because two vectors from different
vector spaces have the same dimension does not imply that the implementations will be
compatible. For example, distributed parallel vectors may have the same global dimension
but the vector elements may be distributed to processors differently (we say that they have
different “maps”). This is an important concept to remember.

Vector implementations are abstracted behind interfaces. The basic vector interfaces are
broken up into two levelsVect or Wt hQp andVect or Wt hQpMut abl e. TheVec-
t or Wt hQp interface is an immutable interface where vector objects can not be changed
by the client. The/ect or Wt hQpMut abl e interface extends theéect or Wt hOp in-
terface in allowing clients to change the elements in the vector. These vector interfaces
are very powerful and allow the client to perform many different types of operations. The
foundation of all vector functionality is the ability to allow clients to apply user-defined
RTOpoperators which perform arbitrary reductions and transformations (see the methods
appl yreduction(...) andapplytransformation(...)1). The ability to

Note that bottappl y r educti on(...) andapply transformation(...) can perform re-
ductions and return reduction objecexiuct _obj . Assuming that onhappl y r eduction(...) can
perform a reduction is a common misunderstanding. The differences between these two methods is subtle
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write these types of user-defined operators is critical to the implementation of advanced
optimization algorithms. A single operator application method is the only method that a
vector implementation is required to provide (in addition to some trivial methods such as
returning the dimension of the vector) which makes it fairly easy to add a new vector imple-
mentation. In addition to allowing clients to apg®f Opoperators, the other major feature

is the ability to create arbitrary subviews of a vector (usingghé_vi ew() methods)

as abstract vector objects. This is an important feature in that it allows the optimization
algorithm to access the dependent (i.e. state) and independent (i.e. design) variables sepa-
rately (in addition to any other arbitrary range of vector elements). Support for subviews
is supported by default by every vector implementation through default view classes (see
the classvectorWithOpMutableSubview ) that rely only on theRTOpapplication
methods. The last bit of major functionality is the ability of the client to extract an explicit

and the reader should consult the the Doxygen documentation for more details.
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view of a subset of the vector elements. This is needed in a few parts of an optimization
algorithm for such tasks as dense quasi-Newton updating of the reduced Hessian and the
implementation of the compact LBFGS matrix. Aside from vectors being importantin their
own right, vectors are also the major type of data that is communicated between higher-
level interfaces such as linear operators (i.e. matrices) and function evaluators (i.e. NLP
interfaces).

The basic matrix (i.e. linear operator) interfaces are also shown in Figure 4.4. The
Mat ri xXW t hOp interface is for general rectangular matrices. Associated with\my
tri xWthQp object is a column space and a row space showspase cols and
space _rows respectively in the figure. Since column and rdfect or Space objects
have a finite dimension, this implies that every matrix object also has finite row and column
dimensions. Therefore, these matrix interfaces can not be used to represent an infinite-
dimensional linear operator. Note that all finite-dimensional linear operators can be repre-
sented as a matrix (which is unique) so the distinction between a finite-dimensional matrix
and a finite-dimensional linear operator is insignificant. The column and row spaces of a
matrix object identify the vector spaces for vectors that are compatible with the columns
and rows of the matrix respectively. For example, if the mattiis represented ashh-
tri xXW t hOp object then the vectorg and x would have to lie in the column and row
spaces respectively for the matrix-vector prodyet Ax.

These matrix interfaces go beyond what most other abstract matrix/linear-operator in-
terfaces have attempted. Other abstract linear-operator interfaces only allow the applica-
tions ofy = Ax or the transpose (adjoing)= A’z for vector-vector mappings. Evela-
tri xXW t hQp object can provide arbitrary subviewsldst r i xXW t hOp objects through
thesub_vi em...) methods. These methods have default implementations based on
default view classes which are fundamentally supported by the ability to take arbitrary sub-
view of vectors. This ability to create these subviews is critical in order to access the basis
matrices in (4.1.33) given a Jacobian objéctfor Vc. These matrix interfaces also allow
much more general types of linear algebra operations. The mdtixi xW t hQp inter-
face allows the client to perform level 1, 2 and 3 BLAS operations (see Appendix E for a
discussion of the convention for naming functions for linear algebra operations)

77



B = aop(A)+ B
aop(A) z + By
C = aop(A)op(B)+ pC.

S5
I

One of the significant aspects of these linear algebra operations is that an di#stract
tri xXWthQp object can appear on the left-hand-side. This adds a whole set of issues
(i.e. multiple dispatch [76, Item 31]) that are not present in other linear algebra interfaces.

The matrix interfaces assume that the matrix operator or the transpose of the matrix
operator can be applied. Therefore, a cordat r i xXW t hQp implementation must be
able to perform the transposed as well as the non-transposed operation. This requirement
is important when the NLP interfaces are discussed later.

Several specializations of tidat r i xXW t hOQp interface are also required in order to
implement advanced optimization algorithms. All symmetric matrices are abstracted by
theMat r i xSymW t hQp interface. This interface is required in order for the operation

C = aop(B)op(A) op(B") + C

to be guaranteed to maintain the symmetry of the matrixNote that a symmetric
matrix requires that the column and row spaces be the same which is shown by the UML
constraint{... }in Figure 4.4.

The specializatiofvat r i xXW t hOpNonsi ngul ar is for nonsingular square matri-
ces that can be used to solve for linear systems. As a result, the level 2 and 3 BLAS
operations
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y = op(A )z
= aop(A~!)op(B)
C = aop(B)op(A™")

are supported. The solution of linear systems represented by these operations can be
implemented in a number of different ways. A direct factorization followed by back solves
or alternatively a preconditioned iterative solver (i.e. GMRES or some other Krylov sub-
space method) could be used. Or, a more specialized solution process could be employed
which is tailored to the special properties of the matrix (i.e. banded matrices).

The last major matrix interfadeat r i xSymW t hOpNonsi ngul ar is for symmetric
nonsingular matrices. This interface allows the implementation of the operation

C = aop(B)op(A~") op(B")

and guarantees that will be a symmetric matrix.

A more detailed discussion of these basic linear algebra interfaces can be found in the
Doxygen documentation.

A major part of a rSQP algorithm, based on a variable-reduction null-space decom-
position (see Section 4.2.5), is the selection of a basis. The fundamental abstraction for
this task isBasi sSyst em(as first introduced in Figure 4.2). Thgdat e basi s()
method takes the rectangular Jacob@m(V¢) and returns &/at ri xXW t hCpNonsi n-
gul ar object for the basis matrik'. This interface assumes that the variables are already
sorted according to (4.1.31). For many applications, the selection of the basis is known a
priori (e.g. PDE-constrained optimization). For other applications, it is not clear what the
best basis selection should be. For the latter type of application, the basis selection can be
performed on-the-fly and result in one or more different basis selections during the course
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of a rSQP algorithm. Th®8asi sSyst enPer mspecialization supports this type of dy-
namic basis selection and allows clients to either ask the basis-system object for a good
basis selectionsfel ect _basi s()) or can tell the basis-system object what basis to use
(sel ect basi s()). The selection of dependent, and independent; variables and

the selection of the decomposedx) and undecomposed (z) constraints is represented

by Per mut at i on objects which are passed to and from these interface methods. The
protocol for handling basis changes is somewhat complicated and is beyond the scope of
this discussion.

4.2.3.2 Overview ofNLPI nt er f acePack Interfaces to Nonlinear Programs

The hierarchy of NLP interfaces that all rSQP++ optimization algorithms are based on is
shown in Figure 4.5. These NLP interfaces act primarily as evaluators for the functions and
gradients that define the NLP. These interfaces represent the various levels of intrusiveness
into an application area.

The base-level NLP interface is callsliP and defines the nonlinear program. NbP
object defines the vector spaces for the varialesd the constraintdasVect or Space
objectsspace x andspace _c respectively. Th&LP interface allows access to the initial
guess of the solutiom, and the bounds; andz; asVect or Wt hQp objectsx _init
xI andxu respectively.

The NLP interface allows clients to evaluate just the zero-order quantjtie$ € R
andc(z) € C as scalar anect or Wt hQpMut abl e objects respectively. Many dif-
ferent steps in an optimization algorithm do not require sensitivities for the problem func-
tions. Examples include several different line search and trust region globalization methods
(i.e. Filter and exact merit function). Nongradient-based optimization methods could also
be implemented through this interface but smoothness and continuity of the variables and
functions is assumed by default. Note that this interface is the same as a NAND (nested
analysis and design) approach if there are no equality constraints (i.e. removed using non-
linear elimination). TheNLP interface can also be used for unconstrained optimization
(i.e.|C| = m = 0) or for a system of nonlinear equations (i.&| = n = |C| = m).

The next level of NLP interface iBLPCbj Gr adi ent. This interface simply adds
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Figure 4.5. UML class diagram :NLPInterfacePack , ab-
stract interfaces to nonliner programs

the ability to compute the gradient of the objective funct™fi(z) € X as aVect or -

W t hOpMut abl e objectGf. For many applications, it is far easier and less expensive
to compute sensitivities for the objective function than it is for the constraints. That is
why this functionality is considered more general than sensitivities for the constraints and
is therefore higher in the inheritance hierarchy than interfaces the include sensitivities for
Ve.

Sensitivities for the constraintgc are broken up into two separate interfaces. These
interfaces represent the capabilities of the underlying application code. The most general
(from the standpoint of the optimization algorithm) interfac&isPFi r st Or der | nf o.

This NLP interface assumes that the application can, at the very least, form and main-
tain aMat r i xXW t hQp objectGc for the gradient of the constriani8c. Recall that this
implies that operations of the form = V¢ v andu = Vew can both be performed

with arbitrary vectors. Note that while operations of the fotm= Vc!'v can be approx-
imated using directional finite differences (i¥c" v = lim.o(c(z + ev) — c(z))/¢)),
operations of the formu = Ve¢wv can not, so this interface can not simply be approxi-
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mated using finite differences. NLPFi r st Or der | nf o object can optionally supply

a Basi sSyst emobiject that is specialized for applicatior®c matrix object. By im-
plementing theNLPFi r st Or der | nf o interface (with the associatédect or Space,
MatrixWithOp  andBasi sSyst emsubclasses), the critical linear algebra computa-
tions can be performed in a rSQP algorithm. See Section 4.2.5 for a description of how the
variable-reduction null-space decompositions uBagsi sSyst emobject to define all of

the required decomposition matrices. An example of a very structured NLP is described in
Section 4.4 where all of the linear algebra objects are specialized for the NLP.

For applications that can not satisfy thNePFi r st Or der | nf o interface, there is
theNLPFi r st Or der D r ect interface. As the name implies, tiNePFi r st Or der -
Di r ect interface only requires the direct sensitivity matfix= —C ' N and the solution
to the Newton linear systems, = C~'c. With usually minor modifications, almost any
application code that uses a Newton method for the forward solution can be used to imple-
ment theNLPFi r st Or der D r ect interface (see Chapter 5 for an example application).
Both the orthogonal and the coordinate variable-reduction null-space decompositions can
be implemented with just the quantiti&s= —C ' N andp, = C'c.

Finally, the most advanced NLP interface definetlif?SecondOr der | nf 0. This
NLP interface allows the optimization algorithm to computietd r i xSymWN t hOp ma-
trix objectHL for the Hessian of the Lagrangidi = V2 L = V*f(z) 4+, \;VZ¢;(2).
How this Hessian matrix object is used can vary greatly. This matrix object can be used
to compute the exact reduced Hessian= Z7W Z or can be used to form the full KKT
matrix. Many other possibilities exist but the best approach will be very much application
dependent.

The NLP, NLPFi rst Order Di rect, NLPFi r st O der | nf o andNLPSecond-
O der I nf o interfaces represent four different levels of invasiveness to the application.
The NLP interface without equality constraints can used to implement a basic NAND op-
timization algorithm while on the other extreme tNePSecondOr der | nf o interface
can be used to implement a fully coupled invasive SAND method with access to second
derivatives.
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4.2.4 Overview ofGener al It er ati onPack Framework for Gen-
eral Iterative Algorithms

GenerallterationPack is a framework for building iterative algorithms in C++.
This framework is not specific to numerical applications and can be used for any application
area where it may be useful. The challenges in building such a framework are in trying to
keep the steps and other components in the algorithm as decoupled as possible so that they
can be reused in many different related algorithms.

To illustrate the design and the underlying concepts, consider the iterative algorithm
shown in Figure 4.6. In such an algorithm, quantities computed in one step are used by
one or more other steps. In the example, the iteration quantities, are;, andr. These
guantities may represent anything from scalars to vectors or matrices all the way up to
arbitrarily complex objects. Such algorithms must be initialized before they can be run
as shown in the example. Once some minimum initialization is completed, the algorithm
starts to run. The average iteration is executed sequentially from step 1 to step 4 and
then loops back to step 1 again with the iteration couhtarcremented by one. During
some iterations, however, one or more minor loops between steps 2 and 3 may be required.
The steps in the algorithm are dependent on the other steps (at least implicitly) through
common iteration quantities. For example, steps 2, 3 and 4 all access the iteration quantity
q. Steps may also have algorithmic control dependencies required to perform minor loops.
In the example, steps 2 and 3 are involved in a minor loop and this suggests some type
of dependency between them. The last type of dependency that exists is also between
steps and the iteration quantities that are updated or accessed and is related to the storage
requirements for iteration quantities. For example, step 1 only requires one storage location
for p to updatep®, while step 2 requires dual storage fo(p* andp*~') in order to update
¢". Suppose step 1 were implemented long before step 2. In this case, it may have been
assumed that only one storage location was needed Wihen step 2 is later implemented,
will step 1 have to be modified to accommodate the additional storage locations? Many
implementation techniques would require the code implementing step 1 to be modified in
this case, thereby coupling step 1 to step 2 as well as to the implementation of the iteration
guantityp. Finally, there must be some termination criteria for the algorithm. This check
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Figure 4.6. UML Activity Diagram: Example iterative algo-
rithm

for termination occurs after step 4 is completed in the example.

Figure 4.7 shows a UMddiagram for theGenerallterationPack framework.
At the center of the framework is afdlgorithm  object. Associated with aAlgo-
rithm object are one or moral gori t hnSt ep objects where each is identified by a
unique namegtep _name). Step objects, which are instantiations of subclasse ef
gori t hnt ep, implement the steps in the algorithm. Using objects to represent a sub-
algorithm is a well known OO design pattern (see the “Strategy” pattern in [42]). Iteration
guantities are abstracted behind thieer Quant i ty interface and are aggregated into
a singleAlgorithmState object. TheAlgorithmState object acts as a central
repository for these quantities. Individubt er Quant i ty objects are identified by a
unique namei€ _-name). Aggregating all of the iteration quantities into one central lo-
cation helps to remove the data dependencies between Step objects. The Step objects use

2The UML [96] has a convention for the names of classes and objects which is used in this paper. The
names of concrete classes use the @omcreteClass . This is also the font used for objects. An object
is an instantiation of a concrete class. Abstract class names, as well as abstract operation names, are in
italics such asdbst ract O ass andAbstract Cl ass: : operation(...). While a concrete class
may have direct object instantiations, an abstract class (interface) may not (i.e. because these classes always
have one or more undefined abstract operation).
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thelt er Quanti t yAccess<. .. > interface to update and access iteration quantities.
The operatiorset _k( of f set) is called to update a quantity for the specific iteration

+ of f set, whileget k(of fset) is used to access a quantity already updated. Such
an interface to iteration quantities relieves Step objects from having to know if a quantity
requires single or multiple storage. So in the previous mentioned scenario for our example
algorithm, when the class for step 2 is implemented after step 1, the class for step 1 would
not have to be modified at all or even recompiled. Also, the operg@ink ( of f set)
validates that the quantity was indeed updated for the iter&tion of f set . This feature

has been invaluable during the development of rSQP++ in catching mistakes in algorithm
logic and/or implementation. Finally, ad gori t hmlr ack object is used to output in-
termediate information about the algorithm by examiningAlgorithmState object.

By creating a subclass & gor i t hmlr ack, clients can easily monitor the progress of

an algorithm. If more sophisticated monitoring and control of an algorithm by the client
is required, additional Step objects can be inserted into an already preformed algorithm.
In addition, an algorithm can be altered while it is running by adding and removing Step
objects, thereby allowing it to be adapted for changing needs.

Figure 4.8 shows an object diagram for the example algorithm in Figure 4.6. In this
diagram, the iteration quantities are shown aggregated insidélgfoeithmState ob-
ject where the link qualifier names are given for each quantity. The concrete type of each
of these quantities ikerQuantityAccessContiguous<...> which provides se-
guential storage for successive iterations.

This design also allows for distributed algorithmic control. Algorithm control is shared
between th&lgorithm  andAl gor i t hnt ep objects. TheAlgorithm  object s re-
sponsible for executing steps sequentially (from Step 1 to Step 4 in our exabb)-
rit hnt ep objects are responsible for initialing minor loops through Atgorithm
object (Step 3 initiates the Minor Loop in the example). Figure 4.9 shows a UML collabora-
tion diagram illustrating how algorithm control is implemented for our example algorithm.
The scenario shown is for two major iteratiorks=€ 0, 1) where the minor loop is executed
once in the firstk = 0) iteration.

The details for the interfaces and the collaborations between the objects in this frame-
work are documented in the Doxygen generated documentation starting in the file
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«configuration»

«start algorithm»
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UML Class Diagram:
. An object-oriented framework for building iterative
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&l—' . ConcreteStepl |
"Step2" : ConcreteStep2 |

: Algorithm. "Step3" : ConcreteStep3
ﬂl—' . ConcreteStep4

| track |
| :ConcreteTrack |

state

. AlgorithmState

II—)I . IterQuantityAccessContinuous<...> |
Il—)I . IterQuantityAccessContinuous<...> |
Il—)I . IterQuantityAccessContinuous<...> |
:|—>| . IterQuantityAccessContinuous<...> |

Figure 4.8. UML Object Diagram: Instantiations (objects) of
GenerallterationPack classes for the example algorithm in
Figure 4.6
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Stepl ‘ Step2.

1.1: do_step(algo,1) 1 1.2: do_step(algo,2) t
1.9: do_step(algo,1) 1 1.4: do_step(algo,2) t
1.10: do_step(algo,2) t
|
1: do_algorithm() -
—_— algo: Algorithm } Step3
1.3: do_step(algo,3) -
1.3.1: do_step_next("Step2") ~

1.5: do_step(algo,3) -
1.11: do_step(algo,3) -

1.7: output_iteration(algo) |

1.13: output_final(algo 1.6: do_step(algo.4) |

state: AlgorithmState ‘ ‘ track Step4

Figure 4.9. UML Collaboration Diagram: Scenario for the
example algorithm in Figure 4.6

RSQPPBEBASEDOC/GenerallterationPack/html/index.html

4.2.5 Overview of Interfaces for Null-Space Decompositions

An important computation in a rSQP algorithm is the null-space decomposition used to
project the full-space QP subproblem into the reduced space. In rSQP++, the decomposi-
tion matrices”, Y, U, andU, in (4.1.23), (4.1.26)—(4.1.27) are representedvhy r i x-

W t hOp objects while the nonsingular matrixin ((4.1.24) is represented byMat r i x-

W t hOpNonsi ngul ar object. Once these matrix objects are initialized for the current
iteration, the rest of the rSQP++ algorithm can be implemented by interacting only with
these matrices through tivat r i xXW t hOp andMat ri xXW t hQpNonsi ngul ar inter-

faces. The basic interface that a rSQP++ algorithm uses to construct the matrices,,

U, andR from the matrixA isDeconposi t i onSyst em This interface, as well as more
specialized interfaces for variable-reduction decompositions, is shown in Figure 4.10.

TheDeconposi t i onSyst eminterface has an operation calleddat e deconp(. . .)
which the rSQP++ algorithm calls to update the decomposition matricedDdd@nposi t i on-
Syst eminterface also exposes a set of factory objects (not shown in the figure) that
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DecompositionSystem

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy)

DecompositionSystemVarReduct |

DecompositionSystemOrthonormal

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy)

DecompositionSystemVarReductimp

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy) basis_sys b Al o -
update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy) ASIEEILMA PR [Besiselysiem

j|} +update_basis(in Gc, out C, out D, out ...)

DecompositionSystemCoordinate DecompositionSystemOrthogonal

update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy) update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy)

Figure 4.10. UML Class Diagram: Inheritance hierarchy for
null-space decompositions

can create matrix objects fdf, Y, R, Uz andUy that are compatible with the concrete
decomposition-system object.

Deconposi ti onSyst enVar Reduct is a specialized interface that all variable-
reduction decompositions inherit fronDeconposi t i onSyst enmar Reduct | np is
an implementation node subclass that provides a common implementation that all variable-
reduction decompositions can share. This matrix subclass defines the factory objetts for
andUz. The key to making the variable-reduction decomposition subclasses independent
of the special properties of the underlying NLP and linear solver is to Bssas Sy st em
object which takes care of the basis handling. Basi sSyst emobject provides access
to the basis matrixC' as aMat ri xXW t hOpNonsi ngul ar object as well as the ma-
trices N, E, andF asMat ri xXWt hQp objects. Given &Basi sSyst emobject, the
Deconposi ti onSyst enVar Reduct | np subclass can fully define the null-space ma-
trix 7 in (4.1.34) and the projected matrikz in (4.1.35). This subclass performs all of the
interaction with theBasi sSyst emobject to form the basis matrices. However, this sub-
class can not define the matrix objectsYarR andUy since these depend on the definition
of the quasi-range-space mathix The computation of these matrix objects are deferred
to subclasses through the pure-virtual methpdiat e_mat ri ces(...). This method
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passes the basis matrix objects f6r N, E, F' and potentially the direct sensitivity matrix
object for D to the subclass which then returns updated matrix objects fdt andUy.

The coordinate decomposition defined in (4.1.36)—(4.1.38) is implemented by the sub-
classDeconposi t i onSyst emCoor di nat e. The implementation of this subclass is
very simpleasR = C, U, = E.

The orthogonal decomposition defined in (4.1.39)—(4.1.41) is implemented by the sub-
classDeconposi ti onSyst entrt hogonal . The implementation if this subclass is
more complex because of the more complicated definition¥’,0of2, andU,. See the
Doxygen documentation for this subclass for more details on how these matrices are im-
plemented.

The last decomposition system subclag3isonposi t i onSyst emOr t honor nal
which implements a different type of null-space decomposition based on a QR factoriza-
tion. The linear algebra performed in this class uses dense computations and is therefore
only applicable to small serial NLPs.

Since the null-space decomposition is such an important part of a rSQP algorithm it is
very important to validate that decomposition matrizgs”, R, U, andU, obey the correct
properties. The test claf®ecompositionSystemTester has been developed for this
purpose. The tests performed by this class do not significantly increase the total runtime for
the application and can be performed on even the largest and most difficult problems. The
tests performed ,of course, catch gross programming and other errors but are also sensitive
to ill conditioning in the problem. If any of the tests fail, the overall rSQP algorithm
is terminated. This class accepts many different options that control the level of output
produced to theSQPppJournal.out file (see the options groupecomposition-
SystemTester ).

The decomposition system interfaces and subclasses are part of the package (names-
pace)ConstrainedOptimizationPack and are documented in the Doxygen collec-
tion starting in

RSQPPBEBASEDOC/ConstrainedOptimizationPack/html/index.html
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4.2.6 Interfaces to Quadratic Programming Solvers

Another very important numerical computation in a rSQP algorithm is the solution to the
reduced-space QP subproblem in (4.1.25)—(4.1.27). In order to decouple the rSQP code
away from the QP solver used to solve the QP subproblem, an abstract interface to QP
solvers calledQPSol ver Rel axed has been developed. TI@Sol ver Rel axed is

very general and has seen application in areas other than SQP (such as MPC in [11]). The
QP solved by this interface is of the form

min gtd + Y% d"Gd + M(n) (4.2.59)
de R™
st. pl<np (4.2.60)
db <d<d’ (4.2.61)
e’ < op(E)d — by < eV (4.2.62)
op(F)d+(1—-n)f=0 (4.2.63)
where:
d,d",dV € R™
n,n" € R
Mm € R - R
g € R™

G=G" ¢ R"axnd
op(E) € R™Minx"d
e eV b € R™in
op(F) € RMeaxnd
[ e R

As shown in (4.2.59)—(4.2.63), a very simple relaxation of the constraints is built into
the formulation. The form of this relaxation is biased toward use in a SQP algorithm.
The form of the functionV/(n) in the objective (4.2.59) is specified by the subclasses that
implement this interface. An appropriate form of this function for a convex QP solver might

91



beM(n) = (n+ ]/QT;Q)M, wherel is a large constant. For a QP solver capable of handling
an indefinite Hessian{/ () = nM, whenM is a large constant, may be a better choice.
No matter how the functiot/ (n) is defined, as long a&(M (n))/d(n)|,_,. is sufficiently
large, them will be at its lower bound) = n* (n* = 0 usually) in (4.2.60) if an unrelaxed
feasible region exits for (4.2.61)—(4.2.63).

The methodQPSol ver Rel axed: : sol veqp(...) is called to pass the argu-
ments defining the QP to the QP solver and to return the solution. If the solution is not
found, then a partial solution will be returned and some information as to the status of the
returned point will be given (i.e. dual feasible, primal feasible, etc.). The problem vectors
g, b, f,d-, dY, ek ande? are represented agectorWithOp  objects. What makes this
interface different from other QP interfaces, such as described in [115], is that the defining
matrix objects are represented through the abstract interfdtesi x SymW t hQp for the
HessianG andMat ri xXW t hOp for the Jacobian matricds and F'. In this way, the client
(i.e. the rSQP algorithm in the case of rSQP++) need not know about the special properties
of the Hessian or the Jacobian matrices or how the QP is solved.

For some QP solvers thatimplement @RSol ver Rel axed interface, such as QPOPT
and QPSOL, interaction with the matric6s £ and F' through thevat r i xXW t hQp inter-
face is all that is needed to solve the QP in a reasonably efficient manner (with respect to the
specific solver). However, most implementations of @RSol ver Rel axed interface
can not efficiently solve the QP with just the interface provided throvghr i xSym
W t hOp andMat ri xXW t hQp. For many of these QP solver subclasses, more specialized
matrix interfaces must be supported by matrix objectsdorE and/or F'. For example,
the subclass for QPKWIK [106] must be able to extract the dense inverse of the Cholesky
factor of the Hessiad7. In order to do this, the matrix object f@aF must support the
Mat ri xExt ract | nvChol Fact or interface. Therefore, to use QPKWIK efficiently,
the HessiartG is usually stored and manipulated using the dense inverse of the Cholesky
factor. For other QP solvers, other less intrusive matrix interfaces are all that are required.
For example, with QPSchur (see [10] ) the QP can be efficiently solv@dsifipports the
Mat ri xSymW t hQpNonsi ngul ar interface. Other approaches for solving the QP de-
fined in (4.2.59)—(4.2.63) with QPSchur and the interfaces that the Hessian and Jacobian
matrix objects must support are discussed in [10].
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In addition to passing in the matrices and vectors that define the QP, the client can also
pass in initial guesses for the solutidn(primal variables) and the Lagrange multipliers
(dual variables) for the simple bound general inequality: and general equality con-
straints. Given good estimates for the primal and dual variables, an active-set QP solver
can find the solution in very few iterations.

At the time of this writing, QPSol ver Rel axed subclasses have been developed
for QPOPT QPSolverRelaxedQPOPT ) [47], QPSOL QPSolverRelaxedQPSOL )
[45], QPKWIK (QPSolverRelaxedQPKWIK ) [106], LOQO QPSolverRelaxed-
LOQO[117] and QPSchur@PSolverRelaxedQPSchur ) [10].

The real variability among different types of QPs is in the form of the HesSiamd
Jacobian® andF' matrices. By defining a single interface for QP solvers, most of the same
code that sets up the QP vectors, calls the solver, and interprets the returned solution can
be reused for many different QP solver implementations. Using this QP interface makes it
relatively easy to swap QP solvers in and out of rISQP++.

Another major advantage to having a single interface to many different QP solvers is
that it was possible to implement a testing class calle&olverRelaxedTester . The
methodQPSolverRelaxedTester::.check _optimality _conditions(...) checks
the optimality conditions of the QP, defined in (4.2.59)—(4.2.63), given the solution (or par-
tial solution) returned fromQPSol ver Rel axed: : sol ve gp(...). Itis critical to
stress how important this testing class is and has been for easing the development of new
QP solver subclasses and in regression testing existing QP solvers. In addition, this testing
method computes the relative errors in the optimality conditions and is useful in deter-
mining how much loss of precision has occurred due to round off and ill conditioning.
This helps to diagnose when a QP solver may be unstable or when the QP being solved
is very ill conditioned. A lot of work has gone into the development of @RSolver-
RelaxedTester testing class, and this work can be leveraged whenever a new QP solver
implementation is created.
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4.3 Configurations for rSQP++

An algorithm configuration object, as shown in Figure 4.2, is required to build a valid
rSQP++ algorithm and to initialize it before the algorithm is run. This is where a lot of
the complexity involved with a rSQP++ algorithm occurs. The individual step objects used
to build the algorithm generally are very compact and perform simpler, well defined tasks.
Most of these step objects are built to be fairly autonomous with little specific knowledge
about other steps. For the most part, Step objects communicate with each other through
the iteration quantities that they have in common. Because the individual Step objects are
decoupled, they can be used and reused in many related rSQP++ algorithms. However,
as is the case with any non-trivial application, the total complexity of the software is as
great or greater than the complexity of the algorithm it is implementing. This increase
in overall complexity is unavoidable. What has made object-oriented methods successful
in SO many areas is that this overall complexity is decomposed into manageable chunks
that most of us can comprehend. There is a continuous struggle in software modeling and
design between more encapsulation to make entities appear simpler on the outside verses
less encapsulation with finer-grained objects that are more flexible but are also harder to
deal with and understand as a whole. It is our aim to implement algorithms in rSQP++ that
strike a reasonable balance between simplicity and flexibility.

Once an algorithm is configured (i.e. Step objects have been addedr®QiRAlgo
object, and iteration quantity objects have been added toSk@°State object) it is
largely self contained. Automatic garbage collection is used extensively in the form of
smart reference counted pointers (see the aglakscount _ptr<...> in Section 8.8).
These smart pointers allow the algorithm to be modified (Step and iteration quantity objects
to be added and removed) with minimal danger of causing a memory leak or other memory
usage problem often associated with development in C and C++.

A universal rSQP++ solver encapsulation class calQPppSolver has been de-
veloped that hides many of the details of using a configuration object to setup and algorithm
and then solve a NLP. This encapsulation class uses an algorithm configuration class called
rSQPAIgo _ConfigMamaJama (see Section 4.3.1) as the default but other configura-
tions can be used as well. The claSQPppSolver provides simple access to a rSQP++
solver and should be used by even the most advanced user as the entry point to rSQP++.
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Doxygen generated documentation for much of what is discussed here begins in the file
RSQPPBEBASEDOC/html/index.html

It is important to stress what a radical departure from typical algorithmic implementa-
tion methods that this design represents. In a typical numerical code that supports several
different options, each part of the algorithm is augmented with “if” statements or “select-
case” control structures that implement the logic for the different options. Adding a new
option to these types of codes requires adding another “else if” or “case” clause. If the
code already supports many different options, then the existing “if” or “select-case” logic
may be fairly complex and a developer may be fearful (and rightly so) to add a new option
without understanding all of the logic in all of the existing “if” or “select-case” control
structures. Now consider the design used for rSQP++. All of the complicated logic used to
sort out the user-specified options is contained in the configuration object. However, once
the configuration object constructs an algorithm, that algorithm is usually much simpler
since it does not have to consider all of the possible options and there are far fewer control
structures for different algorithmic options. As a result, it is much easier for a developer
to reason about what the algorithm does and how to modify it to meet more specialized
needs. All of this can be done without having to know very much at all about the ugly
configuration object that was used to configure the algorithm.

4.3.1 MamaJama Configurations

There is a rSQP++ class calleBQPAIgo _ConfigMamaJama that is used to configure
many related reduced-space SQP algorithms. This single configuration class was used
during much algorithm development and continues to be modified and enhanced. The name
“MamaJama” was used for a complete lack of something more appropriate and is meant
to signify that this is a do-all configuration class. In the future, more specialized rSQP++
algorithms will most likely be modifications of the algorithms constructed by objects of
this configuration class or initially based on its source code.
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4.3.1.1 Solver options

Various options can be set in a flexible and user friendly format (see the@fasms-
FromStream in Appendix 8.8). Options are clustered into different “options groups”.
An example excerpt from an options file is shown in Appendix 8.8. These and many other
options may be included in th&QPpp.opt file.

The full set of options that can be used wiBQPppSolver and the “MamaJama”
configuration is described in the Doxygen documentation starting in the file

RSQPPBBASEDOC/ReducedSpaceSQPPack/html/rSQPppSolver*.html

Documenting rSQP++ is a major task and this issue is discussed in more detail in the
next section.

4.3.1.2 Documentation, Algorithm Description and Iteration Output

One of the greatest challenges in developing software of any kind is in maintaining docu-
mentation. This is especially a problem with software developed in a research environment.
Without good documentation, software can be very difficult to understand and maintain. In
addition to the Doxygen generated documentation, which is very effective in describing in-
terfaces and other specifications, there is also a need to document the more dynamic parts
of an optimization algorithm. Highly flexible and dynamic software, which rSQP++ is de-
signed to be, can be very hard to understand just by looking at the source code and static
documentation.

A problem that often occurs with numerical research codes is that the algorithm de-
scribed in some paper is not what is actually implemented in the software. This can cause
great confusion later on when someone else tries to maintain the code. Some of these dis-
crepancies are only minor implementation issues while others seriously impact the behavior
of the algorithm.

Primarily, two features have been implemented to aid in the documentation of a rSQP++
algorithm: the configured algorithm description can be printed out before the algorithm is

96



run, and information is output about a running algorithm.

The first feature is that a printout of a configured rSQP++ algorithm can be produced
by setting the optiomSQPppSolver::print algo = true  in rSQPpp.opt, where
this is shorthand for thprint _algo option in therSQPppSolver options group. With
this option set tarue , the algorithm description is printed to th@QPppAlgo.out file
before the algorithm is run. The algorithm is printed using Matlab-like syntax. The iden-
tifier names for iteration quantities used in this printout are largely the same as used in the
source code. There is a very careful mapping between the names used in the mathematical
notation of the SQP algorithm and the identifiers used in the source code and algorithm
printout. This mapping for identifiers is given in Appendix A. Each iteration-quantity
name in the algorithm printout hask’ ,’ kpl’ or’ kkml' appended to the end of it to
designate the iteratiorik), (k + 1) or (k — 1) respectively, for which it was calculated.
Much of the difficulty in understanding an algorithm, whether in mathematical notation or
implemented in source code, is knowing precisely what a quantity represents. By using
a careful mapping of names and identifiers, it is much easier to understand and maintain
numerical software.

This algorithm printout is put together by th8QPAIgo object (through functionality
in the base clagSenerallterationPack::Algorithm )aswellasthé\l gorithm
St ep objects. Each step is responsible for printing out its own part of the algorithm.
The code for producing this output is included in the same source file as each of the
do _step(...) functions for eachAl gor i t hnst ep subclass. Therefore, this docu-
mentation is decoupled from other steps as much as the implementation code is, and main-
taining the documentation is more urgent since it is in the same source file. An example of
this printout for a rSQP algorithm is shown in Appendix 8.8. Each Step object is given a
name that other steps refer to it by (to initiate minor loops for instance). Also, the name of
the concrete subclass which implements each step is included as a guide to help track down
the implementations.

Many of the options specified in the input file are shown in the printed algorithm. The
user can therefore study the algorithm printout to see what effect some of the options have.
For example, the optiorBQPSolverClientinterface::opt tol isshownin step
5 (“CheckConvergence”) in Appendix 8.8. Some of the options determine the algorithm
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configuration, which affects what steps are included, how steps are set up and in what
order they are included. These option names are not specifically shown in the algorithm
printout. For example, the optia®QPAIgo _ConfigMamaJdama::max _dof quasi-

_newton _dense determines when the algorithm configuration will switch from using
dense BFGS to using limited-memory BFGS but this identifier narag dof _quasi-

_newton _dense is not shown anywhere in the listing. However, the configuration object
can print out a short log (to thi&QPppAlgo.out file) to show the user the logic for how
these options impact the configuration of the algorithm.

In addition to this printed algorithm, output can be sent to a journalr8©@Ppp-
Journal.out while the algorithm is run to display information about each step’s com-
putations. The names given to quantities in the journal output are the same as in the algo-
rithm printout. The level of output is determined by the optr@QPSolverClient-
Interface::journal print level andthe valu®RINT ALGORITHMSTEPSIs
usually the most appropriate and does not produce excessive output. Lower output levels
can be set for generating less output for faster execution times while higher output levels
can be set to generate lots of information that is useful in debugging or for other purposes.
See Appendix 8.8 for an example of this type of printout.

