
SAND REPORT
SAND2002-3198
Unlimited Release
October 2002

Large Scale Non-Linear Programming
for PDE Constrained Optimization.

Bart van Bloemen Waanders, Roscoe Bartlett, Kevin Long, Paul Boggs,
Andrew Salinger
Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of

Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government, nor any agency

thereof, nor any of their employees, nor any of their contractors, subcontractors, or their

employees, make any warranty, express or implied, or assume any legal liability or re-

sponsibility for the accuracy, completeness, or usefulness of any information, appara-

tus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Govern-

ment, any agency thereof, or any of their contractors or subcontractors. The views and

opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from

the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

SAND2002-3198Unlimited Release
PrintedO
tober 2002

Large Scale Non-Linear Programming for PDE
Constrained Optimization.

Bart van Bloemen Waanders and Roscoe Bartlett,
Optimization and Ucertainty Quantification Department

Kevin Long and Paul Boggs
Computational Science & Math

Andrew Salinger
Computational Sciences

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

3

Abstract

Three years of large-scale PDE-constrained optimization research and development are
summarized in this report. We have developed an optimization framework for 3 levels of
SAND optimization and developed a powerful PDE prototyping tool. The optimization
algorithms have been interfaced and tested on CVD problems using a chemically reacting
fluid flow simulator resulting in an order of magnitude reduction in compute time over a
black box method. Sandia’s simulation environment is reviewed by characterizing each dis-
cipline and identifying a possible target level of optimization. Because SAND algorithms
are difficult to test on actual production codes, a symbolic simulator (Sundance) was de-
veloped and interfaced with a reduced-space sequential quadratic programming framework
(rSQP++) to provide a PDE prototyping environment. The power of Sundance/rSQP++ is
demonstrated by applying optimization to a series of different PDE-based problems. In ad-
dition, we show the merits of SAND methods by comparing seven levels of optimization for
a source-inversion problem using Sundance and rSQP++. Algorithmic results are discussed
for hierarchical control methods. The design of an interior point quadratic programming
solver is presented.

Acknowledgment

The authors acknowledge the insightful and significant contributions of our collaborators:

Omar Ghattas - Carnegie Mellon University
Larry Biegler - Carnegie Mellon University
Matthias Heinkenschloss - Rice University
George Biros - Courant, New York University
Jon Tolle - University of North Carolina
Anthony Kearsley - National Institute of Standards and Technology

The authors would also like to acknowledge students and post docs who contributed to
the project in many ways:

Volkan Akcelik - Carnegie Mellon University
Tony Padula - Rice University
Agata Comas - Rice University
Greg Itle - Carnegie Mellon University
Carl Laird - Carnegie Mellon University

Finally, the authors would like to acknowledge William Hart and Mike Eldred for ini-
tiating the project and Roger Pawlowski for his contributions to the CVD optimization
problem.

The format of this report is based on information found in [71].

2

Contents

1 Introduction 11
1.1 State of the Field 13

1.1.1 Algorithms and applications . 13
1.1.2 Software . 14

1.2 Accomplishments of this Project . 15
1.2.1 Classification of PDECO Problems . 15
1.2.2 Software Development . 15
1.2.3 Numerical Experiments . 16
1.2.4 Hierarchical Control . 16

1.3 Conclusions and Recommendations . 17
1.3.1 Recommendations . 17

2 Mathematical Overview: Sensitivities and Levels of Optimization 21
2.1 Overview 21
2.2 Implicit State Solution and Constraint Sensitivities . 23
2.3 NAND 24

2.3.1 Exact Reduced Gradients . 26
2.4 SAND 27

2.4.1 Full Newton SAND . 30
2.5 Implementation Issues and Summary . 32

3 PDE Environment 39
3.1 Overview 39
3.2 Sandia Applications and Classifications. 40

3.2.1 Structural Dynamics . 41
3.2.2 Solid Mechanics . 41
3.2.3 Thermal . 42
3.2.4 Computational Fluid Dynamics . 42
3.2.5 Fire .. 44

3

3.2.6 Shock Physics . 44
3.2.7 Electrical Simulation . 45
3.2.8 Geophysics . 45
3.2.9 Observations & Strategies . 46

4 rSQP++ Framework 48
4.1 Mathematical Background for SQP . 49

4.1.1 Nonlinear Program (NLP) Formulation . 49
4.1.2 Successive Quadratic Programming (SQP) . 52
4.1.3 Reduced-Space Successive Quadratic Programming (rSQP) 55
4.1.4 General Inequalities and Slack Variables . 61

4.2 Software design of rSQP++ 66
4.2.1 An Object-Oriented Approach to SQP . 66
4.2.2 High-Level Object Diagram for rSQP++ . 69
4.2.3 Overview of NLP and Linear Algebra Interfaces 74
4.2.4 Overview ofGeneralIterationPack : Framework for Gen-

eral Iterative Algorithms . 83
4.2.5 Overview of Interfaces for Null-Space Decompositions 88
4.2.6 Interfaces to Quadratic Programming Solvers 91

4.3 Configurations for rSQP++ .. . 94
4.3.1 MamaJama Configurations . 95

4.4 Examples NLP subclasses 103
4.5 Detailed Descriptions of Input and Output Files . 107

4.5.1 Output to Console . 108
4.5.2 Output torSQpppAlgo.out . 111
4.5.3 Output torSQpppSummary.out . 114
4.5.4 Output torSQpppJournal.out . 115

5 MPSalsa/rSQP++ Interface and Results 119
5.1 Introduction 119
5.2 CVD Reactor Optimization Problem . 120
5.3 Numerical Methods 122

5.3.1 Reacting Flow Simulation . 122
5.4 Results 125

5.4.1 One Parameter Model . 125
5.4.2 Three Parameter Model . 129
5.4.3 Effects of Jacobian Inexactness and Second Order Corrections 132

5.5 Optimization problem - Source Inversion . 133
5.6 Conclusions, Stability, Interface & Validation . 136

4

6 Sundance 139
6.1 An introductory example 140

6.1.1 Step-by-step explanation . 141
6.1.2 Complete code for the poisson problem . 148

6.2 A PDE-constrained optimization example. 150
6.2.1 Sundance problem specification . 151

6.3 Symbolic components 156
6.3.1 Constant expressions . 156
6.3.2 Parameter expressions . 156
6.3.3 Coordinate expressions . 157
6.3.4 Differential operators . 158
6.3.5 Test and unknown functions . 158
6.3.6 Test and unknown parameters . 159
6.3.7 Discrete functions . 159
6.3.8 Cell property functions . 163

6.4 Geometric components 163
6.4.1 Meshes . 163
6.4.2 Cell sets . 165

6.5 Discretization 167
6.5.1 Basis families . 167
6.5.2 Quadrature families . 167
6.5.3 Upwinding . 168
6.5.4 Specification of row and column space ordering 168
6.5.5 Block structuring . 170

6.6 Boundary conditions. 171
6.7 Problem manipulation 171

6.7.1 Linearization . 171
6.7.2 Variations . 174
6.7.3 Sensitivities: Gradients and Hessians . 175

6.8 Linear Algebra and Solvers. 175
6.9 Transient problems 175

7 Sundance Optimization Survey 179
7.1 Sundance-rSQP++ Interface .. . 179

7.1.1 AbstractLinAlgPack -TSF Linear Algebra interface 181
7.1.2 NLPSundance: Interface between Sundance PDE-Constrained

Optimization Problems and rSQP++ . 182
7.1.3 PDE Constraints . 184
7.1.4 Example Sundance-rSQP++ Application . 185
7.1.5 TheSundanceNLPSolver helper class . 194

5

7.2 Example Sundance Optimization Application - Source Inversion of a Convection
Diffusion System 194

7.2.1 Inverse problem formulation . 201
7.2.2 Algorithm . 202
7.2.3 Numerical Experiments . 202

8 Split, O3D and Hierarchical Control 205
8.1 Overview 205
8.2 O3D .. 206

8.2.1 The Constraints . 209
8.2.2 Multiplier Estimates . 210
8.2.3 Early Termination . 210
8.2.4 Computational Issues . 211
8.2.5 Recentering in O3D . 211
8.2.6 The O3D Algorithm . 212
8.2.7 Implementation and Preliminary Results . 215

8.3 Split .. 218
8.4 Other Work 218
8.5 Hierarchical Control 219
8.6 Model Formulation 221
8.7 Numerical Results 231
8.8 Future Research 234
References 248

Appendix

A rSQP++ Equation Summary and Nomenclature Guide . 249
B Installation of rSQP++ 255
C Descriptions of Individual rSQP++ Packages . 259
D Samples of Input and Output for rSQP++ . 265
E A Simple Convention for the Specification of Linear-Algebra Function Prototypes

in C++ using Vector and Matrix Objects . 279
F Unified Modeling Language (UML) Quick Reference Guide 287

6

Figures

1.1 Numerical Results for Source Inversion for Convection Diffusion levels 0-5 19
1.2 Numerical Results for Source Inversion for Convection Diffusion levels 3-6 20

4.1 Algorithmic options for rSQP . 61
4.2 UML object diagram : Course grained object diagram for rSQP++ 70
4.3 UML package diagram : Packages making up rSQP++ 72
4.4 UML class diagram :AbstractLinAlgPack , abstract interfaces to lin-

ear algebra .. . 76
4.5 UML class diagram :NLPInterfacePack , abstract interfaces to non-

liner programs . 81
4.6 Example iterative algorithm . 84
4.7 Class diagram forGeneralIterationPack . 86
4.8 Object diagram for example iterative algorithm . 87
4.9 Scenario of use ofGeneralIterationPack . 88
4.10 Abstract interfaces for null-space decompositions . 89

5.1 Three different meshes for the restricted inlet design of the rotating disk
reactor are shown: (a) the baseline case mesh where the shoulder radius is
above the edge of the disk and the height is half of the inlet height; (b) a
mesh when the shoulder radius parameter is decreased; (c) a mesh where
the shoulder radius and height are both increased above the base case. 121

5.2 Results for a 1 parameter continuation run (bold line), showing the Ob-
jective Function as a function of the inlet velocity of the reactant gases.
Two results for the rSQP optimizer are shown, where the run starting atV = 14 (circle symbols with connecting arrow) converged to the expected
local minimum while the run starting atV = 20 (square symbols with
connecting arrow) converged to a point not seen on the continuation run. . . 126

5.3 Radial profiles of the surface deposition rate at three different solutions: the
initial guess atV = 20, and the final solutions from the two optimization
runs atV = 11:67 andV = 9:00. 127

7

5.4 Results for a 1 parameter continuation run with arc length continuation and
linearized stability analysis are shown. The dashed lines represent unstable
solution branches. The symbols show the results of the two optimization
runs from Figure 5.2. 128

5.5 Results of turning point continuation runs showing how the region of multi-
plicity identified in Figure 5.4 changes as a function the geometric Shoulder
Radius parameter. 129

5.6 Results of turning point continuation runs showing how the region of multi-
plicity identified in Figure 5.4 changes as a function the geometric Shoulder
Height parameter. 130

5.7 A comparison of the 3-parameter optimization run after60 iterations and
the 1-parameter run, started at the same conditions, which converged after14 iterations. .131

5.8 A comparison of4 runs for the 1-parameter model, comparing exact and in-
exact Jacobians, and with and without second order correction steps (S.O.C.).132

5.9 Source inversion of convection-diffusion in a box geometry. This was out
initial prototype problem for source inversion of chem/bio/rad attack sce-
narios. The left box shows convective streamlines and the right box shows
the diffusive behavior with the red “x” markers denoting sensor locations . . 135

5.10 Source inversion 2D cross-sectional model of a two-story airport facility.
The top figure shows flow streamlines, the middle figure shows concentra-
tions of an agent being released from two locations along the bottom floor,
and the third shows the ten sensor locations and concentration profiles from
a different source values. 137

7.1 UML class diagram :AbstractLinAlgPackTSF , Adapter subclasses
for ALAP-TSF . 181

7.2 UML class diagram : Sundance-rSQP++ interface . 183
7.3 Forward simulation for 40x40 boundary source . 197
7.4 Inversion for 40x40 boundary source . 197
7.5 Numerical Results for Source Inversion for Convection Diffusion levels 0-5 199
7.6 Numerical Results for Source Inversion for Convection Diffusion levels 3-6 200
7.7 Signal Inversion, left 4x4 sensors, right 10 x 10 sensors 203
7.8 Signal Inversion, 40x40 sensor . 204

8.1 The leader target .232
8.2 The follower target .232
8.3 Geometric constraints separating the controls . 233
8.4 The state variables restricted to the linex2 = 12 with
L =
F = 1:e+ 3 . . . 235
8.5 The control variables with
L =
F = 1:e+ 3 . 235

8

8.6 The state variables restricted to the linex2 = 12 with
L = 1:e + 6 and
F = 1:e+ 3 . 236
8.7 The control variables with
L = 1:e+ 6 and
F = 1:e+ 3 236
8.8 The state variables restricted to the linex2 = 12 with
L = 1:e + 3 and
F = 1:e+ 6 . 236
8.9 The control variables with
L = 1:e+ 3 and
F = 1:e+ 6 236

9

Tables

2.1 Summary of level-0 to level-3NAND optimization methods 36
2.2 Summary of level-4 to level-6SAND optimization methods 37

4.1 CPU and scalability for parallel example NLP . 106

7.1 Summary of CPU times (top) and objective function values (bottom) for
source-inversion on a boundary . 199

8.1 Numerical Performance Summary . 234

10

Chapter 1

Introduction

This report presents the results of a three-year research project to investigate algorithms
and software for the solution of optimization problems constrained by partial differential
equations (PDE). We refer to these problems as PDE-constrained optimization problems,
or PDECO. Our emphasis has been on developing algorithms for large-scale problems and
the use of parallel computers.

Several examples of PDECO are optimal estimation of material parameters, given ex-
perimental data and a physical model; optimal design of a device given a simulator and
the definition of an objective; nondestructive detection of defects; and determination of the
source of a contaminant, given a flow and dispersion model. All of these problems exhibit
large numbers of state and design variables and can be stated in the general formminimize f(y; u)y; u

subject to:
(y; u) = 0 (PDECO)
whereu is the set of parameters to be determined andy is the vector of “state” variables for
the PDE system represented by the constraint
(y; u) = 0. The objective function measures
the discrepancy that we wish to reduce or, in other problems, the design criteria we wish
to improve. In this report, we concentrate on equality constraints; our work on inequality
constraints is less well developed. We assume that given any value of the parameters,u,
we can compute the corresponding state variablesy.

Two general approaches for solving such problems are available. The first is to use
an existing PDE solver for the constraints to computey as a function ofu and evaluatef(y(u); u). This approach, referred to as the “black-box” approach, is easy to use because
it requires no modification to an existing PDE simulator, but restricts the choice of opti-
mization algorithm to those that are slowly convergent for PDECO type problems. Ideally,

11

we would like to use a method that converges quickly to the optimum value, but rapid con-
vergence usually requires the computation of the gradient of the objective functionf with
respect tou . The computation of this gradient, however, requires the knowledge of the
derivative ofy(u) with respect tou and this information is not often available from many
traditional PDE solvers. Furthermore, it is often extremely difficult, if not impossible as
a practical matter, to modify the PDE solver to compute this information. For these and
other reasons (detailed in chapter 2) black-box methods are typically restricted to smaller
size problems, in particular smaller design spaces.

The second possibility is already suggested by the above discussion, namely, to modify
the PDE solver to obtain the needed gradient, sensitivity, and adjoint information. The
ability to do this opens up a wide variety of more efficient optimization techniques and
provides the tools to address much larger problems. The demonstration of the power of
this approach was the major thrust of our work. The conclusion to draw is that PDE and
simulation software should be designed with optimization in mind to enable this power to
be applied to the many interesting and important SNL problems described below. One facet
of our research has been to develop a PDE framework that gives optimization algorithms
unprecedented control over the PDE processes.

Black-box methods are also referred to as nested analysis and design (NAND) and char-
acterize the majority of current SNL approaches. The ability to interface seamlessly with
any simulation code is an obvious key strength of the black-box methods and, coupled with
a range of algorithms and frameworks, such DAKOTA [37, 38, 39], have been able to solve
complex engineering design problems. As noted above, however, many limitations to this
strategy remain, but the continued existence of PDE codes for which gradient informa-
tion is not available has spurred other research at SNL in pattern search methods to try to
improve the efficiency of these solvers for problems where there are no other choices [57].

Optimization methods that are able to obtain gradient, adjoint, and sensitivity informa-
tion from the PDE solver can often be even more successful by not requiring exact solution
of the constraint equations at each iteration. This is especially important in problems where
the PDE constraints are nonlinear. In such cases, the constraints are only completely sat-
isfied in the limit as convergence to the optimal parameters is achieved. Thus this strategy
is called simultaneous analysis and design (SAND) [94] [83]. These methods have great
potential for solving large PDECO problems. There are many assumptions associated with
the application ofSAND algorithms to production simulation codes and probably the most
obvious disadvantage is the implementation cost necessary to equip PDE solvers with the
necessary facilities to compute gradient information. Nevertheless, PDECO may be the
only option to address large design spaces.

12

1.1 State of the Field

To put our work into context, we briefly survey the historical development and current state
of algorithms and software for PDECO.

1.1.1 Algorithms and applications

Several areas of research have motivated the development of PDE constrained optimization,
including shape optimization in computational fluid dynamics [2] [8] [43] [44] [21] [22]
material inversion in geophysics [81] [82] [3], data assimilation in regional weather predic-
tion modeling [124] [74], structural optimization [86] [92] [93], and control of chemical
processes [17]. A complete discussion of all the aforementioned disciplines is beyond the
scope of the report. Shape optimization in computational fluid dynamics (CFD), however,
has arguably made the largest contributions toward direct and adjoint sensitivities, which is
one of the important pieces of information needed bySAND algorithms, and we therefore
provide a brief background of some key developments.

In general, the shape optimization problem for CFD is extremely expensive since the
standard solution approach requires the complete solution of computationally expensive
flow equations for each optimization iteration. Pironeau first studied derivative-based shape
optimization using the adjoint formulation for minimum drag for both Stokes and incom-
pressible Navier-Stokes flow [90]. Jameson applied the adjoint method to shape optimiza-
tion using the Euler equations [62]. Numerous results have since been published on shape
optimization [79] [5] [6] [7] [14] [32], including compressible Navier-Stokes simulations
shape optimization of three dimensional wings [75] . Different solution procedures have
been attempted to try to improve the convergence of shape optimization algorithms. A
“one-shot-method” was introduced early in the 1990’s which used multi-grid methods
where the optimization and forward problems were solved with different levels of grid
fidelity [114]. Typically, the optimization problems were solved on coarser meshes. These
methods still required complete convergence of the flow code for each optimization iter-
ation, but could be considered the first attempt towardSAND methods. The result was a
significant reduction of the overall solution time.

SAND was introduced in the early eighties and nineties [52] [94] [83] and has devel-
oped momentum as the state-of-the-art methodology for optimization of large-scale simula-
tion problems. Significant results have been generated forSAND methods, in particular for
the serial case [2] [61] [8] [43] [114] [12] [67]. Less rapid advances have been made in the
area of parallel PDE-constrained optimization. The primary reason for this slow progress

13

is that forward simulation code development has only recently reached a high level of ma-
turity. Combined with the continuing growth in computer capabilities, large-scale PDECO
for parallel applications is now an important area of research [44] [20] [21] [22]. Most
parallel developments, however, involve specialty simulation codes connected to tailored
optimization methods, thereby avoiding some of the interfacing issues that are encountered
with legacy production codes. One of our primary goals was to address these interfacing
issues, and although interfacing remains problematic, we have made significant progress in
our software tools and general understanding of production PDE simulators.

Transient simulation poses yet another level of difficulty to large-scale PDE-constrained
optimization. One of the main obstacles is the efficient calculation of sensitivities in a
time-stepping scheme for large design spaces. Several approaches can be considered, one
of which is to utilize sensitivity calculations for differentiable algebraic equations (DAE)
for reduced-gradient calculations. By converting a PDE system to DAEs, various methods,
such as multiple shooting, can used to discretize in time [89] [46]. Even though large DAE
systems can be solved, these methods are limited to small number of design parameters.
For a large number of design variables, adjoint sensitivity in transient simulations have been
considered but are not efficient because of the large storage requirements. This results from
the need to integrate backward in time to calculate the adjoint vector, which requires storage
of the forward problem’s solution at every time step [64] [53]. A recent and most promising
result from Akcelik et al [3] demonstrated a full space Gauss-Newton method in which
they efficiently solved a 2.1 million variable inversion problem using the transient wave
equation. Finally, work in the area of time decomposition and control also has produced
promising algorithms and results [54].

1.1.2 Software

While progress has been made in developing algorithms for PDECO, the spread of these
algorithms to production software has been slow because of the tight coupling required
between optimizer and PDE simulation software. Although little work has been done on
software frameworks for PDE-constrained optimization and, with the exception of the work
presented in this report, virtually no work has been done on object-oriented frameworks
for PDECO, several attempts have been made to collect PDECO algorithms in libraries
(Veltisto and TRICE) [21] [22] [34]. An encouraging trend is that optimization codes are
starting to be written in terms of flexible linear algebra interfaces such as PETSc [9], the
Equation Solver Interface (ESI) [103], the Hilbert Class Library (HCL) [51], rSQP++ [10],
Trilinos [55] and the Trilinos Solver Framework (TSF) [56]. Similarly on the PDE sim-
ulation side, the state of the art is evolving away from codes specialized to a particular
discipline and toward general-purpose frameworks such as SIERRA and Nevada [111].

14

Identifying the additional changes to the design of both optimization software and PDE
simulators that will be required for the use of PDECO has been a major focus of this LDRD
project.

1.2 Accomplishments of this Project

1.2.1 Classification of PDECO Problems

Large-scale PDE-constrained optimization comes in many forms and the variety of algo-
rithms and interfacing mechanisms presents a complex range of options for a heteroge-
neous simulation environment such as the one that exists at SNL. To achieve a general
approach forSAND optimization for a large range of simulation codes is a lofty challenge,
because by definitionSAND methods leverage the linear algebra of the simulation code
and therefore each interface needs to be custom designed. This research project addresses
these interfacing problems through a variety of software tools and establishes a system-
atic nomenclature and approach for the consideration ofSAND optimization. Chapter 2
will introduce a sequence of levels of coupling between PDE solver and optimizer, with
Level 0 being the most loosely coupled and Level 6 being the most tightly coupled and po-
tentially yielding the highest performance. Currently, most Sandia applications are capable
of Levels 0 and 1 only.

Chapter 2 contains a discussion of the mathematical foundations of PDECO, and a
systematic enumeration of the levels at which PDE and optimization codes can be cou-
pled. Briefly, Level 0 is the most loosely coupled black-box algorithm and Level 6 is
the most tightly coupled full-space algorithm, which potentially yields the highest perfor-
mance. Currently, most Sandia PDE applications are capable of Levels 0 and 1 only. In
Chapter 3 we discuss the general simulation environment at Sandia and possibilities for
PDECO in various disciplines. In Chapter 7 we show performance results for different
levels of PDECO.

1.2.2 Software Development

Software is a major challenge in PDECO, and much of our work has been to develop
software tools that will aid the exploration of research ideas in PDECO, provide guidance
for future development of production-quality PDECO capability, and provide immediate
PDECO capability for Sandia problems. These tools have been designed from the start

15

with PDECO and interoperability in mind. We have developed:� A software framework (rSQP++) for solving reduced-space PDECO problems.� A software framework (Split/O3D) for solving full-space and inequality-constrained
PDECO problems.� A PDE simulation component system (Sundance) that is capable of providing the
additional operations required by the more strongly coupled levels of PDECO.� An interface between rSQP++ and an existing production PDE code, MPSalsa, which
allowsSAND capability through Level 4.

All of these tools have been implemented in C++, all inter operate via the Trilinos linear
algebra components, and all have parallel capability.

1.2.3 Numerical Experiments

We have conducted numerical experiments to evaluate the different levels of PDECO. In
Chapter 5, we show results of Level 4 (c.f. Chapter 2) coupling between the rSQP++
optimizer and a Sandia production code, MPSalsa. This resulted in an order of magnitude
speedup relative to a Level 1 “black box” method. These experiments have also given us
insight into the accuracy required in Jacobian calculations. In Chapter 7, we present a
survey of PDECO problems solved using rSQP++ and Sundance. Because of Sundance’s
very flexible nature, we have been able to explore all levels of coupling for PDECO; as
with MPSalsa, going to Level 4 yields an order of magnitude speedup relative to Level 1,
and then going to the highest degree of coupling (at this point, possible only through using
Sundance as the PDE solver), Level 6 yields a further order of magnitude speedup beyond
Level 4. Figure 1.1 and 1.2 show the results of a numerical experiment solving a source
inversion problem constrained by a convection diffusion problem. Large differences in
numerical efficiencies can be be observed at each level of optimization.

1.2.4 Hierarchical Control

Although not originally part of the proposal, an interesting class of problems arose that
we spent some time considering. In particular, it often occurs in applications that there is
more than one objective. The so-called “multi-objective” optimization problem has some

16

special properties when the constraints are PDEs. Suppose, for example, one wants to drill
a well into an aquifer to help in preventing contaminants from entering a city water system.
The primary objective is to reduce the contaminants in the system below a given threshold.
Secondary objectives may include minimizing cost, minimizing the time to completion, and
minimizing the amount of water taken out of the aquifer. There is no single way to handle
the multi-objective problem, but, building on work done in the area, we were able to show
how a formulation, called “hierarchical control,” that takes into account an ordering of the
objectives can yield solutions that are significantly smoother and thus more useful in many
applications. This work is described in Chapter 8 where we demonstrate the effectiveness
of our full-spaceSAND approach on a problem with significant inequality constraints.

1.3 Conclusions and Recommendations

With the increasing power of our massively parallel computing platforms and the increasing
sophistication of our PDE-based simulations comes an increasing demand for optimization
procedures that can exploit this power to improve designs significantly, to control processes
better, and to solve complex inversion problems more rapidly. As we have indicated above,
traditional,NAND approaches to solve PDECO problems are not up to the task and tradi-
tional PDE solvers are not designed with optimization in mind and thus are difficult to use
with faster methods. The major result of this research project is a demonstration that the
potential speedup resulting from modernSAND approaches can be achieved. This demon-
stration was made possible by developing a powerful PDE environment and two advanced
optimization codes, which were to nontrivial problems. For SNL to realize fully this poten-
tial will require changes in how SNL develops its simulation codes and PDE solvers. The
following recommendations address these issues.

1.3.1 Recommendations

1. Because of the large speedup resulting from sensitivities andSAND optimization,
future simulators and PDE solvers should be designed with optimization in mind and,
in particular, with enhancements that include gradients, sensitivities, and adjoints.
These features are difficult to add as an afterthought. Along these same lines, Sierra
and Nevada should be extended to include these capabilities.

2. rSQP++ and Split/O3D should be further developed and also interfaced with DAKOTA.
DAKOTA is already interfaced with SIERRA, and will eventually be interfaced to

17

Nevada, so the rSQP++/Split/O3D interface to DAKOTA will facilitate PDECO with
SIERRA and Nevada.

3. The development of Sundance as a prototyping and rapid development environment
for parallel PDECO should be continued. In addition, the possibility of interfacing
the Sundance symbolic problem definition capability with Sierra and Nevada should
be explored as a path to providing improved PDECO capability to those frameworks.

4. SNL should emphasize the development of frameworks and tools in C++ in a true
object-oriented manner. Developers should be encouraged to exploit existing frame-
works such as DAKOTA, rSQP++, Trilinos, and TSF and to develop inter-operable
components.

5. Incorporate the sensitivity procedures that we have demonstrated with MPSalsa into
on-going projects such as Xyce and Premo.

6. Extend the research and tools begun here to transient problems, inequality con-
straints, and real-time optimization.

7. Apply PDECO technology to homeland security applications such as improving the
response to chemical/biological/radiological attacks on facilities, water distribution
networks, and urban facilities.

18

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

Number of grid and design values

W
a
ll
 c
lo
c
k
 t
im
e
 (
s
e
c
)

Level 0

Level 1

Level 2

Level 3

Level 5

Level 4

Figure 1.1. Numerical Results for Source Inversion for Convec-

tion Diffusion for levels 0-5

19

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200

Number of grid and design variables

W
a
ll
 c
lo
c
k
 t
im
e

(s
e
c
)

Level 6

Level 5

Level 3

Figure 1.2. Numerical Results for Source Inversion for Convec-

tion Diffusion levels 3-6

20

Chapter 2

Mathematical Overview: Sensitivities
and Levels of Optimization

2.1 Overview

An introduction of the appropriate mathematics is presented to emphasize the important
linear algebraic components that are necessary for interfacing various levels of optimiza-
tion methods. This discussion is primarily designed to provide the PDE developer with the
fundamental knowledge for considering more efficient ways of solving optimization prob-
lems. Optimization methods are classified into two main categories,NAND andSAND,
each of which are further broken down to additional levels. The optimization levels de-
fine different interfaces for achieving higher efficiency. The calculation of the derivatives
(sensitivities) of “state” variables with respect to “design” variables is a crucial step toward
more efficient levels of optimization using so-called reduced-space methods. The incor-
poration of different types of sensitivities determine which levels ofNAND andSAND
optimization are possible.

We consider equality-constrained nonlinear programs (NLPs) of the formminy;u f(y; u) (2.1.1)

s.t.
(y; u) = 0 (2.1.2)

where:

21

y 2 IRnyu 2 IRnuf(y; u) : IR (ny+nu) ! IR
(y; u) : IR (ny+nu) ! IRny :
Equation (2.1.2) represents a set of nonlinear simulation equations which we refer to as

theconstraints. In this notation,
(y; u) is a vector function where each component
j(y; u),j = 1 : : : ny, represents a nonlinear scalar function of the variablesy andu. Here,u are
often called the design (or control, inversion) variables whiley are referred to as the state
(or simulation) variables. Note that the number of statey and designu variables areny
andnu respectively. A typical simulation code requires that the user specify the design
variablesu and then the square set of equations
(y; u) = 0 is solved fory. In the opti-
mization problem in (2.1.1)–(2.1.2),f(y; u) is a function that we seek to minimize while
satisfying the constraints; this function is called theobjective functionor just theobjective.
In an optimization problem, the design variablesu are left as unknowns which are deter-
mined, along with the statesy, in the solution of (2.1.1)–(2.1.2). In some application areas,
the partitioning into state and design variables is fixed and known a priori, while in other
application areas the selection may be arbitrary.

Here we discuss the issues involved in modifying an existing simulation code or devel-
oping a new code that can be used to solve optimization problems efficiently using various
levels of gradient-based methods.

The development effort required to implement the needed functionality for a simulation
code to be used in a gradient-based optimization algorithm varies depending on the level
of optimization method. The goal of this discussion is to be precise about what the require-
ments are for a simulation code for different levels of intrusive optimization. We define
intrusive optimization as methods that require more information from the simulation code
and may require more effort to interface. We start with sensitivities for the lower-level op-
timization methods and then move on to the sensitivities for the more invasive, higher-level
methods. This discussion should give the reader some idea what the expected improve-
ments in performance can be by going to higher-level optimization methods. An additional
goal of this treatment is to motivate simulation application developers to consider the po-
tential of higher-level optimization methods and to study optimization methods in further
detail. References are made to more thorough discussions of specific optimization methods
and results from various application areas for the interested reader.

We should also mention that all of the various levels of optimization methods that
are discussed here can also handle extra constraints beyond the state constraints shown
in (2.1.2). From the standpoint of an application developer, the sensitivity requirements for

22

these extra constraints are the same as for the objective function. In general, the same types
of computations that must be performed for the objective function must also be performed
for the extra constraints. The handling of these extra constraints is not described here, but
is described in the context of reduced-space SQP in Section 4.1.3.

2.2 Implicit State Solution and Constraint Sensitivities

The set of nonlinear equations
(y; u) = 0 can be solved fory using a variety of methods.
Using the solution method it is possible to define an implicit functiony = y(u); s.t.
(y; u) = 0: (2.2.3)

The definition in (2.2.3) simply implies that for any reasonable selection of the design
variablesu, the solution method can compute the statesy. Note that evaluating this im-
plicit function requires a complete simulation or “analysis” to be performed by the solution
method. The cost of performing the analysis may only be anO(ny) computation in a best-
case-scenario, but for many applications the complexity of the analysis solution is much
worse.

In the remainder of this section, we derive the sensitivities of the statesy with respect
to the designsu as related through the implicit function (2.2.3). We begin with a first-order
Taylor expansion of
(y; u) about(y0; u0) given by
(y; u) =
(y0; u0) + �
�y Æy + �
�uÆu+O(jjÆyjj2) +O(jjÆujj2) (2.2.4)

where: �
�y is a squareIRny-by-IRny Jacobian matrix evaluated at(y0; u0)�
�u is a rectangularIRny -by-IRnu Jacobian matrix evaluated at(y0; u0).
In this notation, the Jacobian matrix�
�y is defined element-wise as��
�y�(j;l) = �
j�yl , forj = 1 : : : ny; l = 1 : : : ny:
If the matrix �
�y exists and is nonsingular then the implicit function theorem [80, B.9]

states that the implicit function in (2.2.3) exists and is well defined in a neighborhood of

23

a solution(y0; u0). In some applications, the matrix�
�y is always nonsingular in regions
of interest. In other application areas where the selection of state and design variables is
arbitrary, the variables are partitioned into states and designs based on the non-singularity
of �
�y . Note that the only requirement for the latter case is for the Jacobian of
(y; u) to
be full rank. In any case, we will assume for the remainder of this discussion that, for the
given selection of states and designs, the matrix�
�y is nonsingular for every point(y; u)
considered by an optimization algorithm. The non-singularity of�
�y allows us to compute
a relationship between changes iny with changes inu. If we require that the residual not
change (i.e.
(y; u) =
(y0; u0)) then for sufficiently smallÆy andÆu the higher order terms
can be ignored and (2.2.4) gives�
�y Æy + �
�uÆu = 0: (2.2.5)

If �
�y is nonsingular then we can solve (2.2.5) forÆy = ��
�y�1 �
�uÆu: (2.2.6)

The matrix in (2.2.6) represents the sensitivity ofy with respect tou (for
(y; u) =
constant) which defines �y�u � ��
�y�1 �
�u: (2.2.7)

We refer to the matrix�y�u in (2.2.7) as thedirect sensitivity matrix.