A more detailed look at the output fileSQPppAlgo.out andrSQPppJournal.out
is given in Section 4.5 in the context of a specific example NLP.

4.3.1.3 Algorithm Summary and Timing

In addition to the more detailed information that can be printed to ther8@Ppp-
Journal.out , summary information about each rSQP++ iteration is printed to the file
rSQPppSummary.out . Also, if the optiorSQPppSolver::algo timing = true

is set, then this file will also get a summary table of the run-times and statistics for each step.
These timings are printed out in tabular format giving the time, in seconds, each step con-
sumed for each iteration as well as the sum of the times of all the steps. The bottom of the
table gives step statistics: the total time for each step for all the iteratiotia($ec) ),

the average step time per iteratiaav(sec)/k ), the minimum step timengin(sec) ),

the maximum step timarax(sec) ) and the total percentage of time each step consumed
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(%total ). See Appendix 8.8 for an example of 8QPppSummary.out file.

This timing information can be used to determine where the bottlenecks are in an al-
gorithm for a particular NLP. Of course for very small NLPs the runtime is dominated by
overhead and not numerical computations so the timing of small problems is not terribly
interesting.

Less detailed information can also be printed to the console throughStQepp-
Solver class (see Appendix 8.8).

A more detailed look at the console output and the output&i@PppSummary.out
is given in Section 4.5 in the context of a specific example NLP.

4.3.1.4 Algorithm and NLP Testing and Validation

Many computations are performed in order to solve a nonlinear program (NLP) using a
numerical optimization method. If there is a significant error (programming bug or round-
off errors) in any step of the computation, the numerical algorithm will not be able to solve
the NLP, or at least not to a satisfactory tolerance. When a user goes to solve a user-defined
NLP and the optimization algorithm fails or the solution found does not seem reasonable,
the user is left to wonder what went wrong. Could the NLP be coded incorrectly? Is
there a bug in the optimization software that has gone up till now undetected? For any
non-trivial NLP or optimization algorithm it is very difficult to diagnose such a problem,
especially if the user is not an expert in optimization. Even if the user is an expert, the
typical investigative process is still very tedious and time consuming.

Fortunately, itis possible to validate the consistency of the NLP implementation (i.e. gra-
dients are consistent with function evaluations) as well as many of the major steps of the
optimization algorithm. Such tests can be implemented in a way that the added cost (run-
time and storage) is of only the same order as the computations themselves and therefore
are not prohibitively expensive. There are several possible sources for such errors. These
sources of errors, from the most likely to the least likely are errors in the NLP implemen-
tation and user specialized parts of the optimization algorithm (e.g. a speciBazed -

Syst emobject), errors in the core optimization code, or even errors in the compilers or
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runtime environments used.

There are many ways to make a mistake in coding the NLP interface. For instance,
assuming the user’s underlying NLP model is valid (i.e. continuous and differentiable), the
user may have made a mistake in writing the code that comgitgsc(z), V f(x) and/or
Ve(z). Suppose the gradient of the constraints maXrixis not calculated in some re-
gions. The matriX¥ ¢ may be used by a geneBasi sSyst emobiject to find and factor
the basis matrixXC and therefore, the entire algorithm would be affected. To vali¥ate
the entire matrix could be computed by finite differences of course and then compared to
the Ve computed by the NLP interface, but this would be far too expensive in runtime
(O(nm)) and storage@(nm)) costs for larger NLPs. Computing each individual com-
ponent of the gradients by finite differences is an option but it must be explicitly turned
on (see the optiohNLPFirstDerivativesTester::fd testing _method). As a
compromise, by default, directional finite differencing can be used to shoWwihat not
calculated properly, but can not strictly prove that is completely correct. This works
as follows. The optimization algorithm asks the NLP interface to comfttg at the
point z;. Then, at the same point,, for a random vectop, the matrix-vector product
Ve(zg)v is approximated, using central finite differences for instanc&/@s)v ~ t; =
(c(zg + hv) — (g — hv))/2h whereh ~ 10~°. Then the matrix vector produtt = Ve
is computed using th¥ ¢, matrix object computed by the NLP interface and the resultant
vectorst; andt, is then compared. Even if the user does an exemplary job of implementing
the NLP interface, the computed and?, vectors will not be exactly equal (i.&, # t,)
due to unavoidable round-off errors. Therefore, we need some type of measure of how well
t; andt, compare. For every such testin rSQP++ there are defined enror ( _tol ) and
warning (varning _tol ) tolerances that are adjustable by the user but are given reason-
able default values. Any relative error greater tlearor _tol will cause the optimization
algorithm to be terminated with an error message. Any relative error greatemniuam
ing _tol will cause a warning message to be printed to the journal file to warn the user of
some possible problems. For example, relative errors greatemtharing _tol =10"'2
but smaller tharerror _tol = 10"% may concern us, but the algorithm still may be able
to solve the NLP. The finite-difference testing of the NLP interface can be controlled by
setting options in th&ILPFirstDerivativesTester andCalcFiniteDiffProd
options groups as shown in Appendix 8.8. Testing the NLP’s interface at just one point,
such as the initial gues&’, is not sufficient to validate the NLP interface. For example,
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suppose we have a constraint(z) = zj with dc,y/dz, = 3x3. If the derivative was coded
asdcyy/0xy = 34 by accident, this would appear exactly correct at the paints 0 and

9 = 1 but would not be correct for any other valuesigf Therefore, it is important to test

the NLP interface at ever§QP iteration if one really wants to validate the NLP interface.

Of course, just because the NLP interface is consistent, does not mean it implements the
model the user had in mind, but this is a different matter. If the NLP is unbounded, infea-
sible or otherwise ill posed, the SQP algorithm will determine this (but the error message
produced by the algorithm may not be able to state exactly what the problem is).

Every major computation in a rSQP algorithm can be validated, at least partially, with
little extra cost. For example, an interface that is used to solve for a linear system
A~'p such as thevhat ri xWt hQpNonsi ngul ar can be checked by computing=
Az and then comparing to b. The interfaces can also be validated for the null-space
decomposition (seBecompositionSystemTester in Section 4.2.5) and QP solver
(seeQPSolverRelaxedTester in Section 4.2.6) objects. Since sophisticated users
can come in and replace any of these objects, it is a good idea to be able to test everything
that can realistically be tested whenever the correctness of the algorithm is in question or
new objects are being integrated and tested. Much of this testing code is already in place
in rSQP++, but more is needed for more complete validation.

Such careful testing and validation code can save a lot of debugging time and also help
avoid reporting incorrect results which can be embarrassing in an academic research setting
or costly in business setting. Testing and validation is no small matter and should be taken
seriously, especially in a dynamic environment with lots of variability like rSQP++.

4.3.1.5 Debugging

Whenever software is involved, the need for debugging is unavoidable. When a new user
attempts to solve a NLP using rSQP++, the most likely bugs will be in the NLP imple-
mentation that the user has to provide. Here, some strategies for debugging are discussed
that should help a user to track down bugs associated with the NLP implementation and fix
them as quickly as possible. There are many different types of errors that can occur and
going into all of these types of errors would require a long discussion. However, below are
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a few of the more common types of errors that are worth mentioning.

1. Segmentation fault do to runtime memory management error.
2. Alinear algebra incompatibility exception is thrown.

3. Gradients of problem functions do not match function values (i.e. finite-difference
testing failed).

4. Algorithm prematurely terminated due to some algorithmic error.

5. Unexpected or unreasonable solution is found.

Segmentation faults or thrown exceptions are some of the easiest (or the hardest) bugs
to track down. These are almost always caused by some programming error and are not
related to the validity of the mathematical formulation for the NLP being implemented.
The other errors are harder to track down and are usually caused by a malformed NLP.

The easiest of these errors to track down is when a gradient of the objective or con-
straints does not match the function value to an acceptable tolerance. It is this type of error
that is discussed here. Debugging a large NLP with lots of variables and constraints is gen-
erally very difficult. Therefore, serious debugging should be performed on the smallest and
simplest example that does not exhibit the correct or expected behavior. For example, the
smallest possible mesh size and discretization method should be used for a scalable NLP
such as a PDE solver using the finite-element method. Assuming that a problem can be
derived that is sufficiently small (i.e., m < 20) here are the steps to follow in order to
diagnose a problem with the NLP formulation. First, the initial point for the NLP needs to
be dumped to the filesSQPppJournal.out and each component of the gradient has to
be checked independently (i.e. component-wise). To do this, set the oNtidtTester-
cprint  _all=true  andNLPFirstDerivativesTester::fd testing _method=FD COMP
This will cause the print out of the initial gues$ (xinit ), the bounds:; (xI ), 27 (xu),
the value of the objectivg (z°) (f ), constraints:(z°) (c), the gradients of the objective
V (%) (Gf), constraintsVe(z) (Gc) and the relative error in every gradient component.
From this information it will be easy to see which componentf(z°) or Ve(z°) is
causing the problem.
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4.4 Examples NLP subclasses

There are several example NLP projects that come with the base distribution of rSQP++.
Several of the included example projects implement the following simple NLP

min  jha'x (4.4.64)
S.t. cj = Llfj(ilf(j+n/2) — 1) — 10:L‘(j+n/2) =0, for j=1.. n/2 (4465)

This scalable NLP ha&: — m) = n/2 = m degrees of freedom and is referred to
as example #2 in [115] and [104]. This NLP has very specialized structure and a valid
selection of dependent and independent variables is straightforward to find. Selecting the
first m variables as dependent variables gives the following definitions of the basis and
nonbasis matrices

[ Tm41 — 1 -‘
Tm+2 — 1

C = ) (4.4.66)

me_|_m — 1
T — 10

To — 10
N = . (4.4.67)

T, — 10

which both happen to be diagonal matrices. Also, the exact Hessian of the Lagrangian
W and the reduced Hessian of the Lagrangiafusing a variable-reduction decomposi-
tion) take the simple forms
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I A
T 4.4.68
AT g ( )
B = N'CTC'N—-AC'N-N'CTA+1T (4.4.69)

whereA is a diagonal matrix with componentd ), ;; = A(;) for j = 1...m. Note
that the reduced Hessidhin (4.4.69) is also a diagonal matrix.

This NLP and its specific structure are of no practical interest but this NLP is sufficient
as a simple example to show how rSQP++ can be used to fully exploit the structure of a
class of NLPs from a specialized application area.

Three different implementations of this NLP are described. The first NLP subclass is
derived from the generidLPSerialPreprocessExplJac node subclass. This exam-
ple NLP subclass is included to show how this generic NLP interface subclass can be used
and to provide a contrast to the more specialized implementations. The last two NLP sub-
classes derive directly from tidLPFi r st Or der | nf o andNLPFi r st Or der Di r ect
interfaces and demonstrate how to exploit the structure and properties of a NLP.

This first NLP subclass is calldeixampleNLPSerialPreprocessExplJac and
the source code for this project can be found at

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPSerialPreprocessExplJac

The filesExampleNLPSerialPreprocessExplJac.h andExampleNLPSerial-
PreprocessExplJac.cpp contain the declarations and definitions for the NLP sub-
class and the filExampleNLPSerialPreprocessExplJacMain.cpp contains the
simple driver program that useg8QPppSolver object to solve the NLP.

The second two NLP subclasses are calleémpleNLPFirstOrderinfo and
ExampleNLPFirstOrderDirect . Both of these subclasses derive from a node sub-
classExampleNLPObjGradient  which implements the bulk of the common function-
ality. The ExampleNLPODbjGradient  subclass takes ¥ect or Space object as an
argument in its constructor. Using this sinylect or Space object this entire NLP’s im-
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plementation can be defined. This vector space is used to define the g)acés and

C which happen to all be the same for this NLP. A composite vector-space object of type
VectorSpaceCompositeStd is used for the spac& = Xp x X;. A Specialized
RTOpoperator is used to implement the the constraints residual computation in (4.4.65).
Note that the objective in (4.4.64) is simply a dot product for which a deRil@®@poperator
already exists.

The NLP subclasExampleNLPFirstOrderinfo derives fromN\LPFi r st Or der -
| nf o andExampleNLPObjGradient . A specializedBasi sSyst emsubclass called
ExampleBasisSystem derives from the standard basis-system sub@assSystem-
CompositeStd . TheBasisSystemCompositeStd subclass implements tiBasi s-
Syst eminterface for the case where the matrix obj&xt is simply an aggregate of
aMatri xWthQoNonsi ngul ar matrix object forC and aMat ri xXW t hOp matrix
object forN. For the NLP, the standard matrix subcl&gatrixSymDiagonalStd IS
used for the matrice§' and N since they are diagonal. The only functionality that the
ExampleBasisSystem subclass adds is the specialized formation of the direct sensitiv-
ity matrix D = —C ' N which is also diagonal for this simple NLP and is also represented
using aMatrixSymDiagonalStd object. The computation of the diagonal vectors for
C andN is also performed by a specializ&IOpoperator object. The complete source
code for this example can be found at

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPFirstOrderinfo

The last NLP subclagsxampleNLPFirstOrderDirect derives fromN\LPFi r st -

O der Di r ect andExampleNLPObjGradient . This subclass implementsthal ¢ poi nt (. ..

method to compute the diagonal direct-sensitivity maflix- —C ' N. Again, this direct-
sensitivity matrix is implemented asMatrixSymDiagonalStd object. For complete
source code, see the directory

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPFirstOrderDirect

Since the interfacddLPFi r st Or der | nf o andBasi sSyst emcan be implemented
easily for the NLP in (4.4.64)—(4.4.65) there was really no practical purpose for implement-
ing theNLPFi r st Or der Di r ect interface since it provides only a subset of the func-
tionality. The only purpose for implementing tliexampleNLPFirstOrderDirect
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n n—m | N, | Wall Clock Time (sec)| Scalability

2,000 1,000, 1 0.21 1.00
2,000 1,000, 2 0.27 2.57
2,000 1,000, 4 0.53 10.10
20,000 10,000f 1 1.50 1.00
20,000 10,000f 2 0.96 1.28
20,000 10,000| 4 0.75 2.00
200,000/ 100,000{ 1 21.00 1.00
200,000f 100,000{ 2 11.00 1.05
200,000/ 100,000{ 4 5.60 1.07
2,000,000 1,000,000] 1 190.00 1.00
2,000,000 1,000,000] 2 93.00 0.97
2,000,000 1,000,000, 4 47.00 0.98

Table 4.1. CPU times and scalability for the example NLP in
(4.4.64)—(4.4.65) wherdy, is the number of processors and 'Scal-
ability’ is the wall-clock CPU time multiplied by the number of
processors divided by the CPU time for one processor.

subclass was to provide a simple complete example foltReFi r st Or der Di r ect
interface.

All of the linear algebra for these NLP subclass is based on a sifegi¢ or Space
object as mentioned above. Therefore, any vdbdt or Space object can be used along
with the vectors it creates. As a result, serial, parallel or other vector implementations can
easily be used. These NLP subclasses have been used various serial and parallel vector
implementations.

Table 4.1 shows the CPU times and scalabilities for using an example p¥edebr -
Space class (using MPI) on a distributed-memory Beowulf cluster. The example NLP was
run with bad initial guesses and the number of rSQP iterations was cut off at 100 in order to
get consistent timings. The rSQP algorithm used a limited-memory BFGS approximation
[31] with very good parallel scalability. As a result, all of the linear algebra computations
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for this simple NLP are all fully scalable. Here we defsmalability as the ratio of the
wall-clock CPU time multiplied by the number of processors divided by the wall-clock
time for running the problem on only one processor. Given this definition, perfect scala-
bility is 1.00 which simply means that if we double the number of processors, the best that
we can usually hope for is to have the wall-clock time halved. The timings in Table 4.1 are
typical for scalable parallel programs. When the amount of computation verses commu-
nication is small, the communication tends to dominate which is seen for vectors of size
m = n — m = 1,000 where there is actually an overall slowdown as more processors are
utilized. However, for vectors of size&e = n — m = 10,000 we see a definite speedup

as more processors are added but the scalability is less than perfect. When the size of the
vectors are increased to = n — m = 100, 000, the algorithm shows almost perfect scal-
ability. Note that 25,000 unknowns per processors (i.e.Npr= 4) is considered small

for PDE simulators that use parallel iterative solvers. Finally, for very large vectors of size
m = n—m = 1,000, 000, the timings show better than perfect scalability (.87 < 1.00)

which can also be seen in other parallel programs from time to time (usually do to cache or
other hardware issues).

Note that all of the linear algebra operations for this simple example NLP are vector
operations which offer the worst computation to communication ratios. Therefore, these
results represent the worst-case scenario for rSQP++ with respect to parallel scalability.
For more practical applications, the amount of computation per process is much higher and
therefore these applications show better overall scalability for smaller problem sizes.

These results show that the rSQP++ framework imparts very little serial overhead and
therefore allows for the implementation of very scalable optimization algorithms for ap-
plication areas where parallelism can be exploited (e.g. PDE constrained optimization).
Therefore, the burden is completely on the developers of applications and parallel linear
algebra libraries to achieve scalability.

4.5 Detailed Descriptions of Input and Output Files

In this section, a detailed description of the input and output to rSQP++ is given. Here
it is assumed that a NLP subclass is developed and a driver program has been written
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as explained in the examples (see Appendix B for a description of adding a new project
to the build system). For this discussion, we will use the included example NLP called
ExampleNLPBanded which project is located at

SRSQPPPBASEDIR/rSQPpp/examples/ExampleNLPBanded

This is a fairly simple NLP that is designed to allow the independent scalimgamid
m SO that basic serial algorithm scalabilities can be tested. For a more detailed description
of this NLP see the Doxygen generated documentation at

RSQPPBBASEDOC/ExampleNLPBanded/html/index.html

Before solving this NLP a working directory needs to be created to store the input and
output files as follows

$ mkdir $RSQPPP_BASE_DIR/tests/ExampleNLPBanded
$ cd $SRSQPPP_BASE_DIR/tests/ExampleNLPBanded

The next step is to create a symbolic link to the prebuilt executable. Assuming the test
suite for the release version was built this link can be created as follows

$ In -s $RSQPPP_BASE_DIR/intermediate/ExampleNLPBanded/
release/solve_example_nlp .

The options filerSQPpp.opt needs to be created (usimgnacs for instance) as
shown in Appendix 8.8. Note that most of the options are commented out and most of
those that are not are at the default values.

Executing NLP creates output to the console and the outpur8@®ppAlgo.out
rSQPppSummary.out andrSQPppJournal.out which are shown in Appendix D.

4.5.1 Outputto Console

The console output shown in Appendix 8.8 is generated by a defhaglbr i t hnilr ack
object of typeSQPTrackConsoleStd  which is automatically inserted by th8QPpp-
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Solver object. The first thing printed is the size of the NLP whare= 30400 is the

total number of variablesn = 30000 is the total number of equality constraints amd

= 599910 is the number of nonzeros in the Jacob¥n (Gc) for this example. Next, a
table containing summary information for each iteration is printed. Each column in this
table has the following meaning

e k : The SQP iteration count. This count starts from zero so the total number of SQP
iterations in one plus the fin&l.

e f : The value of the objective functiof{x) at current estimate of the solution

e | | c| | s: The scaled residual of the norm of the equality constraifity at current
estimate of the solution,. The scaling is determined by the convergence check
(see step 6 in Appendix 8.8 & 8.8) and this value is actually equal to the iteration
quantityfeas kkt _err (see the fileSQPppAlgo.out ). Thisis the error that is
compared to the toleranc8QPSolverClientinterface::feas tol inthe
convergence check. The unscaled constraint norm can be viewed in the more detailed
iteration summary table printed in the filEQPppSummary.out .

e || rG||s: The scaled norm of the reduced gradient of the Lagrangidiv,, L.
at current estimate of the solutian. The scaling is determined by the convergence
check (see step 6 in Appendix 8.8 & 8.8) and this value is actually equal to the
iteration quantityopt _kkt _err (see the fileSQPppAlgo.out ). Thisisthe error
that is compared to the toleranc8QPSolverClientinterface::opt _tol
in the convergence check. The unscaled norm can be viewed in the more detailed
summary table printed in the fikSQPppSummary.out .

e ON: This field indicates whether a quansi-Newton update of the reduced Hessian was
performed or not. The following are the possible values:
— | N: Reinitialized (usually to identity)
— DU: A dampened update was performed
— UP: An undamped update was performed

— SK: The update was skipped on purpose
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— | S: The update was skipped because it was indefinite

e #act : Number of active constraints in the QP subproblem. This field only has
meaning for an active-set algorithms. For interior-point algorithms, this will just
equal the number of bounded variables and does not provide any interesting infor-
mation.

e | | Ypy||2: The||.|| 2 norm of the quasi-normal contributiofY'p,);. This norm
gives a sense of how large the feasibility steps are.

e || Zpz| | 2: The||.|| » norm of the tangential contributiof¥p.),. This norm gives
a sense of how large the optimality steps are.

e | | d||inf: Thell.|| ~ norm of the total ste@, = (Yp,)r + (Zp,)r. This norm
gives a sense of how large the full SQP steps are in

e al pha: The step length taken along, . ; = z; + ad;. A step length ol = 0
represents a major event in the algorithm such as a line search failure followed by
the selection of a new basis or a QP failure followed by a reinitialization of the
reduced Hessian. A small number feindicates that many backtracking line search
iterations where required and is an indication that the computed search diréction
is a poor direction.

After the iteration summary is printed, the CPU time is givefiatal time . Thisis
the CPU time that is consumed from the time thati®®PTrackConsoleStd  object
is created up until the time that the final state of the algorithm is reported. Therefore,
this CPU time may contain more than just the execution time of the algorithm. For more
detailed built-in timings, see the table at the end of ther8@PppSummary.out .

Following the total runtime, the number of function and gradient evaluations is given
for the objective and the constraints (i.e. 96 evaluationg(aff andc¢(z) and 15 evalua-
tions of V f(x) andVe(z)). Note that the reason there is an excessive number of func-
tion evaluations is that the optionSQPppSolver::test nlp = true andrSQP-
SolverClientinterface::check results = true are being used which re-
sults in many finite-difference computations for various tests. The results from some these
tests are shown in the fitlSQPppJournal.out in Appendix 8.8. If these options are set
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tofalse thenthe number of function evaluations come down to only 20 for this example
NLP.

Below, the major types of output that are written to each output file are discussed. The
purpose of this discussion is to familiarize the user with the contents of these files and to
give hints of where to look for a certain types of information. Much of the output produced
by rSQP++ is omitted from the files included in Appendix 8.8—8.8 for the sake of space.

Before going into the details of each individual file, first a few general comments are
made. At the top of every output file is a header that briefly describes the general purpose
of the output file. This header is followed by an echo of the options fornOgbtons-
FromSteam object. These options include those set in the input8@Ppp.opt or by
some other means (e.g. in the executable or on the command line). The purpose of echoing
the options in each file is to help record what the setting were that were used to produce
the output in the file. Of course the output is also influenced by other factors (e.g. other
command-line options, properties of the specific NLP being solved etc.) and therefore these
options do not determine the complete behavior of the software.

4.5.2 Outputtor SQpppAl go. out

After the initial header and the echoed options

*** Algorithm information output ik
*kk *kk
*** Below, information about how the the rSQP++ algorithm is Fkk

*** setup is given and is followed by detailed printouts of the ***

*** contents of the algorithm state object (i.e. iteration el

*** quantities) and the algorithm description printout i

*** (if the option rSQPppSolver::print_algo = true is set). *kk

** Echoing input options ...

the concrete type of the configuration object is printed (in this tdass Reduced-
SpaceSQPPack::rSQPAIgo _ConfigMamaJama’ ) followed by a header produced
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by the configuration object it self. The next few lines of output simply traces some of the
tasks the configuration object performs. For example, the line

Detected that NLP object supports the NLPFirstOrderinfo interface!

states that the configuration object has detected that the user's NLP suppdit$the
Fi r st Or der I nf o interface which will determine what type of algorithm will be config-
ured. This detection is performed using the buildlymamic _cast<...>  C++ operator.

The next bit of output gives the logic for how the configuration object decides which
features to use with the given NLP. For example, the output

range_space_matrix == AUTO:
(n-r)"2*r = (400)"2 * 30000 = 505032704 > max_dof_quasi_newton_dense™2 = (500)2 = 250000
setting range_space_matrix = COORDINATE

shows that th& ((n — r)?r) flops required for the orthogonal variable-reduction null-
space decomposition exceeds number of flops for the dense quasi-newton update and there-
fore the coordinate decomposition will be used. Similar logic is used to determine if dense
guasi-Newton or a limited-memory approximation will be used by the algorithm.

Later in the file, the output line

Configuring an algorithm for a nonlinear equality constrained NLP ( m > 0 && ml == 0 && num_bounded_x == 0)

states that an algorithm will be configured for a NLP without any inequality constraints.

This type of output shows how a configuration object can tailor the algorithm it con-
structs to the specific demands of the NLP being solved. This is a fundamental difference
from the way that most numerical software is written. In most numerical software, the
code is written with switch statements for every possible option that is supported, mak-
ing the code hard to develop and understand. In rSQP++, the complexity of supporting
a large set of options is first-and-foremost handled by different object configurations. No
matter how complex the logic is that is used to setup an algorithm, the resultant configured
algorithm becomes a much simpler self-contained entity that is easier to understand.
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The remainder of theSQPppAlgo.opt file gives details on the configured algo-
rithm. The first bit of information is a list of step objects that isQPppAlgo object is
configured with along with the names of the concrete classes used to implement the steps.
This output begins with

*** Algorithm Steps ***

1. "EvalNewPoint"
(class ReducedSpaceSQPPack::EvalNewPointStd_Step)

This list of Step objects is followed by a listing of the iteration quantities

*** |teration Quantities ***

that have been added to tAégorithmState object. These iteration quantities are
of more interest to algorithm developers but they also show the list of possible iteration
guantities that an advanced user could query in a user-defilgedithmTrack object
that is passed to tmSQPppSolver object.

Near the end of theSQPppJournal.out file is a fairly detailed description of the
configured algorithm, step-by-step, in a Matlab-like format. The purpose of this algorithm
description is to document the major aspects of the algorithm in a way that the user (or
algorithm developer) should be able to reason about the implemented algorithm. A short
sub-algorithm is output for each step object. Each step object shows all of the iteration
guantities that it accesses and updates. For example, the null-space contiip#idn
is computed first in step7. "NullSpaceStep" } before it can be used to compute
the full directiond Kk in step{8. "CalcDFromYPYZPZ" }. This type of information
is very helpful in determining what order quantities must be computed in and what the
dependencies are.

The last step in the algorithm printout is always the stéfajor Loop” which is
an implicit step that simply states the logic build in to thigorithm  class for perform-
ing the major loop (i.e. transitioning formto £ + 1) and in prematurely terminating the
algorithm if the maximum number of iterations or the maximum runtime is exceeded.
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The very last part of this file contains the following

Warning, the following options groups where not accessed.

An options group may not be accessed if it is not looked for
or if an "optional" options group was looked from and the user
spelled it incorrectly:

Here, the name of any option group that was specified in theSi@pp.opt (or by
some other means) that was not read by some object is printed. In this example, all of the
specified options groups where read by at least one object during algorithm configuration.
The purpose of this printout is to show any options groups that may have been spelled
incorrectly or were just not read for some reason. None of the option from any of these
printed options groups had any influence on the algorithm what so ever. This information
helps a user to avoid the frustrating situation where an option is changed but the algorithm
runs unaltered. If there is ever any question as to why an option did not seem to have the
desired effect, this output in the the textttrSQPppAlgo.out file is the first place to look for
an explanation.

4.5.3 Outputtor SQoppSunmary. out

The filerSQpppSummary.out is usually the first place to look (after the console output
as described above) to investigate the runtime behavior of a configured algorithm.

After the initial header and echoed options are printed the results of the NLP testing (if
rSQPppSolver::test nlp=true ) is given. This is followed by a table where each
line is a summary of each iteration. Each column of this table is described in the Doxygen
documentation for the track clasSQPSummaryStd . The summary table is followed by
a printout of the number of function evaluations and the total solution time (just as in the
console output).

TherSQpppSummary.out file also produces atable (8QPppSolver::print algo
= true ) of the CPU times per step, per iteration. This output begins with the following
header and a list of major steps
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*** Algorithm step CPU times (sec) ***

Step names

1) "EvalNewPoint"

These are the same steps that are printed inS@PppAlgo.out file.

The table that follows this makes it easy to determine which step objects and which
computations are consuming the most CPU time. This type of gross timing is very impor-
tant in determining where the bottlenecks are occurring and what steps require the most
attention for a particular NLP. Note that the information produced in this table supplements
traditional profile timings that are produced but tools lgerof . For example, the same
linear solver may be called in several different steps and the profiler output may make it
difficult to determine in what steps most of the solves where being performed. In this ex-
ample NLP, for the options used, the bulk of the runtime (83.93%) is consumed by the step
{1) "EvalNewPoint" }. By looking in therSQPppAlgo.out file, it is easy to see
that the major computations in this step is the evaluation of the functions and the gradients
of the NLP and the formation of the decomposition matrices. By comparing iter&tihs
andk=1 one can see that the runtime drops dramatically from 18.96 seconds to only 2.xxx
seconds for subsequent iterations. Therefore, one could quickly infer that the initialization
that goes on in this step is quite significant. Further investigation would reveal that the
dominate time in this step is consumed by the direct sparse solver (MA28 in this case) and
the initial analyze-and-factor used to select the basis is a dominate cost.

4.5.4 Outputtor SQoppJdour nal . out

The output filee$SQpppJournal.out contains detailed, step-by-step, iteration-by-iteration
output for a running algorithm. The algorithm description in the outputf@®Ppp-
Algo.out is very helpful in understanding the journal output. Depending on the output
level for the optiomrSQPSolverClientinterface::journal print  level set

in rSQPpp.opt this output can be fairly minimal (i.ePRINT ALGORITHMSTEPS

or dump everything (i.ePRINT_ITERATION _QUANTITIES). The output shown in Ap-
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pendix 8.8 is the output levéRINT _ALGORITHMSTEPSand therefore the amount of
output is independent of the NLP size which is usually the most appropriate level (un-
less debugging). For small NLPs, setting the levé?RINT I TERATION _QUANTITIES

usually produces enough output for debugging that opening and debugger is unnecessary
in many cases.

After the header and the echoed options are printed, the trace from the initial NLP test-
ing is given (ifrSQPppSolver::test nlp=true ). The first part of the testing output
is the basic tests on théect or Space objects returned from thiL P interface. More de-
tailed output for these vector-space tests can be produced by setting options in the options
group VectorSpaceTester (see the Doxygen documentation). Following the basic
tests of the vector-space objects and the vector objects (which are created by the vector-
space objects) are finished, other simple tests are performed which basically comprise a
unit test for theNLP interface. Following this simple unit test, the derivative objesfs
andGc computed by th&lLPFi r st Or der | nf o are checked against the functidnand
c using directional finite differencing. This output shows the following relative errors for a
single random direction

rel_err(Gf*y,FDGf*y) = rel_err(6.53040559e+002,6.53040559¢+002) = 1.93477565e-011

rel_err(sum(Gc™y),sum(FDGc™y)) = rel_err(2.20905038e+008,2.20905038e+008) = 1.37878129e-013

This output shows that the finite-difference directional products agree with the analytic
directional products by approximately 10 and 12 significant digits@brand Gc respec-
tively. Such a high accuracy for the finite-difference products is a result of the fourth-order
four-point finite differencing that is used by default. To set different (and cheaper) finite-
differencing strategies see the options grati@lcFiniteDiffProd (see Appendix
8.8).

After the initial NLP testing completes (successfully), the rSQP algorithm is started
with the line

*** Starting rSQP iterations ...

Most of the output produced for this example NLP is omitted for the sake of space and
the output that is included is used to point out several important items.
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First note that each step prints out some basic logic and some information for most of
the iteration quantities that are computed. For examjidgalNewPoint" prints out
the objective function value _k and the infinitely norms of the gradient of the gradient of
the objectiveGf k and the constraints k. The number of significant digits printed for
floating point numbers in the journal output is controlled by the opt®QPSolver-
Clientinterface::journal print  digits  (which is 6 by default).

Note that ifrSQPSolverClientinterface::check results=true that the
"EvalNewPoint"  step will perform finite-difference tests of the NLP gradients for each
rSQP iteration. Also note that the results are slightly different than for the initial NLP
testing since a different random directional vector is generated. This time the relative er-
ror for the gradient of the objectivef is greater than the default warning tolerance of
NLPFirstDerivativesTester::warning tol=1e-10 . This resulted in the fol-
lowing warning being printed

For Gf, there were 1 warning tolerance

violations out of num_fd_directions = 1 computations of FDGf*y and
the maximum violation was 4.408797e-010 > Gf_waring_tol =
1.000000e-010

If the relative error had been greater tidibPFirstDerivativesTester::error _tol
then an error message would have been printed and the algorithm would have been termi-
nated. For some difficult ill-conditioned NLPs, the finite-difference tests may fail even
though there is not a programming bug. Either the error tolerance can be increased or the
tests can be turned of all together in these cases.

The lastimportant detail to point out is the convergence check in{step "CheckConvergence"
The output

(0) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)
scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)
scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)
opt_scale_factor = 1.100000e+001 (scale_opt_error_by Gf = true)

opt_kkt_err_k = 1.230623e+002 > opt_tol = 1.000000e-008
feas_kkt_err_k = 1.208973e+007 > feas_tol = 1.000000e-010
comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006
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step_err = 0.000000e+000 < step_tol = 1.000000e-002

Have not found the solution yet, have to keep going :-(

shows exactly how optimality and feasibility errors are computed and how they are
compared to the convergence toleranops _tol andfeas _tol that are set in the op-
tions grouprSQPSolverClientinterface . See the steflCheckConvergence"
in the printed algorithm description in the fit8QPppAlgo.out  in Appendix 8.8 for the
details on how each of these quantities are computed and compare these computed errors
to the columng|c||s  and||rGL||s in the console output as shown in Appendix 8.8.

The finial convergence check in iteratiknl13 shows the final KKT errors

opt_kkt_err_k = 3.273859e-012 < opt_tol = 1.000000e-008
feas_kkt_err_k = 1.518593e-012 < feas_tol = 1.000000e-010
comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006
step_err = 0.000000e+000 < step_tol = 1.000000e-002

Jackpot! Found the solution!!!l (k = 13)

and then the algorithm is terminated and the optimal solution is communicated to the
NLP object.
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Chapter 5

MPSalsa/rSQP++ Interface and Results

5.1 Introduction

Our first prototyping project consisted of interfacing a rSQP algorithm to a chemically re-
acting flow simulator in an attempt to solve an optimization problem for a Chemical Vapor
Deposition (CVD) reactor. We selected chemically reacting fluid flow because both the
simulation and optimization have very large-scale potential. In addition this problem did
not require transient modeling. The initial design problem involved only a single velocity

value as the design parameter.

Considering that very little information exists about interfacing rSQP algorithms to
large and massively parallel production codes, the primary goal was to identify issues as-
sociated with interfacing intrusive algorithms to existing parallel production codes. Our
strategy was to start as simple as possible and then consider higher levels of optimization.
We therefore started with the direct approach. (level 4). We were not able to completely
develop the adjoint interface but we could not conveniently solve the transpose Jacobian
matrix within the code.

Small number of design variables have been tested in serial and parallel. For the parallel
implementation, rSQP is duplicated on each process and that causes limited scalability.
rSQP++ has since then been modified and has demonstrated good scalability as shown in
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table 4.1.

5.2 CVD Reactor Optimization Problem

The rotating disk reactor is a common configuration for performing Chemical Vapor De-
position (CVD) of thin films, including many important semiconducting materials. The
optimization problem formulated in this paper is generated from the work of Sandia re-
searchers attempting to improve the design of the inlet of a rotating disk CVD reactor for
use in growing thin films of Gallium Nitride(faN). GaN is used in blue light emitting
diodes and other photonic devices. The quality of the electronic device is highly dependent
on the uniformity of the growth rate at different positions in the reactor. We are attempting
to use simulations and optimization algorithms to determine if a new reactor, designed with
a restricted inlet for reducing the costs of reactant gases, can achieve highly uGi#gym

film growth.

The finite element mesh for the base shape of the reactor is shown in Figure 5.1(a).

This is an axisymmetric (2D) model, where the left side is the axis of symmetry. A
mixture of trimethylgallium, ammonia, and hydrogen gas@sa((C H3)s, N Hj, and H,)
enter the top of the reactor, flow over the disk, which is heated, and then flow down the
annular region out the bottom of the mesh. At the heated disk(-tH€ H;); and N Hs
react to deposit &a N film and release three molecules of methafié/(). This simplified
mechanism has been shown to work well in modelingV film uniformities since the
growth rate is predominantly transport limited [88]. This mesh depicts a restricted inlet
design, where the top of the reactor has a smaller radius than the lower part of the reactor.

The main parameter used in this paper is the inlet velocity of the giiseByo addi-
tional parameters in this model define the shape of the inlet, namely the Shoulder Radius
and Shoulder Height, which define the position where the mesh transitions from the inlet
radius to the larger reactor radius. The mesh is moved algebraically and continuously as a
function of these geometric design parameters. Figure 5.1(b) shows how the mesh changes
for a decreased shoulder radius, and Figure 5.1(c) shows how the mesh deforms continu-
ously for larger values of the shoulder radius and shoulder height. If the optimum occurs
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Figure 5.1. Three different meshes for the restricted inlet design

of the rotating disk reactor are shown: (a) the baseline case mesh
where the shoulder radius is above the edge of the disk and the
height is half of the inlet height; (b) a mesh when the shoulder ra-
dius parameter is decreased; (c) a mesh where the shoulder radius

and height are both increased above the base case.
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too far away from where the initial mesh is generated, it would be appropriate to remesh
the new geometry from scratch.

The objective function measures the uniformity of the growth raté&efV over the
disk. We chose a? norm over anZ™f norm so that the objective is continuous and has a
continuous derivative. Since té norm had very small values over a range of parameters,
the log was taken. The final form of the objective function is

Objective Function= F' = log(SD + 1017 (5.2.1)

whereS D is the standard deviation squared and is defined as
N,
1 n

9i — Jave 9
D= — E — =) 2.2
S Nn i ( Jave ) (5 )

Here N, is the number of nodes on the surfaggis the growth rate of7a/N at nodei, and
Jave 1S the average growth rate.

5.3 Numerical Methods

5.3.1 Reacting Flow Simulation

The governing equations and numerical methods summarized in this section have been
implemented in the MPSalsa computer code, developed at Sandia National Laboratories.
More complete descriptions of the code and capabilities can be found in the following ref-
erences [108], [100], [109], [101], [88], [40]. The fundamental conservation equations for
momentum, heat, and mass transfer are presented for a reacting flow application. The equa-
tions for fluid flow consist of the incompressible Navier-Stokes equations for a variable-
density fluid and the continuity equation, which express conservation of momentum and
total mass. The steady-state momentum equation takes the form:

plueViu—VeT — pg=0, (5.3.3)

whereu is the velocity vectorp is the mixture density, and is gravity vector. T is the
stress tensor for a Newtonian fluid:

2
T=-Pl - §u(V o U)l + pu[Vu+ Vu'] (5.3.4)
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Here P is the isotropic hydrodynamic pressureis the mixture viscosity, andis the unity
tensor. The total mass balance is given by:

Ve (pu) =0 (5.3.5)

The density depends on the local temperature and composition via the ideal gas law. For
non-dilute systems, the multicomponent formulation is used:

Ng
P,y WX,
j=1

— (5.3.6)

p:

wherePF, is the thermodynamic pressut,is the gas constarif; is the temperaturey is
the mole fraction of thg'" species}¥; is the molecular weight of th¢" species, andV,
is the number of gas-phase species (whichfer the model in this paper.

The steady-state energy conservation equation is given as:

pC,(Ue V)T =V e (AVT) — 8, (5.3.7)

whereép is the mixture heat capacity andis the mixture thermal conductivity. The
last term on the right hand sideis the source term due to the heat of reaction, which is
negligible under the process conditions in this example problem.

The species mass balance equation is solved/fet species:
p(UueV)Y,)=Vej, +Wyw, fork=1,...,N,-1, (5.3.8)

whereY; is the mass fraction of th¢" speciesj, is the flux of specie$ relative to the

mass averaged velocity andwy, is the molar rate of production of speciedfrom gas-

phase reactions. A special species equation, which enforces the sum of the mass fractions
to equal one, replaces one of the species balances (usually the species with the largest mass
fraction):

NQ
» V=1 fork=N, (5.3.9)
k=1
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The diffusive flux term (Multicomponent Dixon-Lewis Formulation) includes transport due
to both concentration gradients and thermal diffusion (Soret effect):

N,
1 g DT VT
i. = pY, — Y W.D.. VX, — =k ~— 5.3.10
Jk pk(Xng ikj j oY T) ( )

Where X is the mole fraction of specigs D, is the ordinary multicomponent diffusion
coefficient, andD/ is the thermal diffusion coefficient is the mean molecular weight
of the mixture given by:

N,
_ d 1
W= X,W = — (5.3.11)
e Wk
The conversion between mass Yand mole () fractions is:
W
Vi = W’“Xk (5.3.12)

At the disk surface, surface chemical reactions take place. In general these can be very
complicated, but for this model problem the reaction has been shown to be approximated
very well by a transport limited model. In this case, the growth rat&'@iN on the sur-
face (as well as the consumption@f.(C H3); and N H;, and the production of H,) is
proportional to the concentration of trimethylgalliud@d{(C Hs)3) at the surface.

In general, the numerous physical properties in the above equations are dependent on
the local temperature and composition. In the MPSalsa code, we use the Chemkin library
and database format to obtain these physical properties. These terms add considerable
nonlinearity to the problem.

The above system dfcoupled PDEs (for unknowns,, u., Ug, P, T, Yoo Hy)sr Yo H,
Yyu, andYy,) are solved with the MPSalsa code. MPSalsa uses a Galerkin/least-squares
finite element method [109] to discretize these equations over the spatial domain. While
this code is designed for general unstructured meshes in 2D and 3D, and runs on massively
parallel computers, this application is 2D, uses the mesh shown in Figure 5.1(a), and was
run on a single processor workstation. The discretized system coafdiog unknowns.

A fully coupled Newton’s method is used to robustly calculate steady-state solutions.
While analytic Jacobian entries are supplied for derivatives with respect to the solution
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variables and the density, derivatives of the other physical properties are only calculated
with the numerical Jacobian option. This option uses first order finite differencing on the
element level. The resulting linear system at each iteration is solved using the Aztec pack-
age of parallel, preconditioned iterative solvers. In this paper, we exclusively used an ILU
preconditioner and the GMRES solver with no restarts. On a single processor SGI worksta-
tion, a typical matrix formulation require@ seconds for the inexact analytic Jacobian and

96 seconds to calculate the (nearly) exact finite difference numerical Jacobian. A typical
linear solve required( seconds.

Parameter continuation methods have been implemented in MPSalsa via the LOCA li-
brary [99], [102]. LOCA includes an arclength continuation algorithm for tracking solution
branches even when they go around turning points (folds). As will be seen in Section 5.4,
this is a powerful tool for uncovering solution multiplicity. In addition, a turning point
tracking algorithm has been implemented to directly delineate the region of multiplicity as
a function of a second parameter. A complementary tool for performing linearized stability
analysis by approximating the few rightmost eigenvalues of the linearized time dependent
problem has also been successfully implemented [69], [102], [30].

5.4 Results

5.4.1 One Parameter Model

The first results are shown in Figure 5.2 for the one parameter system. Here the inlet
velocity V' is the design parameter while the Shoulder Radius and Shoulder Height param-
eters are held fixed &35 and5.08 as in Figure 5.1(a). Starting at a velocity 6f = 20
(cm/sec), a simple continuation run down to a velocity/of 7 showed a clear minimum
nearV = 11.7 and Objective Functioit’ = —6.9.

Two runs of this problem using the rSQP optimizer were performed. For this run, the
exact numerical Jacobian was used, and upgecond order correction steps per iteration
were allowed. The linear solver tolerance was set at a relative residual reduction®of
When starting at” = 20 and converged PDE constraints, the optimizer convergdd in
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Figure 5.2. Results for a 1 parameter continuation run (bold
line), showing the Objective Function as a function of the inlet
velocity of the reactant gases. Two results for the rSQP optimizer
are shown, where the run startinglat= 14 (circle symbols with
connecting arrow) converged to the expected local minimum while
the run starting a¥ = 20 (square symbols with connecting arrow)
converged to a point not seen on the continuation run.
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Figure 5.3. Radial profiles of the surface deposition rate at three
different solutions: the initial guess &t = 20, and the final solu-
tions from the two optimization runs & = 11.67 andV = 9.00.

iterationsto a pointdt” = 9.00 andF’ = —6.36 (in about 3 hours compute time). However,
when starting at” = 14 and with a converged steady-state solution, the optimizer reached
the minimum atl” = 11.67 andF = —6.967 in 14 iterations. As can be seen in Figure
5.2, the first run does not appear to even be on the solution branch of converged PDE
constraints.

Three deposition profiles as a function of radial position are shown in Figure 5.3. The
profile at the initial conditions of” = 20 has a minimum growth rate at the center and
has a8.5% nonuniformity. The solution found by the optimizer Bt = 11.67, that also
appears to be the minimum from the continuation run, shows a much flatter profile with an
internal maximum, and an overall non uniformitylo2%. The other solution found by the
optimizer atV’ = 9.00 has a very similar shape, a smaller overall growth rate, ahd%
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Figure 5.4. Results for a 1 parameter continuation run with arc
length continuation and linearized stability analysis are shown.
The dashed lines represent unstable solution branches. The sym-
bols show the results of the two optimization runs from Figure 5.2.

nonuniformity. Growth rate nonuniformities in the neighborhood 6f% are desirable.

Subsequent parameter continuation and linearized stability analysis calculations re-
vealed that this solution is indeed a solution to the PDE constraints, yet a solution that
is linearly unstable. The results of an arc length parameter continuation run with linear
stability determinations are shown in Figure 5.4. The dashed line indicated physically un-
stable solutions while the solid lines are locally stable. One can see that there are three
local minima in the objective function, only one of which is linearly stable. Over a large
range of inlet velocities;.11 < V' < 15.86, there are three solutions that exist at the same
parameter values. The rSQP optimizer, when startéd at 20, jumped into the basin of
attraction for a local minimum at’ = 9.00. The physical basis for the multiplicity is well
understood. Recirculation flow cells can develop as a result of the buoyancy force of the
heated reactor surface.
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Figure 5.5. Results of turning point continuation runs showing
how the region of multiplicity identified in Figure 5.4 changes as
a function the geometric Shoulder Radius parameter.

5.4.2 Three Parameter Model

The one parameter model showed that it is imperative to be aware of solution multiplic-
ity and unstable solution branches. Continuation runs on the turning points defining the
boundaries of multiplicity were performed to see how the region of multiplicity changes
as a function of the additional geometric parameters. The effect of Shoulder Radius on
the multiplicity region is shown in Figure 5.5, and the effect of Shoulder Height on the
region of multiplicity is shown in Figure 5.6. The results show that the maximum velocity
where multiplicity occurs has a direct dependence on the Shoulder Radius and is relatively
insensitive to the Shoulder Height. The minimum velocity where multiplicity occurs is
insensitive to the Shoulder Radius but has an inverse dependence on the Shoulder Height.
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Figure 5.6. Results of turning point continuation runs showing
how the region of multiplicity identified in Figure 5.4 changes as
a function the geometric Shoulder Height parameter.
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Figure 5.7. A comparison of the 3-parameter optimization run
after60 iterations and the 1-parameter run, started at the same con-
ditions, which converged aftdr! iterations.

A single three-parameter optimization run was performed, starting at the same con-
ditions where the one-parameter run that converged to the stable minimum was started:
Velocity = 14.0, Shoulder Radius- 6.35, and the Shoulder Height 5.08. The run was
performed with up t& second order correction steps per optimization iteration. After
iterations, the objective function had been driven dowh'te: —6.32, which is not as low
as thel’ = —6.967 achieved in the 1 parameter optimization. Possible reasons for this are
that the three-parameter model is converging to a local minimum or that the singularities
in the region are causing convergence problems. Future runs will need to be made to fully
understand this preliminary result. The result of the three-parameter run is compared to the
one-parameter run in Figure 5.7.
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Figure 5.8. A comparison of4 runs for the 1-parameter model,
comparing exact and inexact Jacobians, and with and without sec-
ond order correction steps (S.0.C.).

5.4.3 Effects of Jacobian Inexactness and Second Order Corrections

To test the effects of inexactness in the Jacobian and Second Order Correction Steps on
the convergence of the optimization algorithm, three more runs of the 1-parameter model
were performed. These all startedlat= 14 for comparison with the successful optimiza-

tion run, which was computed with a full numerical Jacobian and up $econd order
correction steps per iteration. The results are shown in Figure 5.8.

In the first additional run, the analytic (inexact) Jacobian was used, and the second
order corrections were retained. This Jacobian leaves out the derivatives of all the physical
properties with respect to the local state (temperature and composition), only including
the correct density dependence. The Figure shows that this run converges visibly to the
same optimum as the original case, both in iteratibnthough the original case reached
the optimum inl4 iterations and the inexact case failed to meet the convergence criterion
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after 40 iterations. Two more runs were performed where no second order correction steps
were allowed. The run with the inexact Jacobian converged visibly to the optimungafter
iterations though had not converged within the tolerance aft@iterations. The run with

the exact numerical Jacobian without second order corrections had not yet converged to the
optimum and was prematurely stopped aftte iterations, surprisingly performing worse

than the run with the inexact Jacobian.

For this problem, MPSalsa requir®d seconds to fill the full numerical Jacobian as
compared to only) seconds for the analytic Jacobian, while an iterative linear solve re-
quired approximatelyt0 seconds. The runs with second order corrections required, on av-
erage) linear solves per iteration, while the runs without second order corrections required
exactly? linear solves per iteration. Therefore for this problem, the quickest numerical ap-
proach for visibly reaching the optimum was using the inexact analytic Jacobian and with
the second order correction steps. The runs with the inexact Jacobian did not trigger the
convergence tolerance set in the algorithm, and therefore performed many wasted iterations
after visibly reaching the optimum. Since there are numerous approximations in the model,
particularly with the chemistry mechanisms, the optimum needs only be converged to two
digits of accuracy.

5.5 Optimization problem - Source Inversion

The rSQP/MPSalsa code was also used to investigate source inversion problems. Poten-
tial application of this problem is chemical/biological/radiological attacks on our nation’s
infrastructure, such as water distribution systems, large facilities, and urban areas. Given
concentration data at several sensor locations within a facility, the goal is to determine
the original location and magnitude of the attack subject to Navier Stokes fluid flow. We
assume that chemical transport follows diffusive behavior and therefore we use heat as a
chemical source, and temperature as chemical concentrations. Even though this applica-
tion is a real time optimization problem, our initial development efforts were confined to the
steady state problem. Two models were investigated, the first was a simple box geometry
and the second was a two dimensional model emulating actual airport terminal dimensions
and operating conditions.

133



Figure 5.9 shows the box geometry that was initially used to test our inversion algo-
rithms. The left figure shows the convective steam lines, entering at the top left (Dirichlet
condition) and leaving at the bottom right (appropriate outflow conditions). The right figure
shows the diffusion behavior as a result of introducing three sources marked on the side of
the box with their relative magnitudes.

Prior to conducting the inverse problem, the forward problem was executed to calculate
the concentration values at various points in the box geometry, marked with a red “x”. The
concentrations at these 25 sensor locations were then used to solve the following optimiza-
tion problem:

A forward problem was solved using MPSalsa with a 1600 element finite element dis-
cretization. This led to 1681 constraints for the discretized Navier Stokes PDE. Three out
of 16 fluxes were set nonzero (of magnitudes 1,2, and 5 as seen in the figure) and sensor
data was recorded. Then the inverse problem was solved from a trivial initial guess using
rSQP/MPSalsa as follows:

minimize:

5 Z/d95<x—xi><c— ¢*)2d9) (55.13)

subject toc(z, f) = 0 wherec represents the Navier Stokes equations (section 5.3.1).
The 16 fluxes converged to the values set in the forward problem in 88 rSQP iterations.

Because of our investment and experience in PDE constrained optimization applied
to CVD reactors, this prototype problem was solved within 2 days of first discussing the
potential of rISQP/MPSalsa as a counter-terrorism capability.

A more complex geometry and parameter values was tested to emulate the conditions
of an airport facility. Figure 5.10 shows a 2D representation of an actual two-story airport
terminal. This model represented one sixth of the terminal, which was controlled by a sin-
gle HVAC system. The model problem used realistic dimensions of a terminal, properties
of air, diffusion coefficient forSF; (a common tracer for experiments). Flow rates were
varied but did approach reasonable conditions.

The problem was formulated the same as the box problem above, except that two of the
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Re=10

Figure 5.9. Source inversion of convection-diffusion in a box
geometry. This was out initial prototype problem for source in-
version of chem/bio/rad attack scenarios. The left box shows con-
vective streamlines and the right box shows the diffusive behavior
with the red “x” markers denoting sensor locations
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air flow velocities entering this section of the terminal (from down the hall) were left as un-
knowns. This meant that the nonlinear Navier-Stokes PDE’s, in addition to the convection-
diffusion equation, were part of the constraints. In later runs, a one-equation (Spalart-
Almaras) turbulence model was solved in conjunction with these equations. In our first
prototype, only three locations along the bottom floor were selected as candidate source
locations, leading to a total 6fdesign variables. Ten sensor locations were picked (see red
x's in the bottom figure).

A finite element discretization of the PDE’s led to ox280000 algebraic constraints
for the 5-parameter optimization problem. One run ran for 2 hours on 64 processors of the
Ross CPlant machine and successfully reduced the objective function 3 orders of magnitude
from a simple initial guess.

Much was learned from this prototype problem. For the optimization problem, this
direct sensitivity approach used here could work well up to 20 design variables, but an
adjoint sensitivity approach would be preferred to allow for numerous candidate sensor
locations. Allowing flow rates as design variables was a big step, since it invoked several
coupled nonlinear PDEs as constraints instead of one linear convection-diffusion PDE.
Issues that were not faced in this prototype problem are (1) solving the transient problem
and (2) dealing with noisy sensor data.

From a modeling standpoint, several areas have been identified where future work
would be needed to continue this effort. One is dealing with high Reynolds numbers (tur-
bulence) for air in the large domains. A second is a new interface for choosing potential
source locations, since our method of meshing them individually and assigning a side set
ID is not adequately flexible or scalable. Another is dealing with agents (such as anthrax
particles) that require extensions to the Navier Stokes equations.

5.6 Conclusions, Stability, Interface & Validation

Solution multiplicity of nonlinear steady-state problems must be recognized and can be
diagnosed using stability analysis tools. The technique in this paper of tracking the re-
gion of multiplicity is not scalable to larger numbers of design parameters, and is more
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Figure 5.10. Source inversion 2D cross-sectional model of a
two-story airport facility. The top figure shows flow streamlines,
the middle figure shows concentrations of an agent being released
from two locations along the bottom floor, and the third shows
the ten sensor locations and concentration profiles from a different
source values.

expensive than the optimization calculations. At a minimum, the stability of the candidate
optimum must be checked with a linear stability analysis tool. Concerning inexactness in
the Jacobian matrix, and the effect of second order correction steps, we have gathered some
evidence. For this run, it appears that inexactness in the Jacobian does not seriously hinder
convergence, particularly if second order correction steps are used.

Several conclusions can be drawn from interfacing a rSQP algorithm to a complete fluid
flow simulator. Calculating sensitivities is perhaps the single most important modification
to a simulation code for PDECO. Once a sensitivity capability exists, the interface to a
rSQP algorithm is trivial. As a result of the MPSalsa project, several sensitivity projects
have been initiated with new simulation developments. In addition, a research project has
been started to investigate methods to handle transient optimization problems efficiently.
Another very important conclusion is that conducting algorithmic research with large-scale
simulation codes is very difficult. The rSQP algorithms can be tested on small systems, but
to validate our algorithms across many PDE-based problems is not practical, especially if
that means interfacing with production and cumbersome simulation codes. To address these
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problems we have developed a symbolic simulation capability and interfaced it with our
rSQP algorithms. The next two chapters provide a description of Sundance and Sundance
coupled to rSQP++.
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Chapter 6
Sundance

Traditional PDE codes solve one of a specific class of PDEs with little hope of obtaining the

gradients, adjoints, or Hessians needed for PDECO. Even with modern PDE frameworks
such as SIERRA and Nevada, it will require considerable development effort to obtain these
guantities. Thus, for optimization with existing PDE codes, one must use the PDE solver
as a “black box,” and we are restricted to relatively inefficieetel-0 or Level-1 methods.

Since PDE-constrained optimization requires capabilities beyond those available in tra-
ditional PDE codes, we have developed a PDE solver system that has been designed from
the ground up with large-scale PDE-constrained optimization in mind. This system, called
Sundance, accepts a system of coupled PDEs and boundary conditions written in symbolic
form that is close to the notation in which a scientist or engineer would normally write them
with pencil and paper. Each function or variation appearing in this symbolic description
is annotated with a specification of the finite-element basis with which that object will be
discretized. This information, along with a mesh, is then used by Sundance to assemble the
implied discretized operators. At this point, the user could simply ask Sundance to solve
the system, or it could request certain evaluations to be made. These symbolic capabili-
ties make Sundance a powerful rapid prototyping and algorithmic research tool, however,
for present purposes the real power of Sundance’s symbolic interface is that the symbolic
expressions comprising the PDE and boundary conditions can be differentiated allowing
automated derivation of gradients and Hessians as needed in PDECO. We must emphasize
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that for performance reasons, the high-level objects used for problem specification are not
used for numerical calculations. Rather, they are used to marshal a set of internal objects
that can be used for efficient calculations.

Sundance has been developed using a component-oriented design. Abstract concepts
such as linear solvers, basis functions, quadrature rules, or reordering schemes (to name
just a few) are represented in terms of abstract interfaces. A particular realization of such
a concept, for instance an Aztec solver, is then implemented as a concrete type and can be
plugged into the Sundance system via the interface. This design has two key advantages.
First, it makes Sundance highly extensible, since developers can add new components with-
out modifying the core of Sundance. Second, it allows the use of the highest-performance
third-party components with Sundance. Sundance does not have built-in meshers, solvers,
or visualization capabilities; rather, it uses third-party components for all of those tasks.

In this chapter we will start with an introductory example illustrating basic Sundance
syntax. We will then give an overview of the core components of Sundance, with code
examples as new capabilities are introduced. Simple examples of the use of Sundance for
a linear PDECO problem, a nonlinear PDE, and a transient PDE are given here. Further
examples of the use of Sundance in nontrivial, nonlinear PDECO problems are given in
Chapter 7. For a comprehensive presentation of Sundance’s capabilities and further exam-
ples of forward problems, see the Sundance User’s Guide [72].

6.1 An introductory example

We begin with a simple example of a forward problem that will show basic Sundance
components. Consider the Poisson equation with a unit source

Viu=1 (6.1.1)

on the rectangld), 0] - [1, 2]. The sides of the rectangle will be labeled left, right, bottom,
top. For boundary conditions, we will choose

¢ left Homogeneous NeumanWu - n = 0
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e bottom Dirichlet, u = }z?

e right Robin,u + Vu-n =

N

+

wl=

e top NeumannVu -0 =1/3

It is easy to check that the solution is

1, 1
| = —% —1. 6.1.2
u 2T +3y ( )

The solution is in the subspace spanned by second-order Lagrange polynomials, so if we
choose that as our basis family we can expect to obtain the exact solution. We can compute
the error norm at the end of the calculation as a check that the code is working properly.

This is a simple problem, but it in fact requries most of the components used by Sun-
dance to do more complex problems.

6.1.1 Step-by-step explanation

We start with a step-by-step walkthrough of the code for solving the Poisson problem.
When finished, there will be a summary and then the complete Poisson solver code will be
listed for reference.

6.1.1.1 Boilerplate

A dull but essential first step is to show the boilerplate C++ common to nearly every Sun-
dance code:

#include "Sundance.h"
int main(int argc, void** argv)
{
try
{

Sundance::init(argc, argv);

/*
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* code body goes here
*
}
catch(exception& e)
{
Sundance::handleException(__FILE__, e);
}

Sundance::finalize();

}

The body of the code — everything else we discuss here — goes in place of the comment

code body goes here

6.1.1.2 Getting the mesh

Sundance usesMesh object to represent a discretization of the problem domain. There
are two ways to get ®esh object:

e Create it using Sundance’s built-in mesh generation capability. This is limited to
meshing very simple domains such as rectangles.

¢ Read amesh that has been produced using a third-party mesh generatdeshiteader
class provides an interface for reading arbitrary file formats.

For this simple problem, we can use Sundance to generate the mesh.

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);
Mesh mesh = mesher.buildMesh();

If you know a little C++ — just enough to be dangerous — you might think it odd that the
result of thenew operator, which returns a pointer, is being assignedieshGenerator
object which is — apparently — not a pointer. That's not a typo:MieshGenerator ob-
ject is ahandle class that stores and manages the pointer toRbetangleMesher

object. Handle classes are used throughout user-level Sundance code, and among other

things relieve you of the need to worry about memory management.
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6.1.1.3 Defining coordinate functions

In the Poisson example, the boundary conditions involve functions of the coordinatels
y. We will create objects to represent the coordinate functioasdy.

Expr x
Expr y

new CoordExpr(0);
new CoordExpr(1);

You have probably guessed that the integer argument t€tmedExpr constructor
gives the coordinate direction: 0 far 1 fory, 2 for z.

The coordinate functions are wrappeddrpr handle objects. Clagsxpr is used for
all symbolic objects in Sundancé&xpr s can be operated on with the usual mathemati-
cal operators. With our coordinate functions representeBxgs objects, we can build
complicated functions of position.

6.1.1.4 Defining the cell sets

We've already read a mesh. We need a way to spetifgreon the mesh equations or
boundary conditions are to be applied. Sundance uggsli&et object to represent

subregions of a geometric domain. @ellSet can be any collection of mesh cells, for
example a block of maximal cells, a set of boundary edges, or a set of points.

TheCellSet class has gaubset() method that can be used as a “filter” that iden-
tifies cells that are in a subset defined by the arguments teutbget method.

We will apply different boundary conditions on the four sides of the rectangle, so we
will want four CellSet s, one for each side. We first create a cell set object for the entire
boundary,

CellSet boundary = new BoundaryCellSet();

and then we find the four sides as subsets of the boundary cell set. The four sides of the
rectangle can be specified with logical operations on coordinate expressions, as shown in
the following code:
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CellSet left = boundary.subset( x == 0.0 );
CellSet right = boundary.subset( x == 1.0 );
CellSet bottom = boundary.subset( y == 0.0 );
CellSet top = boundary.subset( y == 2.0 );

6.1.1.5 Creating a discrete function

We will use discrete functions several places in this problem. A discrete function takes
as a constructor argument a vector space object that specifies the mesh, basis, and vector
representation to be used in discretizing the function.

The first step is to create a vector space factory object that tells us what kind of vector
representation will be used. We’'ll use Petra vectors, so we crddégraVectorType

TSFVectorType petra = new PetraVectorType();

We can now create §undanceVectorSpace containing the mesh, a basis (2nd
order Lagrange in this case) and the vector space factory.

TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

Finally, we can create discrete functions to represent the source ftegm1.0 and
the expressior} + 2 that appears in the right BC. Note that there’s no particular need
to use discrete functions for those terms; we do so here simply to provide an example of
constructing a discrete function.

Expr f = new DiscreteFunction(discreteSpace, 1.0);
Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

6.1.1.6 Defining unknown and test functions

We'll use 2nd order piecewise Lagrange interpolation to represent our unknown selution
With a Galerkin method we define a test functionsing the same basis as the unknown.
Expressions representing the test and unknown functions are defined easily:
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Expr v
Expr u

new TestFunction(new Lagrange(2));
new UnknownFunction(new Lagrange(2));

6.1.1.7 Creating the gradient operator

The gradient operator is formed by makind.st containing the partial differentiation
operators in the: andy directions.

Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

The gradient thus defined is treated as a vector with respect to the overloaded multipli-
cation operator used to apply the gradient, so that an operation syghdfsl expands
correctly to{dx*u, dy*u }.

6.1.1.8 Writing the weak form

We will use the Galerkin method to construct a weak form. Begin by multiplying Poisson’s
equation Equation 6.1.1 by a test functioand integrating

/7)V2u/vf—0. (6.1.3)
Q Q

The next step is to integrate by parts, which has the effects of lowering the order of dif-
ferentiation (and thus relaxing the differentiability requirements on the unknown and test
functions) and also making the boundary flux. The resulting weak form is

—/VU-VU—/Uf+/UVu-ﬁ:0 (6.1.4)
Ja Ja J oo

and we will require that this equation hold for any test functiom the space of 2nd
order Lagrange interpolants on our mesh. The boundary term gives us a way to apply
certain boundary conditions: we can apply the Neumann and Robin BCs by substituting an
appropriate value foku - i in the boundary term. Referring to the boundary conditions
above and our definition of the discrete functraghtBCExpr , the weak form is written

in Sundance as
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Expr poisson = Integral(-(grad*v)*(grad*u) - f*v)
+ Integral(top, v/3.0)
+ Integral(right, v*(rightBCExpr - u));

Notice that the homogeneous BC on the left side does not need to be written explicitly
because that boundary term is zero.

6.1.1.9 Writing the essential BCs

The weak form contains the physics in the body of the domain plus the Neumann and Robin
boundary conditions. We still need to apply the Dirichlet boundary condition on the bottom
edge, which we do with aBssentialBC  object

EssentiaBC bc = EssentialBC(bottom, v*(u - 0.5*x*x));

The first argument gives the region on which the boundary condition holds, and the
second gives an expression that is to be set to zero. Notice that there is a test function in
the BC,; this identifies the row space on which the BC is to be applied.

6.1.1.10 Creating the linear problem object

A StaticLinearProblem object contains everything that is needed to assemble a dis-
crete approximation to our PDE: a mesh, a weak form, boundary conditions, specification
of test and unknown functions, and a specification of the low-level matrix and vector repre-
sentation to be used. All of this information is given to the constructor to create a problem
object

StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);

It may seem unnecessary to providandu as constructor arguments here; after all, the
test and unknown functions could be deduced from the weak form. In more complex prob-
lems with vector-valued unknowns, however, we will want to specify the order in which
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the different unknowns and test functions appear, and we may want to group unknowns
and test functions into blocks to create a block linear system. Such considerations can
make a great difference in the performance of linear solvers for some problems. The test
and unknown slots in the linear problem constructor are used to pass information about
the function ordering and blocking to the linear problem; these features will be used in
subsequent examples.

6.1.1.11 Specifying the solver

A good choice of solver for this problem is BICGSTAB with ILU preconditioning. We’'ll
use level 2 preconditioning, and ask for a convergence tolerant@ a@ft within 500 iter-
ations.

TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(2);
TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);

6.1.1.12 Solving the problem

The syntax of Sundance makes the next step look simpler than it really is:

Expr soln = prob.solve(solver);

What is happening under the hood is that the problem olpeait builds a stiffness
matrix and load vector, feeds that matrix and vector into the linear sehger . If all
goes well, a solution vector is returned from the solver, and that solution vector is captured
into a discrete function wrapped in the expression olgetit .

6.1.1.13 Viewing the solution

We next write the solution in a form suitable for viewing by Matlab.

FieldWriter writer = new MatlabWriter("heat2D.dat");
writer.writeScalar(mesh, "temperature”, soln);
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6.1.1.14 Checking the error norm

Finally, we compare to the exact solution by computing the error norm. The solution has
been returned as a Sundance expression, so we can form an expression for the error

Expr exactSoln = 0.5*x*x + y/3.0;
Expr error = exactSoln - soln;

and then take thé? norm

double errorNorm = error.norm();

6.1.2 Complete code for the poisson problem

#include "Sundance.h"

[** \example heat2D.cpp
* Solve Poisson’s equation with a unit source term on the
rectangle [0,1] x [0, 2] with the following boundary conditions:

*

* Left: Natural, du/dx = 0

* Bottom: Dirichlet, u= 0.5 X2

* Right: Robin, u + du/dx = 3/2 + y/3
* Top: Neumann, du/dy = 1/3

* The solution is u(x,y) = 0.5*x"2 + y/3.

*

This problem can be solved exactly in the space of second-order polynomials.
*/

int main(int argc, void** argv)
{
try
{

Sundance::init(argc, argv);

[* create a simple mesh on the rectangle */

int nx = 20;

int ny = 20;

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);
Mesh mesh = mesher.getMesh();

/* define coordinate functions for x and y coordinates */
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Expr x = new CoordExpr(0);
Expr y = new CoordExpr(1);

/* define cells sets for each of the four sides of the rectangle */
CellSet boundary = new BoundaryCellSet();

CellSet left = boundary.subset( x == 0.0 );

CellSet right = boundary.subset( x == 1.0 );

CellSet bottom = boundary.subset( y == 0.0 );

CellSet top = boundary.subset( y == 2.0 );

[* Create a vector space factory, used to
* specify the low-level linear algebra representation */
TSFVectorType petra = new PetraVectorType();

/* create a discrete space on the mesh */
TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

/* We'll use a discrete function to represent the

* source term, providing a test

* of our ability to evaluate discrete functions on maximal cells */
Expr f = new DiscreteFunction(discreteSpace, 1.0);

/* We'll use a discrete function to represent the imposed

* boundary value on the right-hand boundary. This provides a

* test of our ability to evaluate discrete functions on

* lower-dimensional cells. */

Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

/* create symbolic objects for test and unknown functions */
Expr v = new TestFunction(new Lagrange(2));
Expr u = new UnknownFunction(new Lagrange(2));

[* create symbolic differential operators */
Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

/* Write symbolic weak equation and Neumann and Robin BCs */
Expr poisson = Integral(-(grad*v)*(grad*u) - f*v, new GaussianQuadrature(2))
+ Integral(top, v/3.0) + Integral(right, v*(rightBCExpr - u));

/* Write essential BCs:
* Bottom: u=x"2
*
EssentiaBC bc = EssentialBC(bottom, v*(u - 0.5*x*x),
new GaussianQuadrature(4));

[* Assemble everything into a problem object, with a specification that
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}

We now show a simple example of how to use Sundance to set up an optimization problem
with a PDE constraint. Consider the Poisson equation with source terms parameterized

}

* Petra be used as the low-level linear algebra representation */
StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);

[* create a preconditioner and solver */
TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);

/* solve the problem and return the solution as a symbolic object */
Expr soln = prob.solve(solver);

/* write to matlab */
FieldWriter writer = new MatlabWriter("heat2D.dat");
writer.writeField(soln);

/* compare to known solution */
Expr exactSoln = 0.5*x*x + y/3.0;

/Il compute the norm of the error
double errorNorm = (soln-exactSoln).norm(2);

double tolerance = 1.0e-9;

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

catch(exception& e€)

{
}

Sundance::handleError(e, _ FILE_ );

Sundance::finalize();

6.2 A PDE-constrained optimization example

with a design variabler,

A simple optimization problem is to choosesuch that the state functianis a good fit
to a target functior. This target-fitting problem can be posed as a least-squares problem

Viu = E oy sin k.
k
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with objective function
fla) == / (u(e) — @)* + R > op (6.2.6)
Q

whereR sets the control cost. As written, we could solve this problem with a pattern search
method in which we solve 6.2.5 farat each function evaluation. Alternatively, we can let

the states become independent variables, but impose equation 6.2.5 as a constraint. In that
case, we have a Lagrangian

1
L(a,u,)\)zi/g(u—d)Q+§Zaz—/QVU-V)\—Zak/Q)\Sinlmm (6.2.7)

where ) is a Lagrange multiplier. The necessary condition for solving the optimization
problem is that the variations of the Lagrangian with respeat to, and\ are all zero.

This example is a quadratic program with an equality constraint, and the solution is ob-
tained with a single linear solve of the KKT system. However, the KKT system is indefinite
and is most efficiently solved using a block Schur complement method.

6.2.1 Sundance problem specification

With Sundance, all we need do to pose this problem is to write the Lagrangian using Sun-
dance symbolic objects.

Note that in this problem, the state variabl@and Lagrange multipliex are unknown
functions defined with a finite-element basis. However, the design parameters are unknown
“global” parameters, defined independently of the mesh. In Sundance, mesh-based un-
knowns ardJnknownFunction  expression subtypes and global unknownd arknownParameter
expression subtypes. To optimize performance in parallel, Sundance imposes the restriction
that all global unknowns must appear in a separate block from any meshed unknowns; that
block is then replicated across processors while blocks containing meshed unknowns are
distributed. Matrix blocks mapping between the global unknown space and a meshed un-
known space are implemented with multivectors, in which each row (or column, depending
on the orientation of the block) is a distributed vector. The specification of the unknowns
and block structure for this problem is done with the following Sundance code:
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Expr u = new UnknownFunction(new Lagrange(2));
Expr v = u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));
Expr mu = lambda.variation();

Expr alphal = new UnknownParameter();
Expr alpha2 = new UnknownParameter();
Expr alpha3 = new UnknownParameter();
Expr alpha = List(alphal, alpha2, alpha3);
Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();
TSFVectorType dense = new DenseSerialVectorType();

TSFArray<Block> unks = tuple(Block(alpha, dense), Block(u, lambda, petra));

TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Once the unknowns have been specified, we can write out the objective function and
Lagrangian in symbolic form:

Expr objectiveFunction = 0.5*Integral(pow(u-target, 2.0))
+ 0.5*alpha*alpha;

Expr lagrangian = objectiveFunction - Integral((dx*u)*(dx*lambda))
- Integral(lambda*forcing);

The equation set can be obtained by taking symbolic variations of the Lagrangian.