2.3 NAND

Now consider how the above can be used to help solve optimization problems of the form
(2.1.1)–(2.1.2). The implicit functiony(u) allows the nonlinear elimination of the state
variablesy and the constraints
(y; u) = 0 to form thereduced objective functionf̂(u) � f(y(u); u): (2.3.8)

This nonlinear elimination leaves the following unconstrained optimization problem in the
space of the design variables only:

min f̂(u): (2.3.9)

The unconstrained optimization problem in (2.3.9) can be solved using a variety of
methods. Note that each evaluation off̂(u) requires the evaluation ofy(u) which involves

24

a complete simulation or analysis to solve
(y; u) = 0 for y. Therefore, a complete analysis
is nested inside of each optimization or design iteration. Optimization approaches of this
type are broadly categorized asnested analysis and designor NAND.

NAND optimization approaches that do not compute gradients will be referred to as
level-0 approaches and, as mentioned in the chapter 1, are generally restricted to search
methods. These will not be discussed further here. As we will see below, there are several
higher-level approaches that use sensitivities (i.e. derivatives).

Gradient-based optimization methods for (2.3.9) require the computation of thereduced
gradient �f̂�u 2 IR 1�nu: (2.3.10)

There are several relatively fast optimization methods that rely only on the reduced gradient
in (2.3.10) such as quasi-Newton methods (i.e. BFGS [85, Chapter 8]). These methods can
achieve superlinear rates of convergence whenu is of moderate dimension. A general
outline for these optimization algorithms is given next in Algorithm 2.3.1.

Algorithm 2.3.1 : Outline forNAND Algorithms for Unconstrained Optimization

1. Initialization: Choose tolerance� 2 IR and the initial guessu0 2 IRnu, setk = 0
2. Sensitivity computation: Compute the reduced gradient�f̂�u at y = y(uk); u = uk
3. Convergence check: Ifjj�f̂�u jj � � then stop, solution found!

4. Step computation: ComputeÆu 2 IRnu s.t. �f̂�uÆu < 0
5. Globalization: Find step length� that ensures progress to the solution

6. Update the estimate of the solution:uk+1 = uk + � Æuk = k + 1
goto step 2

A simple choice for the step computation in step 4 of Algorithm 2.3.1 is the steepest

descent directionÆu = ��f̂�uT for which the required descent property holds�f̂�uÆu = ��f̂�u �f̂�uT < 0
25

if �f̂�u 6= 0. Most quasi-Newton methods compute a search directionÆu by maintaining a

positive-definite matrixB and then computingÆu = �B�1 �f̂�uT (which is also easy to show
has the descent property).

The simplest way to compute the reduced gradient is to use finite differences. For
example, using one-sided finite differences, each component of the reduced gradient can
be approximated as �f̂�u!i � f(y(uk + �ei); uk + �ei)� f(y(uk); uk)� ; i = 1 : : : nu: (2.3.11)

NAND optimization approaches that use finite differences as in (2.3.11) will be referred to
aslevel-1approaches.

2.3.1 Exact Reduced Gradients

The major drawback of optimization approaches that rely on the finite-difference reduced
gradient in (2.3.11) is thatnu analyses are required per optimization iteration and the accu-
racy of the computed optimal solution is degraded because of the truncation error involved
with finite differences.

An alternative approach is to compute the reduced gradient in a more efficient and
accurate manner. The exact reduced gradient off̂(u) = f(y(u); u) is�f̂�u = �f�y �y�u + �f�u (2.3.12)

where: �f�y is a IR 1�ny row vector of the gradient w.r.t.y evaluated at(yk; uk)�f�u is a IR 1�nu row vector of the gradient w.r.t.u evaluated at(yk; uk)
and�y�u is the direct sensitivity matrix defined in (2.2.7). By substituting (2.2.7) into (2.3.12)
we obtain �f̂�u = ��f�y �
�y�1 �
�u + �f�u: (2.3.13)

The first term in (2.3.13) can be computed in one of two ways. The first approach, called
thedirect sensitivity approach, is to compute the direct sensitivity matrix�y�u = � �
�y�1 �
�u

26

first and then compute the product�f�y �y�u . The advantage of this approach is that many

simulation codes are already setup to solve for linear systems with�
�y since they use a
Newton-type method to solve the analysis problem. The disadvantage of the direct sensi-
tivity approach is that to form�y�u , nu linear systems must be solved with the Jacobian�
�y
for each column of�
�u as a right-hand side. This is generally a great improvement over
the finite-difference reduced gradient in that the solution of anu linear systems with�
�y is
cheaper than a full simulation to evaluatey(u) and the resulting reduced gradient is much
more accurate. Optimization algorithms that use this direct sensitivityNAND approach
will be referred to aslevel-2optimization methods.

The second approach for evaluating (2.3.13), called theadjoint sensitivity approach, is
to compute � = �
�y�T �f�y T 2 IRny (2.3.14)

first, followed by the formation of the product�T �
�u . The column vector� is called the
vector ofadjoint variables(or the Lagrange multipliers, see (2.4.16)). The advantage of
this approach is that only a single solve with the matrix�
�y T is required to compute the
exact reduced gradient. This removes theO(nu) complexities of the level-1 and level-
2 optimization approaches. However, at least one complete analysis is still required per
optimization iteration to computey = y(uk) in step 2 of Algorithm 2.3.1. The disadvantage
of the adjoint sensitivities approach is that simulation codes which solve linear systems
with the Newton Jacobian�
�y may not be able to solve a linear system efficiently with its
transpose. It can be a major undertaking to revise a simulation code to solve with transposed
systems, especially if the Jacobian is a parallel object.NAND approaches that use adjoint
sensitivities will be categorized aslevel-3optimization methods.

2.4 SAND

To this point we have only consideredNAND optimization approaches that require at least
one full simulation problem
(y; u) = 0 be solved at every optimization iteration. There
are also optimization approaches starting with an initial guess (y0,u0) where
(y0; u0) 6= 0
that will solve the simulation (analysis) problem and the optimization (design) problems
simultaneously. These higher-level optimization approaches are referred to assimultaneous
analysis and designor SAND. Many of theSAND approaches require the same reduced
gradient in (2.3.13). We refer toSAND methods that use direct sensitivities aslevel-4
methods and those that use adjoint sensitivities aslevel-5 methods. In addition to the
reduced gradient, level-4 and level-5SAND methods also require that the simulation code

27

(now to be referred to as the application) be able to compute Newton steps of the formÆyN = �
�y�1
 (2.4.15)

where �
�y�1 and
 are the Jacobian and the residual of the constraints
(y; u) computed at
the current estimate of the solution(yk; uk). This is usually not a very difficult extra re-
quirement given the requirements for the reduced gradient. In addition to the requirement
that the reduced gradient�f̂�u vanishes,SAND methods must also be responsible for solving
(y; u) = 0 to an acceptable tolerance. The condition thatjj
(y; u)jj (wherejj:jj is some
norm) must be reduced below a small tolerance is known as thefeasibility condition. When
we say that an optimization step improves feasibility, we mean that it decreases theinfea-
sibility jj
(y; u)jj. In addition to design variablesu, SAND methods must also explicitly
handle the statesy as optimization variables. The number of state variablesny can be very
large and this has a significant impact on the methods and implementation approaches that
can be used forSAND methods. In some applications (e.g. those requiring time-dependent
simulations), the amount of storage just needed to store vectors of sizeny can exhaust
the RAM of even high-end supercomputers. Algorithm 2.4.1 gives the outline for a basic
level-4/level-5SAND method.

Algorithm 2.4.1 : Outline of a Basic Level-4/Level-5SAND Optimization Algorithm

1. Initialization: Choose tolerances�
; �f 2 IR and the initial guessy0 2 IRny andu0 2 IRnu, setk = 0
2. Sensitivity computation: Compute the reduced gradient�f̂�u and the residual
 at(yk; uk)
3. Convergence check: Ifjj�f̂�u jj � �f andjj
jj � �
 then stop, solution found!

4. Step computation:

(a) Feasiblity step: Compute Newton stepÆyN = �
�y�1
 at (yk; uk)
(b) Optimality step: ComputeÆu 2 IRnu s.t. �f̂�uÆu < 0

5. Globalization: Find step length� that ensures progress to the solution

6. Update the estimate of the solution:yk+1 = yk + � �ÆyN + �y�uÆu�uk+1 = uk + � Æuk = k + 1
goto step 2

28

Note that Algorithm 2.4.1 has the same basic steps as Algorithm 2.3.1 and that these
steps are common to many optimization algorithms. However, the first major difference is
that the reduced gradient computed in step 2 is computed at the current estimate of the so-
lution yk instead of the fully converged solutiony = y(uk) as in Algorithm 2.3.1. Another
major difference is the explicit handling of the state variablesy and the constraints
. This is
seen in the sensitivity computation and the convergence check. The same methods that can
be used in aNAND algorithm to computeÆu, such as steepest descent and quasi-Newton,
can also be used in step 4b. While the globalization method used in aNAND algorithm
may be fairly simple, more sophisticated globalization strategies are needed forSAND and
these strategies may have to be application dependent. The last major distinction to point
out between Algorithm 2.3.1 and 2.4.1 is the update of the state variablesy in step 6. It is
easy to see that the updatedyk+1 satisfies the linearized constraints shown in (2.2.4) (with
the higher-order terms dropped out and setting
(y; u) = 0 and Æy = (yk+1 � yk)=�).
Therefore, one iteration of Algorithm 2.4.1 is essentially a Newton iteration for the equa-
tions
(y; u) = 0 where bothy andu are modified. Hence, manySAND methods show
quadratic rates of local convergence in the constraints (which is common for Newton meth-
ods).

What differentiates a level-4 from a level-5SAND method in Algorithm 2.4.1 is how
the reduced gradient in step 2 and the update for the states in step 6 are computed. The
SAND algorithm shown in Algorithm 2.4.1 is essentially equivalent to a reduced-space
SQP method that uses a coordinate variable-reduction null-space decomposition (see Sec-
tion 4.1.3). While there are other examples of level-4 and level-5SAND methods than the
one shown in Algorithm 2.4.1, the major types of computations remains the same (i.e. in-
tialization, sensitivity computation, convergence check, step computation and globaliza-
tion).

It has been shown in many different application areas that level-5 optimization methods
can compute a solution for optimization problems of the form in (2.1.1)–(2.1.2) at cost
which is a small multiple of the cost of solving a single analysis problem
(y; u) = 0 for
NLPs with a moderate number of design variables (i.e.nu = O(100)). However, these
methods, which use quasi-Newton or similar techniques (for step 4b in Algorithm 2.4.1),
generally require more and more optimization iterations to solve an NLP as the number of
design variablesnu is increased. The total number of optimization iterations required to
reach an acceptable solution tolerance is generallyO((nu)�QN) where�QN is some number
greater than 0 but generally less than 2.

29

2.4.1 Full Newton SAND

All of the level-2 through level-5 optimization methods only require first derivatives in the
form of the Jacobian matrices�
�y and �
�u and objective gradients�f�y and �f�u . However, if
second derivatives for the constraints and objective function are available, then potentially
more efficient higher-level optimization methods are available. Before discussing these
higher-level methods and the requirements from application codes we must first present the
formal optimality conditions for a solution to (2.1.1)–(2.1.2).

We begin with the definition of an important aggregate function called theLagrangian
given by L(y; u; �) � f(y; u) + �T
(y; u) (2.4.16)

where: � 2 IRny is the vector ofLagrange multipliers.

Given the definition of the Lagrangian, the optimality conditions (also known as the KKT
conditions [85]) state that the following are necessary requirements for the solution of
(2.1.1)–(2.1.2):�L�y = �f�y + �T �
�y = 0 (2.4.17)�L�u = �f�u + �T �
�u = 0 (2.4.18)�L�� =
(y; u) = 0: (2.4.19)

All SAND methods seek a solution of this set of nonlinear equations. Note that (2.4.17)
can be solved for� and then substituted into (2.4.18), yielding the definition of the reduced
gradient in (2.3.13). Therefore, the optimality conditions in (2.4.17) and (2.4.18) are equiv-
alent to�f̂�u = 0.

The system of nonlinear equations in (2.4.17)–(2.4.19) can be solved using Newton’s
method which has the following linear subproblem (known as the KKT system)264 �2L�y2 �2L�y�uT �
�y T�2L�y�u �2L�u2 �
�uT�
�y �
�u 37524 ÆyÆuÆ� 35 = �264 �L�y T�L�u T
 375: (2.4.20)

30

The above Hessians of the Lagrangian function are composites of the following Hessian
matrices for the objective and the constraints:�2f�y2 2 IRny�ny�2f�y�u 2 IRny�nu�2f�u2 2 IRnu�nu (2.4.21)

�2
j�y2 2 IRny�ny�2
j�y�u 2 IRny�nu�2
j�u2 2 IRnu�nu
9>>>>>>>>=>>>>>>>>; j = 1 : : : ny: (2.4.22)

Optimization methods that use second derivatives, or approximations to them, will be clas-
sified aslevel-6methods. These optimization methods are among the most sophisticated
gradient-based methods developed to date and continue to be a topic of active research
throughout the scientific community. The general outline for a level-6SAND optimization
method is given in Algorithm 2.4.2.

Algorithm 2.4.2 : Outline of a Level-6SAND Optimization Algorithm

1. Initialization: Choose tolerances�
; �y; �u 2 IR and the initial guessy0 2 IRny ,u0 2 IRnu and�0 2 IRny , setk = 0
2. Sensitivity computation: Compute�L�y , �L�u �2L�y2 , �2L�y�u , �2L�u2 and
 at (yk; uk)
3. Convergence check: Ifjj�L�y jj � �y, jj�L�u jj � �u and jj
jj � �
 then stop, solution

found!

4. Step computation: Solve the KKT system in (2.4.20) for(Æy; Æu; Æ�)
5. Globalization: Find step length� that ensures progress to the solution

6. Update the estimate of the solution:yk+1 = yk + � Æy
31

uk+1 = uk + � Æu�k+1 = �k + � Æ�k = k + 1
goto step 2

Note that a level-6SAND method must also maintain estimates of the Lagrange multi-
pliers in addition to estimates of the statesy and the designsu. Level-4 and level-5SAND
methods usually do not need an initial guess for�0 and do not maintain estimates of�. The
same globalization strategies used in level-4 and level-5SAND methods can be used, un-
altered, in a level-6SAND method. In many applications areas, these level-6 optimization
methods are quadratically convergent with algorithmic complexities that scale indepen-
dently of the number of design variablesnu [20]. One of the main disadvantages of this
level of invasiveness is that it is difficult for many different types of application codes to
generate accurate second derivatives in a reasonably efficient manner. Therefore, there can
be a large development overhead and computational expense involved in applying level-6
methods. The KKT system in (2.4.20) is expensive to solve and its solution is a bottleneck
in a level-6SAND method. Therefore, the most critical part of a level-6SAND method is
how the KKT system in (2.4.20) is solved and there are many different direct and iterative
approaches; the best approach is, of course, application dependent.

2.5 Implementation Issues and Summary

In this section, we discuss several issues that relate to the implementation of sensitivities,
the overall optimization method complexities/scalabilities, and the interface to optimization
methods. First the 7 levels of optimization are summarized below:

Level 0 is a NAND nongradient “black box” approach where the optimizer does not
require any information from the PDE code other than the objective function value per op-
timization iteration. This zero level is perfectly suited for simulation problems and codes
that are complex and do not calculate exact Jacobians and do not require the investigation
of large design spaces. Level 0 may be the only option for PDE codes where the complexity
of the physics precludes the calculation of analytic derivatives and where standard approx-
imations are poor. The interfacing cost is minimal, because most black-box methods can
communicate through the file system.

Level 1 is aNAND gradient-based “black box” approach where the optimizer requires
that the PDE code compute the objective function value and the gradient per optimization

32

iteration. The gradient is typically calculated using a finite difference method. Level 1
is suited for simulation codes that are complex, but smooth enough to allow reasonable
accuracy in the finite difference calculation. Level 1 is also suitable for problems that
pose an insurmountable software challenge and/or do not require the investigation of large
design spaces. Similar to level 0 approaches, the interfacing effort is minimal.

Level 2 is aNAND gradient-based method that uses direct sensitivities from the simu-
lation code. There are a few simulation codes at Sandia that calculate direct sensitivities.
Black-box approaches can typically take advantage of these sensitivities to calculate the
objective function gradient. The cost of this calculation is more than repaid by the fact that
no extra simulations are needed, unlike the use of finite differences. Besides the computa-
tional efficiency, direct sensitivities are more accurate, which results in a faster convergence
rate and better solutions. The level of effort to develop direct sensitivities is highly depen-
dent on the design of the simulation code. However, it is the obvious first step to improve
efficiency and the obvious first step towardSAND optimization. As explained in chapter 2,
most simulation codes are already designed to solve the linear system and the implementa-
tion of direct sensitivities requires solving this system with different right hand sides.

Level 3 is aNAND gradient-based method that uses adjoint sensitivities from the sim-
ulation code. Black-box approaches can again take advantage of these sensitivities to cal-
culate the reduced gradient of the objective function. There are significant computational
savings because it requires only one solution involving the transpose system of the Jacobian
of the forward simulation (independent of the number of design variablesnu). Similar to
direct sensitivities, the adjoint method produces accurate gradients. The effort to develop
direct sensitivities is highly dependent on the design of the simulation code. If the simu-
lation code has access to the Jacobian for the forward simulation and the simulation code
solvers can be used on the transpose of the Jacobian, then the implementation is relatively
inexpensive and straightforward. The adjoint formulation is a necessary step towardSAND
optimization methods. Once the adjoint vector can be calculated, a considerable amount of
the implementation effort is complete for aSAND method.

Level 4 is a SAND gradient-based method dependent on direct sensitivities. The im-
plementation effort associated with direct sensitivities is the same as described for level
2. Instead of passing this information to a black-box optimizer, it is passed directly to al-
gorithms closely coupled to the simulation. Additional implementation effort is therefore
involved to make use of a closely coupled algorithm. The extent of the effort depends
highly on how amenable a code is to coupling with other algorithms.

Level 5 is a SAND gradient-based method that is dependent on the “adjoint formu-
lation”. These algorithms require the solution of systems involving the transpose of the

33

state Jacobian. This method is similar to level 3, except that for a nonlinear problem it is
considerably more efficient.

Level 6 is known as the full-space method [20] and has the most computational potential
for very large design spaces. The level of intrusiveness is the highest as a result of having
to assemble and solve the full KKT system or the related QP subproblem. A full-space
algorithm generally requires the calculation or approximation of second derivatives in the
form of Hessian matrices.

It is very important to understand the implications of computing an accurate reduced
gradient in (2.3.13) that is used in level-2 through level-5 methods and how this differs
from the way that simulation codes are usually implemented. In a simulation code that
uses Newton’s method to solve
(y; u0) = 0, it is not critical that exact solves with�
�y be
performed, even near the solution. All that is required is a solution that improves feasibil-
ity (i.e. decreasesjj
(y; u)jj). Therefore, many advanced simulation codes are designed to
compute approximate Jacobians (i.e. operator splitting and other inexact methods) to make
the computation of the solutions cheaper. For optimization this is generally unacceptable.
Any significant error in the Jacobians will be reflected in the reduced gradient. In other
words, inaccurate Jacobian information is reflected in inaccurate solutions to the optimiza-
tion problem. This also applies to the Jacobian matrix�
�u . While a simulation code may
be designed to use exact Jacobians and to solve linear systems accurately with�
�y and may

even be able to solve systems involving�
�y T accurately, such a code is certainly not de-

signed to compute efficient sensitivities for the design variables�
�u . This matrix �
�u can be
approximated using finite differences, but this will potentially impose an additionalO(nu)
cost per optimization iteration, even for the level-3 adjoint sensitivity approach. In addi-
tion, this sensitivity matrix must be exact (or as accurate as possible) or the wrong reduced
gradient is computed. In some types of applications, the development effort and computa-
tional resources required to compute�
�u can be quite small, while in other areas computing
this matrix can be difficult and/or expensive.

While exact first derivatives are essential for level 2-5 methods, exact second derivatives
for level-6 methods are not as critical since second derivatives do not alter the optimality
conditions, but only the efficiency of the optimization algorithm. Quasi-Newton approx-
imations, for example, may not be accurate at all, but they have drastically reduced the
computational time on many problems [85, Chapter 10]).

In general, going from one level of optimization method to the next, interfacing a sim-
ulation code gets more difficult, but the resulting optimization algorithm becomes more
efficient. Therefore, the real trade-off usually between different levels of intrusive opti-
mization is that of developer (i.e. human) resources versus computational resources. For

34

applications with fewer design variables, level-5 methods may actually be faster than level-
6 methods because of the cost of computing (or approximating) and using second deriva-
tives. For many other applications, reductions in computational time (which may not be
very significant) do not justify the sometimes substantial investment in developer resources
needed to implement a level-6 method. However, in cases with large numbers of design
variables, level-6 methods offer the only hope of being able to solve difficult optimization
problems using reasonable amount of computing resources.

Tables 2.1 and 2.2 summarize the various levels of intrusive optimization and the gen-
eral requirements from simulation codes forNAND andSAND optimization methods. One
of the more significant pieces of information in these tables is the specific requirements
from simulation codes to be used with a particular level of intrusive optimization. The ap-
plication requirements in each table are additive. For example, all of the requirements for
level-2 methods are included in the requirements for level-3 methods. However, the avail-
ability of a quantity from a lower-level method in a higher-level method does not mean that
that quantity will actually be computed. For example, the ability to compute the direct sen-
sitivity matrix �y�u in a level-5 method does not mean that this matrix is actually computed.
To compute�y�u in a level-5 method defeats the whole purpose of the adjoint computation.

Note that the complexity per optimization iteration and the general number of opti-
mization iterations for level-2 methods is the same as for level-4 methods and the same
comparison applies for level-3 and level-5 methods. The difference is that the higher-level
methods have a smaller constant than the lower-level methods and these constants are not
shown inO(:::) notation. The ratio ofNAND versesSAND solution times will be appli-
cation dependent, but there can be an order of magnitude difference or more with many
applications for various reasons that we cannot discuss in detail here. In other applications,
the differences in performance will be smaller.

The last issue is how the requirements listed in Tables 2.1 and 2.2 can be met by an
application code and how this functionality can be used by an optimization algorithm. One
of the major complications is that these simulation codes run in a variety of computing
environments that range from simple serial single-process programs to massively parallel
programs. Furthermore, the way that a linear system is solved may vary greatly among ap-
plication areas. In some application areas, direct sparse solvers may be preferable (e.g. in
chemical process simulation) while massively parallel preconditioned Krylov-subspace it-
erative solvers (e.g. in many PDE simulators) are the preferred methods. Or the linear
adjoint equation in (2.3.14) could be solved using a nonmatrix-based method (e.g. using a
time-stepping adjoint solver). Matrix operator invocations can also be performed in a vari-
ety of ways using different data structures. In addition, specialized data structures can be
used in many application areas and can greatly improve performance. Therefore, a linear
algebra interface that is flexible enough to allow for all of this variability is key to success-

35

Optimization

level

Application requirements

(additive between levels)

Approximate

complexity per

optimization

iteration

Approximate

number of

optimization

iterations

level-0

Evaluation of objectivef(y; u), see (2.1.1)

Analysis solutiony(u), see (2.2.3)

O(nynu) polynomial to

exponential innu
level-1 Smoothness off(y; u) andy(u) O(nynu) O((nu)�QN)
level-2

Evaluation of direct sensitivity matrix�y�u , see (2.2.7)

Evaluation of objective gradients�f�y and �f�u , see (2.3.12)

O(nynu) O((nu)�QN)
level-3

Computation of adjoints� = �
�y�T �f�y T , see (2.3.14) O(ny) O((nu)�QN)
Table 2.1. Summary of level-0 to level-3NAND optimization

methods.

36

Optimization

level

Application requirements

(additive between levels)

Approximate

complexity per

optimization

iteration

Approximate

number of

optimization

iterations

level-4

Evaluation of objectivef(y; u), see (2.1.1)

Evaluation of constraints residual
(y; u), see (2.1.2)

Evaluation of direct sensitivity matrix�y�u , see (2.2.7)

Evaluation of objective gradients�f�y and �f�u , see (2.3.12)

Evaluation of Newton stepÆy = �
�y�1
(y; u), see (2.4.15)

O(nynu) O((nu)�QN)
level-5

Action of �
�y�1 on arbitrary vectors,

see (2.4.15)

Action of �
�y�T on arbitrary vectors,

see (2.3.14)

Action of �
�u on arbitrary vectors

Action of �
�uT on arbitrary vectors

O(ny) O((nu)�QN)
level-6

Evaluation of (or matrix-vector prod-

ucts with) Hessians�2
j�y2 , �2
j�y�u , �2
j�u2 , for j = 1 : : : ny, see

(2.4.22)�2f�y2 , �2f�y�u , �2f�u2 , see (2.4.21)

O(ny) O(1)
Table 2.2. Summary of level-4 to level-6SAND optimization

methods.

37

fully being able to interface an advanced simulation code to a general purpose optimization
algorithm. The details of one such interface are described in Section 4.2.3.

38

Chapter 3

PDE Environment

3.1 Overview

The engineering community has a critical need to simulate complex physics and, for the
last few decades, has developed numerous production simulation codes to address high
fidelity problems. Most of these codes have been parallelized and scale to hundreds and
some to thousands of processors. This monumental development and parallelization effort
has consumed developers for the last ten years with the somewhat unfortunate absence of
any capabilities to address SAND optimization, although some codes can produce limited
sensitivity information, which as previously discussed is an initial requirement for SAND
optimization. The use of NAND methods in combination with large scale PDE simulation
codes are limited to order ten design variables for the foreseeable future assuming the
current trends in computer hardware growth do not change. PDECO is therefore a critical
development strategy for those interested in the combination of large design space and
gradient based optimization of large scale complex problems. Using the seven levels of
optimization, we review the different simulation disciplines for SNL and attempt to identify
appropriate optimization levels.

Before categorizing SNL simulation codes, additional issues regarding simulation codes
need to be discussed:

1. Implicit vs explicit - The more efficient methods assume that the solution mech-
anism is implicit and that a Jacobian is formed so that Newton’s method can be
applied. Explicit codes depend on using solutions from the previous time step and
Jacobians are never formed.

39

2. Exact or inexact Jacobian- The theoretical optimality conditions require that the
Jacobian is exact. Robustness of the optimization algorithm depends on the accuracy
of the gradient calculations. Any use of approximations could significantly affect the
solution. Nevertheless, useful solutions have been obtained for many problems with
finite-difference, or other approximate, gradients.

3. Transient vs steady state- Although methods have been developed for transient
PDECO, significant efficiency problems still need to be resolved for the general op-
timization algorithms.

4. Continuum or non-continuum - SAND methods require smooth problems; to date,
there is no reasonable way for non-continuum codes to take advantage of SAND
based technologies. A classic example of non-continuum methods is the direct sim-
ulation Monte Carlo technique [18] [4] [77].

5. Level of multi-physics - Coupling different types of physics codes creates difficult
issues for the higher level SAND methods. Issues such as explicit solution procedures
and operator splitting are major hindrances to SAND methods.

6. PDE smoothness -Gradient methods require smooth behavior. Applications involv-
ing chemical reactions and state changes typically make use of database information
and impose additional non-differentiable functions. Another example that gives rise
to nondifferentiabilities is the gain or loss of material during the course of the com-
putations.

3.2 Sandia Applications and Classifications

At Sandia, a large range of complex simulation codes have been developed to address a
variety of high fidelity, complex physics problems in the area of structural dynamics, solid
mechanics, thermal/radiation transport, computational fluid dynamics, fire, shock physics
and electrical simulation. The scope of providing large-scale optimization capabilities to
this engineering community in an efficient and practical fashion is considerable and con-
tinues to be a source for future research.

The following sections discuss general characteristics for each discipline and an attempt
is made to identify the potential optimization level.

40

3.2.1 Structural Dynamics

Finite-element structural-dynamics simulation capabilities have been developed that are
able to perform static analysis, direct implicit transient analysis, eigenvalue analysis, modal
superposition-based frequency response, and transient response. Nonlinear capabilities are
currently being developed. Shape optimization problems are the ultimate design target for
structural dynamics and at Sandia there are a multitude of structural design challenges.
The structural integrity of electronic packages for re-entry vehicles is an example of an
important design problem. Although the number of design parameters are on the order of
a hundred, as more sophistication to the structural design is added, the desire to investigate
larger design spaces will increase.

Static analysis with nonlinear material behavior is another aspect of structural dynamics
that can benefit from a SAND formulation. So-called inversion techniques to find the most
likely materials in a medium is a potential area of interest that could lead to large number of
design variables. However, the ultimate goal for structural dynamics is shape optimization
where SAND methods can have a significant impact. Developing efficient optimization
methods for transient problems remain a significant research challenge.

3.2.2 Solid Mechanics

Nonlinear solid mechanics is fundamental for investigating manufacturing and geomechan-
ical issues. Finite-element codes have been developed that can handle large deformations,
temperature dependency, and quasi-static mechanics problems in three dimensions. A ma-
terial model for elastic and isothermal elastic-plastic behavior with combined kinematic
and isotropic hardening is available. An eight node Lagrangian uniform-strain element is
employed with hourglass stiffness to control the zero-energy modes. Highly nonlinear ef-
fects include material nonlinearities, geometric nonlinearities due to large rotations, large
strains, and surfaces that slide relative to each other. Element birth and death algorithms
are available to handle manufacturing situations where material is either added or removed,
such as soldering and milling. Contact between surfaces can also be modeled with or
without friction, which allows for simulating many difficult processes, such as connector
insertion.

In addition to manufacturing examples, these codes are used to model geological sys-
tems subject to a variety of stresses. The Yuca Mountain nuclear storage facility is an
example where the maximum safety margins for stresses need to be calculated as a func-
tion of various deformations to the storage facility and as a function of various loads onto
the facility.

41

Although significant optimization issues exist in solid mechanics in addition to large
design spaces, there a number of issues that prevents consideration of intrusive methods.
Perhaps the most obvious impediment to SAND methods is the fact that solid mechanics
codes do not for a Jacobian and use an explicit pseudo time stepping scheme to converge to
a solution. Non differential quantities as a result of severe material deformation also poses
a problem. There may be some possibilities for calculating direct sensitivities for a subset
of problems, but presumably this would require restructuring the typical solid mechanics
code. Certainly, birth/death algorithms are not differentiable and would require a complete
new approach.

3.2.3 Thermal

Thermal simulation capabilities handle analysis of systems in which the transport of ther-
mal energy occurs primarily through a conduction process. This nonlinear, finite element,
multi-dimensional capability has been extended to handle solid phase chemical reactions
and radiation transfer. A steady-state, nonlinear thermal problem without a chemical reac-
tion is well suited for any SAND level optimization scheme. However, the usual difficulties
are associated with the multi-coupled physics and transient analysis.

3.2.4 Computational Fluid Dynamics

3.2.4.1 Compressible Fluid Flow

Compressible fluid mechanics codes are needed to simulate accurately the aerodynamics
for subsonic, transonic and supersonic flight. Many configurations and flight situations
cannot be adequately tested because of high Mach numbers, high Reynolds numbers, and
enthalpy conditions. Aerodynamic simulations calculate pressures, shear stress fields, and
forces and moments exerted on a structure by the surrounding compressible fluids. If the
assumptions for a rigid body fail, the structural response of the system needs to be included.
This is often an explicit coupling and therefore a difficult issue for SAND optimization.
However, there are numerous design problems in compressible fluid flow, such as steady-
state Euler-based, shape optimization that can take advantage of any level of optimization
method. A potential problem with compressible fluid flow problems is that the preferred
solution mechanism is either matrix-free or pseudo time-stepping with multi-grid methods.
The Jacobian is not formed and sensitivities cannot be easily calculated.

As a result of this LDRD project, development of an adjoint formulation is underway

42

for Sandia’s new compressible fluid flow code. The goal is to initially conduct shape opti-
mization with the steady state Euler equations. An adjoint formulation for the Roe scheme
has been developed and a forward Newton based solution is forthcoming.

3.2.4.2 Direct Simulation Monte Carlo

Computational fluid flow dynamics locally refines the simulation mesh in an attempt to
resolve small-scale phenomena. However, hydrodynamic formulations break down as the
grid spacing approaches the molecular scale. Direct Simulation Monte Carlo (DSMC)
methods [18, 4, 77] are used as an alternative to continuum formulations. In DSMC, the
state of the system is given by the position and velocities of particles, but the process de-
couples the movement from collisions and chemistry. First of all the particles are moved
within a time step along a grid independently of each other. At the end of the time step the
particles are sampled in each grid cell to determine collision behavior and species distribu-
tions using probabilistic techniques. At SNL, DSMC has been used to simulate low-density
applications with Knudsen numbers on the order of 0.2 subjected to electromagnetic fields.
Numerous other examples in the literature can be found [1, 107].