Expr eqn = lagrangian.variation(List(u, lambda, alpha));

We will solve the system using a Schur complement solver, using TSF’s block manip-
ulation capabilities. The user-level code to specify a Schur complement solver for a 2 by 2
block system is

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);
TSFLinearSolver outerSolver = new BICGSTABSolver(1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver);
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Finally, we show complete source code for the PDE-constrained optimization example.

#include "Sundance.h"

int main(int argc, void** argv)
{
try
{

Sundance::init(&argc, &argv);

/*
Create a mesh object. In this example, we will use a built-in method
to create a uniform mesh on the unit line. In more realistic problems
we would use a mesher to create a mesh, and then read the mesh using
a MeshReader object.
*/
int n = 10;
const double pi = 4.0*atan(1.0);
MeshGenerator mesher = new LineMesher(0.0, pi, n);
Mesh mesh = mesher.getMesh().getSubmesh();

/* Define a symbolic object to represent the x coordinate function. */
Expr x = new CoordExpr(0);

Expr psi = List(sin(x), sin(2.0*x), sin(3.0*x));
Expr target = sin(x);

/*

* Define a cell set that contains all boundary cells

*/

CellSet boundary = new BoundaryCellSet();

/*

* Define a cell set that includes all cells at position x=0.
*

CellSet left = boundary.subset( fabs(x - 0.0) < 1.0e-10 );

/*

* Define a cell set that includes all cells at position x=1.
*

CellSet right = boundary.subset( fabs(x - pi) < 1.0e-10 );
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/*
Define an unknown function and its variation. The constructor
argument is the basis family with which the function will be
represented, in this case second-order Lagrange (nodal) polynomials.

*

Expr u = new UnknownFunction(new Lagrange(2));

Expr v = u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));
Expr mu = lambda.variation();

Expr alphal = new UnknownParameter();
Expr alpha2 = new UnknownParameter();
Expr alpha3 = new UnknownParameter();
Expr alpha = List(alphal, alpha2, alpha3);
Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();
TSFVectorType dense = new DenseSerialVectorType();

TSFArray<Block> unks = tuple(Block(alpha, dense), Block(u, lambda, petra));
TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Expr forcing = alpha * psi;

/*

Define the differentiation operator of order 1 in direction O.
*
Expr dx = new Derivative(0);

Expr objectiveFunction = 0.5*Integral(pow(u-target, 2.0))
+ 0.5*alpha*alpha;

Expr lagrangian = objectiveFunction - Integral((dx*u)*(dx*lambda))
- Integral(lambda*forcing);

Expr eqn = lagrangian.variation(List(u, lambda, alpha));

/*
Now specify the boundary conditions on the left and right CellSets.
*

EssentialBC bc =
EssentialBC(left, u*mu + v*lambda) && EssentialBC(right, u*mu + v*lambda);
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/*

Create a solver object: stablized biconjugate gradient solver
*
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);
TSFLinearSolver outerSolver = new BICGSTABSolver(1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver);

/*
Combine the geometry, the variational form, the BCs, and the solver
to form a complete problem.
*
StaticLinearProblem prob(mesh, eqgn, bc, vars, unks);
prob.printRowMaps();
mesh.printCells();

/*

solve the problem, obtaining the solution as a (discrete) Expr object
*
Expr soln = prob.solve(solver);

/*
write the solution in a form readable by matlab
*
FieldWriter writer = new MatlabWriter();
cerr << "u" << endl;
writer.writeField(soln[1][0]);
cerr << "lambda" << endl;
writer.writeField(soln[1][1]);

cerr << soln[0] << endl;

/*

compute the error and represent as a discrete function
*/
Expr exactSoln = sin(x);

/*
compute the norm of the error
*
double errorNorm = (soln[1][0] - exactSoln).norm(2);
double tolerance = 1.0e-10;

/*
decide if the error is within tolerance
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*

/

Testing::passFailCheck(__FILE__, errorNorm, tolerance);
Testing::timeStamp(__FILE__, _ DATE__, _ TIME_);

}

catch(exception& e)

{
TSFOut::printin(e.what());

Testing::crash(__FILE_ );
Testing::timeStamp(__FILE__, _ DATE_ , _ TIME_ );
}

Sundance::finalize();

}

6.3 Symbolic components

6.3.1 Constant expressions

The simplest type of Expr to create is a constant real-valued Expr, for example:

Expr solarMass = 2.0e33; // mass of the Sun in grams

Any constant that appears in an expression, for example the cofgianthe expres-
sion below,

Expr f = 2.0*g;

will also be turned into a constant-valued expression. It is important to understand that
once created and used in an expression, a constant’s value is immutable. If you want to
change the constant, you should instead uBarameter

6.3.2 Parameter expressions

Often you will form a PDE with parameters that will change during the course of a calcula-
tion. For example, in a time-marching problem both the time and the timestep can change
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from step to step. Or, you may want to run a fluid flow simulation at several different values
of the Reynolds number. To include in your equation a parameter that is constant in space
but can change with time or some other way, you should represent that parameter with a
Parameter expression.

Expr time = new Parameter(0.0);

for (int i=0; i<10; i++)

{
cerr << time << “ * << sin(pi*time) << endl;
/I update the time
time.setValue(time.value() + 0.1);

}

The above assumes that the parameter is known. However, in some problems a parame-
ter might be an unknown to be determined in the course of solving a problem; for instance,
it could be a design parameter to be determined through optimization. In that case, use an
UnknownParameter , described in section 6.3.6.

6.3.3 Coordinate expressions

CoordExpr is an expression subtype that is hardwired to compute the value of a given
coordinate. For example, the following constructs an Expr that represents the coordinate
on the zeroth«) axis:

Expr x = new CoordExpr(0); // represents x-coordinate value

Such a coordinate expression can be used to define simple position-dependent func-
tions, for example

Expr f = sin(x) + 1/4.0*sin(2.0*x) + 1/8.0*sin(3.0*x);
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6.3.4 Differential operators

The key expression subtype for forming differential operators i£wevative  object,
representing a partial derivative in a given directionDArivative is constructed with
a single integer argument giving the direction of differentiation, for example,

Expr dx = new Derivative(0); // differentiate with respect to O coordinate

Derivatives are applied using the multiplication perator.

Sundance expression objects are programmed to obey the rules of differential calculus.
For example,

Expr dx = new Derivative(0); // differentiate with respect to 0 coordinate
Expr x = new CoordExpr(0); // represents x-coordinate value

Expr y = new CoordExpr(0); // represents y-coordinate value

Expr f = x*sin(x) + y*x;

Expr df = dx*f;

cout << df << endl; // prints sin(x) + x*cos(x) + V;

Differentiation of discrete functions requires special care, and is discussed in 6.3.7.4

6.3.5 Test and unknown functions

Expression subtype§estFunction and UnknownFunction are used to represent

test and unknown functions in weak PDEs and boundary conditions. They are constructed
with a BasisFamily  object which specifies the subspace to which solutions and test
functions are restricted. For example,

Expr T = new UnknownFunction(new Lagrange(1));
Expr varT = new TestFunction(new Lagrange(1));

constructs unknown and test functions that live in the space spanned by first-order La-
grange interpolates, i.e., all piecewise linear functions.
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6.3.6 Test and unknown parameters

Expression subtypeBestParameters  andUnknownParameter are used to repre-
sent test and unknown functions that are independent of space. Their constructors take no
arguments. See 6.2.1 for an example of the use of test and unknown parameters.

6.3.7 Discrete functions

Discrete functions represent the value of a field that has been discretized on a space of basis
functions. Discrete functions have a number of important uses:

e representing the solution of a finite-element problem

e representing a field for which no analytical expression is available

A discrete function object can be created in a number of ways: by computing the value of
an expression on the nodes in a mesh, by reading it from a file, or by “capturing” a solution
vector into a discrete function.

6.3.7.1 Creating a scalar-valued discrete function

To create a discrete function, we first need to know the discrete space on which the func-
tion will be defined. The construction of this space requires at minimum a mesh, a basis
function, and a vector type.

TSFVectorType petra = new PetraVectorType();
BasisFamily basis = new Lagrange(1);
TSFVectorSpace discreteSpace = new SundanceVectorSpace(myMesh, basis, petra);

Once you have a discrete space, you can create a discrete function as follows:

Expr f = new DiscreteFunction(discreteSpace, sin(x)*sin(y));
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6.3.7.2 Creating a vector-valued discrete function

Discrete functions representing vector-valued fields have some wrinkles that are important
to understand. Consider a discrete function representing a two-component vector field,
u = (u,, u,). How is the vector underlying this function stored? One can imagine creating
two independent discrete functions

Expr ux = new DiscreteFunction(discreteSpace, sin(x)*sin(y));
Expr uy = new DiscreteFunction(discreteSpace, cos(x)*cos(y));

and forming a vector-valued expression usinglife# operator,

Expr u = List(ux, uy);

This is well-defined Sundance code, but it is not usually what you want. A calculation
will have improved performance due to cache efficiency if both functions are aggregated
into a single vector, with,, andu, at each cell listed together. To achieve this aggregation,
we need to create a discrete space capable of representing vector-valued functions.

TSFVectorType petra = new PetraVectorType();
BasisFamily basis = new Lagrange(l);
TSFArray<BasisFamily> multiVariableBasis = tuple(basis, basis);
TSFVectorSpace multiVariableDiscreteSpace
= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);
Expr u = DiscreteFunction::discretize(multiVariableDiscreteSpace,
List(sin(x)*sin(y), cos(x)*cos(y)));

In many problems, it is necessary to use a mixed set of basis functions. For example, in
the Taylor-Hood discretization of the incompressible Navier-Stokes equations, the velocity
components are represented with 2nd order polynomials and the pressure with 1st order
polynomials.

TSFVectorType petra = new PetraVectorType();

BasisFamily basisl = new Lagrange(1);

BasisFamily basis2 = new Lagrange(2);

TSFArray<BasisFamily> multiVariableBasis = tuple(basis2, basis2, basisl);

TSFVectorSpace multiVariableDiscreteSpace
= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);

Expr uAndP = DiscreteFunction::discretize(multiVariableDiscreteSpace,
List(y, x, 0.0));
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6.3.7.3 Reading a discrete function

Many mesh file formats have the ability to store field data along with the mesh. This field
data can be associated with elements or with nodes, depending on the application and the
physical meaning of the field. Different mesh file format will index fields in different ways;

for example, the Exodus format associates names with fields, while Shewchuk’s Triangle
format simply lists attributes. Generally, we can look up fields by either a name or by a
number indicating the position in an attribute list. Some examples follow:

MeshReader reader = new ShewchukMeshReader(“myMesh”);
Expr temperature = reader.getNodalField(0);
Expr velocity = reader.getNodalField(1, 2, 3)
Expr pressure = reader.getElementalField(4)

MeshReader reader = new ExodusMeshReader(*myMesh.exo”);
Expr pressure = reader.getElementalField(“pressure”);

Expr velocity = reader.getNodalField(“ux”, “uy”, “uz”)

Expr temperature = reader.getNodalField(“temperature™);

6.3.7.4 Derivatives of discrete function

Many basis functions used in finite elements calculations are only piecewise differentiable:
the function is continuous everywhere and differentiable in the interior of each cell, but the
derivative is not defined at boundaries between cells. Such basis functions, and functions
represented with them, are said to haVecontinuity. Since the derivative of such a func-

tion will not be continuous at element boundaries, the derivative @f dunction is not
necessarily’?. Thus, the derivative of a discrete function defined with a particular discrete
space cannot be represented exactly with another discrete function defined with that same
space.

For this reason, it is impossible to create directly a discrete function from the derivative

of another discrete function. The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));
Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);
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If fis aC" function, it is possible tantegratederivatives off. The integral is well-
defined since the region on whichis nondifferentiable have no volume. Numerically,
it is usually possible to do such integrals because the quadrature points are usually in the
interiors of cells. So it's perfectly sensible, and quite common, to write a weak PDE that
includes derivatives of discrete functions.

What is not possible is to obtain pointwise values of the derivative of a discrete function.
This is not a common operation during the solution of a PDE, but you may often want to
see derivative values during postprocessing and analysis. Because pointwise values are
not available, it is impossible to create directly a discrete function from the derivative of
another discrete function.

The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));
Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);

If you really want to look at pointwise derivative values, the best that can be done is to
approximate the derivative by projecting int@’4 space. There are many ways to do this;
one of the most common is a least-squares projection, in which you choose coefficients
such as to minimize the squared residual.

This is a common enough operation that Sundance has a predefined method for least-

squares projection:

/I fO is a discrete function
Expr gradF = L2Projection(discreteSpace, List(dx, dy)*f0);

Note that since this operation requires the solution of a linear system, it is time-consuming.
Again, it usually needs to be done only as a postprocessing step.

Finally, it should be pointed out that the difference between a derivative and its
projection will decrease as the function becomes smoother. For this reasds,résdual
of a derivative can be used as an error estimator.
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6.3.8 Cell property functions

In some problems, you will need an expression to represent properties of a mesh cell.
For example, stabilization methods such as SUPG have terms invalythg local mesh
spacing. In some problems, an explicit expression for a boundary normal is needed.

The local mesh spacing can be obtained usir@eliDiameterExpr  , created as
follows.

Expr h = new CellDiameterExpr();

Similarly, the outward normal of a boundary cell is given bZallNormalExpr
constructed as

Expr n = new CellNormalExpr();

6.4 Geometric components

6.4.1 Meshes

Sundance can use unstructured meshes in 1, 2, or 3 dimensions. To Sundsiesh a
object is a connected complex of cells.zAro-cellis a point. Amaximal cells is defined

with dimension equal to the spatial dimension of the mesh. Each facet of a maximal cell is
itself a cell, and so on down to zero cells. Every discrete geometric entity in Sundance is a
cell; there is no distinction between “elements”, “edges”, and “nodes”. All are represented
by Cell objects.

Sundance currently supports the following cell types:

e zero-cells: points

e one-cells: lines
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e two-cells: triangles and quadrilaterals (“quads”)

e three-cells: tetrahedra (“tets”) and hexahedra (“bricks” or “hexes”)

The system for representing cells is extensible, so that an advanced user can add additional
cell types such as prisms.

Most of the methods of thielesh class are for Sundance’s internal use and will almost
never appear at the user level. You will sometimes work V@&l objects directly, for
instance when probing the value of a function at a point during postprocessing.

6.4.1.1 Meshl/O

There are almost as many mesh file formats as there are engineers, and it would be foolish to
try to build support for file I/O directly into thé&lesh object. Sundance uses an extensible
MeshReader class heirarchy to provide an interface for reading from mesh formats. The
current version of Sundance supports readers for three mesh formats: a native Sundance
text format, Shewchuk’s Triangle format, and Sandia’s Exodus Il format. If you want to
support some other mesh format you will have to implement yourideshReaderBase

subtype.

Using aMeshReader is very simple. You create BleshReader object as a han-
dle to an appropriate subtype, and then you callrdedMesh() method to return a
Mesh object. The following code reads a mesh in Shewchuk’s Triangle format from files
tBird.1.poly andtBird.1l.ele

MeshReader reader = new ShewchukMeshReader("tBird.1");
Mesh mesh = reader.getMesh();

Similarly, to write a mesh to Triangle format one does

MeshWriter writer = new ShewchukMeshWriter("myMesh");
writer.writeMesh();
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6.4.1.2 Mesh generator interface

ClassMeshGenerator provides an interface for mesh generators, and there are imple-
mentations for building several simple mesh types. In principle it would be possible to
connect a powerful third-party mesh generator to Sundance through the mesh generator
interface, but it is generally simpler to have the mesher write the mesh to a file which can
be read by &MeshReader object.

The most common use deshGenerator is to build toy meshes for test problems.
The three built-ilMeshGenerator  subtypes are

e LineMesher meshes aline

e RectangleMesher meshes a rectangle with triangles

e RectanglerQuadMesher  meshes a rectangle with quadrilaterals

6.4.2 Cell sets

A CellSet object is used to define a set of cells on which an equation or boundary
condition is to be applied. AellSet can be defined independently of any particular
mesh; instead of a list of cells, it is a condition or set of condition that can be used to
extract a list of cells from a mesh.

6.4.2.1 The set of all maximal cells

TheMaximalCellSet  object identifies all maximal cells in a mesh. The constructor has
no arguments:

CellSet maxCells = new MaximalCellSet();
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6.4.2.2 The set of all boundary cells

A BoundaryCellSet  object identifies all boundary cells of dimensiéh— 1. For ex-
ample, in a 3D problem BoundaryCellSet  will contain all 2D cells on the boundary,
but not lines or points that happen to lie on the boundary.

The constructor has no arguments:

CellSet boundaryCells = new BoundaryCellSet();

6.4.2.3 Defining subsets

Given a cell set, we can use thebset() method to define a condition that can extract a
subset of the original cell set. The condition can be a mathematical equation or inequality
that must be satisfied by any cell to be accepted into the set, or it can be a string label. In
“real world” problems the most common condition for defining a cell set will be a label
that is associated with the cells by the code that produced the mesh.

CellSet boundary = new BoundaryCellSet();
CellSet wall = boundary.subset(“wall”);
CellSet arc = boundary.subset(x*x + y*y == 1.0 && x < 0.5);

6.4.2.4 Logical operations on cell sets

Cell sets can be created by doing set operations — union and intersection — on two or more
existing cell sets. Union and intersection are represented by the overloaded adelition (
and logical AND &&) operators.
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6.5 Discretization

6.5.1 Basis families

Every unknown field or test function in a Sundance problem must be gibasia family.

Currently, the only basis families supported in Sundance are the Lagrange family and
the Serendipity family. Lagrange basis functions use Lagrange interpolation about the
element’s nodes. Serendipity basis functions are specialized to quadrilateral (“quad”) and
hexahedral (“brick”) cells; they require function values on corner and edge nodes only, not
on face or center nodes.

6.5.2 Quadrature families

The integrals in a Sundance weak form are done by numerical integration, or quadrature.
What is relevant to user-level Sundance code is how one can specify a suite of quadrature
rules to be used for a given weak form. Notice that it will not suffice to specify a quadrature
rule, because a given term may be integrated on several different cell types. For example,
a mesh may contain both quad cells and triangle cells, and the two different cell types will
require two different quadrature rules. What is needed is a specificatiorfarhisy of
guadrature rules rather than a single rule. The user-level specifier of a family of quadrature
rules is theQuadratureFamily  object. ThebuildQuadraturePoints() method

of QuadratureFamily returns a set of quadrature points and weights appropriate to a
given cell type. The user picks a quadrature family by selecting the appropriate subtype
of QuadratureFamilyBase and supplying the desired constructor arguments. For
example,

QuadratureFamily gauss4 = new GaussianQuadrature(4);

creates an object that can produce a 4-th order Gaussian quadrature rule for any cell
type.
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6.5.2.1 Gaussian Quadrature

Gaussian quadrature rules specify both points and weights to give optimal accuracy for all
polynomials through a given degree. Gaussian quadrature rules for a line can be derived
from the properties of the Legendre polynomials; see any textbook on numerical analysis
for a discussion. Gaussian quadrature rules for quadrilaterals and bricks can be formed as
“tensor products” of line rules. The development of Gaussian quadrature rules for triangles
and tetrahedra is an ongoing research area; an online literature survey through 1998 can be
found at Steve Vavasis’ quadrature and cubature pa§gmmetric Gaussian quadrature
rules through moderate order have been developed for triangles by Dunavant[36] and for
tetrahedra by Jinyun[63]. A summary of the quadrature rules that will be generated by
Sundance’'§&saussianQuadrature  object is given in the table below.

Cell type | Available orders | Reference Comments

Line all e.g. Hughes[59]

Triangle | 1-12 Dunavant[36] | Orders 3,7, and 11 have negative weights.
Quad any Tensor project of two line rules.

Tet 1-6 Jinyun[63] Order 3 has a negative weight.

Brick any Tensor project of three line rules.

6.5.3 Upwinding

Sundance has no built-in upwinding capability, however, it is straightforward to use exist-
ing Sundance components to do upwinding via the streamwise upwinding Petrov-Galerkin
(SUPG) method.

6.5.4 Specification of row and column space ordering

The order in which equations and unknowns are written can make a difference in the per-
formance of a linear solver, and in keeping with the goal of flexibility, Sundance gives you

http:/ivww.cs.cornell.edu/home/vavasis/quad.html
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the ability to specify this ordering. In order to understand how Sundance’s ordering speci-
fication works, let’s look into how Sundance decides unknown and equation numbering.

Given a mesh and a set of unknowns, the Sundance discretization engine will traverse
the mesh one maximal cell at a time and find all unknowns associated with that cell and
its facets. In a problem with multiple unknowns, say velocity, pressure, and temperature,
there can be more than one unknown associated with a cell; if so, the unknowns are as-
signed in the order that their associatddknownFunction objects are listed in the
StaticLinearProblem constructor. This scheme gives us two ways to control the
unknown ordering:

e Cell ordering specifies the order in which cells are encountered as the mesh is tra-
versed.

e Function ordering specifies the order in which different functions are listed within
a singlecell.

6.5.4.1 Cell ordering

Cell ordering is controlled by giving the linear problem construct@edlReorderer
object. Currently, there are two subtypesG#lIReorderer

e RCMCellReorderer uses the reverse Cuthill-McKee reordering algorithm (e.g.,
Saad [98]). The RCM algorithm is a modified breadth-first search with desirable
behavior during matrix factoring.

¢ IdentityCellReorderer uses the original ordering used by the mesh, i.e., it

does no reordering.

The default isSRCMCellReorderer , and it is a good general choice. You might use
IdentityCellReorderer in cases where your mesh already has a favorable cell or-
dering, saving the (small) expense of doing an unnecessary reordering.

The cell reordering system is extensible; your favorite reordering algorithm can be
added to Sundance by writing a n€&ellReorderer  subtype.
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The same cell reordering scheme is used for equation numbering (rows) and unknown
numbering (columns). Thus, cell reorderings are always symmetric.

6.5.4.2 Function ordering

Function ordering is controlled by the order in which test or unknown functions appear
in the linear problem constructor. For exampleu¥, uy, andp are unknowns we can
order them as:List(ux, uy, p) , or asList(p, ux, uy) or any of the other
permutations. A list with the desired ordering is given to 8taticLinearProblem
constructor,

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(ux,
uy, p), vecType);

Notice that the test functions need not have the same ordering as their corresponding
unknowns: a nonsymmetric ordering such as

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(p,
ux, uy), vecType);

is possible.

6.5.5 Block structuring

It is possible to group unknowns and equations inlimcks, in which case the stiffness
matrix becomes a block matrix with each block being an independent object. Sundance’s
blocking capability makes possible the use of block solvers and preconditioners.

As with function ordering, block structuring is specified by organization of the unknown
and test function arguments to tBéaticLinearProblem constructor.

Array<Block> unkBlocks = List(Block(List(U, V), petraType), Block(P, petraType));
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6.6 Boundary conditions

There are many ways to apply boundary conditions (BCs) in a finite element simulation,
and Sundance is designed to be flexible in methods of applying BCs. To begin with, the
way a BC gets written depends strongly on the way the weak problem has been formu-
lated; for example, BCs will be written quite differently in least-squares formulations than
in Galerkin formulations. For the purposes of user-level Sundance code, the most impor-
tant classification of boundary conditions is the distinction between BCsatithintoan
expression and BCs thegplacean expression. BCs that add in to an expression are simply
incorporated into amntegral  object, while replacement-type boundary conditions are
specified usingessentialBC  objects. In Sundance, geometric subdomains are identified
usingCellSet objects. The surface on which a BC is to be applied is specified by passing
as an argument th@ellSet  representing that surface.

6.7 Problem manipulation

One of the most powerful features of Sundance is the ability to automate tranformations of
problems.

6.7.1 Linearization

It is possible to have Sundance automate the linearization of a nonlinear equation. Au-
tomated linearization is restricted to full Newton linearization; alternative linearization
schemes such as Oseen must be done by hand.

Thelinearization(u, u0) methods ofExpr andEssentialBC  are used to
return a new linear expression or BC. Linearization is always done about an initial guess
u0, which must be a discrete function with the same structure as the unknown argument
The new expression has a new unknown function for the Newton step, or differential, which
will have the same structure as the original unknawrCalling linearization() on
a linear expression simply obtains the same linear expression, but in terms of the Newton
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step for the original unknown. Note thateftherthe PDE or BC are nonlinear, both must
be linearized in order to transform both into equations for the Newton step.

6.7.1.1 Example: Poisson-Boltzmann Equation

For example, the Poisson-Boltzmann equation
/Vu -Vu+ve " =0 (6.7.8)

with boundary conditions
u(top) = upc (6.7.9)

can be linearized as follows.

Expr eqn = Integral((grad*u)*(grad*v) + exp(-u)*v);
EssentialBC bc = EssentialBC(top, (u - uBC)*v);

Expr linearizedEgn = eqn.linearization(u, u0);
EssentialBC linearizedBC = bc.linearization(u, u0);

The resulting expression and BC are equations for the Newton step, accessible as an
unknown function through theifferential() method on the original unknown,

Expr du = u.differential();

Complete code for the solution of the Poisson-Boltzmann equation (6.7.8) is shown
below.

#include "Sundance.h”

[** \example inlinePoissonBoltzmannl1D.cpp

* Solve the Poisson-Boltzmann equation \f$\nabla2 u = e™-u$ on the unit
* line with boundary conditions:

* Left: Natural, du/dx=0

* Right: Dirichlet u = 2 log(cosh(1/sqrt(2)))

*

* The solution is 2 log(cosh(x/sqgrt(2))).

*
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* The problem is nonlinear, so we use Newton’s method to iterate
* towards a solution.

*

*/

int main(int argc, void** argv)

{
try
{

Sundance::init(&argc, &argv);

[* create a simple mesh on the unit line */

double L=1.0;

int n = 10;

MeshGenerator mesher = new PartitionedLineMesher(0.0, L, n);
Mesh mesh = mesher.getMesh();

/* define an expression representing the x-coordinate function */
Expr x = new CoordExpr(0);

/* create a cell set representing the right boundary */
CellSet boundary = new BoundaryCellSet();
CellSet right = boundary.subset( x == L );

[* create a discrete space on the mesh */
TSFVectorSpace discreteSpace
= new SundanceVectorSpace(mesh, new Lagrange(2));

/* create an expression for the initial guess. This will be reused as the
* starting point for each newton step. Assume u(x)=x as an initial

* guess, and discretize it.

*

Expr u0 = new DiscreteFunction(discreteSpace, x);

[* create symbolic objects for test and unknown functions. At each newton
* step we will solve a linearized equation for a step du, so our

* unknown is du. */

Expr u = new UnknownFunction(new Lagrange(2), "du");

Expr v = new TestFunction(new Lagrange(2), "du");

[* create a differential operator representing the x-derivative. */
Expr dx = new Derivative(0);

/* linearized weak equation for the step du */

Expr nonlinearEqn = Integral((dx*u)*(dx*v) + v*exp(-u));
Expr linearizedEqn = nonlinearEqn.linearization(u, u0);
Expr du = u.differential();

/* Dirichlet boundary condition */
double uBC = 2.0*log(cosh(L/sqrt(2.0)));
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EssentiaBC bc = EssentialBC(right, (u-uBC)*v) ;
EssentialBC linearizedBC = bc.linearization(u, u0);

/* linear problem for the step du */
StaticLinearProblem prob(mesh, linearizedEqn, linearizedBC, v, du);

[* create linear solver */
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(1.0e-12, 1000);

NewtonLinearization newton(prob, u0, solver);
Expr soln = newton.solve(NewtonSolver(solver, 8, 1.0e-12, 1.0e-12));

/I compare to exact solution
Expr exactSoln = 2.0*log(cosh(x/sqrt(2.0)));
Expr error = new DiscreteFunction(discreteSpace, soln-exactSoln);

[* write to matlab */

string filename = "pblD." + TSF::toString(MPIComm::world().getRank())
+ ".dat"

FieldWriter writer = new MatlabWriter(filename);

writer.writeField(soln);

/Il compute the norm of the error

double errorNorm = (exactSoln - soln).norm(2);
double tolerance = 1.0e-4;

TSFOut:printf("error = %g\n", errorNorm);

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

}

catch(exception& e)

{
Sundance::handleError(e, _ FILE_ );

}

Sundance::finalize();

6.7.2 Variations

Automated calculation of variations can be useful in a number of ways. For PDEs that
can be derived from a variational principle, Sundance’s variational capability can be used
to derive the PDE. A particularly interesting application of this is to derive a FOSLS dis-

cretization from a least-squares functional. Another important use of automated variational
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calculations is to obtain the first-order necessary conditions for optimality.

An example of the use of theariation() method to obtain first-order optimality
conditions for a PDE-constrained optimization problem was shown in section 6.2.

6.7.3 Sensitivities: Gradients and Hessians

With some optimization algorithms, we will want to evaluate the gradient or Hessian of an
objective function with respect to a fieldor parametery. In Sundance, this is done using
thedirectSensitivity method ofExpr .

6.8 Linear Algebra and Solvers

There are many high-quality numerical linear algebra packages in use, so Sundance is de-
signed to allow third-party linear algebra packages to be imported as plugins. All numerical
linear algebra in Sundance is done using the Trilinos Solver Framework (TSF), and the TSF
in turn supports plugins of third-party types.

User specification of a linear algebra representation is done by meainséhéectorType
object. This object knows how to build a vector space given a mesh and set of functions,
and the vector space in turn knows how to build a vector of the appropriate type.

6.9 Transient problems

Currently, Sundance has no high-level support for transient simulations. However, it is not
difficult to code simple timestepping schemes directly in Sundance.

Consider Crank-Nicolson (BE) time discretization for the transient heat equation. If we
discretize in time but leave space undiscretized for the moment, the step frtom;, ; is
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given by the PDE
1
Uip1 — U = 5575 [V2uz~+] + V2ui] (6.9.10)

plus associated BCs. We can now solve this equation using Sundance, and the solution may
be used as the starting value for the next step.

#include "Sundance.h"

/**

* \example timeStepHeatlD.cpp

*

* This example shows how to do timestepping in Sundance. We solve the
transient heat equation in one dimension using Crank-Nicolson time

* discretization. The time discretization is done at the symbolic level.

* Spatial discretization is done via StaticLinearProblem, yielding system

* matrices and vectors that can be used to march the problem in time.

*

* We solve the heat equation u_xx = u_t with boundary conditions
u(0)=u(1)=0 and initial conditions u(x,t=0)=sin(pi x). The solution
is u(x,t)=exp(-pi"2 t) sin(pi x).

*

*

*/

int main(int argc, void** argv)
{
try
{

Sundance::init(&argc, &argv);

/* create a simple mesh on the unit line */

int n = 100;

MeshGenerator mesher = new LineMesher(0.0, 0.5, n);
Mesh mesh = mesher.getMesh();

/* create unknown and variational functions */
Expr delU = new TestFunction(new Lagrange(1));
Expr U = new UnknownFunction(new Lagrange(1));

/* create a differentiation operator */
Expr dx = new Derivative(0);

/* the initial conditions will be uO(x,t=0) = sin(pi*x).

* create a coordinate expression to represent x, then

* create sin(pi*x), and then project it onto a discrete function. */
Expr x = new CoordExpr(0);

double pi = 4.0*atan(1.0);

TSFVectorSpace discreteSpace
= new SundanceVectorSpace(mesh, new Lagrange(1));
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Expr u0 = new DiscreteFunction(discreteSpace, sin(pi*x));

/*
set up crank-nicolson stepping with timestep = 0.02. The time
discretization is done at the symbolic level, yielding
an elliptic problem that we solve repeatedly for the updated
solution at each time level.

*

double deltaT = 0.02;
Expr cnStep = delU*(U - u0) + deltaT*(dx*delU)*(dx*(U + u0)/2.0);
Expr eqn = Integral(cnStep);

/* Define BCs to be zero at both ends */
CellSet boundary = new BoundaryCellSet();
CellSet left = boundary.subset( fabs(x - 0.0) < 1.0e-10 );
CellSet right = boundary.subset( fabs(x - 1.0) < 1.0e-10 );
EssentiaBC bc = EssentialBC(left, delU*U);

/* create a solver object */
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(prec, 1.0e-14, 300);

/*
put the time-discretized eqn into a StaticLinearProblem object
which will do the spatial discretization.

*

StaticLinearProblem prob(mesh, egn, bc, delU, U);

/*
Now, loop over timesteps, solving the elliptic problem for u at each
step. At the end of each step, assign the solution solnU into uO.
Because Exprs are stored by reference, the updating of uO propagates
to the copies of u0 in the equation set and in the
StaticLinearProblem. The same StaticLinearProblem can be reused
at all timesteps.
*/
int nSteps = 100;
for (int i=0; i<nSteps; i++)
{
/* solve the problem */
Expr soln = prob.solve(solver);
TSFVector solnVec;
soln.getVector(solnVec);
u0.setVector(solnVec);
[* write the solution at step i to a file */
char fName[20];
sprintf(fName, "timeStepHeat%d.dat", i);
ofstream of(fName);
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FieldWriter writer = new MatlabWriter(fName);
writer.writeField(u0);
cerr << "[" << i << 'Y
/* flush the matrix and RHS values */
prob.flushMatrixValues();

}

cerr << endl;

/* compute the exact solution and the error */
double tFinal = nSteps * deltaT;
Expr exactSoln = exp(-pi*pi*tFinal) * sin(pi*x);

/*
compute the norm of the error
*
double errorNorm = (exactSoln-u0).norm(2);
double tolerance = 1.0e-4;

/*
decide if the error is within tolerance
*
Testing::passFailCheck(__FILE__, errorNorm, tolerance);
}
catch(exception& e€)
{

Sundance::handleError(e, _ FILE_ );

}

Sundance::finalize();
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Chapter 7

Sundance Optimization Survey

7.1 Sundance-rSQP++ Interface

Here we describe the basics of a software interface that allows rSQP++ to solve (possibly in
parallel) PDE-constrained optimization problems that are modeled using Sundance. One of
the requirements for this interface was that it should be as easy as possible (and require as
little new code as possible) to prototype a new optimization application. There are several
different aspects to a Sundance-rSQP++ application that are logically independent of each
other and the software structure reflects this separation of concerns. Before going into the
specifics of the software structure, we describe the different independent components that
have to be dealt with. A few of these independent components are (1) the statement of the
PDE-constrained optimization problem, (2) the linear algebra implementation, and (3) how
the optimization problem is solved.

The basic linear algebra implementations used by a Sundance application is deter-
mined by an abstradiSF:: TSFVect or Type object. For example, as shown in Chap-
ter 6, everySundance::DiscreteFunction andSundance::StaticLinear-
Problem object must have &SFVect or Type object passed into their constructors. By
parameterizing a Sundance application witih$FVect or Type object and a compati-
ble TSF:: TSFLi near Sol ver object, the specification of the linear algebra implemen-
tations is completely determined. The interfadePInterfacePack:: Sundance-
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Pr obl enfact ory (or SPF for short) has been defined to abstract the Sundance PDE-
constrained optimization formation. TI8PF interface allows the development of a Sun-
dance optimization formulation that is independent of the linear algebra implementation
and this component is discussed in Section 7.1.2.

Another critical part of the Sundance-rSQP++ interface is the linear algebra interface.
Sundance uses the Trilinos Solver Framewdr&K) as its abstract interface to linear alge-
bra in much the same way that rSQP++ usbstractLinAlgPack (ALAPfor short).
BothTSFandALAPsupportRTOpoperators and have a very similar object model (both are
based on HCL [51], but witA\LAPto a lesser extent) so it was fairly trivial to develop the
“Adapter” [42] subclasses to pLAPinterfaces o SFlinear algebra objects. The details
of this ALAP-TSF interface are discussed in Section 7.1.1. The particulars of these basic
linear algebra interfaces are not of much concern to individuals that simply want to use
Sundance-rSQP++ to prototype PDE-constrained optimization problems. To relieve basic
users for the concerns about linear algebra implementations used by Sundance, by a simple
concrete C++ class calledLPInterfacePack::SundanceLinAlgFactory (see
Figure 7.2) has been developed that automates the tasks of allowing users to select basic
options and of creating compatible&SFVect or Type andTSF: : TSFLi near Sol ver
objects that are used by a specfiEF object to define the Sundance optimization prob-
lem. The example main program in Section 7.1.4 shows how this class is used to specify
the linear algebra for a Sundance-rSQP++ optimization problem.