Clearly the lack of a continuum prevents the use of standard SAND methods and an
entire simulation needs to be solved for any aspects of an optimization algorithm to occur.
Sensitivity information will also be difficult to acquire by means other than the use of finite
differences.

At SNL there are large design codes that predict the affects of certain geometries on
the behavior of rarefied gases. These high-fidelity problems are computationally intensive;
applying shape optimization, even with a small number of design parameters, requires an
enormous amount of computational resources.

3.2.4.3 Incompressible Fluid Flow

Several Navier-Stokes codes have been developed to solve a number of complex design
problems. We describe one such code in Chapter 5 for a chemical vapor deposition reac-
tor problem. The general Navier-Stokes CFD simulator is well suited to take advantage
of SAND optimization methods. Even though several Navier-Stokes codes have been ex-
tended to include chemistry, turbulence, moving interfaces, and elasto-viscoplastic mate-
rials, great care has been taken to include capabilities to form a full and exact Jacobian.
These codes are complicated, however, and a level 6 interface may require a complete revi-
sion. Level-5 optimization is possible since the Jacobian in accessible and the solution of

43

systems using its transpose is available.

3.2.5 Fire

The fire environment simulation software development project is directed at providing sim-
ulations for both open large-scale pool fires and building enclosure fires. One class of
codes includes turbulence, buoyantly driven incompressible flow, heat transfer, mass trans-
fer, combustion, soot formation, and absorption coefficient modeling. Another class of
codes represent the participating-media thermal radiation mechanics. These fire codes rank
as some of the more complex codes and are mostly developed with explicit solution meth-
ods to couple multi-physics, include approximations for different physics processes, use
inexact Newton methods, and accommodate the loss of material.

Theoretically, an implicit coupling of the different physics could make a fire simulation
a candidate for higher levels of optimization. The complexity of such a simulation suggests
complex design problems and compute intensive simulations. However, the most problem-
atic issue associated with fire simulation is the loss of material. As in solid mechanics, these
algorithms are not differentiable. Even assuming loss of material is not an issue , the cur-
rent explicit coupling still prevents the use of levels 3 or higher. Level 2 methods could be
considered but would require cross sensitivities to accommodate the many different physics
components. The calculation of cross sensitivities for multiple physics components is an
active area of research.

3.2.6 Shock Physics

Shock Physics is handled through a family of codes that model complex multi-dimensional,
multi-material problems that are characterized by large deformations and/or strong shocks.
The solution strategy consists of a two-step, second-order accurate Eulerian algorithm to
solve the mass, momentum, and energy conservation equations. Models exist for com-
puting material strength, fracture, porosity, and high-explosive detonation and initiation.
The problems that can be analyzed include penetration and perforation, compression, high
explosive detonation and initiation phenomena, and hypervelocity impact. Strong shock
simulations require sophisticated and accurate models of the thermodynamic behavior of
materials. Phase changes, nonlinear behavior, and fractures are important to predict behav-
ior accurately. Equation-of-state packages are used to predict phase changes.

More recently, Lagrangian solid mechanics capabilities were developed to include arbi-
trary mesh connectivity, superior artificial viscosity, and improved material models. Prob-

44

lems can be solved using Lagrangian, Eulerian, or an arbitrary Lagrangian-Eulerian (ALE)
mesh that is based on a linear finite-element formulation and may have arbitrary connec-
tivity among the elements.

Many issues need to be addressed to implement any intrusive optimization algorithm
for Shock physics codes, including transient analysis, non-smooth behavior, explicit solu-
tion procedures, material addition and deletion mechanisms. Similar issues exist as in fire
simulation.

3.2.7 Electrical Simulation

A substantial number of electrical simulations are conducted at Sandia and a common prob-
lem is to match experimental data from a network of circuits to these simulations. Capa-
bilities to solve very large circuit problems are currently being developed. This effort will
support analysis of circuit phenomena at a variety of abstraction levels, including device-
level, analog signals, digital signals, and mixed signals. Although electrical simulation
should be smooth, old device models have been known to use limiter processes that are
non-differentiable. Typically, large-scale electrical simulation consists of millions of de-
vices each of which can host at least one design parameter. Therefore, electrical simulation
is a reasonably good SAND optimization candidate provided the device model issues can
be resolved and also provided optimization methods to handle transient models efficiently
can be developed. Algorithms to handle transient processes are available, but they are
memory and storage intensive since they require a large number of design variables and
large number of time steps.

The solution approach generates nonlinear systems of DAEs and uses Newton’s method
to solve the resulting nonlinear equations. Thus Xyce generates a Jacobian similar to those
required by PDE-based simulations and theoretically adjoint sensitivities can be calculated.
Similarly to compressible fluid, additional sensitivity development is underway to develop
higher optimization levels capabilities.

3.2.8 Geophysics

Geophysics has long been the source of large inversion problems that are solved to iden-
tify materials and related properties and to detect targets. Each of these problems deals
with large number of design/inversion parameters. They are often solved in the frequency
domain thereby avoiding the issues related to transient phenomena. Considerable research

45

has been conducted at Sandia to solve inversion problems and, although the solution pro-
cedures are not entirely along the same lines described in this report, these codes do use
Gauss-Newton methods and conjugate gradient solvers [81] [82].

Seismic inversion, structural inversion, and source inversion are all important problems
that are amenable to the highest level SAND methods. In fact, the state-of-the-art SAND
methods have been applied to a seismic inversion problem where 2.1 million inversion
parameters were used for a transient simulation [3]. These problems are implicit, they use
exact Jacobians, and can be solved in either steady-state or transient mode. In addition,
they are single physics and their solutions are smooth.

3.2.9 Observations & Strategies

Several conclusions have been drawn from our review of the Sandia PDE environment:

1. A wide range of physics are simulated by a variety of methods incorporating both
linear and nonlinear solvers. An increasing number of complex design, control, and
inversion problems, involving a large number of design/control/inversion parameters
demand efficient optimization methods.

2. Most of the critical Sandia simulation codes run in parallel and thus new optimization
algorithms need to be designed with large-scale parallelism in mind.

3. The predominant programming language is C++; we strongly support the continued
development of frameworks, algorithms, and tools in C++.

4. High-fidelity, multi-physics simulations are crucial to solve Sandia’s science and en-
gineering problems. The initial step to create a multi-physics capability is to use
explicit solvers. However, as discussed above, this creates difficulties for a SAND
optimization method. Thus the use of implicit methods needs to be explored.

5. Transient simulation dominates the problem space at Sandia and SAND optimization
methods for transient problems need to be investigated.

6. Individual forward simulators are being consolidated into two principal frameworks,
namely, SIERRA and Nevada. Optimization methods and interfaces need to be con-
sidered as part of these frameworks.

Although implementing PDECO requires a custom design and an individual approach
to each simulation code, it has been our goal to develop methods, algorithms, and frame-
works that can be leveraged in other PDE simulation codes. Assuming that sensitivity

46

information is available from the simulation codes and the simulation code conforms to the
SAND assumptions, we have developed a framework called rSQP++ that can be interfaced
with most codes. The strength of this state-of-art object oriented code is that algorithms
can be modified very quickly to adapt to the needs of the optimization problem. In addi-
tion, we have interfaced this code to a PDE prototyping code (Sundance) so that algorithms
can be easily tested for a range of PDE systems. The next few chapters are dedicated to
describing the rSQP++ framework, Sundance, and a full-space SQP method that relies on
solving quadratic programs.

47

Chapter 4

rSQP++ Framework

Described herein is a new object-oriented (OO) framework for building successive quadratic
programming Algorithms, called rSQP++, currently implemented in C++. The goals for
rSQP++ are quite lofty. The rSQP++ framework is designed to incorporate many different
SQP algorithms and to allow external configuration of specialized linear algebra objects
such as vectors, matrices and linear solvers. Data-structure independence has been recog-
nized as an important feature missing in current optimization software [123]. In addition,
it is possible for an advanced user to modify the SQP algorithms to meet other specialized
needs without having to touch any of the default source code within the rSQP++ frame-
work.

Successive quadratic programming (SQP) methods are attractive mainly because they
generally require the fewest number of function and gradient evaluations to solve a prob-
lem as compared to other optimization methods [105]. Another attractive property of SQP
methods is that the structure of the underlying NLP can be exploited more effectively than
other methods [118]. A variation of SQP, known as reduced-space SQP (rSQP), works well
for NLPs where there are few degrees of freedom (dof) (see Section 4.1.1) and many con-
straints. Quasi-Newton methods for approximating the reduced Hessian of the Lagrangian
are also very efficient for NLPs with few dof. Another advantage of rSQP is that the decom-
position used for the equality constraints only requires solves with a basis of the Jacobian
(and possibly its transpose) of the constraints (see Section 4.1.3).

48

4.1 Mathematical Background for SQP

4.1.1 Nonlinear Program (NLP) Formulation

The SQP algorithms implemented with rSQP++ solve NLPs in the standard form:

min f(x) (4.1.1)

s.t.
(x) = 0 (4.1.2)xL � x � xU (4.1.3)

where: x; xL; xU 2 Xf(x) : X ! IR
(x) : X ! CX � IR nC � IR m.

Above, we have been very careful to define vector spaces for the relevant vectors and
nonlinear operators. In general, only vectors from the same vector space are compatible
and can participate in linear algebra operations. Mathematically, the only requirement
for the compatibility of real-valued vector spaces should be that the dimensions match up
and that the same inner products are used. However, having the same dimensionality will
not be sufficient to allow the compatibility of vectors from different vector spaces in the
implementation. The vector spaces become very important later when the NLP interfaces
and the implementation of rSQP++ is discussed in more detail (see Section 4.2.3.2).

We assume that the operatorsf(x) and
j(x) for j = 1 : : :m in (4.1.1)–(4.1.2) are
nonlinear functions with at least second-order continuous derivatives. The rSQP algorithms
described later only require first-order derivative information forf(x) and
j(x) in the form
of a vectorrf(x) and a matrixr
(x) respectively. The inequality constraints in (4.1.3)
may have lower bounds equal to�1 and/or upper bounds equal to+1. The absences of
some of these bounds can be exploited by many SQP algorithms.

49

It is very desirable for the functionsf(x) and
(x) to at least be defined (i.e. no NaN or
Inf return values) everywhere in the set defined by the relaxed variable boundsxL � Æ �x � xU + Æ. Here,Æ (see the methodmax var bounds viol() in theNLP interface
in Section 4.2.3.2) is a relaxation (i.e. wiggle room) that the user can set to allow the
optimization algorithm to computef(x),
(x) andh(x) outside the strict variable boundsxL � x � xU in order to compute finite differences and the like. The SQP algorithms
will never evaluatef(x) and
(x) outside this relaxed region. This is an imporant issue to
consider when developing the model for the NLP.

The Lagrangian functionL(�; �L; �U) (and the Lagrange multipliers (�, �L, �U)) and
its gradient and Hessian for this NLP are

L(x; �; �L; �U) = �f(x) + �T
(x) + �TL (xL � x) + �TU (x� xU)	 2 IR (4.1.4)rxL(x; �; �) = frf(x) +r
(x)�+ �g 2 X (4.1.5)r2xxL(x; �) = (r2f(x) + mXj=1 �(j)r2
j(x)) 2 X jX (4.1.6)

where: rf(x) : X ! Xr
(x) = h r
1(x) r
2(x) : : : r
m(x) i : X ! XjCr2
j(x) : X ! XjX , for j = 1 : : :m� 2 C� � �U � �L 2 X .

Above, we use the notation�(j) with the subscript in parentheses to denote thejth
component of the vector and to differentiate this from a simple math accent. Also,r
(x) :X ! XjC is used to denote a nonlinear operator (the gradient of the equality constraintsr
(x) in this case) that maps from the vector spaceX to a matrix spaceX jC where the

columns and rows in this matrix space lie in the vector spacesX andC respectively. The

returned matrix objectA = r
 2 X jC defines a linear operator whereq = Ap maps

vectors fromp 2 C to q 2 X . The transposed matrix objectAT defines a linear operator

whereq = AT p maps vectors fromp 2 X to q 2 C.

50

Note how the vector and matrix spaces in the above expressions match up. For example,

the vectors and matrices in (4.1.5) can be replaced by their vector and matrix spaces asfrf(x) +r
(x)�+ �g) fX + (X jC)C + Xg) X :
The compatibility of vectors and matrices in linear algebra operations is determined by

the compatibility of the associated vector spaces. At all times, we must know to which

vector or matrix space a linear algebra quantity belongs.

Given the definition of the Lagrangian and its derivatives in (4.1.4)–(4.1.6), the first-

and second-order necessary KKT optimality conditions [80] for a solution(x�; ��; ��L; ��U)
to (4.1.1)–(4.1.3) are given in (4.1.7)–(4.1.13). There are four different categories of opti-

mality conditions shown here: linear dependence of gradients (4.1.7), feasibility (4.1.8)–

(4.1.9), non-negativity of lagrange multipliers for inequalities (4.1.10), complementarity

(4.1.11)–(4.1.12), and curvature (4.1.13).rxL(x�; ��; ��) = rf(x�) +r
(x�)�� + �� = 0 (4.1.7)
(x�) = 0 (4.1.8)xL � x� � xU (4.1.9)(�L)�; (�U)� � 0 (4.1.10)(�L)�(i)((xL)(i) � (x�)(i)) = 0; for i = 1 : : : n (4.1.11)(�U)�(i)((x�)(i) � (xU)(i)) = 0; for i = 1 : : : n (4.1.12)dT r2xxL(x�; ��) d � 0; for all feasible directionsd 2 X : (4.1.13)

Sufficient conditions for optimality require that stronger assumptions be made about the

NLP (e.g. constraint qualification on
(x) and perhaps conditions on third-order curvature

in case0 is obtained in (4.1.13)).

To solve a NLP, a SQP algorithm must first be supplied an initial guess for the un-

known variablesx0 and in some cases also the Lagrange multipliers�0 and�0. The opti-

mization algorithms implemented in rSQP++ generally require thatx0 satisfy the variable

51

bounds in (4.1.3), and if not, the elements ofx0 are forced in bounds. The matrixr
(x)
is abstracted behind a set of object-oriented interfaces. The rSQP algorithm only needs

to perform matrix-vector multiplication withr
(x) and solve for a square, nonsingular

basis ofr
(x) through aBasisSystem interface. The implementation ofr
(x) is com-

pletely abstracted away from the optimization algorithm. A simpler interface to NLPs has

also been developed where the matrixr
(x) is never represented even implicitly (i.e. no

matrix-vector products) and only specific quantities are supplied to the rSQP algorithm (see

the “Tailored Approach” in [104] and the “direct sensitivity” NLP interface on page 81).

4.1.2 Successive Quadratic Programming (SQP)

A popular class of methods for solving NLPs is successive quadratic programming

(SQP) [26]. An SQP method is equivalent, in many cases, to applying Newton’s method to

solve the optimality conditions represented by (4.1.7)–(4.1.8). At each Newton iterationk
for (4.1.7)–(4.1.8), the linear subproblem (also known as the KKT system) takes the form" W AAT #" dd� # = �" rxL
 #

(4.1.14)

where: d = xk+1 � xk 2 Xd� = �k+1 � �k 2 CW � r2xxL(xk; �k) 2 X jXA = r
(xk) 2 X jC
 =
(xk) 2 C.

The Newton matrix in (4.1.14) is known as the KKT matrix. By substitutingd� =�k+1 � �k into (4.1.14) and simplifying, this linear system becomes equivalent to the opti-

mality conditions of the following QP

52

min gTd+ 1=2dTWd (4.1.15)

s.t. ATd+
 = 0 (4.1.16)

where: g = rf(xk) 2 X :
The advantage of the QP formulation over the Newton linear-system formulation is that

inequality constraints can be directly added to the QP and a relaxation can be defined which

yields the following QP

min gTd+ 1=2dTWd+M(�) (4.1.17)

s.t. ATd+ (1� �)
 = 0 (4.1.18)xL � xk � d � xU � xk (4.1.19)0 � � � 1 (4.1.20)

where: M(�) 2 IR ! IR .

Near the solution of the NLP, the set of active constraints for (4.1.17)–(4.1.20) will be

the same as the optimal active-set for the NLP in (4.1.1)–(4.1.3) [85, Theorem 18.1].

The relaxation of the QP shown in (4.1.17)–(4.1.20) is only one form of a relaxation

but has the essential properties. Note that the solution� = 1 andd = 0 is always feasible

by construction. The penalty functionM(�) is either a linear or quadratic term where if�M(�)�� j�=0 is sufficiently large then an unrelaxed solution (i.e.� = 0) will be obtained if a

feasible region for the original QP exists. For example, the penalty term may take a form

such asM(�) = (~M)� orM(�) = (~M)(�+ 1=2�2) where ~M is a large constant often called

“big M.”

53

Once a new estimate of the solution (xk+1, �k+1, �k+1) is computed, the error in the

optimality conditions (4.1.7)–(4.1.9) is checked. If these KKT errors are within some spec-

ified tolerance, the algorithm is terminated with the optimal solution. If the KKT error is

too large, the NLP functions and gradients are then computed at the new pointxk+1 and

another QP subproblem (4.1.17)–(4.1.20) is solved which generates another stepd and so

on. This algorithm is continued until a solution is found or the algorithm runs into trouble

(there can be many causes for algorithm failure), or it is prematurely terminated because it

is taking too long (i.e. maximum number of iterations or runtime is exceeded).

The iterates generated fromxk+1 = xk + d are generally only guaranteed to converge

to a local solution to the first-order KKT conditions when close to the solution. Therefore,

globalization methods are used to insure (given a few, sometimes strong, assumptions are

satisfied) the SQP algorithm will converge to a local solution from remote starting points.

One popular class of globalization methods are linesearch methods. In a linesearch method,

once the stepd is computed from the QP subproblem, a linesearch procedure is used to find

a step length� such thatxk+1 = xk + �d gives sufficient reduction in the value of a

merit function�(xk+1) < �(xk). A merit function is used to balance a trade-off between

minimizing the objective functionf(x) and reducing the error in the constraints
(x). A

commonly used merit function is thè1 defined by�`1(x) = f(x) + �jj
(x)jj1 (4.1.21)

where� is a penalty parameter that is adjusted to insure descent along the SQP stepxk+�d for � > 0. An alternative linesearch based on a “filter” has also been implemented

which generally performs better and does not require the maintenance of a penalty param-

eter� [122] . Other globalization methods such as trust region (using a merit function or

the filter) can also be applied to SQP.

Because SQP is essentially equivalent to applying Newton’s method to the optimality

conditions, it can be shown to be quadratically convergent near the solution of the NLP

[84]. It is this fast rate of convergence that makes SQP the method of choice for many

applications. However, there are many theoretical and practical details that need to be con-

sidered. One difficulty is that in order to achieve quadratic convergence the exact Hessian

54

of the LagrangianW is needed, which requires exact second-order informationr2f(x)
andr2
j(x), j = 1 : : :m. For many NLP applications, second derivatives are not readily

available and it is too expensive and/or inaccurate to compute them numerically. Other

difficulties with SQP include how to deal with an indefinite HessianW . Also, for large

problems, the full QP subproblem in (4.1.17)–(4.1.20) can be extremely expensive to solve

directly. These and other difficulties have motivated the research of large-scale decompo-

sition methods for SQP. One class of these methods is reduced-space (or reduced-Hessian)

SQP, or rSQP for short.

4.1.3 Reduced-Space Successive Quadratic Programming (rSQP)

In a rSQP method, the full-space QP subproblem (4.1.17)–(4.1.20) is decomposed into

two smaller subproblems that, in many cases, are easier to solve. To see how this is done,

first a null-space decomposition [85, Section 18.3] is computed for some linearly indepen-

dent set of the linearized equality constraintsAd 2 X jCd where
d(x) 2 Cd 2 IR r are the

decomposed and
u(x) 2 Cu 2 IR (m�r) are the undecomposed equality constraints and

(x) = "
d(x)
u(x) # 2 Cd�Cu =) r
(xk) = h r
d(xk) r
u(xk) i = h Ad Au i 2 X j(Cd�Cu):
(4.1.22)

Above, the vector spaceC = Cd � Cu denotes a concatenated vector space (also known

as a product of vector spaces) with a dimension which is the sum of the constituent vector

spacesjCj = jCdj+ jCuj = r+(m�r) = m. This decomposition is defined by a null-space

matrixZ and a matrixY with the following properties:Z 2 X jZ s.t.(Ad)TZ = 0Y 2 X jY s.t.
h Y Z i

is nonsingular
(4.1.23)

where: Z � IR (n�r)Y � IR r.
55

It is important to distinguish the spacesZ andY from the the matricesZ andY . The

null-space matrixZ 2 X jZ is a linear operator that maps vectors from the spaceu 2 Z
to vectors in the space of the unknownsv = Zu 2 X . The matrixY 2 X jY is a linear

operator that maps vectors from the spaceu 2 Y to vectors in the space of the unknownsv = Y u 2 X .

In many presentations of reduced-space SQP, the matrixY is referred to as the “range-

space” matrix since several popular choices of this matrix form a basis for the range space

of Ad. However, note that the matrixY need not be a true basis matrix for the range space

of Ad in order to satisfy the nonsingularity property in (4.1.23). For this reason, here the

matrixY will be referred to as the “quasi-range-space” matrix to make this distinction.

By using (4.1.23), the search directiond can be broken down intod = (1��)Y py+Zpz,
wherepy 2 Y andpz 2 Z are the known as the quasi-normal (or quasi-range space) and

tangential (or null space) steps respectively. By substitutingd = (1 � �)Y py + Zpz into

(4.1.17)–(4.1.20) we obtain the quasi-normal (4.1.24) and targential (4.1.25)–(4.1.27) sub-

problems. In (4.1.25),� � 1 is a damping parameter which can be used to insure descent

of the merit function�(xk+1 + �d).
Quasi-Normal (Quasi-Range-Space) Subproblempy = �R�1
d 2 Y (4.1.24)

where:R � [(Ad)TY ℄ 2 CdjY (nonsingular via (4.1.23)).

Tangential (Range-Space) Subproblem (Relaxed)

min (gr + �w)Tpz + 1=2pTz [ZTWZ℄pz +M(�) (4.1.25)

s.t. Uzpz + (1� �)u = 0 (4.1.26)bL � Zpz � (Y py)� � bU (4.1.27)

56

where: gr � ZTg 2 Zw � ZTWY py 2 Z� 2 IRUz � [(Au)TZ℄ 2 CujZUy � [(Au)TY ℄ 2 CujYu � Uypy +
u 2 CubL � xL � xk � Y py 2 XbU � xU � xk � Y py 2 X .

By using this decomposition, the Lagrange multipliers�d for the decomposed equality

constraints ((Ad)Td+
d = 0) do not need to be computed in order to produce stepsd = (1��)Y py+Zpz. However, these multipliers can be used to determine the penalty parameter�
for the merit function [85, page 544] or to compute the Lagrangian function. Alternatively,

a multiplier-free method for computing� has been developed and tested with good results

[104]. In any case, it is useful to compute these multipliers at the solution of the NLP since

they give the sensitivity of the objective function to those constraints [80, page 436]. An

expression for computing�d can be derived by applying (4.1.23) toY TrL(x; �; �) to yield�d = �R�T �Y T (g + �) + (Uy)T�u� 2 Cd: (4.1.28)

There are many details that need to be worked out in order to implement a rSQP al-

gorithm and there are opportunities for a lot of variability. Some of the more significant

decisions that need to be made are: how to compute the null-space decomposition that de-

fines the matricesZ, Y , R, Uz andUy, and how the reduced HessianZTWZ and the cross

termw in (4.1.25) are calculated (or approximated).

There are several different ways to compute decomposition matricesZ andY that sat-

isfy (4.1.23) [105]. For small-scale rSQP, an orthonormalZ andY (ZTY = 0, ZTZ = I,Y TY = I) can be computed using a QR factorization ofAd [84]. This decomposition gives

rise to rSQP algorithms with many desirable properties. However, using a QR factorization

whenAd is of very large dimension is prohibitively expensive. Therefore, other choices for

57

Z andY have been investigated that are more appropriate for large-scale rSQP. Methods

that are more computationally tractable are based on a variable-reduction decomposition

[105]. In a variable-reduction decomposition, the variables are partitioned into dependentxD and independentxI sets

xD 2 XD (4.1.29)xI 2 XI (4.1.30)x = " xDxI # 2 XD �XI (4.1.31)

(4.1.32)

where: XD � IR rXI � IRn�r
such that the Jacobian of the constraintsAT is partitioned as shown in (4.1.33) whereC is a square, nonsingular matrix known as the basis matrix. The variablesxD andxI are

also called state and design (or controls) variables [20] in some applications or basic and

nonbasic variables [78] in others. What is important about this partitioning of variables

is that thexD variables define the selection of the basis matrixC, nothing more. Some

types of optimization algorithms give more significance to this partitioning of variables

(for example, in MINOS [78] the basic variables are also variables that are not at an active

bound) however no extra significance can be attributed here.

This basis selection is used to define a variable-reduction null-space matrixZ in (4.1.34)

which also determinesUz in (4.1.35).

Variable-Reduction PartitioningAT = " (Ad)T(Au)T # = " C NE F #
(4.1.33)

58

where: C 2 CdjXD (nonsingular)N 2 CdjXIE 2 CujXDF 2 CujXI .
Variable-Reduction Null-Space MatrixZ � " �C�1NI #

(4.1.34)Uz = F � E C�1N (4.1.35)

There are many choices for the quasi-range-space matrixY that satisfy (4.1.23). Two

relatively computationally inexpensive choices are the coordinate and orthogonal decom-

positions shown below.

Coordinate Variable-Reduction Null-Space DecompositionY � " I0 # (4.1.36)R = C (4.1.37)Uy = E (4.1.38)

Orthogonal Variable-Reduction Null-Space DecompositionY � " INTC�T # (4.1.39)R = C(I + C�1NNTC�T) (4.1.40)Uy = E � FNTC�T (4.1.41)

59

The orthogonal decomposition (ZTY = 0, ZTZ 6= I, Y TY 6= I) defined in (4.1.34)–

(4.1.35) and (4.1.39)–(4.1.41) is more numerically stable than the coordinate decomposi-

tion and has other desirable properties in the context of rSQP [105]. However, the amount

of dense linear algebra required to compute the factorizations needed to solve for linear

systems withR in (4.1.40) isO((n � r)2r) floating point operations (flops) which can

dominate the cost of the algorithm for larger(n � r). Therefore, for larger(n � r), the

coordinate decomposition (ZTY 6= 0, ZTZ 6= I, Y TY 6= I) defined in (4.1.34)–(4.1.35)

and (4.1.36)–(4.1.38) is preferred because it is cheaper but the downside is that it is also

more susceptible to problems associated with a poor selection of dependent variables. Ill-

conditioning in the basis matrixC can result with greatly degraded performance and even

lead to failure of an rSQP algorithm. See the optionrange space matrix in Section

4.3.1.1.

Another important decision is how to compute the reduced HessianZTWZ. For many

NLPs, second-derivative information is not available to compute the Hessian of the La-

grangianW directly. In these cases, first-derivative information can be used to approximateB � ZTWZ using quasi-Newton methods (e.g. BFGS) [84]. When(n� r) is small,B is

small and cheap to update. Under the proper conditions the resulting quasi-Newton rSQP

algorithm has a superlinear rate of local convergence (even usingw = 0 in (4.1.25)) [15].

Even when(n � r) is large, limited-memory quasi-Newton methods can still be used, but

the price one pays is in only being able to achieve a linear rate of convergence (with a small

rate constant hopefully). For some application areas, good approximations of the HessianW are available and may have specialized properties (i.e. structure) that makes computing

the exact reduced HessianB = ZTWZ computationally feasible (i.e. see NMPC in [10]).

See the optionsexact reduced hessian andquasi newton in Section 4.3.1.1.

In addition to variations that affect the convergence behavior of the rSQP algorithm,

such as null-space decompositions, approximations used for the reduced Hessian and many

different types of merit functions and globalization methods, there are also many different

implementation options. For example, linear systems such as (4.1.24) can be solved using

direct or iterative solvers and the reduced QP subproblem in (4.1.25)–(4.1.27) can be solved

using a variety of methods (active set vs. interior point) and software [106].

60

Null-Space Decompositions for Z and Y Reduced Hessian Approximations for B

QP Cross Term Approximations for w

Globalization

Merit Functions

L1 Augmented LagrangianPowell’s L1

Line Search Trust Region

Merit Func TRFilter LS Filter TRMerit Func LS

Variable Reduction

Orthogonal Coordinate

Orthonormal QR Quasi-Newton B

BFGS

Dense BFGS Limited Memory BFGS

SR1

Exact B Finite-Diff B

w = 0 Exact w Broyden w Finite-Diff w

Figure 4.1. UML analysis class diagram : Different algorithmic

options for rSQP

Figure 4.1 summarizes five different categories of algorithmic options for a rSQP algo-

rithm, many of which were described above. This set of categories and the options in each

category is by no means complete and may other options have been developed and will be

developed in the future. In general, any option can be selected independently from each

category and form a valid algorithm with unique properties. An exception is that merit

functions are not used by the Filter line-search and trust-region globalization methods so it

makes no sense to select a merit function when using a Filter method. While some permu-

tations of options are not reasonable (i.e finite-differencew with an exact reduced HessianB), many permutations are. Just this set of options can produce 480 distinctly different

algorithms that may perform very differently on any particular NLP.

4.1.4 General Inequalities and Slack Variables

Up to this point, only simple variable bounds in (4.1.3) have been considered and the

SQP/rSQP algorithms have been presented in this context. However, the actual underlying

61

NLP may include general inequalities and take the form

min �f(�x) (4.1.42)

s.t. �
(�x) = 0 (4.1.43)�hL � �h(�x) � �hU (4.1.44)�xL � �x � �xU (4.1.45)

where: �x; �xL; �xU 2 �X�f(x) : �X ! IR�
(x) : �X ! �C�h(x) : �X ! �H�hL; �hL 2 �H�X 2 IR �n�C 2 IR �m�H 2 IR �mI .
NLPs with general inequalities are converted into the standard form by the addition of

slack variables�s (see (4.1.49)). After the addition of the slack variables, the concatenated

variables and constraints are then permuted (using permutation matricesQx andQ
) into

the ordering of (4.1.1)–(4.1.3). The exact mapping from (4.1.42)–(4.1.45) to (4.1.1)–(4.1.3)

is given below

62

x = Qx" �x�s # (4.1.46)xL = Qx" �xL�hL # (4.1.47)xU = Qx" �xu�hu # (4.1.48)
(x) = Q
" �
(�x)�h(�x)� �s # (4.1.49)

Here we consider the implications of the above transformation in the context of rSQP

algorithms.

Note ifQx = I andQ
 = I that the matrixr
 takes the form:r
 = " r�
 r�h�I # (4.1.50)

One question to ask is how the Lagrange multipliers for the original constraints can

be extracted from the optimal solution(x; �; �) that satisfies the optimality conditions in

(4.1.7)–(4.1.13)? First, consider the linear dependence of gradients optimality condition

for the NLP formulation in (4.1.42)–(4.1.45)r�x �L(�x�; ���; ��I�; ���) = r �f(�x�) +r�
(�x�)��� +r�h(�x�) ��I� + ��� = 0: (4.1.51)

To see how the Lagrange multiples�� and�� can be used to compute���, ��I� and���
one simply has to substitute (4.1.46) and (4.1.49) withQx = I andQ
 = I into (4.1.7) and

expand as follows

63

rxL(x; �; �) = rf +r
�+ �= " r �f0 #+ " r�
 r�h�I #" ��
��h #+ " ��x��s #= " r �f +r�
��
 +r�h��h + ��x���h + ��s #: (4.1.52)

By comparing (4.1.51) and (4.1.52) it is clear that the mapping is�� = ��
, ��I = ��h = ��s
and�� = ��x. For arbitraryQx andQ
 it is also easy to perform the mapping of the solution.

What is interesting about (4.1.52) is that it says that for general inequalities�hj(�x) that

are not active at the solution (i.e.(��s)(j) = 0), the Lagrange multiplier for the converted

equality constraint(��h)(j) will be zero. This means that these converted inequalities can

be eliminated from the problem and not impact the solution, which is expected. Zero

multiplier values means that constraints will not impact the optimality conditions or the

Hessian of the Lagrangian.

The basis selection shown in (4.1.22) and (4.1.31) is determined by the permutation

matricesQx andQ
 and these permutation matrices can be partitioned as follows:

Qx = " QxDQxI # (4.1.53)Q
 = " Q
DQ
U #: (4.1.54)

A valid basis selection can always be determined by simply including all of the slacks�s in the full basis and then finding a sub-basis forr�
. To show how this can be done,

suppose thatr�
 is full rank and the permutation matrix(�Qx)T = h (�QxD)T (�QxI)T i
selects a basis�C = (r�
)T (�QxD)T . Then the following basis selection for the transformed

64

NLP (withQ
 = I) could always be used regardless of the properties or implementation ofr�h
Qx = 264 �QxD I�QxI 375 (4.1.55)C = " (�QxDr�
)T(�QxDr�h)T �I # (4.1.56)N = " (�QxIr�
)T(�QxIr�h)T #: (4.1.57)

Notice that basis matrix in (4.1.56) is lower block triangular with non-singular blocks

on the diagonal. It is therefore straightforward to solve for linear systems with this basis

matrix. In fact, the direct sensitivity matrixD = �C�1N takes the formD = �" (�QxDr�
)�T (�QxIr�
)T(�QxDr�h)T (�QxDr�
)�T (�QxIr�
)T �(�QxIr�h)T #: (4.1.58)

The structure of (4.1.58) is significant in the context of active-set QP solvers that solve

the reduced QP subproblem in (4.1.25)–(4.1.27) using a variable-reduction null-space de-

composition. The rows ofD corresponding to general inequality constraints only have to be

computed if the slack for the constraint is at a bound. Also note that the above transforma-

tion does not increase the number of degrees of freedom of the NLP sincen�m = �n� �m.