Finally, once the linear algebra implementations and the PDE optimization problem
have been defined, the last component to specify is the optimization algorithm. This is
where rSQP++ comes in. The primary interface to rSQP++ is through the abstract base
classNLPInterfacePack:: NLPFi r st Or der | nf o (see Section 4.2.3.2). The sub-
classNLPInterfacePack::NLPSundance implements this interface for Sundance
optimization problems. The details of thtPSundance subclass are described in Sec-
tion 7.1.2.
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MatrixWithOp

/\
[ vectorwithopmutable |
AN Zﬁ |MatrixWithOpNonsinguIar| | MatrixWithOpTSF

| VectorSpaceTSF Ie'VectorWithOpMutableTSF |

\I/ /I\_ | MatrixWithOpNonsingularTSF |
|TSF::TSFVectorSpace | LR eeton | TSF::TSFLinearOperator |
| TSF::TSFLinearSolver |
| TSF:: TSFVectorSpaceBase | |TSF::TSFLinearOperatorBase |
| TSF::TSFLinearSolverBase |
Figure 7.1. UML  class  diagram
AbstractLinAlgPackTSF , Adapter subclasses foALAP-

TSFinterface

7.1.1 Abstract Li nAl gPackTSF Linear Algebra interface

The Sundance-rSQP++ interface uses the explicit partitioning of variables into states and
controls as shown in Chapter 2. In order to implement the Sundance-rSQP++ interface,
vector-space objects for the state and control variables, a general matrix object for the sub-
Jacobian for the control% or N and a non-singular matrix object for the sub-Jacobian of
the state% or C are all needed. Figure 7.1 shows a UML class diagram for the adapter
subclasses required for tAd AP-TSF interface. These interface classes are collected into

a separate project library callébstractLinAlgPackTSF . These adapter classes are
very straightforward and require little explanation but some simple comments are in order.

TheVect or Wt hOpMut abl eTSRadapter simply forwardRTOpoperators through
theappl y reduction(...) andapply transformation(...) methods onto
the aggregat@ SFVect or Base object (through & SFVector handle object). That is
basically the extent of this subclass. Through these operator methods (which have the
same basic implementation) all of the advanced features of the rSQP++ algorithms can be
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implemented through specializ&T Opobjects.

The Vect or SpaceTSFadapter uses ther eat eMenber () method of the aggre-
gateTSFVect or SpaceBase object to implement thereate _member() method and
returns avectorWithOpMutableTSF  with an embedded@SF vector object.

The Mat ri xXW t hOpTSFadapter simply forwards the vector arguments (after some
dynamic casting to get th€SF objects) from thevp St M V(. ..) method on to the
TSFLi near Oper at or Base objectthoughitappl y(...) orappl yAdjoint(...)
methods (depending on the value of the transpose argument).

Since theTSFLi near Qper at or Base interface defines the methodgpl yI n-
verse(...) andappl yl nverseAdj oi nt (.. .),itwould seem thatthe evemSF-
Li near Qper at or Base object should be able to support tkiet r i xXW t hOpNonsi ngul ar
interface but this is not the case. Instead, the subdlass i xXW t hCpNonsi ngul ar -
TSF is needed which requiresTe&SFLi near Sol ver Base object to solve for linear sys-
tems in the metho®_| nvM V(. . . ). The inverse methods of on ti&F operator object
are ignored since there is no guarantee that they will be implemented for a particular linear
operator object. This was an important concept that was discovered during the development
of the Sundance-rSQP++ interface.

See the Doxygen documentation for the packagstractLinAlgPackTSF for
more details on thi&\LAP-TSF interface.

7.1.2 NLPSundance Interface between Sundance PDE-Constrained
Optimization Problems and rSQP++

Figure 7.2 shows the basic interfaces and subclasses that make up the Sundance-rSQP++ in-
terface. Users create subclasses ofSRE interface to implement a new PDE-constrained
optimization problem. ASPF object, along withTSFVectorType andTSFLinear-

Solver objects, are passed to the constructor of the NLP subbleBSundance .

Thecr eat eProbl en{ . . . ) method of theSPF object s called by th&lLPSundance
object to creat&undance::StaticLinearProblem andSundanceObjective-
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IReducedSpaceSQPPack:: rSQPppSolver

NLPFirstOrderinfo

nlp

NLPSundance |

constriants

I____I «create»

_______ > Sundance::StaticLinearProblem

|

1 getOperator() : TSFLinearOperator
1 getRHS() : TSFVector
|

1

|
|
I
I
|
|
N/ «create»

SundanceProblemFactory

———
createProblem(in vec_type, out constraints, out obj_func, out x_initial) )
T ]

1
I 4
\II/ SundanceObjectiveFunction

TSF:: TSFLinearSolver TSF:TSFVectorType eval(in discr_states, in discr_designs) : double

grad(in discr_states, in discr_designs, out grad_states, out grad_designs)

obj_func

linear_solver

|TSF::TSFLinearSoIverBase | |TSF::TSFVeclorTypeBase |
A< AN
| «create»

obj_func_expr

«create»

Sundance:: Expr

X_initial

SundanceLinAlgFactory

Sundance:: ExprBase

get_lin_alg_components(out vec_type, out linear_solver)

Figure 7.2. UML class diagram : Sundance-rSQP++ interface

Function objects. TheStaticLinearProblem object is used to represent the set

of under-determined nonlinear constraimtg, ) shown in (2.1.2). Associated with a
StaticLinearProblem object must be &undance::Expr  object (called nitial

in the figure), that contains the Sundance discrete functions with the initial guess for the
states and controls. These discrete functions must be used to form the variational equations
for the PDE constraints. The setup of th&ticLinearProblem object must be done

in a specific way in order to be used wiNLPSundance which is shown in the below
example program.

The classSundanceObijectiveFunction is not a built-in Sundance class but was
developed for the Sundance-rSQP++ interface to encapsulate how the objective function
and its gradients are computed. The conc&®& object creates Sundance::Expr
object that represents the objective function (see Section 7.1.4 for an example) and it is this
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expression object that gets embedded in $s@danceObjectiveFunction object
that is returned to thBILPSundance object.

TheNLPSundance object extract§ SFVector objects from th&Sundance::Expr
objectx_initial for the initial guess for the states and the controls as

X_initital[0].getVector(states_vec);
X_initital[1].getVector(controls_vec);

and then builds @&bstractLinAlgPack::VectorSpaceCompositeStd ob-
ject for the concatenation of the spaces of the states and the controls

states_spc = states_vec.getSpace();
controls_spc = controls_vec.getSpace();

into a singleAbstractLinAlgPack:: Vect or Space object. Much of the ma-
chinery for handling the mapping from different spaces and vectors for the gtated
the controlsu to a single space and vector for the variablés= { yt' ut } is imple-
mented by the sami&bstractLinAlgPack::BasisSystemCompositeStd sub-
class used by the simple example NLP described in Section 7.1.4. This basis-system sub-
class also handles the formation oAastractLinAlgPack:: Mat ri xXWt hQp ob-
ject for the gradient matrisc (V).

7.1.3 PDE Constraints

Here we carefully spell out how the constraints must be modeled using Sundance to form a
StaticLinearProblem objectthatis returned froi8PF: : cr eat eProbl en(...).

What is required is that the discrete functions for the solution variables and the unknown
functions be blocked into single vectors for the states and controls. For example, if
andt are the unknown (i.éSundance::UnknownFunction ) state variables and, w

are the unknown control variables, then these variables must be combined intp atate
controlu variables as
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This is required so that th&€ SFLinearOperator Jacobian objecfac returned
from Jac = StaticLinearProblem::getOperator() is a block matrix where
C = Jac.getBlock(0,0) is the basis matrix object for the states wiNle= Jac.getBlock(0,1)
is the non-basis matrix object for the controls. See the Doxygen documentation for the class
SPF for details on the assertions for the constraints object.

The example program in Section 7.1.4 shows how this blocking is done in the simple
case of single unknown variables for the states and controls. Blocking of multiple variables
for states and controls is shown in the 2-D Burger's example.

7.1.4 Example Sundance-rSQP++ Application

In this section, we describe the solution of the following PDE-constrained optimization
problem that is modeled by the 1-D Poisson-Boltzman equation

min 2 [oo (u—a)?+ 51 [0 (0?) (7.1.1)
s.t. Viu—e*=0 on{2 (7.1.2)
u(zr) =« onof (7.1.3)

where() = [a,b], u is the target value of the state on the right bound2®y, a is a
boundary control function, and is an objective weighting term that balances the control
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objective (foru) with the regularization term (fat). The header file for th8undance-
Pr obl enfact or y subclass for this problem is shown below.

(I
02 /I SPFPoissonBoltzmanlD.h

03

04 #ifndef SPF_POISSONBOLTZMAN1D_H

05 #define SPF_POISSONBOLTZMAN1D_H
06

07 #include "SundanceProblemFactory.h"

08 #include "RTOpPack/include/RTOp_config.h"
09 #include "NewtonSolver.h"

10

11 namespace NLPInterfacePack {

12

14

24 class SPFPoissonBoltzmanlD: public SundanceProblemFactory

25 {

26 public:

27

29

31 SPFPoissonBoltzman1D(

32 value_type left, value_type right, int n, value_type uRight

33 \value_type uGuess, value_type aGuess, value_type obj_wgt

34 )i

35

38

40 void createProblem(

41 const TSF::TSFVectorType &vec_type
42 ,MemMngPack::ref_count_ptr<Sundance::StaticLinearProblem> *constriants
43 ,MemMngPack::ref_count_ptr<SundanceObjectiveFunction> *obj_func
44 ,Expr *x_initial
45 ) const;

47 const Mesh& getMesh() const;

49 const CellSet& controlsCellSet() const;

50

52

53 private:

54 Mesh mesh_;

55 Expr coord_x_;

56 CellSet boundary_;

57 CellSet right_;

58 CellSet left_;

59 value_type uRight_;

60 value_type uGuess_;

61 value_type aGuess_;

62 value_type obj_wagt_;

63 }

64

65 } // end NLPInterfacePack
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66
67 #endif

Note that the header filBPFPoissonBoltzmanlD.h s basically just boiler-plate
code with the exception of some of the private data members on lines 54—-62. The interest-
ing code comes in the source file which is shown below.

oL /1 i T
02 /I SPFPoissonBoltzmanl1D.cpp

03

04 #include "../include/SPFPoissonBoltzmanl1D.h"
05 #include "PartitionedLineMesher.h"

06

07 namespace NLPInterfacePack {

08

09 SPFPoissonBoltzman1D::SPFPoissonBoltzman1D(

10 value_type left, value_type right, int n, value_type uRight

11 ,value_type uGuess, value_type aGuess, value_type obj_wgt

12 )

13 :coord_x_( new CoordExpr(0)), uRight_(uRight), uGuess_(uGuess)

14 ,aGuess_(aGuess), obj_wgt_(obj_wgt)

15 {

16 #ifdef RTOp_USE_MPI

17 MeshGenerator mesher = new PartitionedLineMesher(left, right, n);

18 mesh_ = mesher.getMesh();

19 t#else

20 MeshGenerator mesher = new LineMesher(left, right, n);

21 mesh_ = mesher.getMesh();

22 tendif

23 /I Define cell sets for the boundry and left and right edges

24 boundary_ = new BoundaryCellSet();

25 left_ = boundary_.subset( fabs(coord_x_ - left) < 1.0e-10 );

26 right_ = boundary_.subset( fabs(coord_x_ - right) < 1.0e-10 );

27 }

28

29 void SPFPoissonBoltzmanlD::createProblem(

30 const TSF:: TSFVectorType &vec_type
31 ,MemMngPack::ref_count_ptr<Sundance::StaticLinearProblem> *constraints
32 ,MemMngPack::ref_count_ptr<SundanceObjectiveFunction> *obj_func
33 JExpr *x_initial
34 ) const

35 {

36 namespace mmp = MemMngPack;

37 using Sundance::List;

38

39 /I Dimension of the finite-element basis functions used

40 const int u_basis_dim = 1, a_basis_dim = 1;
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41

42 /I Discrete state space on the entire mesh and discrete control space on boundary
43 TSFVectorSpace discreteStateSpace

44 = new SundanceVectorSpace(mesh_, new Lagrange(u_basis_dim), vec_type);
45 TSFVectorSpace discreteControlSpace

46 = new SundanceVectorSpace(mesh_, new Lagrange(a_basis_dim), boundary , vec_type);
47

48 /I Expression for the initial state and controls which are also used for the linearization
49 Expr u0 = new DiscreteFunction(discreteStateSpace, uGuess_, "u0");

50 Expr alpha0 = new DiscreteFunction(discreteControlSpace, aGuess_, "alpha0");

51

52 /I Create the initial point for the optimizer

53 *x_initial = List(u0, alpha0);

54

55 /I Test and unknown functions for the state and control

56 Expr u = new UnknownFunction(new Lagrange(u_basis_dim), "u");

57 Expr alpha = new UnknownFunction(new Lagrange(a_basis_dim), "alpha");

58 Expr v = u.variation();

59

60 /I Nonlinear state equation and boundary conditions

61 Expr dx = new Derivative(0);

62 Expr nonlinearStateEqn = (dx*(u))*(dx*v) + v*exp(-u);

63 EssentialBC nonlinearBC = EssentialBC( boundary , (u-alpha)*v, new GaussianQuadrature(1) ) ;
64

65 /I Integrated linearized state equation and boundary conditions

66 Expr linearizedStateEqn = nonlinearStateEqn.linearization( List(u,alpha), *x_initial );
67 EssentiaBC bc = nonlinearBC.linearization( List(u,alpha), *x_initial );

68 Expr eqn = Integral(linearizedStateEqn, new GaussianQuadrature(4));

69

70 /I Arrange test and (Newton) unknowns into [state, control] blocks

71 Expr du = u.differential(), dAlpha = alpha.differential();

72 TSFArray<Block> unkBlocks = tuple(Block(du, vec_type), Block(dAlpha, vec_type));
73 TSFArray<Block> varBlocks = tuple(Block(v, vec_type));

74

75 /I Create the static linear problem for the step [du, dAlpha]

76 *constraints = mmp:rcp( new StaticLinearProblem(mesh_, eqn, bc, varBlocks, unkBlocks) );
77

78 /I Define the objective function.

79 const Expr obj_func_expr

80 = Integral(right_,0.5*obj_wgt_*(u-uRight )*(u-uRight_)) // Control objective

81 + Integral(boundary_,0.5%(1.0 - obj_wgt )*alpha*alpha); // Regularization

82 *obj_func = mmp::rep(

83 new SundanceObjectiveFunction(

84 obj_func_expr, mesh_, u, alpha ) );

85

86 }

98 } // end NLPInterfacePack

Lines 9-27 in this source file contain the constructor which accepts the parameters for
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the problem and then sets up the mesh and the cell sets for the boundaries of interest. The
input parameters for this problem are the doméeft ( andright ) the number of finite
elements 1), the target value for the stataRight ), the guess for the state and control
(uGuess andaGuess) and the objective function wieghdl§j wgt). On lines 17-18 the

mesh is set up for parallel execution while lines 20-21 set up for serial execution. The
boundary cell sets are specified on lines 24—-26.

The mostimportant part of this subclass is of course the implementation afithte-
Problem(...) method that begins on line 29. The dimensions of the finite-element ba-
sis functions are specified at the top of the function on line 40. Nexi, 8tevector spaces
are defined for the states and controls on lines 43-46. Note that theviaputype
argument is used as part of the definition for these vector spaces which determines the
implementations for the vectors. Also note that the space for the calpiod is only
defined on the boundary as shown in line 46 and not over the entire domain. This is a very
useful feature that allows great flexibility in defining what data can be determined by the
optimizer and what data can be specified up front. Given th&evector space objects,
the discrete functions for the states and the controls are defined on lines 49-50 and are sup-
plied with initial guesses. These discrete functions represent the current estimate for the
solution and are used as the unknowns in the optimization problem. Later, these discrete
functions are used to define the linearized equations. On line 53, the initial guess for the
states and controls is packed into an expressidamitial which is later returned to the
NLPSundance object.

Lines 56-63 define the set of nonlinear equations (state equation (7.1.2) on line 62
and the boundary condition (7.1.3) on line 63). What makes this set of equations dif-
ferent from for a standard Sundance problem is that a test function is only defined for
the states on line 58 and not for the controls which results in a set of under-determined
equations. This set of nonlinear equations must be linearized and this is done using the
linearization(...) method on lines 66-67. The linearized state equation is then
integrated over the entire domain on line 68.

Now that the linearized state equations and boundary conditions have been defined as
Sundance expressions, we must tell Sundance to properly block the variables as described
in Section 7.1.3. This is done on lines 72—73. Note that the blocked unknown variables are
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the Newton stepdu anddAlpha and not the original unknowns andalpha used to
define the nonlinear equations. Finally, tB&ticLinearProblem object is created

on line 76 for the linearized state equation and boundary conditions. This is the constraints
object that is returned to tHéLPSundance object which is used to compute the residual

for the nonlinear constraints (which happens to be the nega®Fevector returned from

the getRHS() method) and the Jacobian (which is returned for ge&Operator()

method).

The final part of thereateProblem(...) method is the definition of the objective
function on lines 79-84. First, the expression for the objective function is defined on lines
80-81. Note the domains that the objective terms are integrated over and how they compare
to (7.1.1). This expression for the objective is passed into the constructoBtordance-
ObjectiveFunction object on lines 82—-84. Note that this constructor must be given
the mesh object and the unknown functions used to define the states and the controls. The
constraint objectonstraints and the objective-function objedbj func are then
returned to the callingNLPSundance object along with the initial guess._initial
The discrete functions embedded in thénitial expression object are manipulated by
the NLPSundance object in order to compute the constraint residual and Jacobian and
different iterates.

The last piece of user code to write for this optimization problem is the main driver
program. This program is shown in the below source file.

oL /I [ T

02 // NLPPoissonBoltzman1DMain.cpp

03

04 #include <iostream>

05 #include “../include/SundanceNLPSolver.h"
06 #include "../include/SPFPoissonBoltzmanl1D.h"
07 #include "../include/SundanceLinAlgFactory.h"

08

09 int main(int argc, char* argv[] ) {

10

11 namespace NLPIP == NLPInterfacePack;

12 using CommandLineProcessorPack::CommandLineProcessor;
13

14 int prog_return; // return code

15

16 /I Step 1: Initialize Sundance (i.e. MPI)

17 NLPIP::SundanceNLPSolver::init();
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Sundance::init(&argc, (void***)&argv);

try {

NLPIP::SundanceNLPSolver sundance_nlp_solver;
NLPIP::SundanceLinAlgFactory  lin_alg_fcty;

/I Step 2: Read in input

double left = 0.0;

double right = 1.0;

int n = 2;

double uRight = 2.0*log(cosh(right/sqrt(2.0)));
double uGuess = 0.1;

double aGuess = 0.2;

double obj_wgt = 0.99;

CommandLineProcessor command_line_processor;

command_line_processor.set_option( "left", &left, "x at the left boundary" );
command_line_processor.set_option( "right", &right, "X at the right boundary" );
command_line_processor.set_option( "n", &n, "Number of finite elements" );

command_line_processor.set_option( "uRight",&uRight, "Value at the right boundary" );
command_line_processor.set_option( "uGuess",&uGuess, "The Guess for u" );
command_line_processor.set_option( "aGuess",&aGuess, "The Guess for a" );
command_line_processor.set_option( “obj_wgt",&obj_wgt,"[0,1] Wieghting for u or a (1.0: all u,
lin_alg_fcty.setup_command_line_processor( &command_line_processor );
sundance_nlp_solver.setup_command_line_processor( &command_line_processor );

CommandLineProcessor::EParseCommandLineReturn
parse_return = command_line_processor.parse_command_line(argc,argv,&std::cerr);

if( parse_return = CommandLineProcessor::PARSE_SUCCESSFULL )
return parse_return;

/I Step 3: create the
TSF::TSFVectorType
TSF::TSFLinearSolver

linear algebra components
vec_type;
linear_solver;

lin_alg_fcty.get_lin_alg_components( &vec_type, &linear_solver );

/I Step 4: Create the

SundanceProblemFactory

NLPIP::SPFPoissonBoltzmanlD probfac(left,right,n,uRight,uGuess,aGuess,obj_wgt);

/I Step 5: Solve the NLP (or the forward problem)

prog_return = sundance_nlp_solver.solve(vec_type, MemMngPack::rcp(&probfac,false), &linear_solver

Yl end try

catch( const std::exception& except ) {

cerr << "\nCaught as
prog_return = -1; //

std::exception : " << except.what() << std::endl;
ToDo: return proper enum!
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69

70 /I Step 6: Finalize Sundance (i.e. MPI)
71 Sundance::finalize();
72
73 return prog_return;
74 }
As with any Sundance applicatiosundance::init(...) and Sundance-
::finalize() must be called as shown on lines 18 and 71. The next section of code

(lines 27-51 in theéry block) performs the input of the command-line parameters for the
optimization problem that are passed into the constructor foBEBiePoissonBoltzman-

1D object that is created on line 59. Command-line options foiSthedanceLinAlg-

Factory object declared on line 23 are inserted into the command-line processor object
on line 44 after the application specific options. These options are read from the command-
line on line 48. Options are also processed f@undanceNLPSolver object which
controls a lot of the default behavior that is independent of the particular problem being
solved. To see all of the valid command-line options, the optibelp  can be specified

on the command line and will cause the program to print a help message, which for this
executable is

Usage: ./sundance_nlp_bolt [options]

options:
--help Prints this help message
--left double x at the left boundary
(default: --left=0)
--right double x at the right boundary
(default: --right=1)
-n int Number of finite elements
(default: --n=2)
--uRight double Value at the right boundary
(default: --uRight=0.463163)
--uGuess double The Guess for u
(default: --uGuess=0.1)
--aGuess double The Guess for a
(default: --aGuess=0.2)
--obj_wgt double [0,1] Wieghting for u or a (1.0: all u, 0.0: all a)
(default: --obj_wgt=0.99)
--use-petra bool Determine if Petra (parallel) or serial (LAPACK) linear algebra is used
--use-serial (default: --use-petra)
--use-aztec bool Determine if Aztec or the default BICGSTAB solver is used
--use-bicgstab (default: --use-bicgstab)
--ilu_fill int Fill-in factor for ILU

(default: --ilu_fill=1)
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--ilu_overlap
--iter_solve_tol
--iter_solve_maxiter
--do-optimization
--do-simulation
--root-process
--states-guess-file

--controls-guess-file

--states-sol-file

int Overlap for ILU
(default: --ilu_overlap=1)
double Solve tolerance for iterative solver
(default: --iter_solve_tol=1e-10)
int Maximum number of iterations for iterative solver
(default: --iter_solve_maxiter=5000)
Determine if optimization or simulation problem is solved
(default: --do-optimization)
int Index (zero-based) of the root process
(default: --root-process=0)
string Filename where initial guess for states data is stored (same format
(default: --states-guess-file="")
string Filename where initial guess for states data is stored (same format

bool

string Filename where solution for states data is written (flat values only)

(default: --states-sol-file="")

string Filename where solution for contorls data is written (flat values only)
(default: --controls-sol-file="")

string Filename where solution for states data is written (matlab format)

--controls-sol-file
--states-matlab-sol-file

string Filename where solution for contorls data is written (matlab format)
(default: --controls-matlab-sol-file="")

--controls-matlab-sol-file

--max_nl_iter double Simulation maximum number of nonlinear iterations
(default: --max_nl_iter=1000)
--resid_tol double Simulation tolerance (in the ||.]|]2 norm) for the constraints

(default: --resid_tol=1e-08)

--compute-gradient bool Compute the reduced gradient or not

--no-compute-gradient (default: --no-compute-gradient)

--use-adjoints bool Compute the reduced gradient with adjoints or direct sensitivities
--use-direct (default: --use-direct)

Once the command-line options are read in, the linear algebra implementations selected
by the user on the command-line are created on lines 54-56. By ustum@ance-
LinAlgFactory object, every Sundance optimization problem can automatically sup-
port new linear algebra options whenever they are added.

After the linear algebra implementations have been defined and the co8aretence-
Pr obl enfact or y object has been initialized, the rest of the code required to solve the
optimization problem is exactly the same for every application. This common code is
encapsulated in a helper object of typandanceNLPSolver which is called on line
62. This helper class care of creatindNbPSundance object (which in turn calls the
createProblem(...) method on theSundancePr obl enfact ory object) and
then passes this NLP object on ta@QPppSolver object which attempts to solve the
optimization problem. A status valuprogram _return ) is then is returned from the
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main driver program to the shell. Any exceptions that are throw (that are not caught else-
where) will be caught and reportedstd::cerr on lines 65—-68.

7.1.5 TheSundanceNLPSol verhelper class

The SundanceNLPSolver class does more than just solve the NLP. It also also allows
any SundancePr obl enfact ory object to be used to solve the forward simulation
problem where the control variables are fixed at the initial guess. The above example
Possion-Boltzman program, or any of the other example programs, can be used to solve
the forward problem by selecting the command-line argumeiatsimulation . This

will result in the simulation only being performed with the finial objective function value
being output to a file calledle _sol file.out . In this mode, the reduced gradient at
the converged simulation can also be computed by setting the eptmmpute-gradient

The optionsuse-adjoints and--use-direct select the adjoint verses the direct
sensitivity methods for computing this reduced gradient respectively. The adjoint method
is by far the most efficient.

The ability to do the forward simulation and to compute exact reduced gradients (using
both the adjoint and the direct approaches) allows any Sundance/rSQP++ application to
also be used in lower-level NAND methods such as described in Chapter 2.

7.2 Example Sundance Optimization Application -
Source Inversion of a Convection Diffusion System

Several forward problems from the Sundance test directory have been converted to opti-
mization problems to test the rSQP++ interface. The direct and adjoint interfaces were
tested on a heat transfer, Burgers, and a convection diffusion problem. More in depth anal-
yses were conducted using a source inversion problem constrained by convection-diffusion
equations. In addition to testing the rSQP++/Sundance interface, the objective of this ex-
ercise was to present numerical efficiencies associated with all 7 levels of optimization,

and demonstrate this formulation to solve the “chemical/biological attack on a large facil-
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ity” problem, similar to the work done with MPSalsa. However, in this case we tested the
inversion problem with large numbers of inversion parameters.

By specifying a limited number of state values at various points in the domain as targets,
a least-squares formulation constrained by a convection-diffusion PDE is used to determine
the location of the original source(s) on the boundary. In the case of chemical diffusion,
these state values could be concentrations and in the case of heat diffusion these state values
could be temperatures. We obtain from a forward simulation 16 “sensor” locations out of
1600 grid points as targets, which are then used in the inversion problem. Since this is
an ill-posed problem, a regularization term needs to be added to the objective function.
Three obvious options can be considered: the squafetbe square oV f and finally the
square root oV f. Unfortunately as a result of an implementation limitation, the boundary
inversion can not make use of gradient based terms for the regularization and therefore
the numerical experiments were conducted with the squaie @ur formulation allows
locating the source term anywhere on one of the boundarie$ i)e.

1 S
rgifn Ezi:/né(x_){i)(c_c*)?+g/rp f? (7.2.4)
st. —kAc+Vec-v=0, in Q (7.2.5)
9 =0, on I'y (7.2.6)
on
¢c=0, on I'p (7.2.7)
c=f, on I'p (7.2.8)
where:

O={(z,y): (~L<z<+L)A(-L <y < +L)}
Y
Y
)

I'y={(z,y): (—L<az<+L)AN(y=-LVy=+L)}
Tp={(0.0): (r=+D) A (L <y < +1)}
I'r={(r,y): (r=—-L)N(—L<y<+L)}

whered(x — x;) is a delta function that specifies the location of the sensoisthe
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vector of calculated state value (concentrationsjs the vector of concentration measure-
ments (or targets) is the regularization parameter which is set to 1E-5 for our numerical
experimentsf is the source/inversion term, is the diffusivity constant, ang is the ve-

locity field. The velocity field is given for this problem and makes (7.2.5) linearand
therefore no Newton iterations are required to converge to the solution for the forward prob-
lem. Figure 7.3 shows the forward simulation on a 40x40 grid (i.e= 40 andn, = 40

finite elements per dimension) for a Gaussian-like source on the left boundary.

Figure 7.4 shows the solution for the inversion problem defined in (7.2.4)—(7.2.8) on a
40x40 grid. The rSQP algorithm was able to successfully solve the problem and recover
the entire profile. Small oscillations on the boundary are observed which may be reduced
by choosing a different regularization term. Additional experiments were conducted to
evaluate different regularization terms and are presented in the next section. The sensor
data used for this NLP was taken from a 160x160 forward problem with the same source
shown in Figure 7.3.

The source inversion problem was used to demonstrate the numerical efficiencies of the
7 optimization levels by inverting for the boundary source using different grid resolutions.
For levels 1-3 we used rSQP++ through the DAKOTA framework and for levels 4 and 5 we
used the rSQP++/Sundance interface. Level 6 was not solved for the boundary inversion
problem because of implementation limitations. Instead an inversion problem was solved
using the full space method where inversion parameters are located within the domain.
As the formulation in (7.2.8) suggests, the number of inversion parameters scales with the
size of the boundary. The numerical experiment was conducted on a Pentium 4, 2.1 GHz
processor and even though Sundance and rSQP++ are parallel capable, the experiments
were run serially. Each optimization level was used to complete the inversion for a grid size
of 10x10, 20x20, 40x40, 80x80, and a 160x160 grid. The number of inversion parameters
matched the size of the grid dimension of a single sided boundary (10, 20,40,80 and 160
inversion parameters). The convergence criteria is controlled by various tolerances, but
in our experiment we choose to match objective functions as closely as possible. Table
7.1 shows the objective function values and CPU times for various levels of optimization
methods. As expected, the lower-level optimization methods are not able to efficiently
drive the objective value down to levels comparable to the higher-level methods.
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Figure 7.4. Inversion for 40x40 boundary source
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Figure 7.5 shows graphically the numerical results. Level 0 used a local coordinate
pattern search and it is the least efficient algorithm for this problem. These methods are
obviously not preferred for smooth and differentiable processes but we have include the
results for completeness. Level 1 shows a considerable improvement over level O as a re-
sult of using gradient information. Direct sensitivities for both NAND and SAND show
significant improvements over level 1 because the reduced gradients for level 1 are calcu-
lated through finite differences which requires the convergence of a simulation for each
inversion parameter. Calculating reduced gradients with direct sensitivities avoids this nu-
merical overhead. Additional seperation between NAND and SAND methods using direct
sensitivities can be expected if this had been a non-linear problem.

The adjoint sensitivities are by far the most efficient method to calculate the reduced
gradient. There is a significant difference between NAND and SAND because of the sim-
ulation overhead that NAND incurs at each optimization iteration. This difference is better
observed in Figure 7.6. One would expect that a non-linear simulation problem would incur
additional Newton iterations which would add to the NAND expense for each optimization
iteration and the gap between levels 3 and 5 would be even greater. Estimated times for
level 6 are presented that equals three times the forward simulation cost. This is a con-
servative estimate considering the full space inversion of a 40x40 grid with 1600 inversion
parameters required less than 10 seconds to converge.

The exact value of frF 12 for the source shown in Figure 7.3 is 1.1788 (to five signif-
icant figures). Therefore, for = 1 x 10~°, the minimum value of the objective function in
(7.2.4) that can be obtained for a perfect inversioh.1§88 x 10~°. The actual objective
function value must always be larger than this since the regularization term causes the solu-
tion to perturb the sensor matching termin (7.2.4) resulting in an overall elevated objective
function. Without the regularization term, the theoretical objective function value should
be near zero. This explains why the objective function value for discretization of 40x40
and larger obtain an objective valuelof8 x 10~ which is less than one percent off from
the perfect inversion value af1788 x 10°.
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Method

ng = ny = 10

ng = ny = 20

Ng = ny = 40

ng = ny = 80

ng = ny = 160

Sim 0.591 2.119 8.214 32.831 134.396
L-0 Inv 13974.8 31239.3 - - -
L-1 Inv 1278.63 1642.32 5385.14 27128.3 -
L-2 Inv 58.5 182.5 293.4 1840.8 22003.2
L-3 Inv 55.1 165.8 465.8 882.8 3620.4
L-4 Inv 9.47 17.32 55.87 835.65 13911
L-5 Inv 8.6 13.0 26.6 151.1 986.5
Method | ne =ny =10 | Ny =ny =20 | Ny =ny =40 | Ny =ny =80 | Ny = ny =160
Sim - - - - -
L-0 Inv 7.79e-2 5.94e-2 - - -
L-1 Inv 9.41e-3 2.52e-5 1.89e-5 1.79e-5 -
L-2 Inv 8.64e-3 1.37e-5 1.70e-5 1.65e-5 1.18e-5
L-3 Inv 8.64e-3 1.37e-5 1.70e-5 1.65e-5 1.18e-5
L-4 Inv 8.61e-3 1.32e-5 1.18e-5 1.18e-5 1.18e-5
L-5 Inv 8.61e-3 1.32e-5 1.18e-5 1.18e-5 1.18e-5

Table 7.1. Summary of CPU times / objective function values for
source-inversion on a boundary.

35000

30000

Level 0
4

/

Level 1

'g 25000
~ Level 2
2 20000 /K
-
'§ 15000 -
E Level 4
g 10000 |
5000 / Level 3
M—‘i‘
Level 5
0 - —u ‘ —
0 50 100 150 200

Number of grid and design values

199

Figure 7.5. Numerical Results for Source Inversion for Convec-
tion Diffusion for levels 0-5
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Figure 7.6. Numerical Results for Source Inversion for Convec-
tion Diffusion levels 3-6
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7.2.1 Inverse problem formulation

We investigate a full space solution methods (level 6) using the source inversion problem
where the inversion parameter is located anywhere in the domain. We formulate the prob-
lem as follows:

. 1 . *\ 2 p
mflnizi:éé(x—xi)(c—c) dQ—FE/Qp(f)dQ

subject to:
~kAc+Ve-v+ f=0, in Q
Jc
— =0, on I’
an ) N>
c=0, on I'p. (7.2.9)

Thep(f) termin the second part of the objective function is a regularization functional,
with p as the regularization parameter. If the error was measured throughout the domain,
no regularization is needed, the inverse problem can in fact be seen as a matching control
problem—uwhich is known to have a unique solution for small Peclet numbers. However,
discrete measurements imply multiple solutions, and thus some regularization is necessary.
Possible functionals fas(-) are:

Jo £7d9 (7.2.10)
JoVI-VfdQ (7.2.11)
[ (Vf -V f)z dQ. (7.2.12)

We use the following notation:

a(f1, f2) 3:/kaf1'vf2d97 (f1, f2) 3:/Qf1f2dQ; (f1, fo)r 5:/rf1f2dF

The Lagrangian functional that corresponds to (7.2.9) is given by:
1
L(e, [ A) =5 > / S(x — x;)(c — ¢")?dQ + g(f, )
i .. Q

+a(\, ¢) + (Ve v, \) + (f, \) (7.2.13)
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Assuming that the regularization term for the inversion fofég given by (7.2.10) the weak
formulation for the optimality conditions (Karush-Kuhn-Tucker conditions) of (7.2.9) is the
following: Find f, ¢, \, € H'(Q) such that
a(y.c) + (Ve v, ¢) + (f,¢) = 0,v¢ € H'(Q)
D (6(x—xi)(c— ) +a(ih, A) + (V- v, ) =0,V € H(Q)

i

P, )+ (0, N) =0, Y € H'(Q).  (7.2.14)

7.2.2 Algorithm

There are several ways to solve the optimality conditions. rSQP++ uses a block-elimination
procedure to solve (7.2.14). Givgrfirst solve forc

a(y,c) + (Ve v, ) + (f,4) = 0,V € H'(Q);

then solve

D (B(x—xi)(c— ) +a(yh, \) + (V- v, ) =0,V € H'(Q)

i

for A; and finally solve

p(v, f) + (. ) =0, ¥ € H(Q).

to updatef. The block-elimination has been used as a preconditioner for (7.2.14). Here we
solve the resulting KKT conditions simultaneously:

W, W, AT c g+ ATA
W Wy A}F f =X g+ A}F)\ . (7.2.15)
A, A 0 A c

7.2.3 Numerical Experiments

Various experiments were conducted using this full space formulation including the eval-
uation of regularization terms, number of sensors, and number of sources. Both the total

202



variation and Tikhonov regularization were evaluated and for our source selections both
were able to recover the original source at similar levels of quality. The total variation reg-
ularization however, makes the objective function nonlinear which then requires a Newton
method. Because the Tikhonov regularization term makes the objective function linear and
thereby requiring no Newton iterations, we used Tikhonov for all of our experiments.

The full space (level 6) method is the most efficient in comparison to levels 0 to 5.
Even though we do not have a consistent comparison and if we could generate a boundary
inversion problem using full space methods, it would most likely not be as numerically
taxing as the full domain inversion problem. The full domain inversion problem converged
under 10 seconds whereas level 2, 3, 4, and 5 for the boundary inversion problem for the
same size grid (but with smaller number of inversion parameters) converged in 293, 465,
55, and 26 seconds respectively.

Figures 7.7 and 7.8 show results for using different number of sensors.

AN

N

90

AR

Figure 7.7. Signal Inversion, left 4x4 sensors, right 10 x 10 sen-
sors
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Figure 7.8. Signal Inversion, 40x40 sensor
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Chapter 8

Split, O3D and Hierarchical Control

8.1 Overview

Split is a full-space sequential quadratic programming (SQP) algorithm for general large-
scale nonlinear programming problems. As noted above, SQP methods proceed by forming
at each major step a quadratic programming (QP) approximation to the general problem at
the current iterate. The solution of this QP provides a step to adjust the variables and the
associated Lagrange multipliers. Thus, an important part of any successful SQP algorithm
is a robust QP solver. In this chapter, we concentrate on O3D, our interior-point QP solver
that has many advantages for this particular application. We also briefly describe Split.
Finally, we discuss our approach to formulating certain control problems where there are
multiple objectives, leading to a novel class of hierarchical control problems. Our formula-
tion yields more practical answers than traditional approaches, i.e., our answers tend to be
smoother and more robust.

An important part of our research in SQP methods was the design and development
of software to implement these methods. Both Split and O3D were implemented to be
compatible with Sundance and Trilinos (TSF) and thus be able to take advantage of the
unprecented control of the PDE systems that Sundance provides. Earlier in this project, we
experimented with a Java implementation and the use of “proxy vectors.” Although these
experiments did not work as hoped, we report on this work and the conclusions that we can
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draw from them.

8.2 03D

Although quadratic programs arise in independent applications, the primary emphasis in
this report is their appearance as a step generator for the solution of general nonlinear pro-
gramming problems. In this context, there exist numerous features of an algorithm for
solving quadratic programs that would be particularly useful, but would not necessarily be
of value in a stand-alone solver. This statement is especially true in the large scale case
where procedures that approximate the solution can lead to substantial efficiencies. Here,
we examine the issues of (approximately) solving large scale quadratic programming prob-
lems in the context of the sequential quadratic programming (SQP) algorithm for solving
general nonlinear programming problems.

The general nonlinear programming problem can be taken to be of the form

minimize f(x)

T
subjectto: g(z)
h(z) = 0

IN

(NLP)

wheref : R —- R', g : R* — R™ andh : R" — R™2. At each step of the
SQP algorithm a quadratic programming approximatiofiXd.P) is constructed and its
solution is used as a step to improve the current iterate. More specifically we construct a
guadratic program of the form

mini{smize o+ %(5%2(5
subjectto: Ad+b < 0 (QP)
Fo+d =

whered € R", Q) € R, A € R™*" be R™,F € R™*" andd € R™.

Let
Ua, A p) = fl2) + Ng(x) + p'h()
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be the Lagrangian dfN L. P) with multipliers A € R™* andu € R™2. If the current iterate
is z*then the correspondence betwéanl. P) and(Q P) is as follows:

c = Vf(a*)
A = Vg(a*)
b = g(a)
F = Vh(z")
d = h(zF)

and( is a symmetric approximation to the Hessian of the Lagrangign®at\®, ;).

The subprobleni@ P) is approximately solved to yield the stépand the next iterate
is calculated by

b = 2k + ad*

wherea is the steplength To guarantee convergemeceust be chosen carefully. Typically

a merit function is used to guide this choice. A merit function is a scalar-valued function
whose reduction implies progress towards to solution. Thus an important factor in using
(QP) as a step generator is to ensure that approximate solutions are such that they are
descent directions on the merit function. (See [26] for a more complete discussion of the
general issues concerning SQP methods.)

There are numerous issues to consider in solid’) and the resolution of these
issues depends on whether or iQtP) is to be solved as a stand-alone problem or as a
subproblem. First, for a solution to exist, the constraints must be consistent, i.e., there
must be at least on poiitsuch that all of the constraints are satisfied. If the constraints
of a stand-alone problem are inconsistent, then it suffices for a solver simply to report this
fact back to the user. In the context of SQP, however, it is often the case that subproblems
are inconsistent, so a procedure must be devised to use the subproblem to create a descent
direction for the merit function. Even if the constraints are consistent, there is no guarantee
that a feasible point will be given, so a “phase I” procedure must also be provided.

Another consideration is the nature @ If @ is positive definite, then the solution
of (QP) is unique. Otherwise, multiple local minima may exist and the question arises
of which solution is desired. Furthermore (¥is indefinite (or negative definite) and the
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feasible set is not bounded, then there may exist unbounded solutions. (\Wkgrs a
subproblem for SQP, it is reasonable to assume that a solution that is too large will not be
of interest since one would expect tH& P) would only be a reasonable approximation

for (NLP) in a relatively small region about’. From a computational point of view, @

is indefinite, then directions of negative curvature may be possible to construct and exploit.
Finally, Q may be in the form of a quasi-Newton update or a limited memory quasi-Newton
update in which case it will represented as a low rank update of a scaled identity matrix.

A quadratic program solver for a stand-alone problem would probably only return the
solutionz* and the associated multipliers, along with an indication of which of the inequal-
ity constraints are active. This would in turn require procedures to estimate the multipliers
and convergence criteria to halt the iteration. For a subproblem solver, there need to be
additional features to control the solution process. In particular, as noted above, the length
of the step may be important, e.g., in trust-region algorithms, and there it is important to
have reasonable estimates of the multipliers when the solver is terminated since these are
often used in constructing approximations to the Hessian of the Lagrangian. In addition,
several different termination criteria may be needed and, as noted above, a procedure to
produce a descent step on the merit function even if the constraints are inconsistent.

Different SQP algorithms can be constructed that favor certain applications and these
factors influence the choice of underlying quadratic program solvers. For example, appli-
cations with a large number of highly nonlinear inequality constraints should probably be
handled differently from applications with only mildly nonlinear constraints. Similarly, the
algebraic structure of problems with a large number of equality constraints might receive
special consideration. The applications also account for structure in the gradients of the
constraints and in the Hessian of the Lagrangian. In large scale problems, this structure
often needs to be considered carefully both in the formulation of the problem and in the so-
lution techniques. For example, in the control of partial differential equations one can trade
off the size of the problem with the nonlinearity of the problem, i.e., one can sometimes
construct a very large, but mildly nonlinear problem or a smaller, but more nonlinear one.

We are primarily concerned with applications in which there is a large number of non-
linear inequality constraints. First, we briefly discuss some features and properties of QP
solvers that affect their use in the SQP setting. We then describe the interior-point method,
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03D, and its properties that show it to be a good candidate for a step generator in an SQP
algorithm. Next, we suggest enhancement®81) that improve the performance and ro-
bustness of the basic algorithm. Finally, we discuss its implementation and preliminary
numerical results.

In light of the above discussion of the types of quadratic programming problems that
arise in(N L P) applications, we briefly review here the issues that should be addressed in
designing a QP solver that can be used as a step generator for SQP.

8.2.1 The Constraints

The proper handling of the constraints has a profound effect on many other aspects of the
algorithm. In this discusion, we assume that the constraints are consistent; inconsistent
constraints are discussed under the heading of early termination below.

First, there is certainly no guarantee that an initial feasible point will be given. Thus a
Phase | procedure to compute one must be specified. Typically such a procedure uses a “Big
M’ method wherein the feasible region is enlarged to enclose the initial approximation to
the solution and then shrunk to its original size in the course of the subsequent calculations.
If such a method is used, then the sizeléf the initial size of the associated “artificial
variable,” the nature of the enlargement (i.e., should all of the constraints be changed, or
just a few), and the procedure to ensure that the artificial variable is reduced, must be
specified. The issues in terminating the algorithm while still in Phase | are similar to those
in the case of inconsistent constraints and are discussed below.

Although a given initial point may be infeasible, it is possible that it is “close” to the
optimal solution. Such a situation is called a “warm start.” Interior-point methods have
usually not been amenable to taking advantage of warm starts, but significant savings may
be possible if such information could be exploited. We intend to investigate this issue
further.

209



8.2.2 Multiplier Estimates

Estimating the multipliers is a particularly difficult problem for primal methods, i.e., primal-
dual methods would seem to have an obvious advantage. In the case of nonconvex prob-
lems, however, this advantage is not so clear. The issue is to design a method to estimate the
multipliers that gives reasonable approximations when far from the optimal solution, and
does so at reasonable computational cost. Degenerate constraints, a common occurance in
large scale problems, give rise to nonunique multipliers and a lack of strict complimentar-
ity, but degeneracy itself typically does not pose a difficulty for interior-point methods. In
primal methods, estimating the multipliers requires a determination of which constraints
are active at the solution. This is not an easy task. Our approach for this is to use so-called
“Tapia indicators” to estimate the active set, followed by a particulary simple interior-point
method on the dual problem. We have implemented this idea and have recorded some
excellent results on some highly degenerate problems, including problems with equality
constraints where we are guaranteed to have degeneracy.

8.2.3 Early Termination

All of the above considerations are exacerabed by the possibility of early termination of the
algorithm. For the solution to be useful in the SQP setting, it must be such that it leads to a
descent direction on the merit function. It is often easier to show that the optimal solution
has the required descent properties than that an approximate solution does. A major cause
of this is that when far from the optimal solution, the determination of the active set and
the associated multipliers is especially problematic. This is even more difficult in the case
of nonconvex problems. The effect of poor multiplier estimates is to create difficulties in
the SQP algorithm which uses these estimates for calculations involving the Lagrangian.

In order to terminate early, the algorithm must have a set of criteria for testing the
adequacy of the current approximation. Standard convergence criteria may be adequate
for obtaining a highly accurate solution, but may not be particularly good at determining
the adequacy of more remote solutions. For example, poor multiplier estimates may may
cause a good approximate solution to appear to be much poorer. Criteria for termination
may include a simple test to terminate if the length of the solution exceeds a certain length.
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Such a procedure may allow useful steps in unbounded problems.

8.2.4 Computational Issues

The overriding concern for any QP solver that is to be used as a step generator is that
the it be computationally efficient. Most of the work in solviig P) using an interior-

point method is in the solution of the underlying linear system of equations. Using direct
factorization methods is quite efficient as long as the linear systems are not too large. If
larger problems are to be solved, then iterative methods must be considered. Issues of how
to precondition these systems and how accurately they must be solved remain to be ad-
dressed. Our implementation using TSF facillitates experimentation with iterative methods
and, more importantly, with preconditioners.

8.2.5 Recentering in O3D

Recentering in O3D is an attempt to prevent the early iterates from staying too close to
the boundary of the feasible region and thus significantly slowing the algorithm. Complete
recentering involves moving the current iterate as far as possible towards the center of the
polytope along the level curve corresponding to the current iterate. Because doing this in
the full space is prohibitively expensive, we had developed a method based on doing the
recentering in a subspace, in the same spiriba® itself. Although this procedure had

often reduced the number of iterations modestly in early test problems, it did not appear
to be effective on the problems arising from PDE constraints. The reasons for this are not
entirely clear, and several attempts to improve this procedure were not successful. These
attempts included constructing the subspace to be orthogonal to the 3-dimensional subspace
generated by the main3 D algorithm and increasing the dimension to four or five.

We finally developed an entirely new approach which has turned out to be much simpler
and much more effective. The main idea is move along the Newton recentering direction
from the fullO3D step until it intersects the level curve corresponding to the current value.
Using this idea has proved to be quite effective. The computational cost to form the step
is a third that of the subspace recentering algorithm and never more than one iteration is

211



needed as compared to an average of five iterations for the old method. In two early tests,
we found unbounded solutions after only a few iterations whereas the old method was still
making slow progress after 1000 iterations. More testing here is necessary to tune the entire
algorithm.

8.2.6 The O3D Algorithm

03D is a primal method, implying that it only operates in the primal space and does so
by attempting to reduce the objective function. It does this by forming a 3-dimensional
approximation to(@Q P) that can be easily solved. In particul&r3D generates three in-
dependent directions at the given feasible point. These directions and the feasible point
determine a 3-dimensional affine space. The redy€dd) is then taken to be the original

(QP) restricted to this space. The three-dimensional problem is then solved and the next
(strictly feasible) iterate is taken to be 99% of the distance to the boundary in this direc-
tion or to the minimum of the quadratic in this direction. Convergence is checked and the
procedure repeated as necessary. In discussing the details, we consider only the inequality
constraints i@ P); equalities can be included by writing them as two inequalities.

We assume that an initial strictly feasible paifitis given and that the algorithm gener-
ates a sequendé”} as follows. Le{p;, i = 1,...,3} be a set of normalized vectors (that
depend ord*) and set

Hy, = %Q + AY(D;)?A

where D, is the diagonal matrix whosg" diagonal component is
dj =1/(Ad* +b);

and-; is a positive scalar. Denoting b, then x 3 matrix whose columns are thg we
set
8k+] _ (Sk + H];lpk C

where¢ € R?. Substituting this value of " into the (Q P) we obtain the 3-dimensional
“baby” problem
minicmize ¢+ 2t Q¢

q . (8.2.1)
subjectto:AC+b <0
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where

¢ = P.H_ '(c+Qd"),

b = AdF+1b

: o (8.2.2)
Q) = PiH, QH, P and

A = AH'P,

The solution procedure for (8.2.1) is discussed below; here we simply assume that a
solution,¢*, is at hand. We form the composite directios= H, ' P, (¥ and compute the

step lengthn* according to
of = arg mingnize q(0 + as)

and
o = min{a*,.99}.

We now choose the next iterate as

§FHL = 5k 1+ ofFs.

The standard convergence tests are as follows: The algorithm is said to have converged
on the relative objective function criterion if

5k+1 o (sk
it <, 8.23)

wheree,,; is appropriately set, usually arouid®. The algorithm is said to have con-
verged on the relative step criterion if

(6" 1) = (8%),]
miax{ = \(5k+])i| } < €step (8.2.4)

wheree,,, is appropriately set, typically at)—". Other convergence criteria are used in
conjunction with the procedure to estimate the multipliers as described in the next section.

The key to the effectiveness 6f3D is, of course, the choice of the directiops, The
arguments and derivations of the directions used@¥D are the same as those given in
[27] and [35]. The ideas are based on considering the method of centers [58] and deriving
the differential equation that describes the trajectory of the center points for a continuous
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version of the method of centers. The first direction is therefore the tangent to the trajectory
at the given feasible point (also known as the “dual affine direction”) and is given by

m=— (A'D2A+Q/y) " (c+ QF) (8.2.5)

where~ is interpreted as the residual on the objective function. For reasons given in [27]

we take
_ | ( (e+Qd)(c+ QJ)
|\ (e +Q0)(ADe) /|
The second direction is the so-called “third-order correctiorng;tgiven by
pe = (A'D2A 4+ Q/v)"" zm: At [Awp ] (8.2.6)
k=1 A\ ()

where A, is thek! row of A.

The third direction is taken as one of the following. When the current iterate is judged
to be “far” from the solution, the direction is an “update”tpbased on the first constraint
encountered in the directign. Let j be the index of this constraint. Then

pu=(A'D?A+Q/y) " Al (8.2.7)

If the current iterate is judged to be “close” to the solution, then the third direction is based
on the Newton recentering direction. This direction consists of a linear combination of the
directionp, and

pr = (A'D2A + Q/v) ' A'De. (8.2.8)

To complete this description, we need to specify how we decide between the diregtions
andp,. We judge the iterates to be close if both of the above convergence tests are satisfied
with a tolerance of x 103,

Note that all of these directions can be computed by forming onlyronen matrix.
Assume for the moment that this matrix is positive definite, which it will be in the convex
case, i.e., wheid) is positive definite. In this casg, is always a descent direction for
the objective function and it is easy to show that the objective function is reduced in the
composite direction.
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The three-dimensional baby problem (8.2.1) is solved by a simple interior-point method.
The point{ = 0 is always feasible by construction. Our procedure is to compute the di-
rection corresponding tg, for the baby problem and to use it alone to determine the next
iterate. As above, we use this direction to go 99% of the distance to the boundary or to the
minimum of the objective function in that direction. We use the same convergence criteria
as above and, as a practical matter, limit the number of iterations. Again, the matrix to be
factored in formingy; may not be positive definite; we discuss this in the next section.

8.2.7 Implementation and Preliminary Results

All of O3D is implemented using C++ using a style that is in conformance with that of
Sundance and Trilinos/TSF. TSF, in particular, provides the ideal framework for the com-
plex vectors and linear operators that are neede@b#. Therefore, the)3D algorithm

itself can be written in terms of generic operators and vectors with no concern needed for
the underlying complexity.

To be more specific, consider the quadratic program to have only inequality constraints
(if there are equality constraints, they can be written as two sets of inequality constraints)

mini(smize cto + %(VQ&

P/I
subjectto: A6+b < 0. (@P/1)

We takeA and( to be TSFLinearOperators ardndb to be TSFVectors, with the only
restrictions being those necessary to maintain consistency of the operationsandg

must be from the same TSFVectorSpacejust be in the range space 4f and() and A

must have the same domain. These are all checked by TSF, thus ensuring at compile time
that everything is consistent. Aside from these consistency requirements, the operators may
have arbitrary complexity. The code to solve the problems can thus be greatly simplified,
since the details of the linear algebra can be hidden in this abstraction. We illustrate some
of this complexity by describing how a rather complicated problem can be assembled.
To clarify the presentation, we us square brackets to indicate a “block” of a matrix. For
example,

W = [[Wy Wa]
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represents a block matrix with one block. This block, in turn, {$ & 2) block matrix. To
construct an objective function, we need a linear operatoresgy, and a vector, say,, .
These are constructed by the user and used to create an O3DObjective. O3DObijective, in
turn, creates th€&) matrix and the: vector thatO3D will use by “wrapping” these in two
levels of blocks as follows:

Q = [[Qorig]]
and

¢ = [[Corig]] -
Note that the two levels of blocking will be consistent with how the constraints need to
be constructed to accomodate equality constraints, described&kt.allows a general
collection of constraint sets to be used where each set consists of a linear operator, say
A,.ig, and a vector, sa¥,,;,. These are passed to construct an instance of O3DConstraint,
which wraps them in a block operator. Note that this allows equality constraints to be
consistent with inequality constaints, i.e., inequality constraints are of the form

Ae - [Aorig}
and equality constraints are of the form

Aorig
*Aorig

since equalities are written as two inequalities. The fibahatrix is then a block with all
of the sets, i.e.,

A=

3

[A]
where there aré sets of constraints. This structure allows some constraints to be con-
structed by Sundance and others to be constructed by other means. This complexity, how-
ever, is never seen directly b93D. Thus the code to set up a PDE constraint using
Sundance is somewhat complex, but only needs to be done once.

As noted above, the main work in solving a QP usilgy) is the formation and solution
of the linear systems of equations of the form

(A'D*A+Q/v)pi=r.
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Note that forming this operator is not feasible in many large problems, since the fill-in may
lead to a virtually dense matrix. This will certainly be the case in any problem where

is a quasi-Newton approximation. Thus, to solve such systems, we must consider the use
of “matrix-free” iterative methods. This essentially implies that we can form matrix-vector
products, but we cannot get access to individual elements of the matrix. TSF allows the easy
creation of the operator, while not actually forming it. Thus we can use conjugate gradient
or other methods to solve these systems iteratively. Unfortunately, these systems are poorly
conditioned, and become more so as the solution is neared, so that preconditioning becomes
necessary almost immediately. We are continuing to persue strategies to precondition these
systems effectively.

We have, however, been able to solve some example problems that show the effective-
ness of the full-space (SAND) approach on these problems. One example problem is as
follows:

Consider the rectangular reagén= [0, 7] x [0,1] and letl’ = {(z,0)|0 < x < 7}.
The differential equation is given by

Au(z,y) = 01inQ
u(z,y) = 0 ondQ\l

k=N

u(z,0) = Zaksin(kx)

k=1

where we wish to choose the parametgrso force the solution to match a given target as
closely as possible. The particular objective function we choose is

= /Oﬂ(u(x, 5) — 0)%da

N =

where

~

u=z(r — ).

We were easily able to solve this problem using Sundance to create all of the operators
and vectors on a0 x 20 grid. Given the choice of finite element method and using- 5
this resulted in a full-space problem of 1686 variables with 3362 constramtd.required
only 10 iterations to solve this problem.
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8.3 Split

Split, an SQP method designed to work witB D is described in detail in [24]. Its features
include:
e It uses an augmented Lagrangian type of merit function.

e Any number of iterations of)3 D on the quadratic programming subproblem yields
a descent step on the merit function. Ti&D and Split are ideally suited for each
other.

e A global convergence theory has been developed and published.
e An early implementation has been used to solve many interesting problems.

e ltis flexible, allowing control over the use of perturbations and the rate of approach-
ing feasibility. This is important in some applications where we have observed that
better answers are obtained by delaying the approach to feasibility.

e Split does not require monotonic decrease in the merit function.
The main advantage of Split aigB D is that they provide a complementary capability
to rISQP++. SplitD3D is a full-space method that handles problems with a large number

of inequality constraints, but it also allows the use of in-between approaches where some,
but not necessarily all of the state equations are optimization variables.

We have now a prototype implementation of Split in C++ using TSF, implemented with
the same strategy &¥3DWe plan to test this in conjunction with3.D and Sundance soon.

8.4 Other Work

In this section we briefly discuss the implementatiorO3fD in Java and our ideas on the
use of proxy vectors. First, we wanted to test the use of Java for implementing a nontrivial
numerical algorithm. We knew that there would probably be a significant performance
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penalty due to the way in which Java is implemented. To overcome this problem, we
developed the idea of “proxy vectors” and “proxy operators.” The concept is that local
objects used by an optimizer on the front-end machine are proxies for remote objects living
in a PDE code on a back-end machine. The front-end machine communicates with the
back-end machine via sockets. The vector objects on the front-end contain only references
to back-end vector objects; the vector objects on the back-end contain actual vector data,
possibly distributed over many processors. Method invocation on the front-end results in
a message sent to the back-end instructing it to execute the same method using the actual
vectors. The same mechanism can be used for proxy operators. If a new vector or operator
is needed, it is stored on the back-end with a proxy created on the front-end. If the result
of an operation is a scalar, it is retruned to the front-end, but if the result is another vector,
then the result stays on the back-end with only an message that the result was completed
returned. For example, if the front-end machine requests the norm of a vector, that value
will be returned, but if the request is to add two vectors, only a confirmation is returned.
Thus all messages between the two machines are short. See [28] for a more complete
discussion of this work.

We were able to create a working proxy-vector system, but the communication delays
created an unacceptable penalty in the computations. We decided that this approach needed
much more work to be successful, but that the results would probably not be worth the
effort. Part of the effort would be to create an implementation of TSF in Java, and this
does not seem to be a good idea. Thus, we think that there may be a future for proxy linear
algebra, it will most likely be from our current C++ implementations.

8.5 Hierarchical Control

Optimal control problems constitute an interesting case of PDE-based optimization prob-
lems. There is a rich history of work in this area, beginning with the development of the
calculus of variations and work in the control of ordinary differential equations. More re-
cently, researchers have begun to investigate the control of PDEs (see the survey papers
[49] and [50]). Instances of these types of problems abound in applications. Thus the de-
velopment of efficient numerical methods for the solution of these problems has also been
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the subject of significant recent research.

In this paper we examine a particular instance of optimal control problems where mul-
tiple controls seek to force behavior close to multiple “targets” simultaneously. These
problems belong to the class of problems calhedlticriteria optimization There is no
unique mathematical formulation of these types of problems; indeed different formulations
can generate completely different “optima” solutions. In one formulation the problem is
posed as the minimization of a weighted sum of the deviations from the targets with the
weights corresponding to an established priority among the targets. (see [68]). Another
formulation, sometimes referred to geal programmingnsists that a set of preferred tar-
gets be satisfied to within certain tolerances and the others be reduced as much as possible
within these constraints (see [60]). Both of these approaches involve the choice of a set of
weights or tolerances for which there may be little theoretical guidance. In the approach
that is employed in this paper, calledultilevel optimizationthe problem is modelled as
as a set of nested optimization problems in which the solutions of the inner problems are
determined using the variables in the outer problems as parameters (see [120]).

Motivated by specific engineering applications, such as those arising in optimal well
placement in reservoir engineering, we investigate a means of formulating a class of opti-
mal control problems in which the targets can be partitioned into categories of increasing
relative importance. This approach, based on the work of von Stackelberg [121] in an
economic context, requires that the deviations from the least important targets, called the
“follower” targets, be decreased only after the deviations from the most important targets,
called the “leader” targets, satisfy prescribed bounds. This type of optimal control problem
has been termehlierarchical control One way of formulating this type of problem is in
terms of a nested optimization structure in which, in an “inner minimization”, the follower
targets are minimized subject to fixed values of certain of the control variables and then
an “outer minimization” is performed over the remaining control variables to obtain opti-
mal leader target satisfaction. The resulting accuracy on the follower targets is therefore
determined by and is subordinate to the optimization over the leader targets. This type of
bilevel optimizatiorproblem has been the object of a great deal of research (see [120] for
an exhaustive bibliography) in finite-dimensional optimization and was given a theoretical
grounding in the work of Lions [70] for PDE-constrained control problems where the state
equations were a linear hyperbolic system. In this paper, we carry out the analysis for a
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specific parabolic system and obtain preliminary numerical results that we believe illustrate
the promise of this approach.

8.6 Model Formulation

We are concerned with a class of optimal control problems in which there are multiple
goals that are to be satisfied, i.e., a multicriteria control problem, and in which the under-
lying state variables are governed by the parabolic partial differential equation with mixed
boundary conditions:

yt*Ay = f(T,TL)—FV(T,YL), (T,YL)GQ

y(,0) = bo(z), =€, (8.6.9)
y(x,t) = bi(x,t), (x,t) €Ty x(0,7T),
@

dn(:v,t) = by(x,t), (x,t) €Ty x(0,T),
where() is a bounded open subset®f, T > 0 is finite, @ = Q x (0,7) andl’; U T

is the boundary of). We assume that the functions in the model are well-behaved, i.e.,
f(z,t) € L*(0,T;9),bo(z) € L*(), andb;(z,t) € L*(0,T;9Q),7 = 1,2. HereA is a
strongly elliptic operator and’(z, ¢t) represents the action of the controls on the system.
In particular, we consider the case in which there/apointwise controls (1), .. ., vy (1)
located respectively at the points(t), . . ., ax(t) and that for a given choice of the controls,

k

Via,t) =) 0i(t) 6z — a;(t)).

j=1

Our goal is to formulate and solve an optimization problem that results in a selection of
controls, including both time-dependent magnitudes and locations, that force the solution
to the above system at tinfeto be “close” to a set of targets;, . . ., Y4, eachy; € L?(Q),

while minimizing a cost functional’(v, a). In addition, a set of restrictions on the location

of the sitesq;(t),j = 1,..., k, are possible.

Obviously, it is generally impossible to force all of the targets to be satisfied to within
some preassigned tolerance (in fact, it is not always possible to satisfy one target exactly).
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To formulate an optimization problem that can be solved, some priority must be established
among the set of targets. A variety of methods have been proposed for carrying out this
task. One such formulation is obtained by assigning a set of weights to the targets and

minimizing the weighted sum of deviations from the targets. This problem can be expressed
in the form

minimize C(?),a)+z_l;:] 2o (yl —Yj(z) ) dx

subject to: y, — Ay = f(x 7‘)+V(T 7‘) (z,1) € Q
y(x,0) =by(x), =€ (SD)
y(x,t) = by(x,t), (x,t) €Ty x(0,7)
dy

%(.’E,t) = bg(ﬂ?,t), (mat) SHPIRN (OvT)’

where they; are the respective weights associated with the different targets. A second
approach is to assign acceptable deviations of the state variable from each of the targets

and express these tolerances as constraints in the optimization problem. In this case the
problem becomes

minimize C(v,a)
subject to: y, — Ay = f(z,t)+V(z,t), (z,t)€Q
y(x,0) =by(x), x €
y(T t) =bi(z,t), (z,t) €Tl x(0,7)
(w t) —bQ( 1), (x,t) €Ty x (0,7)
fQ —Y;(x))2de < By, j=1,...,k.

In these formulations, additional constraints on the controls could be included. Each of
these formulations has certain drawbacks; in the first case a choice of weights is necessary
without anya priori indication of how this choice will affect the solution; in the latter case

it is difficult to specify the small tolerances in such a way as to avoid infeasibilities.

In this paper we follow the work of von Stackelberg (see [121]) and Lions (see [70])
and formulate the problem as&erarchical controlproblem. This means that we prioritize
the goals, i.e., specify a hierarchy of targets. The leading target is taken to be the one of the
highest priority and the overriding task of the control problem is to have the state variable
approximate this target as accurately as possible=afl’. Given this highest priority, the
deviation from the target of next highest priority is minimized subject to the satisfaction of
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this primary goal. Then the deviation from the target of the third highest priority is mini-
mized subject to the condition that the higher targets are satisfactorily approximated, and
so on. This hierarchical structure requires a partition of the controls and control locations
into corresponding hierarchies. In some problems there may be a natural correspondence
but in other cases some flexibility in choosing the controls is available.

For this preliminary study we presume that there is a single leader target, déf¢ted
and a single target of lower priority called the follower target and denbidd). We also
assume that there are two controls that we arbitrarily partition into leader and follower
controls, (vy,(t),ar,(t)) and (vr(t), ar(t)), respectively. Additional follower targets and
controls can be added without fundamentally affecting the nature of the model. The control
problem we consider is the nested optimization problem, denoted by (OP):

min,, .. C(v,a)

subject to :
( min,, C(v,a)
subject to :
((miny, y Clv.a) + % [, (y(2,T) = Yi(2) ) da
subject to :
(IP2) apy | YT AYE flot) +V(xt), (z,t)€qQ

y(x,0) = by(x),z € Q
y(.??,t) = by (fl?,t), (mat) SHRTRN (OvT)’
P, t) = ba(w, 1), (x,1) € Ty x (0, 7),

U Jo (y(2,T) — Yi(x))2de < 3
g(a) <0

wherey; andg are fixed positive constantS,(v, a) represents a general convex cost func-
tion depending on the controls, and the last inequalities involyin@R* — R™ represent
constraints on the locations of the controls. These inequalities may be nonlinear and non-
convex; for examplesy,, (t) andar(t) might be constrained to be a certain minimal distance
apart.
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This problem is interpreted in the following manner. The control variablgs:,
and v; are held fixed and the inner problem (IP1) is solved to determine the optimal
choices forvp andy, thus theoretically determining optimality function$ (a;,, ar, vr,)
andy*(ar,, ar,vy,). Itis well known that the problem (IP1) has a unique solution for fixed
ar,ar, andvy. Next, these optimality functions are substituted into the objective function
and the target constraint for the second inner problem, (IP2). Then this problem is solved
with a;, andar held fixed determining another optimality functiop(a;,, ar). Finally, the
outer problem, (OP), now having the form

ming, o, C(vy(ar,ar), vi(ar, ap), vy (ar, ar), ar, ap)

subject to : g(ar,ar) <0,

is solved. Note that the cost function can be thought of as a regularization term in the inner
problems, i.e., a term that is used to guarantee the existence of a solution. However, it
also has a role as a general objective function to be minimized to the extent possible. In
this model, we have optimized the variables,(a) outside the optimization with respect

to the other control variables and the state variables in order to facilitate the solution of
the problem. As noted above, in applications the constraints on these variables can be
nonlinear and nonconvex and if included in the inner optimization problems would make
these problems difficult to solve and negate the advantages of the hierarchical structure.

The theory underlying the hierarchical control problem defined by the pair of problems
(IP1) and (IP2) has been studied by Lions [70], albeit for a different underlying PDE and
with boundary controlsLions shows that a solution exidts every positives although in
general the target cannot be met exactly= 0); i.e., the problem is approximately con-
trollable (see also Glowinski and Lions [49, 50]). These existence proofs for the solutions
to the inner pair of optimization problems given by Lions are not constructive and hence
provide no blueprint as to how to obtain numerical solutions. One natural approach is to use
a variational method to obtain the optimality conditions for the innermost problem (IP1)
and use these equations as constraints when solving (IP2). In the following we establish
the optimality conditions for solving (IP1) and then discuss how to approach (IP2).

In order to simplify the notation and make the development more transparent we assume

that

T
Cloa) =5 [ 070+ vh(0)
0
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that A is the Laplacian operatak, and that the boundary conditions are of the Dirichlet
type. Extensions to more general parabolic systems are straightforward in concept (but
may require significantly more effort to obtain numerical solutions). Thus our PDE has the
form

y— Ay = f(z,t)+ov(t)d(x —ar(t)) +vr(t)d(z —ar(t)), (z.t)€(@.6.10)
y(x,0) = bo(z), =€, (8.6.11)
y(x,t) = bi(x,t), (x,t) el x(0,7T), (8.6.12)

wherel is the boundary of?.

Proposition 1. Leta;,ar, andv;, be fixed. Ifvr andy are optimal for (IP1) then there
exists a dual functiop(z,t) € L?(0, T; Q) satisfying the PDE

p+Ap = 0, (z,t) €Q (8.6.13)
p(.’l?, T) = —F (y(T, T) o YF('T))’ S Qa (8614)
pla,t) = 0, (z,8) €T x (0,T), (8.6.15)

anduvy is given by
vr(t) = plap(t),t). (8.6.16)

Proof: If vz andy are optimal for (IP1) then the variational equality for the objective
function is

/0 vp(t) UR(t) dt + vr /Q(y(T, T)—yr(z)) 2(x,T)dx =0 (8.6.17)

for all admissibleir € L?(0,T) andz € L?(0,7;9). 9r andz are admissible if they
satisfy

Zi— Az = 0p(t)o(z —ar(t)), (v,t) € Q, (8.6.18)
Z(z,0) = 0, ze€q. (8.6.19)
Z(x,t) = 0, (x,t) €T x (0,7T). (8.6.20)
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Multiplying (8.6.18) byp(z, t), integrating over), and applying Green’s theorem gives

/ (pr + Ap) 2(t) dx dt  + /(p(:r, T)z(z,T) — p(x,0) 2(x,0)) dx
Q Q

dz dp
+ / plx,t) —(x,t) — —(x,t) 2(x, t)) dx (8.6.21)
[ e et = S o)

_ /Q@F(t)é(x — an(t)) p(a, 1) du dt

where% represents the normal derivative. Using (8.6.13)—(8.6.15), and (8.6.18)—(8.6.20)
this equation becomes

—YF /Q(y(T, T)— Yp(x)) 2(x,T) dx = /0 Up(t) plar(t),t) dt. (8.6.22)

Equation (8.6.16) follows immediately from this last equation and the Euler equation,
(8.6.17).

Using these necessary conditions, the second inner problem (IP2) can now be written

. T
ming, yp fo (VE(t) +plar(t),1)?) dt
subject to :

f@,t) +0r(t) 0(x — ar(t))
P, 1) 8 — ar(t)), (,) € Q
y(x,0) = bo(z), z€Q,

y— Ay

+

y(x, t) = by(x,t), (z,t) €l x(0,T),
pe+Ap = 0, (z,t) €Q,
p,T) = —p(y@T) —Yr(z)), z€Q,
p(z,t) = 0, (x,t) el x(0,T),
Jo (y(@,T) = Yi(z) )2 dz < B,

with a; anda fixed.

At this stage there are several possible approaches. One approach would be to in-
corporate the control variablegt) directly into the problem (so in effect (IP2) becomes
(OP)) and solve the resulting problem. However, this approach severely restricts the nu-
merical methods that we can apply since the state variable occurs in a nonlinear inequality
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constraint. For example, a reduced variable approach could not be employed. Another
approach would be to obtain the optimality conditions for this problem (as was done for
(IP1)) and then use these conditions in the formulation of the outer problem. If we take
this approach then we are forced to include complementary slackness conditions as part of
the necessary conditions which is an added nonlinear difficulty. Both of these methods also
suffer from the fact that aa priori choice of/3 is required.

As aresult of these complications, we have chosen, following Glowinski and Lions (see
[49]) to include the leader target goal as a penalty term in the objective function. That is,
we reformulate (IP2) as

miny, . i (030 + plar(t), 02 dt + % [, (y(@.T) — Yi(r) )? da
subject to :
p— Ay = fla,t)+o(t)o(z—at)) +p(z,1))6(z —ap(t), (1) €@
y(x,0) = bo(z), z €,

yla,t) = bi(z,1), (z,t) €T x(0,7), (IP3)
pe+Ap = 0, (Taf) €Q,
P T) = —ap(y@e.T) Ve(a)) e

p(z,t) = 0, (z,t) el x(0,7),
where~;, is a specified constant. By choositg sufficiently large we can, in theory, force

the deviation from the leader target to be less thalthough such a solution will not, in
general, be the solution to the original problem (IP2).

We now derive the optimality conditions for this reformulated problem.