All of this means that adding general inequalities to a NLP imparts little extra cost for the

rSQP algorithm as long as these constraints are not active.

For reasons of stability and algorithm efficiency, it may be desirable to keep at least

some of the slack variables out of the basis and this can be accommodated also but is more

complex to describe.

Most of the steps in a SQP algorithm do not need to know that there are general in-

equalities in the underlying NLP formulation but some steps do (i.e. globalization methods

65

and basis selection). Therefore, those steps in a SQP algorithm that need access to this in-

formation are allowed to access the underlying NLP in a limited manner (see the Doxygen

documentation for the classNLPInterfacePack:: NLP).

4.2 Software design of rSQP++

The rSQP++ framework is implemented in C++ using advanced object-oriented software

engineering principles. However, to solve certain types of NLPs with rSQP++ does not

require any deep knowledge of object-orientation or C++. Example programs can be simple

copied and modified.

4.2.1 An Object-Oriented Approach to SQP

4.2.1.1 Motivation for Object-Oriented Methods

Most numerical software (optimization, nonlinear equations etc.) consists of an iterative

algorithm that primarily involves simple and common linear algebra operations. Mathe-

maticians use a precise notation for these linear algebra operations when they describe an

algorithm. For example,y = Ax denotes matrix-vector multiplication irrespective of the

special properties of the matrixA or the vectorsy andx. Such elegant and concise abstrac-

tions are usually lost, however, when the algorithm is implemented in most programming

environments and implementation details such as sparse data structures obscure the con-

ceptual simplicity of the operations being performed. Currently it seems that developers

have to choose between easy to use interpretive environments or more traditional compiled

languages. Interpretive environments like Matlabc
 are popular with users since the ab-

stractions they provide are very similar to those used in the mathematical formulation [33].

The problem with interpretive languages like Matlab is that they are not as efficient or as

flexible as more general purpose compiled languages. When these algorithms are imple-

mented in a compiled procedural language, like Fortran, the syntax is much more verbose,

difficult to read, and prone to coding mistakes. Every data structure is seen in intimate

detail and these details can obscure what may be an otherwise simple algorithm. While the

66

level of abstraction provided by environments like Matlab is very useful, more elaborate

data structures and operations are needed to handle problems with special structure and

computing environments.

Modern software engineering modeling and development methods, collectively known

as Object-Oriented Technology (OOT), can provide much more powerful abstraction tools

[97], [96]. In addition to abstracting linear algebra operations, Object-Oriented Program-

ming (OOP) languages like C++ can be used to abstract any special type of quantity or

operation. Also OOT can be used to abstract larger chunks of an algorithm and provide for

greater reuse. While newer versions of Matlab support some aspects of OOT, its propri-

etary nature and its loose typing are major disadvantages. A newly standardized graphical

language for OOT is the Unified Modeling Language (UML) [96]. The UML is used to

describe many parts of rSQP++. Appendix F provides a very short overview to the UML.

There are primarily two advantages to using data abstraction: it improves the clarity

of the program, and it allows the implementation of the operations to be changed and

optimized without affecting the design of the application or even requiring recompilation

of much of the code. The concepts of OOT and data abstraction are discussed in more

detail later in the context of rSQP.

4.2.1.2 Challenges in Designing Implementations for Numerical SQP Algorithms

There are many types of challenges in trying to build a framework for SQP (as well as for

many other numerical areas) that allows for maximal sharing of code, and at the same time

is understandable and extensible. Specifically, three types of variability will be discussed.

First, we need to come up with a way of modeling and implementing iterative algo-

rithms, such as SQP, that will allow for steps to be reused between related algorithms and

for existing algorithms to be extended. This type of higher-level algorithmic modeling

and implementation is needed to make the steps in our rSQP algorithms more independent

so that they are easier to maintain and to reuse. A framework calledGeneralItera-

tionPack has been developed for these types of iterative algorithms and serves as the

backbone for rSQP++.

67

The second type of variability to deal with is in allowing for different implementations

of various parts of the rSQP algorithm. There are many examples where different imple-

mentation options are possible and the best choice will depend on the general properties

(i.e. sizes ofn,m, andn� r etc.) of the NLP being solved.

An example is the method used to implement the null-space matrixZ in (4.1.34). One

option, referred to as the direct (or explicit) factorization, is to computeD = �C�1N up

front. This method requires(n � r) solves with the basis matrixC and also the storage

of a denser � (n � r) matrixD. Later, however, the tasks of performing matrix-vector

products of the formZTg andZpz, and building the inequality constraints in (4.1.27) are

implemented using the precomputed dense matrixD. Therefore, no further solves with the

basis matrixC are required. The other option, called the adjoint (or implicit) factorization,

is to defineZ implicitly and then to compute products likeZ Tg = �NT (C�Tgy) + gu.

When there are few active variable bounds (i.e. # active bounds = nact<< (n � r)), the

adjoint factorization is guaranteed to require fewer solves withC and demand less storage

than the direct factorization. However, it is difficult to determine the best choice a priori.

See the optionnull space matrix in Section 4.3.1.1.

Another example is the implementation of the Quasi-Newton reduced HessianB �ZTWZ. The choice for whether to storeB directly or its factorization (and what form of

the factorization) depends on the choice of QP solver used to solve (4.1.25)–(4.1.27). If

there are a lot of degrees of freedom ((n � r) is large) then storing and manipulating the

dense factors ofB will become too expensive and therefore a limited-memory implemen-

tation may be preferred. See the optionquasi newton in Section 4.3.1.1.

Yet another example of variability in implementation options is in allowing for dif-

ferent implementations of the QP solver as described in Section 4.2.6 (See the option

qp solver).

A third source of variability is in how to exploit the special properties of an application

area. Issues related to the management of various algorithmic and implementation options

are more of a concern to the developers and implementors of the optimization algorithms

than to the users of the algorithms. As long as an appropriate interface is available for user

to select various options (see Section 4.3.1.1), the underlying complexity is not really their

concern. However, what is a concern to advanced users of optimization software is a desire

68

to tailor the numerical linear algebra to the specific properties of their potentially very spe-

cialized application area. Data structures, linear solvers and even computing environments

(i.e. parallel processing using MPI) can be specialized for many applications. For example,

a NLP may have constraints where the basis of the JacobianC is block diagonal. There-

fore, linear systems can be solved by working with the blocks separately and possibly in

parallel. Examples of these types of NLPs include Multi-Period Design (MPD) [118] and

Parameter Estimation and Data Reconciliation (PEDR) [116]. Another example of a spe-

cialized NLP is one where the constraints are comprised of discretized Partial Differential

Equations (PDEs). For these types of constraints, iterative solvers have been developed to

efficiently solve for linear systems with the basis of the JacobianC. Abstract interfaces

for matrices and linear solvers have been developed that allow the rSQP algorithm to be

independent of the implementation of these operations. The abstractions that allow for this

variability are described in Section 4.2.3.1.

For some NLPs, the matrixr
(xk) can not even be formed implicitly (i.e. no matrix-

vector products). And, linear systems with the basis of the JacobianC in (4.1.33) can not be

solved with arbitrary right hand sides. Or, solves withCT are not possible (see [104]). For

these types of NLPs, a special “direct sensitivity” interface has been developed (see Section

4.2.3.2). For a “direct sensitivity” NLP, the number of algorithmic and implementation

options is greatly constrained and is therefore an example of additional complexity created

by the interaction of all three types of variability.

Abstract interfaces to vectors and matrices have been developed and are described in

Section 4.2.3.1 that serve as the foundation for facilitating the type of implementation and

NLP specific linear algebra variability described above. In addition, these abstract inter-

faces also help manage some of the algorithmic variability such as the choice of different

null-space decompositions.

4.2.2 High-Level Object Diagram for rSQP++

There are many different ways to present rSQP++. Here, we take a top-down approach

where we start with the basics and work our way down into more detail. This discussion is

designed to help the reader to appreciate how a complex or specialized NLP is solved using

69

aNLP

aClient

aBasisSystem

: rSQPppSolver

: rSQPAlgo

: AlgorithmStep

aDecompositionSystem

: rSQPState

: IterQuantity

aAlgoConfig

Figure 4.2. UML object diagram : Course grained object dia-

gram for rSQP++

rSQP++.

Figure 4.2 shows a high-level object diagram of a rSQP++ application, ready to solve

a user-defined NLP. The NLP objectaNLP is created by the user and defines the functions

and gradients for the NLP to be solved (see Section 4.2.3.2). Closely associated with a

NLP is aBasisSystem object. TheBasisSystem object is used to implement the se-

lection of the basis matrixC. ThisBasisSystem object is used by a variable-reduction

null-space decomposition (see Section 4.2.5). Each NLP object is expected to supply a

BasisSystem object. The NLP andBasisSystem objects collaborate with the opti-

mization algorithm though a set of abstract linear algebra interfaces (see Section 4.2.3.1).

By creating a specialized NLP subclass (and the associated linear algebra andBasis-

System subclasses) the implementation of all of the major linear algebra computations

can be managed in a rSQP algorithm. This includes having full freedom to choose the data

structures for all of the vectors and the matricesA, C,N and how nearly every linear alge-

bra operation is performed. This also includes the ability to use fully transparent parallel

70

linear algebra on a parallel computer even though none of the core rSQP++ code has any

concept of parallelism.

Once a user has developed NLP andBasisSystem classes for their specialized appli-

cation, a NLP object can be passed on to arSQPppSolver object. TherSQPppSolver

class is a convenient “facade” [42] that brings together many different components that are

needed to build a complete optimization algorithm in a way that is transparent to the user.

The rSQPppSolver object will instantiate an optimization algorithm (given a default

or a user-defined configuration object) and will then solve the NLP, returning the solution

(or partial solution on failure) to the NLP object itself. Figure 4.2 also shows the course

grained layout of a rSQP++ algorithm. An advanced user can solve even the most com-

plex specialized NLP without needing to understand how these algorithmic objects work

together to implement an optimization algorithm. Understanding the underlying algorith-

mic framework is only necessary if the optimization algorithms need to be modified. The

foundation for the algorithmic framework is discussed in Section 4.2.4. A complete exam-

ple of a simple but very specialized NLP that overrides all of the linear algebra operations

is described in Section 4.4.

While rSQP++ offers complete flexibility to solve many different types of specialized

NLPs in diverse application areas such as dynamic optimization and control [16] and PDES

[19] it can also be used to solve more generic NLPs such as are supported by modeling

systems like GAMS [29] or AMPL [41]. For serial NLPs which can compute explicit

Jacobian entries forA, a user needs to to create a subclass ofNLPSerialPreproces-

sExplJac and define the problem functions and derivatives. For these types of NLPs, a

defaultBasisSystem subclass is already defined which uses a sparse direct linear solver

to implement all of the required functionality.

Figure 4.3 shows a UML package diagram of all of the major packages that make up

rSQP++. At the very least, each package represents one or more libraries and the package

dependencies also show the library dependencies. In many cases, each package is actually a

C++ namespace (e.g.namespace AbstractLinAlgPack f ... g) and selected

classes and methods are imported into higher level packages with C++using declarations.

The following are very brief descriptions of each package. The packages are described in

more detail in Sections 4.2.3–4.2.5 and in Appendix C.

71

MemMngPack

AbstractLinAlgPack

LinAlgPack

SparseLinAlgPack

SparseSolverPackNLPInterfacePack

ConstrainedOptimizationPack

RTOpPack

<<frameWork>>

ReducedSpaceSQPPack

<<frameWork>>

GeneralIterationPack

<<import>>

<<import>>

<<import>>

<<import>>

<<import>>
<<import>>

<<import>><<import>>

Figure 4.3. UML package diagram : Packages making up

rSQP++

MemMngPackcontains basic (yet advanced) memory management foundational code

such as smart reference counted pointers and factory interfaces (see Appendix 8.8). These

classes provide a consistent memory management style that is flexible and results in robust

code. Without this foundation, much of the functionality in rSQP++ would have been very

difficult to implement correctly and safely.

RTOpPack is comprised of an advanced low-level interface for vector reduction/transformation

operators that allows the development of high-level linear algebra interfaces and numeri-

cal algorithms (i.e. rSQP++). The basic low-level operator interface is calledRTOpwhich

allows the development of arbitrary user-defined vector operators. The design of this in-

terface was critical to the development of rSQP++ in a way that allows full exploitation

of a parallel computer and specialized application without requiring rSQP++ to have any

72

concept of parallel constructs. The advanced concepts behind the design ofRTOpPack

are described in more detail in [10].

AbstractLinAlgPack is a full-featured set of interfaces to linear algebra quantities

such as vectors and matrices (or linear operators). A vector interface is the foundation for

all numerical applications and provides some of the greatest challenges from an object-

oriented design point of view. The vector interface inAbstractLinAlgPack is built

on the foundation ofRTOpPack and allows the efficient development of many advanced

types of optimization algorithms. There are basic interfaces for general, symmetric and

nonsingular matrices. TheBasisSystem interface mentioned above is also include in

this package. These linear algebra interfaces are devoid of any concrete implementations

and form the foundation for all the linear algebra computations in rSQP++. These interfaces

are described in more detail along with the NLP interfaces in Section 4.2.3

LinAlgPack contains concrete data types for dense BLAS-compatible linear algebra.

Part of this package is a portable C++ interface to a Fortran BLAS library. This package

forms the foundation for all dense serial linear algebra data structures and computations

that take place in rSQP++.

SparseLinAlgPack includes many different implementations of linear algebra in-

terfaces defined inAbstractLinAlgPack for serial applications. In addition to a de-

fault serial vector class, dense and sparse matrix classes are also provided. Several other

important matrix interfaces are also declared that are useful in circumstances where serial

linear algebra quantities are mixed with more general (i.e. parallel) linear algebra imple-

mentations. The implementations and the interfaces included in this package provide a

(nearly) complete linear algebra foundation for the development of any advanced opti-

mization algorithm.

SparseSolverPack provides interfaces to direct serial linear solvers, subclasses

for several popular implementations (such as several Harwell solvers and SuperLU) and

includes a subclass ofBasisSystem that uses one of these direct solvers.

NLPInterfacePack defines the basic NLP interfaces that are needed to implement

various optimization algorithms (particularly SQP methods). These basic interfaces com-

municate to an optimization algorithm through linear algebra quantities using theAb-

73

stractLinAlgPack interface. These basic interfaces are described along with the lin-

ear algebra interfaces in Section 4.2.3. This package also contains several NLP node sub-

classes for common types of NLPs. These subclasses make it very easy to implement a

serial NLP.

ConstrainedOptimizationPack is a mixed collection of several different types

of interfaces and implementations. Some of the major interfaces and implementations de-

fined in this package are for null-space decompositions, QP solvers, merit functions and

generic line searches.

GeneralIterationPack is a framework for developing iterative algorithms. Any

type of iterative algorithm can be developed and there is no specialization for numerics

in the package. This framework provides the backbone for all rSQP++ optimization algo-

rithms and is described in more detail in Section 4.2.4

ReducedSpaceSQPPack is the highest level package (namespace) in rSQP++. It

contains all of the rSQP specific classes and contains the basic infrastructure for building

rSQP++ algorithms (such as step classes) as well as other utilities. Also included are the

rSQPppSolver facade class and two built-in configuration classes for active-set rSQP

(rSQPAlgo ConfigMamaJama) and interior-point rSQP (Algo ConfigIP). Basic in-

teraction with a rSQP++ algorithm through arSQPppSolver object is described in the

Doxygen documentation starting at

RSQPPPBASEDOC/ReducedSpaceSQPPack/html/index.html

It is not important that the user understand the deatils of all of these packages but some

packages are of more interest to an advanced user and these packages are described next.

Some of the other packages are described in Appendix C. For details on the installation of

rSQP++, see Appendix B.

4.2.3 Overview of NLP and Linear Algebra Interfaces

All of the high-level optimization code in rSQP++ is designed to allow arbitrary implemen-

tations of the linear algebra objects. It is the NLP object that defines the basis for all of

74

the linear algebra by exposing a set of abstract “factories” [42] for creating linear algebra

objects. Before the specifics of the NLP interfaces are described, the basic linear algebra

interfaces are discussed first. These are the interfaces that allow rSQP++ to utilize fully

parallel linear algebra in a completely transparent manner.