Proposition 2. Let a;, anday be fixed. Ifv;, y, andp are optimal for the problem (IP3)
given above, then there exist functioRéz, t) andY (x, t) in L2(0, T, Q2) satisfying

V,+AY = 0, (z,t)€eQ (8.6.23)
Y(2,T) = —vpP(x,T)— v (y(z,T) =Y (x)), z€Q, (8.6.24)
Y(z,t) = 0, (z,t)el x(0,7), (8.6.25)
P,— AP = —6(x—ap)(plz,t) — Y(z,t), (z,1)€Q (8.6.26)
P(z,0) = 0, z€, (8.6.27)
P(z,t) = 0, (x,t) el x(0,7), (8.6.28)
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anduvy, is given by
v (t) = Y(ag(t),t), te€(0,T). (8.6.29)

Proof: If v, y, andp are optimal for (IP3) then the variational equation

T
/ (v (t) 0r(t) + plar(t), 1) plar(t), ) dt + vp /(y(x, T) = Y(2)) 2(z,T) dz =0
. JQ
" (8.6.30)
must be satisfied for every admissiblg (z, p), i.e., for every {;,, zZ, p) satisfying

Zr— A2 = 08 —ar(t) +p(x.t)d(x —ap(t)), (v,1) €Q, (8.6.31)
2(z,0) = 0, z€Q, (8.6.32)
Z(x,t) = 0, (z,t) e T x (0,7), (8.6.33)

p,+Ap = 0, (x,t) €Q, (8.6.34)

plx, T) = —vyri(z,T), €, (8.6.35)
p(x,t) = 0, (x,t) el x(0,7). (8.6.36)

Now multiplying (8.6.31) by (z, t) and (8.6.34) byP(z, t), integrating over), and again
applying Green’s theorem, we obtain

/(Yt—i-AY)é(:r,t)da:dt + /(Y(x,T)é(x,T)—Y(:E,O),%(x,O))dx
Q

Q

dz dY |
+ / (V(x,t) (1) — T (a,8) 2w, 1)) du dt (8.6.37
JTx(0,T) dn

dn
= /Q (0r(z,t) 6(z — ar () + plar(t), ) 0(z — ap(t)) Y(z,t) dz dt

and

[ P aP)iddt + [ (P@.T)p.T) - Pl,0)ple,0) dr
Q Q



Using the various PDE’s and boundary conditions for the functions in (8.6.37) and (8.6.38)
we arrive at

fyp/P(m,T)é(m,T) dr  — vy, /(y(m,T)YL(m))é(m,T) dx
Ja Jo

- / (60.(8) Y (a1, (8), 1) + plar(t). £) ¥ (ar (1{815.32)

and

/0 (plar(t),t) — Y(ap(t),t) plar(t), t) dt+/Q P(z,T) p(x,T)dz = 0. (8.6.40)

Using (8.6.35) and rerranging the terms in (8.6.40) yields

i / P(2,T) 2(e,T) dz = / plar(t),t) (plar(t),t) = Y (ax(t). 1) dt.  (8.6.41)

Substituting this last equation into (8.6.39) yields the variational equation (8.6.30).

With this derivation the formulated optimization problem (OP) becomes

ming, o, + [ (plap(t), 1) + Y (ar(t),0)?) dt + 2% [, (y(z,T) — Yi,(z))* dx
subject to :

equations (8.6.10) — (8.6.15)

equations (8.6.23) — (8.6.29)

g(a) < 0.
(8.6.42)

Several additional comments need to be made concerning this formulation. First, the
relative sizes of the constantg and~, affect how accurately the different targets can
be approximated. In order to approximate the leader target as accurately as pagsible,
must be made large. However, the effect of increasing its size is influenced by the size of
~vr. Thus, as in the first formulation of this section, (SD), with a single objective function
incorporating both targets, the magnitudesyefand-;, required to achieve the desired
target deviations must be determined by experimentation. Our preliminary numerical stud-
ies have suggested that if both targets are in the objective function and both constants are
large, then there can be difficulties in achieving convergence to the optimal solution. One
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of the goals of the numerical study described in the next section was to determine how the
effect of differing scales of magnitude on the choice of these leader and follower constants
affected the optimal solutions in the hierarchical formulation. Secondly, it should be em-
phasized that in order to provide useful results the optimal control generated by the model
must be implementable, e.g., wildly oscillating optimal controls are undesireable. Again
our studies to date have indicated that the controls achieved in the hierarchical formulation
are better-behaved than those from (SD) for large values of the parameters. Both of these
conjectures need further testing and, if possible, theoretical grounding.

Finally, it is clear that this formulation of the problem is fundamentally different from
other models. As is well-documented in the finite-dimensional cases of bilevel program-
ming, an optimal solution to a bilevel optimization problem need not Parato optimal
solution in the sense of multiobjective optimization (see [120]) and there is no reason to
assume that this is not the case here. Also, the inclusion of the follower controk sites
as part of the outer optimization, rather than the inner optimization problem, may seem
inconsistent. In formulating the problem in this manner, we were again motivated by an
effort to make the problem tractable; complicated (and possibly nonconvex) inequality con-
straints in the control locations would seriously degrade the ability to express concisely the
necessary conditions for the inner problem. All of these points speak to the difficulty in
formulating state equations and in solving large scale multicriteria optimization problems.
The results presented here represent an initial effort in this direction.

We conclude this section by observing that hierarchical control might profitably be used
to formulate a multitude of important scientific applications. For example, in the area of
oil reservoir simulation one can formulate optimal well placement problems as hierarchical
control problems where desired well productions might form mandatory (or leader) targets
while revenue or efficiency based goals are a secondary (follower) targets. Problems in
optimal airfoil design can be viewed in a similar way with structural constraints being
posed as leader objectives and vorticity minimizing goals being follower targets. Remote
manipulator systems, like those employed by space-craft, are required to solve optimal
control problems rapidly. In some instances, these systems must accomplish a goal while
maintaining prescribed distances from other pieces of machinery. One could formulate a
class of hierarchical control in which leader targets include primary objectives and follower
targets maintain minimal separation from sensitive machinery whenever possible.
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8.7 Numerical Results

In this section we report on some numerical experiments we have run to test some of the
issues raised by the formulation of the hierarchical control problem given in the preced-

ing section (also see [25]). The problem addressed is that of the preceding section with
the domair(2 taken to be the unit square with the boundary conditions chosen to be zero.

Moreover, we have assumed that the control sites are not functiansutfconstant. We

don't believe that these simplifications prohibit us from making preliminary assessments

about the prospects for this type of formulation. In any case, we intend to continue experi-
mention.

We had several goals for these preliminary numerical experiments. First we wanted to
determine the possibility of efficiently solving the problem in its hierarchical formulation.
Second, we wanted to determine how sensitive the solutions were to different choices of the
constantsy; andy; and to compare these results with those obtained by solving the prob-
lem with a single objective function containing a weighted sum of the target discrepancies.
Finally, we wanted to ascertain if we could solve a problem with nonconvex constraints on
the control locations.

We begin by describing the time discretization. Lét be the number of time steps
desired, so thaht = NLT We will denote the estimate gfat thenth time step by,™ where
n =1... Np. If Nx denotes the number of spatial steps inthe&nd in thez, directions,
the spatial step is denoted bywith ~ = NLX The discrete approximation ipis

y(nAt,ih, jh) =y,
We follow the two-step implicit schemfor parabolic problems as outlined in Glowinski
[48]. Accordingly, we define

8?/ 1 n+1 n n—1
E((n +1) At) = AL By — 4yl + iy ")

Experience with this time discretization has led us to use it on stiff problems when we need
to integrate to large values @f. In such cases, the fact that it assures unconditional stability
and produces an accuracy to second order in time amply justifies the storage costs.

At each time step we must solve an elliptic problem to obﬁjﬁ. The domain is so
simple that we use the very common finite-element triangulatiéhadnsisting of bisected
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squares. The space of polynomials of degreé is used to form a finite dimensional ap-
proximation toZ?(Q2) and H'(2). More sophisticated schemes are certainly available for
both linear and nonlinear parabolic equations. However, for testing optimization formu-
lations of the control problem here, this simple numerical scheme is both adequate and
appropriate. For specific applications, more specialized or hybrid discretizations may be
called for (see for example [66]).

Two target states;; () andyx(z), are used to test the performance of the formulation
of the control problem from section 3. While a myriad of test shapes are possible, we
choose one specific pair of test shapes that illustrates behavior seen in most of our numerical
experiments. The leader target shape is a smooth function with a peak of approximately
1.3 at the point:; = 1/3, o = 1/2 and the follower is a pyramid with a peak of unity at

the pointz; = -+,

Ty = % (see Figures 8.1 and 8.2). Specifically, the target functions are

s,
/‘W“‘ MY
/ ST
e

W
il
U

Figure 8.1. The leader target Figure 8.2. The follower target

yr.(z) = 35x1m9(1 — m9) (1 — 21)?,

8.7.43
yr(r) = 2min {bxy — 4,3 — bxe, 5 — by, by — 2} . ( )

These test problems are similar to those used to study hierarchical control with stationary
controls ([13]).

As constraints on the control locations, we required that the parameteasda; be
constrained to be contained inside disjoint balls. The leader locatipiis constrained
to lie within the circle centered 4¢, ;) where the follower location is constrained to lie
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within the circle centered &¢, 1). Both constraints have radigsl5 so that the two circles
do not intersect (see Figure 8.7).

Leader
Control Fonteer

l \

Spatial Domain

Figure 8.3. Geometric constraints separating the controls

The optimization problem that arose from our formulation was solved using a sequential
guadratic programming (SQP) algorithm. The specifics of the algorithm are contained in
[24] and a theoretical analysis that can be found in [23].

The numerical results are summarized in Table 8.1 together with Figures 8.4-8.9. The
first two columns of of Table 8.1 give the problem size. The valueg aind~ are given
in the third column. The next two columns give the relative discrepancy between state
variables and targets in tHe¢ norm. The final two columns of the table report on the norm
of the controls.

Our problem formulation worked well with our numerical optimization algorithm. In
numerical results not presented here we were able to solve problems with values of
large asl.e16 and values approaching machine precision. Here we concentrate on the
results for more reasonable valuesyofin Figures 8.4, 8.6 and 8.8 the dotted and dashed
profiles respectively denote leader and follower target profiles along thedinrel. The
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Nx || Nr || (vr: 1) lyr — ylle2/llyrllee | lyr —yllez/llyeliez | oell || llvcl

64 |32 | (1.e+3,1.e+3 2.395302 0.4873116 | 25.774|| 3.4065
64 | 32 | (1.e+6,1.e+3 2.181885 0.4978943 | 151.05|| 28.420
64 | 32 | (1L.e+3,1.e+6 2.415231 0.2635630 | 34.279|| 448.49
128 32 | (1.e+3,1.e+3 2.371236 0.4732074 | 28.195|| 3.5591
128 32 | (1.e+6,1.e+3 2.200413 0.5009123 | 155.89|| 29.093
128 32 | (1.e+3,1.e+6 2.418927 0.2701232 | 34.861|| 449.12

Table 8.1.Numerical Performance Summary

solid lines are the state variableat terminal time7" = 1 also along the line:, = %

Clearly both the leader and follower targets were approximately attained. In Figures 8.5,
8.7 and 8.9 the leader and follower contralg(?) andvg(t) are shown for € (0, 1], by

solid and dashed lines respectively. In Figure 8.5 the total variations in the two controls
are comparable while in Figure 8.9 the valueygfis large enough, when compared with

~1., that the effect of the leader control is greatly diminished. In fact the follower control
oscillated so violently that it eclipsed the behavior of the leader control. Finally, it is worth
noting that for the numerical examples presented here, the optimal location of both controls
was inside the constraint circles.

Our numerical experience illustrated that the difficulty of the SQP algorithm in solving
the hierarchical problem tested here increased with the values of the penalty parameters
~r, and~p. This fact is not surprising in light of the fact that similar behavior has been
observed for the case of hierarchical control of Burgers’ Equation ([65]).

8.8 Future Research

The freedom to specify multiple targets is extremely important for many practical prob-
lems. The high cost of solving multicriteria optimization problems suggests that there
may be instances where hierarchical control problem formulations could yield a computa-
tional advantage in an affordable way. We plan to investigate the use of this formulation
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Figure 8.5. The control variables with

Figure 8.4. The state variables restricted to the line= % withy, = vFr = l.e +3

v, =vr = l.e +3

technique to attack more complicated physical phenomena, including those modeled by
nonlinear equations. We anticipate the ideas will be fruitful when formulating problems of
optimal well placement, contaminant transport, and bioremediation among others.
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A rSQP++ Equation Summary and Nomenclature Guide

This is a summary of the mathematical expressions in an rSQP algorithm and the quan-
tities in the rISQP++ implementation. This guide provides a precise mapping from mathe-
matical quantities to identifier names used in rSQP++.

Standard NLP Formulation Lagrangian
min  f(x) Liz, Avp,vp) = f(z)+ M e(z)
st c(z) = +(v) (o — @)
+(I/U)T(’I' — ’I’U)

v, 2,00 € X V2 Lz ) = V2 f(2) + ) A\ Vi¢(z)
flz): X >R j=1

clz): X =C where:

X eR?” NecC

CceR™ v=uvy—v;, € X
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Full Space QP Subproblem (Relaxed) Null-Space Decomposition
min  g'd+ hd"Wd+ M(n) Z € X|Z s.t.(49)"Z =0
st.  ATad+ (1—n)c=0 Y € X|Y s.t. [ Y 7 } nonsingular
2 — 1 < d < zy — T4 R=[(Ay)TY] € C4|y nonsingular
U, =[(A4,)77] € C,|Z
where: Uy = [(AU)TY} c Cu‘y
d=pp —2p € X d=(1-n)Ypy+ Zp.
g=Vf(z) € X
W = V2, Lz, \) € X|X where:
M(n) € R >R p. € Z C RO
A=Vec(z) € XIC py €Y CRT
c=c(zy) € C
Quasi-Normal (Range-Space) Subproblem
Dy = —R'¢cg ey

Tangential (Null-Space) Subproblem (Relaxed)

where:
Gop = (gr +Cw) € 2 bp =2 —x — Yp, € X
min gL, + %pl Bp, + M(n) —_ T _
gqppz 2pz D n gT:Z g (- Z bU:lEU—lEk—Ypy S X
st. Uwp.+(1-n)u=0 w=Z"WYp, € Z

br. < Zp. — (Ypy)n < by ¢ ER
B~Z"WZ € 2|2
U.=[(A,)"Z] € Cul2
U, =[(A)TY] € C,|Y
u=Uypy+cy, € Cy
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Variable-Reduction Null-Space

Decompositions

C € CqlXp
N € Cq|lXr
E € C,|Xp
F € C,|x;

(nonsingular)

Coordinate

Orthogonal

D=-CIN ¢ XD|X[

D]

7 =

I
|1

Y = T

R=C(I+DD")

U.=F+ED

U,=E—-FD"
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Mathematical Notation Summary and rSQP++ Identifier Mapping

Mathematical

Iteration

kel

NLP

n € I;

m € I,

X e R"

C e R"

z e X

r;, € X

ry € X

f(z)lz € R

g=Vf(z) e X

c(z)l, € C

A=Ve(n)|l, € XIC

Lagrangian

recC

v e X

Vo L(zk, Mg, k)
e X

W =

Vo L(wg, Ar)
€ XX

SQP Step

d e X

n €R

Null-Space Decomposition

r € Iy

[1:r] € I
r+1:m] € I
C;s € R

rSQP++

n
m

space X
space ¢
X

Xl

Xu

f

Gf

c

Gc

lambda
nu
GL

HL

d
eta

r
con _.decomp
con _undecomp
space C

.Ssub _space(
con _decomp)

Description
Iteration counter for the SQP algorithm

Number of unknown variables in

Number of equality constraints it{x)
Vector space for:

Vector space for(z)

Unknown variables

Lower bounds for variables

Upper bounds for variables

Obijective function value at

Gradient of the objective function at
General equality constraints evaluated:at
Gradient ofc(x) evaluated at, Ve = | Ve Vem
Lagrange multipliers for the general equality constraints
Lagrange multipliers (sparse) for the variable bounds
Gradient of the Lagrangian

Hessian of the Lagrangian

Full SQP step for the unknown variables= (z 1)1 — =z
Relaxation variable for QP subproblem

Number decomposed equality constraints;in
Range for decomposed equalitigs= c(; .,
Range for undecomposed equaliti§s= c(, 4 1.m)
Vector space for decomposed equalitigs

252



C, € R(m=1)

Cd = C(1:7) € Cy
Cuy = Clr41:m) € Cu

Z e R

Y e R"

Z e X|Z

Y € X|Y

R= [(Vea)'Y]

€ CqlY
[(Vew) Z)

€ Cy|Z
[(ch)TY}

€ CyY

p. € 2

Zp, € X

py €Y

Yp, € X
gr=2"VfeZ
Z7VL € Z
w=Z'WYp, € Z
B~Z7Z'WZ € 2|2

U, =

Uy =

Reduced QP Subproblem

9op = (gr +Cw)
€ Z
( €R
Global Convergence
a € R
u € R
¢(z) + X =R
¢(z)l. € R

space ¢
.sub _space(

con _undecomp)
c.sub _view(

con _decomp)
c.sub _view(

con _undecomp)
Z.space _rows()

Y.space _rows()
z
Y
R

Uz

Uy

pz
Zpz
py
Ypy
rGf
rGL
w
rHL

gp-grad
zeta
alpha
mu

merit _func _nlp
phi

Variable Reduction Decomposition

[1:r] € I2

var _dep

Vector space for undecomposed equalities

Vector of decomposed equalities
Vector of undecomposed equalities

Null space. Accessed from the matrix obj&ct
Quasi-Range space. Accessed from the matrix object
Null-space matrix fo(Veg)” ((Veg)"Z = 0)
Quasi-range-space matrix f6¥¢;)” ([Y Z] nonsingular)

Tangential (null-space) step

Tangential (null-space) contribution tb
Quasi-normal (quasi-range-space) step
Quasi-norm (quasi-range-space) contributiod to
Reduced gradient of the objective function
Reduced gradient of the Lagrangian

Reduced QP cross term

Reduced Hessian of the Lagrangian

Gradient for the Reduced QP subproblem

QP cross term damping parameter (descenifar))
Step length forry 1 = 2 + ad

Penalty parameter used in the merit functit(m)
Merit function object that computes )

Value of the merit functior(z) atz

Range for dependent variables = ;.
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[r+1:n] € 12
Qr € X|X
Q. € CC
Xp € R”

Xr € R(nir)

zp € Xp
Ty € Xr

C = VDCd(.’I}k)T
= (AT)(I:T,I:T)
€ Cd|.)(])

N = V[Cd(.’l,'k)T
= (AT)(IZT,T+1:7'L)
€ Cd‘X[

FE = V])Cu(.’ljk)T
= (AT)(T+]:m,1:1")
S CU‘XD

F = Viey(z)"

= (AT)(T+1 im,r+1:n)

S CU|XI

var _indep
P_var

P_equ

space X
.Ssub _space(

var _dep)
space x

.Ssub _space(

var _indep)
x.sub _view(

var _dep)
x.sub _view(

var _indep)
C

Range for independent variables = z(, ;1.,)
Permuation for the variables for current basis
Permuation for the constraints for current basis
Vector space for dependent variablgs

Vector space for independent variablgs

Vector of dependent variables
Vector of independent variables

Nonsingular Jacobian submatrix (basis) for dependent
variablesz, and decomposed constraim$z) atzy

Jacobian submatrix for independent variabieand de-
composed constraintg(z) atzy

Jacobian submatrix for dependent variabigsand un-
decomposed constraintg(z) atzy

Jacobian submatrix for independent varialdeand un-
decomposed constraintg(z) atxzy
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B Installation of rSQP++

The C++ source code for rSQP++, its supporting packages and a few simple examples
are distributed as a single source tree. The build system uses GNU make which is available
on Linux, Unix and even Microsoft Windows (using cygwin). The build system is designed
primarily for development work and therefore not as easy to install as with installation
methods based on GNU automake and autoconf. The distribution comes as a gziped tar file
of the nameaSQPpp.tar.gz . To install the core distribution (assuming a Linux/Unix
system), create a base directory and untar the sources. For example, assuming the userid is
joesmith  and the tar file is in Joe’s home directory, Joe would perform the following

$ mkdir /home/joesmith/rSQPpp.base
$ cd /homel/joesmith/rSQPpp.base
$ tar -xzvf /home/joesmith/rSQPpp.tar.gz

An environment variablRSQPPEBASEDIR should then be set to the base directory
for rSQP++ as follows (assuming thash shell is being used)

$ export RSQPPP_BASE_DIR=/home/joesmith/rSQPpp.base

This environment variable (as well as a few others) is used extensively by the build
system and the test suite.

The untared source tree should look like the following

$RSQPPP_BASE_DIR/

I
-- rSQPpp/
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|-- AbstractLinAlgPack

-- design

-- doc

I
|-- ExampleNLPBanded

I

I

I

I

I

I

I

I

[-- examples
I

I

I

I

I

|-- design
I

I

-- testing

For detailed up-to-date information on the installation of rSQP++ for various platforms,
see the file

$RSQPPPBASEDIR/r'SQPpp/README

The aboveREADMEile references several other README files that describe the build
system, the Doxygen documentation system, the test suite and other topics. The included
test suite is fairly extensive and is self checking. The test suite should build and run success-
fully before any work with rSQP++ attempted. The test suite is also extensible and allows
an advanced user to easily add new test modules that can be run with a single command.

Once the proper environment variables are setup the Doxygen generated html pages can
be generated. Before the documentation can be generated, the Doxygen configuration files
must be setup. To find out how to do this see the file

$RSQPPPBASEDIR/rSQPpp/doc/README.DOCUMENTATION.
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After the configuration files are setup the doxygen documentation can be build using
the script

$RSQPPPBASEDIR/rSQPpp/build  _doc.

For most users, however, building the documentation locally is not necessary as pre-
build documentation can be found at

RSQPPEBASEDOC/html/index.html
whereRSQPPBBASEDOC is the URL to the rSQP++ documentation web site.

Although, using Doxygen for your own source code can be very useful in helping to
navigate the code.

The simplest way to get starting in solving a custom NLP using rSQP++ is to add a new
project to the rSQP++ build system. There is a HowTo file that describes the process of
adding a new project to the build system which can be found at

$SRSQPPPBASEDIR/rSQPpp/doc/HowTo.NewBuildProject

Using the rSQP++ build system is optional as it is possible to simply include the proper
Cpp directives in your own build system and then to link to precompiled rSQP++ libraries
but this will be much more involved. Using the rSQP++ build system is much easier.

For simpler use of rSQP++, it is possible to use the solvers through one of the prebuilt
interfaces to modeling environments like AMPL (see ???). See ??? for a description of
some example NLPs for rSQP++.

IRSQPPEBASEDOC = http://dynopt.cheme.cmu.edu/roscoe/rSQPpp/doc
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C Descriptions of Individual rSQP++ Packages

M sc : Heterogeneous Collection of Utilities

Misc is not a package (i.e. C+tramespace ) at all. Instead, it is just of heterogeneous
collection of general programming utilities that really do not belong to any other higher
level package exclusively. This package is not shown in Figure 4.3 but all of the other
packages depend on componentdlisc. Most of these utilities fall into one of two cate-
gories: memory management and options setting.

There are several C++ classes to aid in memory management. Since C++ allows dy-
namic memory allocation, does not have garbage collection, and uses pointers to raw mem-
ory, memory management is one of the more difficult, if not the most difficult, aspect to
using C++. By far, the most important utility class for memory managemevieimMng-
Pack::ref  _count _ptr<T> . Thisis a templated smart reference counted pointer class
modeled aftestd:;:auto  _ptr<T> and the ideas in [76]. The careful and consistent use
of objects of this class effectively allow garbage collection in C++. Many other strategies
have been proposed for automatic memory management in C++ but the style uséd by
_count _ptr<T> is the most flexible in many respects. This class forms the foundation
for all dynamic memory management in rSQP++ and its lower level packages. The devel-
opment of this class has been very significant and has allowed things to be done in rSQP++
that would have been nearly impossible to do otherwise.

Whileref _count _ptr<T> is more than adequate for memory management when all
the peers know at least a base class of the objects to be garbage collected, this is not always
possible (unlike Java [113], C++ does not have a universal base class@hbjext from
which all other classes derive). For example, suppose one peer is given a pointer to a row
of a dynamically allocated matrix while another peer is given a pointer to a column of
the same matrix. Also, suppose that for the sake of flexibility, these same peers may be
given pointers to separately allocated vectors to use. In each case, once each of the peers is
finished using the vectors they have been given, it is important that the memory is released
so that a memory leak does not occur. Inthe latter case, once a peer is finished with a vector,
the separately allocated buffer of memory should be released. This is done independently
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of the other peer. However, in the former case, the dynamically allocated matrix should not
be released until both of the peers are finished using vectors from this matrix.

So the basic idea here is that a client may be given an object of one type that is de-
pendent on some other dynamically allocated object(s), but does not know how to prop-
erly release memory associated with the object once it has finished using it. To allow
this type of greater flexibility in memory management, the abstract inteNé&mMng-

Pack:: Rel easeResour ce has been defined. The use of this class is very simple. A
client is given an objeca of known typeA to interact with and a pointer to a com-
panionRel easeResour ce object. Once the client is finished using the objactit
callsdelete r and the overridden virtual destructor"ReleaseResource() is

called on an object that knows what to delete. A single subclass implementation of the
Rel easeResour ce interface calledReleaseResource ref count ptr has been
implemented using theef _count _ptr<T> class. When the overridden virtual function
ReleaseResource ref _count ptr::"ReleaseResource ref count ptr()

is called, it calls the destructor on the composi#é _count _ptr<T> memberptr

which callsdelete on the raw memory to be released. This might seem like much ado
about nothing but these two classes have been sufficient for all the (sometimes complex)
memory management in rSQP++. This important concept was designed late in the devel-
opment of rISQP++ but has allowed the creation of some much more flexible software since
its adoption.

While the classeBlemMngPack::ref _count ptr<T> andMemMngPack:: Rel ease-
Resour ce allow the flexible deletion of an object or objects after a client is finished using
them, they do not allow the flexible creation of objects. For this purpose, the interface
MenmivhgPack: : Abst ract Fact or y<T>has been developed which is a universal tem-
plated interface for the “factory” pattern [??7?]. The single virtual methozk isat e()
which returns aef _count _ptr<T> object containing the allocated object. There is a
single subclass

namespace MemMngPack {
template <class T_itfc, class T_impl, class T_PostMod = PostModNothing<T_impl>
,class T_Allocator = AllocatorNew<T_impl> >
class AbstractFactoryStd : public AbsractFactory<T_itfc>;
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which is templated on the interface typeatfc  thatis represented by tiidst r act -
Fact ory base interface, the concrete implementation tygenpl , and also by policy
classes that determine how the underlying object is allocateeostMod ) and how it is
modified after allocationT_Allocator ). The policy classes have default types which
allocate usingnew (AllocatorNew<T  _impl> ) and do no post modification after the
initial construction PostModNothing<T _impl> ). Using these policy classes with
the C++ template mechanisms to create different instantiations allows complete flexibil-
ity in how objects are allocated and initialized and thereforeAhstractFactory-
Std<...>  subclass is really the only abstract factory subclass needed.

Aside from the type of general dynamic memory management that the C++ operators
new anddelete and the C functionsnalloc(...) andfree(...) were designed
for, there is also a need for general workspace that is used during the execution of a C++
function. In Fortran 77, this type of memory must be explicitly passed into a subroutine
and clutters the interface. In Fortran 90, this type of memory can be created on-the-fly
within a subroutine, but most implementations allocate this memory from the stack and not
the heap. The Fortran 90 implementation of automatic workspace has caused problems on
several platforms when allocating huge amounts of data. What is needed is a more flexible
means to efficiently allocate and release workspace used in a function. For this purpose,
the templated clas#/orkspacePack::Workspace<T> has been designed. Objects of
this type can only be allocated on the stack (i.e. operaterg anddelete have been
made private and are not defined as discussed in [76]) and must be given a reference to
a WorkspacePack::WorkspaceStore object which is used to obtain a temporary
buffer of data. The current implementationWirkspaceStore allocates a large chunk
of memory at once from the operating system and then gives it out as needed. Any memory
demands beyond the preallocated amount are handleg\wy The WorkspaceStore
implementation also keeps statistics that can be used for fine tuning the memory usage later
on. Because of the order that C++ creates and destroys automatic objects that are put on the
stack, the implementations WorkspacePack::Workspace<T> andWorkspace-
Pack::WorkspaceStore are very simple and require only(1) overhead. This is
very different from the overhead that can occur from usiagloc(...) because of the
more complex tasks the operating system has to perform to manage the heap (i.e. regulate
fragmentation etc.) as described in [110, Section 8.6]. See the/ilkkspacePack.h
for more details.
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Aggregation and composition are so common and the tasks of writing access functions
and data members for C++ classes with aggregate objects are so monotonous that prepro-
cessor macros have been written to automatically insert all the needed declarations. The
macro

STANDARIMEMBEROMPOSITIONMEMBERS(type name,attribute _hame)

is used to insert to declarations for a simple member object of a concrete class with
value semantics. For example, options such as tolerancetyfiee..name = double ),
flags (i.etype _name = bool ) and maximum iteration counts (itype _name = int )
can be included in a class interface using this macro. This has relieved the writing of a lot
of boiler plate code that had to be written by hand before. However, many objects are poly-
morphic and do not use value semantics (i.e. those that are instantiations of a subclass). For
composition relationships (i.e. memory management obligations assumed) for these types
of objects (both polymorphic and non-polymorphic) the macro

STANDARBCOMPOSITIONMEMBERS(basetype name,obj _name)

has been defined. This macro inserts the declarations for the member access functions
and includes a private data member of type _count _ptr<basetype _name>to han-
dle the dynamic memory management. For these types of composite associations, when the
client object is destroyed, the composite objelsf _name may also be destroyed (if no
other clients are using it) an@f _count _ptr<T> takes care of this automatically. For
associations that are strictly aggregate (i.e. no ownership of memory is assumed) the macro

STANDARDAGGREGATIOWEMBERS(basetype name,obj _name)
is used. This macro inserts a private data member that is a simple pointer.

Another very useful class @ptionsFromStreamPack::OptionsFromStream
This class allows options to be read from a text stream, which is formatted in a very hu-
man readable, self documenting manner. Many of the major classes in rSQP++ can accept
options in this form. These options can be included in a file or generated in a string within
code. Strictly speaking, this is a weakly typed way to specify options but there are a lot
of safeguards that make its use more or less bulletproof. For example, see how this text
stream is formatted in Section 4.3.1.1. A lot more could be said about how to use the
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classOptionsFromStream  from both a user’s and developer’s point of view, but the
interested user can look in the code for examples.
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D Samples of Input and Output for rSQP++

Here, portions of the output generated for the example progneampleNLPBanded
is given. Lines in the output consisting of three dots

are for parts of the output that have been ommited for the sake of space. This output
was generated using the command line

$ ./solve_example_nlp --nD=30000 --bw=10 --nlI=400 --diag-scal=1le+4 --x0=10.0

and the options file shown in Section 8.8. The output to the console is shown in Section
8.8 while excepts from the output fileSQPppAlgo.out , rSQPppSummary.out and
rSQPppJournal.out are shown in Sections 8.8-8.8.

Note that the content of the output may be different a more current version of rSQP++
than the one used at the time of this writting. However, the general layout of the information
will be generally the same.

Input file r SQPpp. opt

begin_options

options_group rSQPppSolver {
test_nlp = true; *** (default)
test_nlp = false;
print_algo = true; *** (default)
* print_algo = false;
algo_timing = true; *** (default)
* algo_timing = false;
configuration = mama_jama; **% (default)
* configuration = interior_point;
}
options_group rSQPSolverClientinterface {
* max_iter = 1000; *** (default?)
* max_iter = 3;
* max_run_time = 1le+10; ** (default?)
opt_tol = 1le-6; *** (default?)
opt_tol = 1e-8; *** (default=1e-6)
feas_tol = 1e-6; *** (default?)
feas_tol = le-10; *** (default=1e-6 )
* step_tol = le-2; *** (default?)
* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm
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* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually

journal_output_level = PRINT_ALGORITHM_STEPS; * Ofiter) output to journal (default)
* journal_output_level = PRINT_ACTIVE_SET; * Of(iter*nact) output to journal
* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)
* journal_print_digits = 6; ** (default?)
check_results = true; *** (costly?)

* check_results = false; *** (default?)

}

options_group DecompositionSystemStateStepBuilderStd {
null_space_matrix = AUTO; *** | et the solver decide (default)

* null_space_matrix = EXPLICIT; *** Store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; ** Perform operations implicity with C, N
range_space_matrix = AUTO; **=* | et the algorithm decide dynamically (default)

* range_space_matrix = COORDINATE; ** Y = [ I; 0 ] (Cheaper computationally)
* range_space_matrix = ORTHOGONAL; ** Y = [ I; -N*inv(C’) ] (more stable)
max_dof_quasi_newton_dense = 500; *** (default=-1, let the solver decide)

options_group rSQPAIgo_ConfigMamaJama {

quasi_newton = AUTO; ** Let solver decide dynamically (default)
* quasi_newton = BFGS; ** Dense BFGS
* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; ** | et the solver decide dynamically (default)

* line_search_method = NONE; *** Take full steps at every iteration
line_search_method = DIRECT; *** Use standard Armijo backtracking

* line_search_method = FILTER; *** Filter

}

options_group NLPTester {
* print_all = true;
print_all = false; *** (default)

options_group NLPFirstDerivativesTester {

* fd_testing_method = FD_COMPUTE_ALL; ** Compute all of the derivatives (O(m))
fd_testing_method = FD_DIRECTIONAL; *** Only compute along random directions (O(1))
num_fd_directions = 1; *** [fd_testing_method == DIRECTIONAL]

warning_tol = 1e-10;
error_tol = le-5;
}
options_group CalcFiniteDiffProd {
* fd_method_order = FD_ORDER_ONE; ** Use O(eps) one sided finite differences
* fd_method_order = FD_ORDER_TWO; ** Use O(eps™2) one sided finite differences
* fd_method_order = FD_ORDER_TWO_CENTRAL; ** Use O(eps™2) two sided central finite differences
* fd_method_order = FD_ORDER_TWO_AUTO; *** Uses FD_ORDER_TWO_CENTRAL or FD_ORDER_TWO
* fd_method_order = FD_ORDER_FOUR; *** Use O(eps™4) one sided finite differences

fd_method_order = FD_ORDER_FOUR_CENTRAL; *** Use O(eps™4) two sided central finite differences
* fd_method_order = FD_ORDER_FOUR_AUTO; = (default) Uses FD_ORDER_FOUR_CENTRAL or FD_ORDER_FOUR
* fd_step_select = FD_STEP_ABSOLUTE; *** (default) Use absolute step size fd_step_size
* fd_step_select = FD_STEP_RELATIVE; *** Use relative step size fd_step_size * |[x|inf
* fd_step_size = -1.0; *** (default) Let the implementation decide
* fd_step_size_min = -1.0; *** (default) Let the implementation decide.

* fd_step_size_f = -1.0; *** (default) Let the implementation decide
* fd_step_size_c = -1.0; *** (default) Let the implementation decide
* fd_step_size_h = -1.0; *** (default) Let the implementation decide
}

end_options
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Console output

$

The following is output to the console.

.Isolve_example_nlp.rel --nD=30000 --bw=10 --nI=400 --diag-scal=1e+4 --x0=10.0

** Start of rSQP Iterations ***

n

= 30400, m = 30000, nz = 599910

f llclls  lIrGLIls QN #act |[Ypyl|2 |[Zpz||2 ||d|linf alpha

0 15e+006 1.2e+007 1.2e+002 IN 0 2e+003  4e+005  2e+003

1 7.1e+005 1.1e+007 41 SK 0 1e+003  1e+005  6e+002
2 7.7e+004 3.7e+006 035 SK 0 2e+002  2e+002 6
3 3.2e+004 1.1e+006 023 SK 0 1e+002  8e+001 3
4 15e+004  3e+005 0.64 SK 0 6e+001  1e+002 6
5 4.4e+003 5.1e+004 24 SK 0 8e+001  4e+002 8
6 25e+003 3.3e+004 04 SK 0 3e+001  4e+001 2
7 8e+002 9.6e+003 0.03 SK 0  3e+001 1 0.2
8 45e+002  6e+002 06 SK 0 1 3e+001 2
9 0.78  1.2e+002 0014 UP 0 1 0.1 0.01

f llclls  lIrGLIls QN #act |[Ypyl|2 ||Zpz||2 ||d]finf alpha

10 0.012 3.3 0.019 sK 0 0.01 0.2 0.02
11 2.1e-007 0.12 8.7e-005 UP 0 0.0002  0.0006  9e-005
12 3.4e-015 2.1e-005 3.6e-008 UP 0 2e-008 8e-008  4e-008

13 6.3e-024 1.5e-012 3.3e-012 - - 1le-015 - -

Total time = 6e+001 sec

f(x) 96

c(x) 96
Gf(x) : 15
Ge(x) @ 15

Solution Found!

Output file r SQPppAl go. out

Algorithm information output hiid
ok

Below, information about how the the rSQP++ algorithm is bl

setup is given and is followed by detailed printouts of the ***

contents of the algorithm state object (i.e. iteration ok

quantities) and the algorithm description printout ok

(if the option rSQPppSolver:print_algo = true is set). ok

Echoing input options ...
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** Setting up to run rSQP++ on the NLP using a configuration object of type ’'class ReducedSpaceSQPPack::rSQPAIgo_ConfigMamaJama’' ...

*** rSQPAIlgo_ConfigMamaJama configuration hiid

ok ok
** Here, summary information about how the algorithm is ok

*=* configured is printed so that the user can see how the ok

** properties of the NLP and the set options influence ok

** how an algorithm is configured. ok

*** Creating the rSQPAIgo algo object ...

** Setting the NLP and track objects to the algo object ...

*** Probing the NLP object for supported interfaces ...

Detected that NLP object supports the NLPFirstOrderinfo interface!

range_space_matrix == AUTO:
(n-r)"2*r = (400)"2 * 30000 = 505032704 > max_dof_quasi_newton_dense™2 = (500)"2 = 250000
setting range_space_matrix = COORDINATE

** Setting option defaults for options not set by the user or determined some other way ...
null_space_matrix_type == AUTO: Let the algorithm deside as it goes along
*** End setting default options

** Sorting out some of the options given input options ...

quasi_newton == AUTO:

nlp.num_bounded_x() == 0:

n-r = 400 <= max_dof_quasi_newton_dense = 500:
setting quasi_newton == BFGS

*** Creating the state object and setting up iteration quantity objects ...

*** Creating and setting the step objects ...

Configuring an algorithm for a nonlinear equality constrained NLP ( m > 0 & & ml == 0 && num_bounded_x == 0) ...
** Algorithm Steps ***

1. "EvalNewPoint"

(class ReducedSpaceSQPPack::EvalNewPointStd_Step)
2. "RangeSpaceStep"

(class ReducedSpaceSQPPack::RangeSpaceStepStd_Step)
2.1. "CheckDecompositionFromPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromPy_Step)
2.2. "CheckDecompositionFromRPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromRPy_Step)
2.3. "CheckDescentRangeSpaceStep"

(class ReducedSpaceSQPPack::CheckDescentRangeSpaceStep_Step)
3. "ReducedGradient"

(class ReducedSpaceSQPPack::ReducedGradientStd_Step)
4. "CalcReducedGradLagrangian”

(class ReducedSpaceSQPPack::CalcReducedGradLagrangianStd_AddedStep)
5. "CheckConvergence"

(class ReducedSpaceSQPPack::CheckConvergenceStd_AddedStep)
6.-1. "CheckSkipBFGSUpdate"

(class ReducedSpaceSQPPack::CheckSkipBFGSUpdateStd_Step)
6. "ReducedHessian"

(class ReducedSpaceSQPPack::ReducedHessianSecantUpdateStd_Step)
7. "NullSpaceStep"
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(class ReducedSpaceSQPPack::NullSpaceStepWithoutBounds_Step)
8. "CalcDFromYPYZPZ"
(class ReducedSpaceSQPPack::CalcDFromYPYZPZ_Step)
9.-2. "LineSearchFullStep”
(class ReducedSpaceSQPPack::LineSearchFullStep_Step)
9.-1. "MeritFunc_PenaltyParamUpdate"
(class ReducedSpaceSQPPack::MeritFunc_PenaltyParamUpdateMultFree_AddedStep)
9. "LineSearch"
(class ReducedSpaceSQPPack::LineSearchFailureNewDecompositionSelection_Step)

whk NP kk*
class NLPInterfacePack::ExampleNLPBanded

** |teration Quantities ***

*** Algorithm Description ***

1. "EvalNewPoint"
(class ReducedSpaceSQPPack::EvalNewPointStd_Step)
** Evaluate the new point and update the range/null decomposition
if nlp is not initialized then initialize the nip
if x is not updated for any k then set x_k = xinit
if m > 0 and Gc_k is not updated Gc_k = Gc(x_k) <: space_x|space_c
if ml > 0 Gh_k is not updated Gh_k = Gh(x_k) <: space_x|space_h
if m > 0 then
For Gc_k = [ Gc_k(:,equ_decomp), Gc_k(:,equ_undecomp) ] where:
Gce_k(:,equ_decomp) <: space_x|space_c(equ_decomp) has full column rank r
Find:
Z_k <: space_x|space_null s.t. Ge_k(:;,equ_decomp) * Z k = 0
Y_k <: space_x|space_range  s.t. [Z k Y_K] is nonsigular
R_k <: space_c(equ_decomp)|space_range
s.t. R_k = Gc_k(:,equ_decomp) * Y_k
if m > r : Uz_k <: space_c(equ_undecomp)|space_null
s.t. Uz_k = Gc_k(:,equ_undecomp)’ * Z_k
if m > r : Uy k <: space_c(equ_undecomp)|space_range
s.t. Uy_k = Gc_k(:,equ_undecomp)’ * Y_k
if ml > 0 : Vz_k <: space_h|space_null
st Vz_k = Gh kK * Z_k
if ml > 0 : Vy_k <: space_h|space_range
st. Vy_k = Gh_k' * Y_k
begin update decomposition (class 'class ReducedSpaceSQPPack::DecompositionSystemHandlerVarReductPerm_Strategy’)
** Updating or selecting a new decomposition using a variable reduction
*** range/null decomposition object.

end update decomposition
if ( (decomp_sys_testing==DST_TEST)
or (decomp_sys_testing==DST_DEFAULT and check_results==true)
) then
check properties for Z_k, Y_k, R_k, Uz_k, Uy k, Vz_k and Vy_k.
end
end
Gf_k = Gf(x_k) <: space_x
if m > 0 and c_k is not updated c_k = c(x_k) <: space_c
if ml > 0 and h_k is not updated h_k = h(x_k) <: space_h
if f_k is not updated f k = f(x_k) <: REAL
if ( (fd_deriv_testing==FD_TEST)
or (fd_deriv_testing==FD_DEFAULT and check_results==true)
) then
check Ge_k (if m > 0), Gh_k (if ml > 0) and Gf_k by finite differences.
end

2. "RangeSpaceStep"
(class ReducedSpaceSQPPack::RangeSpaceStepStd_Step)
** Calculate the range space step
py_k = - inv(R_k) * c_k(equ_decomp)
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Ypy k = Y_k * py k

2.1. "CheckDecompositionFromPy"
(class ReducedSpaceSQPPack::CheckDecompositionFromPy_Step)

2.2. "CheckDecompositionFromRPy"
(class ReducedSpaceSQPPack::CheckDecompositionFromRPy_Step)
*** Try to detect when the decomposition is becomming illconditioned

2.3. "CheckDescentRangeSpaceStep"
(class ReducedSpaceSQPPack::CheckDescentRangeSpaceStep_Step)
** Check for descent in the decomposed equality constraints for the range space step

3. "ReducedGradient"
(class ReducedSpaceSQPPack::ReducedGradientStd_Step)
** Evaluate the reduced gradient of the objective funciton
rGf_k = Z k' * Gf_k

4. "CalcReducedGradLagrangian”
(class ReducedSpaceSQPPack::CalcReducedGradLagrangianStd_AddedStep)
**+ Evaluate the reduced gradient of the Lagrangian
if nu_k is updated then
rGL_k = Z k * (Gf_k + nu_k) + GcUP_k' * lambda_k(equ_undecomp)
+ GhUP_K' * lambdal_k(inequ_undecomp)
else
rGL_k = rGf_k + GcUP_k' * lambda_k(equ_undecomp)
+ GhUP_k' * lambdal_k(inequ_undecomp)
end

5. "CheckConvergence"
(class ReducedSpaceSQPPack::CheckConvergenceStd_AddedStep)
** Check to see if the KKT error is small enough for convergence
if scale_(opt|feas|comp)_error_by == SCALE_BY_ONE then
scale_(opt|feas|comp)_factor = 1.0
else if scale_(opt|feas|comp)_error_by == SCALE_BY_NORM_2_X then
scale_(opt|feas|comp)_factor = 1.0 + norm_2(x_k)
else if scale_(opt|feas|comp)_error_by == SCALE_BY_NORM_INF_X then
scale_(opt|feas|comp)_factor = 1.0 + norm_inf(x_k)
end
if scale_opt_error_by Gf == true then
opt_scale_factor = 1.0 + norm_inf(Gf_k)
else
opt_scale_factor = 1.0
end
opt_err = norm_inf(rGL_k)/opt_scale_factor
feas_err = norm_inf(c_k)
comp_err = max(i, nu(i)*(xu(i)-x(i)), -nu(i)*(x(i)-xI(i)))
opt_kkt_err_k = opt_err/scale_opt_factor
feas_kkt_err_k = feas_err/scale_feas_factor
comp_kkt_err_k = feas_err/scale_comp_factor
if d_k is updated then
step_err = max( |d_k(@)|/(1+|x_k@®)]), i=1..n)
else
step_err = 0
end
if opt_kkt_err_k < opt_tol
and feas_kkt_err_k < feas_tol
and step_err < step_tol then
report optimal x_k, lambda_k and nu_k to the nlp
terminate, the solution has beed found!
end

6.-1. "CheckSkipBFGSUpdate"
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(class ReducedSpaceSQPPack::CheckSkipBFGSUpdateStd_Step)
** Check if we should do the BFGS update

6. "ReducedHessian"
(class ReducedSpaceSQPPack::ReducedHessianSecantUpdateStd_Step)
** Calculate the reduced hessian of the Lagrangian rHL = Z' * HL * Z

7. "NullSpaceStep"
(class ReducedSpaceSQPPack::NullSpaceStepWithoutBounds_Step)
** Calculate the null space step by solving an unconstrainted QP
gp_grad_k = rGf k + zeta_k * w_k

solve:
min gp_grad_k' * pz_k + 1/2 * pz_k' * rHL_k * pz_k
pz_k <: R(n-r)

Zpz_k = Z_k * pz_k

nu_k =0

8. "CalcDFromYPYZPZ"
(class ReducedSpaceSQPPack::CalcDFromYPYZPZ_Step)
*** Calculates the search direction d from Ypy and Zpz
d_k = Ypy_k + Zpz_k

9.-2. "LineSearchFullStep”
(class ReducedSpaceSQPPack::LineSearchFullStep_Step)
if alpha_k is not updated then
alpha_k = 1.0
end
x_kpl = x_k + alpha_k * d_k
f_kpl = f(x_kpl)
c_kpl = c(x_kpl)

9.-1. "MeritFunc_PenaltyParamUpdate"
(class ReducedSpaceSQPPack::MeritFunc_PenaltyParamUpdateMultFree_AddedStep)
** Update the penalty parameter for the merit function to ensure
*** a descent direction a directional derivatieve.
*** phi is a merit function object that uses the penalty parameter mu.

9. "LineSearch"
(class ReducedSpaceSQPPack::LineSearchFailureNewDecompositionSelection_Step)
do line search step : class ReducedSpaceSQPPack::LineSearchDirect_Step
** Preform a line search along the full space search direction d_k.
Dphi_k = merit_func_nlp_k.deriv()
if Dphi_k >= 0 then
throw line_search_failure
end
phi_kpl = merit_func_nlp_k.value(f_kp1,c_kpl,h_kp1,hl,hu)
phi_k = merit_func_nlp_k.value(f_k,c_k,h_k,hl,hu)
begin direct line search (where phi = merit_func_nlp_k): "class ConstrainedOptimizationPack::DirectLineSearchArmQuad_Strategy"
*** start line search using the Armijo cord test and quadratic interpolation of alpha

end direct line search
if maximum number of linesearch iterations are exceeded then
throw line_search_failure
end
end line search step
if thrown line_search_failure then
if line search failed at the last iteration also then
throw line_search_failure
end
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new decomposition selection : class ReducedSpaceSQPPack::NewDecompositionSelectionStd_Strategy

if k > max_iter then
terminate the algorithm

end
Select a new basis at current point
x_kpl = x_k
alpha_k = 0
k=k+1
goto EvalNewPoint

end new decomposition selection

end

10. "Major Loop" :

if k >= max_iter then
terminate the algorithm

elseif run_time() >= max_run_time then
terminate the algorithm

else
k=k+1
goto 1

end

Warning, the following options groups where not accessed.

An options group may not be accessed if it is not looked for
or if an "optional" options group was looked from and the user
spelled it incorrectly:

Output file r SQPppSunmmary. out

** Algorithm iteration summary output ok

ok ok
*** Below, a summary table of the SQP iterations is given as bl

*** well as a table of the CPU times for each step (if the b

** option rSQPppSolver:algo_timing = true is set). ok

** Echoing input options ...

*** Setting up to run rSQP++ on the NLP using a configuration object of type
‘class ReducedSpaceSQPPack::rSQPAIgo_ConfigMamaJama’ ...

test_nlp = true: Testing the NLP!
Testing the supported NLPFirstOrderinfo interface ...

. end testing of nlp

** Start of rSQP Iterations ***
n = 30400, m = 30000, nz = 599910

k f ||Gf||inf |c]linf |IrGL||inf quasi-Newton ...
0 1.52e+006 10  1.20897e+007 1353.69 initialized ...
1 713384 11.7743  1.10232e+007 524.977 skiped ...
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12

3.37179e-015  3.63585e-008  2.08817e-005

3.63585e-008 updated ...

13 6.34035e-024  3.27386e-012 1.51859e-012

Number of function evaluations:

f(x) 96

c(x) : 96
Gf(x) : 15
Ge(x) ¢ 15

Rk kAR Rk A AR Kok

**+% Solution Found ****

total time = 61.9129 sec.

*** Algorithm step CPU times (sec) ***

Step names
"EvalNewPoint"
"RangeSpaceStep"
"ReducedGradient”
"CalcReducedGradLagrangian”
"CheckConvergence"
"ReducedHessian"
"NullSpaceStep”
"CalcDFromYPYZPZ"
“LineSearch”

10) lIteration total

steps 1...10 ->

3.27386e-012 -

iter k 1 2 3 4 5 6 7 8
0 18.96 0.2031 0.1093 0.0001131  0.01497 0.2985 2.189 0.009146 0.2678
1 2.398 0.1752 0.11248.409e-005 0.002709 0.002098 0.1186 0.006983 0.294
2 2.399 0.1757 0.1116 7.99e-005 0.002728 0.002192 0.1183 0.007003  0.04079
3 2.421 0.175 0.11348.297e-005 0.002717 0.002115 0.1183 0.006929  0.04122
4 2.428 0.172 0.1108 7.99e-005 0.002711  0.02247 0.1181 0.006949 0.041
5 2.404 0.1748 0.1115 8.13e-005 0.002742 0.002087 0.1183 0.006936  0.07081
6 2.443 0.1714 0.1094 7.99e-005 0.002707 0.002139 0.1156 0.006912 0.0409
7 2.397 0.1747 0.1115 7.99e-005 0.002715  0.00211 0.1184 0.006978  0.04138
8 2.415 0.1749 0.11158.046e-005 0.002724 0.002148 0.141 0.007056  0.04127
9 2.403 0.1752 0.11158.102e-005 0.002751 0.3873 0.1167 0.006928 0.0412
10 2.42 0.1715 0.10928.185e-005 0.002711 0.002126 0.1159 0.006915  0.04102
11 2.416 0.1747 0.11148.269e-005 0.002704  0.02088 0.118 0.006951  0.04134
12 2.402 0.1753 0.11168.018e-005  0.02678  0.02145 0.1156 0.006994  0.04093
13 2.404 0.1749 0.11158.185e-005 0.008906 0 o] 0
total(sec) 50.32 2.468 1.557 0.001169  0.08058 0.7677 3.622  0.09268 1.044
av(sec)/k 3.594 0.1763 0.11128.351e-005 0.005756  0.05483 0.2587  0.00662  0.07455

min(sec) 2.397 0.1714 0.1092 7.99e-005 0.002704 0 0 0

max(sec) 18.96 0.2031 0.1134 0.0001131  0.02678 0.3873 2.189 0.009146 0.294

% total 83.93 4.118 2596  0.00195 0.1344 1.281 6.041 0.1546 1.741

total CPU time = 59.95 sec
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Output file r SQPppJour nal . out

** Algorithm iteration detailed journal output ok

** Below, detailed information about the SQP algorithm is given ***

** while it is running. The amount of information that is ok

*** produced can be specified using the option ok

**+ rSQPSolverClientinterface::journal_output_level (the default ***

*** js PRINT_NOTHING and produces no output) bl

** Echoing input options ...

*** Setting up to run rSQP++ on the NLP using a configuration object of type
‘class ReducedSpaceSQPPack::rSQPAIgo_ConfigMamaJama’ ...

test_nlp = true: Testing the NLP!

Testing the supported NLPFirstOrderinfo interface ...

*** test_nlp_first_order_info(...) ***

Testing the vector spaces ...

Testing nlp->space_x() ...
nlp->space_x() checks out!

Testing nlp->space_c() ...
nlp->space_c() checks out!

** NLPTester:test_interface(...) ***

nlp->force_xinit_in_bounds(true)
nlp->initialize(true)

*** Dimensions of the NLP

nlp->n() = 30400

nlp->m() = 30000

nlp->mli() = 0

*** \/alidate the dimensions of the vector spaces

check: nlp->space_x()->dim() = 30400 == nlp->n() = 30400: true
check: nlp->space_c()->dim() = 30000 == nlp->m() = 30000: true
check: nlp->space_h().get() = 00000000 == NULL: true
|Inlp->xinit()||inf = 1.00000000e+001

*** \/alidate that the initial starting point is in bounds ...

check: xI <= x <= xu : true
xinit is in bounds with { max |u|] | Xl <= x + u <= xu } -> -1.00000000e+050

check: num_bounded(nlp->xI(),nlp->xu()) = 0 == nlp->num_bounded_x() = O: true
Getting the initial estimates for the Lagrange mutipliers ...

|[lambdal|inf = 0.00000000e+000

** Evaluate the point xo ...

f(xo) = 1.52000000e+006
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|lc(xo)|linf = 1.20897308e+007
*** Report this point to the NLP as suboptimal ...
*** Print the number of evaluations ...

nlp->num_f_evals() = 1
nlp->num_c_evals() = 1

Calling nlp->calc_Gc(...) at nlp->xinit() ...

Calling nlp->calc_Gf(...) at nlp->xinit() ...

Comparing products Gf*y Gc™y and/or Gh™y with finite difference values FDGf*y, FDGc™y and/or FDGh™y for random y’s ...

Hokdk

w*% Random directional vector 1 ( |ly|_1 / n = 5.00741357e-001 )

ok
rel_err(Gf*y,FDGf*y) = rel_err(6.53040559e+002,6.53040559e+002) = 1.93477565e-011
rel_err(sum(Gc™y),sum(FDGc™y)) = rel_err(2.20905038e+008,2.20905038e+008) = 1.37878129e-013
Congradulations! All of the computed errors were within the specified error tolerance!

. end testing of nlp

** rSQPppSolver::solve_nlp() il

** Starting rSQP iterations ...

(0) 1: "EvalNewPoint"
X is not updated for any k so set x_k = nlp.xinit() ...
|Ix_k|linf = 1.000000e+001

Updating the decomposition ...

Printing the updated iteration quantities ...
fk = 1.520000e+006

||Gf_K|linf = 1.000000e+001

llc_K|linf = 1.208973e+007

*** Checking derivatives by finite differences

Comparing products Gf*y and/or Gc™y with finite-difference values FDGf*y and/or FDGc™y for random y's ...

Hokdk

**+% Random directional vector 1 ( |ly||_1 / n = 4.995094e-001 )

ok
rel_err(Gf*y,FDGf*y) = rel_err(1.959355e+002,1.959355e+002) = 4.408797e-010
rel_err(sum(Gc™y),sum(FDGc™y)) = rel_err(4.737147e+008,4.737147e+008) = 5.088320e-013

For Gf, there were 1 warning tolerance violations out of num_fd_directions = 1 computations of FDGf*y
and the maximum violation was 4.408797e-010 > Gf_waring_tol = 1.000000e-010

Congradulations! All of the computed errors were within the specified error tolerance!

(0) 2: "RangeSpaceStep"

275



llpyll = 1.000000e+001

|IYpyll2 = 1.732051e+003

(0) 2.1: "CheckDecompositionFromPy"

beta = ||py|l/llc|]| = 8.271483e-007

(0) 2.2: "CheckDecompositionFromRPy"

beta = ||(Ge(decomp)*Y)*py_k + c_k(decomp)|linf / (Jlc_k(decomp)|linf + small_number)

5.587935e-009 / (1.208973e+007 + 2.225074e-308)
= 4.622051e-016

(0) 2.3: "CheckDescentRangeSpaceStep”

Gc_k exists; compute descent_c = c_k(equ_decomp)*Gc_k(:,equ_decomp)*Ypy_K ...
descent_c = -4.369965e+018

(0) 3: "ReducedGradient"

|IrGfl|inf = 1.353686e+003

(0) 4: "CalcReducedGradLagrangian"

|IFGL_K]|inf = 1.353686e+003

(0) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)
scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)

scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)
opt_scale_factor = 1.100000e+001 (scale_opt_error_by Gf = true)

opt_kkt_err_k = 1.230623e+002 > opt_tol = 1.000000e-008
feas_kkt_err_k = 1.208973e+007 > feas_tol = 1.000000e-010
comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006
step_err = 0.000000e+000 < step_tol = 1.000000e-002

Have not found the solution yet, have to keep going :-(
(0) 6.-1: "CheckSkipBFGSUpdate"

(0) 6: "ReducedHessian"

Basis changed. Reinitializing rHL_k = eye(n-r) ...

(0) 7: "NullSpaceStep"

|lpz_K|linf = 1.353686e+003
[1Zpz_k||2 = 4.271437e+005

(0) 8: "CalcDFromYPYZPZ"

(Ypy_k™*zZpz_K)/(||Ypy_Kk||2 * ||Zpz_Kk||2 + eps) = 9.979894e-001
||d|linf = 2.471247e+003

(0) 9.-2: "LineSearchFullStep"

f k = 1.520000e+006
|lc_k|linf = 1.208973e+007
alpha_k = 1.000000e+000
|Ix_kpl|linf = 2.461247e+003
f kpl = 9.123131e+010

|lc_kp1|jinf = 4.579853e+013

(0) 9.-1: "MeritFunc_PenaltyParamUpdate"
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Update the penalty parameter...

Not near solution, allowing reduction in mu ...

mu = 8.286385e-006

(0) 9: "LineSearch”

Begin definition of NLP merit function phi.value(f(x),c(x)):
*** Define L1 merit funciton (assumes Gc_k'*d_k + c_k = 0):
phi(f,c) = f + mu_k * norm(c,1)
Dphi(x_k,d_k) = Gf_k' * d_k - mu * norm(c_k,1)

end definition of the NLP merit funciton

Dphi_k = -7.389329e+008

Starting Armijo Quadratic interpolation linesearch ...

Dphi_k = -7.38932862e+008
phi_k = 4.52030000e+006

itr alpha_k phi_kpl  phi_kpl-frac_phi

0 1.00000000e+000 1.14557884e+013 1.14557839e+013
1 1.00000000e-001 1.34428112e+010 1.34382983e+010
2 1.00000000e-002 2.53185818e+007 2.07990207e+007
3 1.31074052e-003 3.44902601e+006 -1.07117714e+006

alpha_k = 1.310741e-003

|Ix_kp1|inf = 1.177433e+001

f_kpl = 7.133842e+005

|lc_kp1||inf = 1.102321e+007

phi_kp1 = 3.449026e+006

(1) 1: "EvalNewPoint"

(13) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)
scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)
scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)
opt_scale_factor = 1.000000e+000 (scale_opt_error_by_Gf = true)

opt_kkt_err_k = 3.273859%e-012 < opt_tol = 1.000000e-008
feas_kkt_err_k = 1.518593e-012 < feas_tol = 1.000000e-010
comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006
step_err = 0.000000e+000 < step_tol = 1.000000e-002

Jackpot! Found the solution!!!!!! (k = 13)
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E A Simple Convention for the Specification of Linear-
Algebra Function Prototypes in C++ using Vector and
Matrix Objects

A simple convention for the specification of C++ function prototypes for linear alge-
bra operations with vectors and matrices is described. This convention leads to function
prototypes that are derived directly from the mathematical expressions themselves (and are
therefore easy to remember), allow for highly optimized implementations (through inlin-
ing in C++), and do not rely on any sophisticated C++ techniques so that even novice C++
programs can understand and debug through the code.

Introduction

Linear algebra computations such as matrix-vector multiplication and the solution of linear
systems serve as the building blocks for numerical algorithms and consume the majority of
the runtime of numerical codes. These linear algebra abstractions transcend details such as
matrix storage formats (of which there are many) and linear system solver codes (sparse or
dense, direct or iterative). Primary linear algebra abstractions include vectors and matrices
and the operations that can be performed with them. C++ abstractions for vectors and
matrices abound.

Given that convenient vector and matrix abstractions are defiredandMat for in-
stance, there is a need to implement BLAS-like linear algebra operations. Given that C++
has operator overloading, it would seem reasonable to implement these operations using a
Matlab© like notation. For example, the matrix-vector multiplicatipr- y + ATz might
be represented in C++ with the statemgnt y + trans(A) * X (the character
can not be used for transpose since it is not a C++ operator). Matlab is seen by many in
the numerical computational community to be the ideal for the representation of linear al-
gebra operations using only ASCII characters [33]. The advantages of such an interface
are obvious. It is almost the same as standard mathematical notation, which makes it very
easy to match the implementation with the operation for the application programmer, and
makes the code much easier to understand. The primary disadvantage for this in C++ is
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that the straightforward implementation requires a lot of overhead because operators are
implemented in a binary fashion. For example, for the operation y + trans(A)

* x, a temporary matrix:(> overhead) and two temporary vectogs: (overhead) would

be created by the compiler. Specifically, the compiler would perform the following opera-
tions:Mat t1 = trans(A); Vec t2 = t1 * x; Vec t3 =y + t2; y =

t3; . Attempts have been made to come up with a strategy in C++ to implement opera-
tions likey = y + trans(A) * x in a way where little overhead is required beyond

a direct BLAS call [87]. It is relatively easy to implement these operator functions with
only a little constant-time overhead for a small set of linear algebra operations [112, pages
675-677]. However, for more elaborate expressions, a compile time expression parsing
method is needed. Some have advocated preprocessing tools, while others have looked at
using C++’s template mechanisms [119], [87]. In any case, these methods are complex and
not trivial to implement. Also, compilers are very fickle with respect to methods that rely
on templates. Perhaps in the future when many C++ compilers implement the ANSI/ISO
C++ standard [112], such methods may be more portable and reliable. But for now, such
methods are not really appropriate for general application development. Methods based
on runtime parsing are also possible but add more of a runtime penalty. Aliasing is also
another big problem. For example, suppose we allow users to write expressions like the
following:

y=x+v+aM" + By

An efficient parser that tries to minimize temporaries will have to scan the entire expres-
sion and realize that = Sy must be performed first and then no temporaries are needed.
A naive parser may perform = x first and then result in an incorrect evaluation. The
problem is that the more efficient the parser the more complicated it is and the harder it
will be for inexperienced users to debug through this code.

Without using operator overloading to allow application code to use syntay like
y + trans(A) * x , how can linear algebra operations be implemented efficiently?
The simple answer is to use regular functions (member or non-member) inlined to call the
BLAS. For example, for the operation = y + Az, one might provide a function like
add _to _multiply  _transpose(A,x,&y); . Itis trivial to implement such a function
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Function Call

y += alpha * A’ * x y a AT T
14 1 L4l \} \} ) )
\% ’5_\ S t M tV(&y, alpha, A, trans, x ) — Vp_StMtV(&y,alpha,A,trans,x)

Function Prototype

void Vp _StMtV( Vec* vs hs, double alpha
, const Mat& gms _rhsl, BLAS _Cpp:Transp trans rhsl
, const Vec& vs _rhs2);

Figure E.1. Example of the linear algebra naming convention for
y+ = aAlx

to call the BLAS with no overhead if a good inlining C++ compiler is used. The problem
with using functions is that it is difficult to come up with good hames that users can remem-
ber. For example, the above operation has been cBllesl _Mat _Vec _Mult(...) in
LAPACK++ [91], vm_multadd(...) in Meschach++ [95], anchult(...) in MTL

[73]. Even knowing the names of these functions is not enough. You must also know the
order the arguments go in and how are they passed.

Convention for specifying function prototypes

Here we consider a convention for constructing C++ function prototypes. The function
prototypes are constructed according to this convention where the name of the function and
the order of the arguments is easily composed from the mathematical expression itself. To
illustrate the convention, consider the operatjon y + oA’ z. First, rewrite the operation

in the formy+ = aA”'z (this is well understood by C, C++ and Perl programmers). Next,
translate into Matlab-like notation gs += alpha*A™x  (except Matlab does not have

the operator=). Finally, for Vec objectsy andx and aMat objectA, the function call

and its prototype are shown in Figure E.1. The tleAS Cpp::Transp  shown in

this function prototype is a simple C+enum with the valuesBLAS Cpp::trans  or

BLAS Cpp::no _trans
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Operation Character (Lower Case)
=(assignment,equals) _(underscore)

+=(plus equals) p_

+(addition,plus) p

- (subtraction,minus) m

* (multiplication,times) t

Operand Type Character (Upper Case) Argument(s)

Scalar S double

Vector V (rhs)const Vec&
(Ihs) Vec*

Matrix M (rhs)const Mat&, Transp
(Ihs) Mat*

Figure E.2. Naming convention for linear algebra functions in
C++

Figure E.2 gives a summary of this convention. Given this convention, it is easy to go
back and forth between the mathematical notation and the function prototype. For example,
consider the following function call and its mathematical expression:

Mp.StMtM( &C, alpha, A, no  _trans, B, trans )
—
C+=aAB?

One difficulty with this convention is dealing with Level-2 and Level-3 BLAS that have
expressions such as:

C=ao0p(A)op(B)+ p C (XGEMM)
5

Given # 1 we can not simply rewrite the above BLAS operation using +=. To deal
with this problem,5 is moved to the end of the argument list and has a default value of 1.0
as shown below:

282



Mp.StMtM( &C, alpha, A, trans A, B, trans B, heta
default to 1.0

Only exact equivalents to the Level-2 and Level-3 BLAS need be explicitly imple-
mented (i.e.Vp_StMtV(...) andMp.StMtM(...) ). Functions for simpler expres-
sions can be generated automatically using template functions. As an example, consider
the following linear algebra operation and its function call:

y = Ax (XGEMV — y = aop(A)z + By)
—
VMtV( &y, A, no _trans, X )

In the above example, the template functigmiMtV(...) can be inlined to call
Vp_StMtV(...) which in turn can be inlined to call the BLAS functi@GEMV(...)
The use of these automatically generated functions makes the application code more read-
able and also allows for specialization of these simpler operations later if desired. The
implementation of the above template functdmmtV(...) is trivial and is given below:

template<class M_t, class V_t>
inline void V_MtV(V_t* y, const M_t& A, BLAS_ Cpp::Transp trans_A, const V_t& x)

{
Vp_StMtV( y, 1.0, A, no_trans, x, 0.0 );

}

Longer expressions suchas= a A"z + Bz are easily handled using multiple function
calls such as:

y = aAlz + Bz

—

V_StMtV( &y, alpha, A, trans, X );
VpMtV( &y, B, no _trans, z );

As stated above, only the base BLAS operatidpsStMtV(...) (e.g.xGEMV(...) )
andMp StMtM(...) (e.g.xGEMM(...) ) must be implemented for the specific vector
and matrix typed/ec andMat. For example, if these are simple encapulations of BLAS
compatible serial vectors and matrices (e.g. TNT style) then the call the the BLAS func-
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tions can be written as template functions for all serial dense vector and matrix (column
oriented) classes. For example:

template<class M_t, class V_t>
inline void Vp_StMtV( V_t* y, double alpha, const M_t& A, BLAS_Cpp::Transp trans_A
, const V_t& x, double beta = 1.0 )

{
DGEMV( trans_A == no_trans ? 'N’' : 'T’, rows(A), cols(A), alpha
&ALL), &A(1,2) - &A(1,1), &x(1), &x(2) - &x(1), beta
&(Y)D), &(Y)Q2) - &(y)(1) )

Of course the above function would also have to handle the cases wiveséA)
and/orcols(A) was 1 but the basic idea should be clear. By callogs(...) and
cols(...) as nonmember functions, they can be overloaded to call the appropriate
member functions on the matrix object since there is not standard.

WhenVec andMat are polymorphic types we can use a trick to implemémiStMtV(...)
andMp.StMtM(...) using member functions. For example:

class Vec { ... }

class Mat {
public:
virtual void Vp_StMtV( V_t* y, double alpha, BLAS_Cpp::Transp trans_A
, const V_t& x, double beta ) const = O;

b

inline void Vp_StMtV( Vec* y, double alpha, const Mat& A, BLAS_Cpp:Transp trans_A
, const Vec& Xx, double beta = 1.0 )

{
A.Vp_StMtV(y,alpha,trans_A x,beta);

}

Using these inlined non-member functions there is no extra overhead beyond the in-
avoidable virtual function calls. In this way there is consistent calling of linear algebra
operations irregardless whether the vector and matrix objects are concrete or abstract.
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Conclusions

In summary, this convention makes it easy to write out correct calls to linear algebra oper-
ations without having to resort to complex operator overloading techniques. After all, the
main appeal for operator overloading is to make it easy for users to remember how the call
linear algebra operations and to make written code easier to read. The convention described
in this paper meets both of these goals and also results in code that is easy for novice C++
developers to understand and debug. Debugging code can easily take longer than writing it
in the first place. When concrete abstractions of dense linear algebra types are used, it was
shown that these functions do not have to impose any overhead beyond direct BLAS calls
if inlining is used. When polymorphic vector and matrix types are used, inlining to call the
virtual functions also results in no extra overhead.
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F Unified Modeling Language (UML) Quick Reference Guide

The Unified Modeling Language (UML) is a newly standardized graphical language for
Object-Oriented modeling (http://www.omg.org).

UML : Typesof Diagrams

Structural / Static Diagrams/ Models
 ClassDiagrams (Objed Diagrams) : Abstractions and relationships
» Package Diagrams: Organizational Units

Dynamic / Behavioral Diagrams/ Models

* Interaction Diagrams: Objed interactions during scenarios
» SequenceDiagrams: Streses squences of events
* Collaboration Diagrams: Stresses objed relationships
* Activity Diagrams (extended flowcharts)

» State (Transition) Diagrams: State spedfic behavior of a class
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UML Structural Entities: Classesand Objeds

Class (General Form) note
name

- note
\ attributes lipk /
e ClassName /

attribute_name : type = init_value ol ..

This is a note about this class

operation(arg_name:type = init_value )®

operations
name

\ Class
Class
name
~e ClassName
operation(arg_name:type = init_value )‘\
operations

Object (General Form)

object name

class name .
Object .
object name Object class name
® objectName : ClassName @ |
attribute_name :value ‘\. e ‘ ‘ . ClassName ./‘

UML Structural Diagrams: Class & Object with Relationships

E— ]
Class Diagram
multiplicity
association Cllassi dependency
¥. 1
1% qualified
association
o pveeammn BIUSURNI S
generalization ._’/
qualifier
Uy
composition
1..*
DerivedClass3 /—\:Iasss
navigation
Object Diagram
class diagram object diagram object diagram

(explicit) (general)

: Teacher II

School

1

southMiddle : School ‘

1.%

Teacher Jen Bob
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UML Structural Diagrams: Packages Diagrams

Package Package Diagram

| Packagel |
1]
Classl Packagel

1

1..* dependancy

Class2

1

stereotype

Package2

: «import»

Package3
UML Dynamic Diagrams: Interaction Diagrams
E—— ]
Collaboration Diagram
1: operation1(...) - sequence number
objectl : Classl operation name
/_ ‘/—direction
1.2: operation1(...) ! 1.1: operation1(...) - -
Client object2
actor
object3
name message 1.2.1: operation1(...) —
1.2.1.1: operation2(...) «
Sequence Diagram
‘ objectl : Classl ‘ ‘ object2 ‘ ‘ object3 ‘ life line

time

operationi(...) ] activation ._/
> . - :
/. operationi(...) ._/ :

Client ® operationl(...) :

call \ - operationl(...)
operation2(...)

message

»
»

recussion
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