4.2.3.1 Overview ofAbstractLinAlgPack: Interfaces to Linear Algebra

Figure 4.4 shows a UML class diagram of the basic linear algebra abstractions. The foun-

dation for all the linear algebra is in vector spaces. A vector space object is represented

though an abstract interface calledVectorSpace. A VectorSpace object primar-

ily acts as an “abstract factory” [42] and creates vectors from the vector space using the

create member()method.VectorSpace objects can also be used to check for com-

patibility using theis compatible() method. EveryVectorSpace object has a

dimension. Therefore aVectorSpace object can not be used to represent an infinite-

dimensional vector space. This is not a serious limitation since all vectors must have a

finite dimension when implemented in a computer. Just because two vectors from different

vector spaces have the same dimension does not imply that the implementations will be

compatible. For example, distributed parallel vectors may have the same global dimension

but the vector elements may be distributed to processors differently (we say that they have

different “maps”). This is an important concept to remember.

Vector implementations are abstracted behind interfaces. The basic vector interfaces are

broken up into two levels:VectorWithOp andVectorWithOpMutable. TheVec-

torWithOp interface is an immutable interface where vector objects can not be changed

by the client. TheVectorWithOpMutable interface extends theVectorWithOp in-

terface in allowing clients to change the elements in the vector. These vector interfaces

are very powerful and allow the client to perform many different types of operations. The

foundation of all vector functionality is the ability to allow clients to apply user-defined

RTOpoperators which perform arbitrary reductions and transformations (see the methods

apply reduction(...) andapply transformation(...) 1). The ability to

1Note that bothapply reduction(...) andapply transformation(...) can perform re-

ductions and return reduction objectsreduct obj . Assuming that onlyapply reduction(...) can

perform a reduction is a common misunderstanding. The differences between these two methods is subtle

75

create_member() : VectorWithOpMutable

is_compatible(in : VectorSpace) : bool

dim

VectorSpace

apply_reduction(in op, in ..., inout reduct_obj)

sub_view(in : Range1D) : VectorWithOp

VectorWithOp

apply_transformation(in op, in ..., inout reduct_obj)

sub_view(in : Range1D) : VectorWithOpMutable

VectorWithOpMutable

space

Mp_StM()

Vp_StMtV()

Mp_StMtM()

MatrixWithOp

Mp_StMtMtM()

MatrixSymWithOp
 V_InvMtV()

M_StInvMtM()

M_StMtInvM()

MatrixWithOpNonsingular

M_StMtInvMtM()

is_pos_def : bool

MatrixSymWithOpNonsingular

space_cols

space_rows

{space_cols==space_rows}

set_basis(in Gc, in Px, in Pc, out C, out D)

select_basis(inout Gc, out Qx, out Qc, out C, out D)

BasisSystemPerm

update_basis(in Gc, out C, out D, out ...)

BasisSystem

Permutation

D

C

P_var

P_equ

Gc

«
creates
»

Figure 4.4. UML class diagram :AbstractLinAlgPack ,

abstract interfaces to linear algebra

write these types of user-defined operators is critical to the implementation of advanced

optimization algorithms. A single operator application method is the only method that a

vector implementation is required to provide (in addition to some trivial methods such as

returning the dimension of the vector) which makes it fairly easy to add a new vector imple-

mentation. In addition to allowing clients to applyRTOpoperators, the other major feature

is the ability to create arbitrary subviews of a vector (using thesub view() methods)

as abstract vector objects. This is an important feature in that it allows the optimization

algorithm to access the dependent (i.e. state) and independent (i.e. design) variables sepa-

rately (in addition to any other arbitrary range of vector elements). Support for subviews

is supported by default by every vector implementation through default view classes (see

the classVectorWithOpMutableSubview) that rely only on theRTOpapplication

methods. The last bit of major functionality is the ability of the client to extract an explicit

and the reader should consult the the Doxygen documentation for more details.

76

view of a subset of the vector elements. This is needed in a few parts of an optimization

algorithm for such tasks as dense quasi-Newton updating of the reduced Hessian and the

implementation of the compact LBFGS matrix. Aside from vectors being important in their

own right, vectors are also the major type of data that is communicated between higher-

level interfaces such as linear operators (i.e. matrices) and function evaluators (i.e. NLP

interfaces).

The basic matrix (i.e. linear operator) interfaces are also shown in Figure 4.4. The

MatrixWithOp interface is for general rectangular matrices. Associated with anyMa-

trixWithOp object is a column space and a row space shown asspace cols and

space rows respectively in the figure. Since column and rowVectorSpace objects

have a finite dimension, this implies that every matrix object also has finite row and column

dimensions. Therefore, these matrix interfaces can not be used to represent an infinite-

dimensional linear operator. Note that all finite-dimensional linear operators can be repre-

sented as a matrix (which is unique) so the distinction between a finite-dimensional matrix

and a finite-dimensional linear operator is insignificant. The column and row spaces of a

matrix object identify the vector spaces for vectors that are compatible with the columns

and rows of the matrix respectively. For example, if the matrixA is represented as aMa-

trixWithOp object then the vectorsy andx would have to lie in the column and row

spaces respectively for the matrix-vector producty = Ax.

These matrix interfaces go beyond what most other abstract matrix/linear-operator in-

terfaces have attempted. Other abstract linear-operator interfaces only allow the applica-

tions ofy = Ax or the transpose (adjoint)y = ATx for vector-vector mappings. EveryMa-

trixWithOp object can provide arbitrary subviews asMatrixWithOp objects through

thesub view(...) methods. These methods have default implementations based on

default view classes which are fundamentally supported by the ability to take arbitrary sub-

view of vectors. This ability to create these subviews is critical in order to access the basis

matrices in (4.1.33) given a Jacobian objectGc for r
. These matrix interfaces also allow

much more general types of linear algebra operations. The matrixMatrixWithOp inter-

face allows the client to perform level 1, 2 and 3 BLAS operations (see Appendix E for a

discussion of the convention for naming functions for linear algebra operations)

77

B = � op(A) +By = � op(A) x+ �yC = � op(A) op(B) + �C:
One of the significant aspects of these linear algebra operations is that an abstractMa-

trixWithOp object can appear on the left-hand-side. This adds a whole set of issues

(i.e. multiple dispatch [76, Item 31]) that are not present in other linear algebra interfaces.

The matrix interfaces assume that the matrix operator or the transpose of the matrix

operator can be applied. Therefore, a correctMatrixWithOp implementation must be

able to perform the transposed as well as the non-transposed operation. This requirement

is important when the NLP interfaces are discussed later.

Several specializations of theMatrixWithOp interface are also required in order to

implement advanced optimization algorithms. All symmetric matrices are abstracted by

theMatrixSymWithOp interface. This interface is required in order for the operationC = � op(B) op(A) op(BT) + �C
to be guaranteed to maintain the symmetry of the matrixC. Note that a symmetric

matrix requires that the column and row spaces be the same which is shown by the UML

constraintf... g in Figure 4.4.

The specializationMatrixWithOpNonsingular is for nonsingular square matri-

ces that can be used to solve for linear systems. As a result, the level 2 and 3 BLAS

operations

78

y = op(A�1) xC = � op(A�1) op(B)C = � op(B) op(A�1)
are supported. The solution of linear systems represented by these operations can be

implemented in a number of different ways. A direct factorization followed by back solves

or alternatively a preconditioned iterative solver (i.e. GMRES or some other Krylov sub-

space method) could be used. Or, a more specialized solution process could be employed

which is tailored to the special properties of the matrix (i.e. banded matrices).

The last major matrix interfaceMatrixSymWithOpNonsingular is for symmetric

nonsingular matrices. This interface allows the implementation of the operationC = � op(B) op(A�1) op(BT)
and guarantees thatC will be a symmetric matrix.

A more detailed discussion of these basic linear algebra interfaces can be found in the

Doxygen documentation.

A major part of a rSQP algorithm, based on a variable-reduction null-space decom-

position (see Section 4.2.5), is the selection of a basis. The fundamental abstraction for

this task isBasisSystem (as first introduced in Figure 4.2). Theupdate basis()

method takes the rectangular JacobianGc (r
) and returns aMatrixWithOpNonsin-

gular object for the basis matrixC. This interface assumes that the variables are already

sorted according to (4.1.31). For many applications, the selection of the basis is known a

priori (e.g. PDE-constrained optimization). For other applications, it is not clear what the

best basis selection should be. For the latter type of application, the basis selection can be

performed on-the-fly and result in one or more different basis selections during the course

79

of a rSQP algorithm. TheBasisSystemPerm specialization supports this type of dy-

namic basis selection and allows clients to either ask the basis-system object for a good

basis selection (select basis()) or can tell the basis-system object what basis to use

(select basis()). The selection of dependentxD and independentxI variables and

the selection of the decomposed
d(x) and undecomposed
u(x) constraints is represented

by Permutation objects which are passed to and from these interface methods. The

protocol for handling basis changes is somewhat complicated and is beyond the scope of

this discussion.

4.2.3.2 Overview ofNLPInterfacePack: Interfaces to Nonlinear Programs

The hierarchy of NLP interfaces that all rSQP++ optimization algorithms are based on is

shown in Figure 4.5. These NLP interfaces act primarily as evaluators for the functions and

gradients that define the NLP. These interfaces represent the various levels of intrusiveness

into an application area.

The base-level NLP interface is calledNLP and defines the nonlinear program. AnNLP

object defines the vector spaces for the variablesX and the constraintsC asVectorSpace

objectsspace x andspace c respectively. TheNLP interface allows access to the initial

guess of the solutionx0 and the boundsxL andxU asVectorWithOp objectsx init ,

xl andxu respectively.

TheNLP interface allows clients to evaluate just the zero-order quantitiesf(x) 2 IR

and
(x) 2 C as scalar andVectorWithOpMutable objects respectively. Many dif-

ferent steps in an optimization algorithm do not require sensitivities for the problem func-

tions. Examples include several different line search and trust region globalization methods

(i.e. Filter and exact merit function). Nongradient-based optimization methods could also

be implemented through this interface but smoothness and continuity of the variables and

functions is assumed by default. Note that this interface is the same as a NAND (nested

analysis and design) approach if there are no equality constraints (i.e. removed using non-

linear elimination). TheNLP interface can also be used for unconstrained optimization

(i.e. jCj = m = 0) or for a system of nonlinear equations (i.e.jX j = n = jCj = m).

The next level of NLP interface isNLPObjGradient. This interface simply adds

80

calc_f(in x)

calc_c(in x)

x_init : VectorWithOp

xl : VectorWithOp

xu : VectorWithOp

NLP

calc_Gf(in x)

NLPObjGradient

calc_Gc(in x)

NLPFirstOrderInfo

calc_point(in x, out f, out c, out Gf, out py, out D)

NLPFirstOrderDirect

calc_HL(in x, in lambda)

NLPSecondOrderInfo

space_x
space_c

AbstractLinAlgPack::
BasisSystem

basis_sys

AbstractLinAlgPack::
VectorSpace

Figure 4.5. UML class diagram :NLPInterfacePack , ab-

stract interfaces to nonliner programs

the ability to compute the gradient of the objective functionrf(x) 2 X as aVector-

WithOpMutable objectGf . For many applications, it is far easier and less expensive

to compute sensitivities for the objective function than it is for the constraints. That is

why this functionality is considered more general than sensitivities for the constraints and

is therefore higher in the inheritance hierarchy than interfaces the include sensitivities forr
.
Sensitivities for the constraintsr
 are broken up into two separate interfaces. These

interfaces represent the capabilities of the underlying application code. The most general

(from the standpoint of the optimization algorithm) interface isNLPFirstOrderInfo.

This NLP interface assumes that the application can, at the very least, form and main-

tain aMatrixWithOp objectGc for the gradient of the constriantsr
. Recall that this

implies that operations of the formu = r
T v andu = r
 v can both be performed

with arbitrary vectors. Note that while operations of the formu = r
Tv can be approx-

imated using directional finite differences (i.e.r
T v = lim�!0(
(x + �v) �
(x))=�)),
operations of the formu = r
 v can not, so this interface can not simply be approxi-

81

mated using finite differences. ANLPFirstOrderInfo object can optionally supply

a BasisSystem object that is specialized for application’sGc matrix object. By im-

plementing theNLPFirstOrderInfo interface (with the associatedVectorSpace,

MatrixWithOp andBasisSystem subclasses), the critical linear algebra computa-

tions can be performed in a rSQP algorithm. See Section 4.2.5 for a description of how the

variable-reduction null-space decompositions use aBasisSystem object to define all of

the required decomposition matrices. An example of a very structured NLP is described in

Section 4.4 where all of the linear algebra objects are specialized for the NLP.

For applications that can not satisfy theNLPFirstOrderInfo interface, there is

theNLPFirstOrderDirect interface. As the name implies, theNLPFirstOrder-

Direct interface only requires the direct sensitivity matrixD = �C�1N and the solution

to the Newton linear systemspy = C�1
. With usually minor modifications, almost any

application code that uses a Newton method for the forward solution can be used to imple-

ment theNLPFirstOrderDirect interface (see Chapter 5 for an example application).

Both the orthogonal and the coordinate variable-reduction null-space decompositions can

be implemented with just the quantitiesD = �C�1N andpy = C�1
.
Finally, the most advanced NLP interface defined isNLPSecondOrderInfo. This

NLP interface allows the optimization algorithm to compute aMatrixSymWithOp ma-

trix objectHL for the Hessian of the LagrangianW = r2xxL = r2f(x)+Pmj=1 �jr2
j(x).
How this Hessian matrix object is used can vary greatly. This matrix object can be used

to compute the exact reduced HessianB = ZTWZ or can be used to form the full KKT

matrix. Many other possibilities exist but the best approach will be very much application

dependent.

TheNLP, NLPFirstOrderDirect, NLPFirstOrderInfo andNLPSecond-

OrderInfo interfaces represent four different levels of invasiveness to the application.

TheNLP interface without equality constraints can used to implement a basic NAND op-

timization algorithm while on the other extreme theNLPSecondOrderInfo interface

can be used to implement a fully coupled invasive SAND method with access to second

derivatives.

82

4.2.4 Overview ofGeneralIterationPack: Framework for Gen-

eral Iterative Algorithms

GeneralIterationPack is a framework for building iterative algorithms in C++.

This framework is not specific to numerical applications and can be used for any application

area where it may be useful. The challenges in building such a framework are in trying to

keep the steps and other components in the algorithm as decoupled as possible so that they

can be reused in many different related algorithms.

To illustrate the design and the underlying concepts, consider the iterative algorithm

shown in Figure 4.6. In such an algorithm, quantities computed in one step are used by

one or more other steps. In the example, the iteration quantities arex, p, q, andr. These

quantities may represent anything from scalars to vectors or matrices all the way up to

arbitrarily complex objects. Such algorithms must be initialized before they can be run

as shown in the example. Once some minimum initialization is completed, the algorithm

starts to run. The average iteration is executed sequentially from step 1 to step 4 and

then loops back to step 1 again with the iteration counterk incremented by one. During

some iterations, however, one or more minor loops between steps 2 and 3 may be required.

The steps in the algorithm are dependent on the other steps (at least implicitly) through

common iteration quantities. For example, steps 2, 3 and 4 all access the iteration quantityq. Steps may also have algorithmic control dependencies required to perform minor loops.

In the example, steps 2 and 3 are involved in a minor loop and this suggests some type

of dependency between them. The last type of dependency that exists is also between

steps and the iteration quantities that are updated or accessed and is related to the storage

requirements for iteration quantities. For example, step 1 only requires one storage location

for p to updatepk, while step 2 requires dual storage forp (pk andpk�1) in order to updateqk. Suppose step 1 were implemented long before step 2. In this case, it may have been

assumed that only one storage location was needed forp. When step 2 is later implemented,

will step 1 have to be modified to accommodate the additional storage locations? Many

implementation techniques would require the code implementing step 1 to be modified in

this case, thereby coupling step 1 to step 2 as well as to the implementation of the iteration

quantityp. Finally, there must be some termination criteria for the algorithm. This check

83

Step 1
pk = f1(xk)

Major Loop/ xk = xo
Star t

Step 2
qk = f2(pk,pk-1)

Step 3
rk = f3(qk)

[rk < ρ]
 / pk = f3’(rk,pk)

Step 4
xk+1 = f4 (qk,rk)

[rk ≥ ρ]

Minor Loop

Finish

[f4’(xk+1) < ε] / k = k+1
[f4’(xk+1) ≥ ε]

Figure 4.6. UML Activity Diagram: Example iterative algo-

rithm

for termination occurs after step 4 is completed in the example.

Figure 4.7 shows a UML2 diagram for theGeneralIterationPack framework.

At the center of the framework is anAlgorithm object. Associated with anAlgo-

rithm object are one or moreAlgorithmStep objects where each is identified by a

unique name (step name). Step objects, which are instantiations of subclasses ofAl-

gorithmStep, implement the steps in the algorithm. Using objects to represent a sub-

algorithm is a well known OO design pattern (see the “Strategy” pattern in [42]). Iteration

quantities are abstracted behind theIterQuantity interface and are aggregated into

a singleAlgorithmState object. TheAlgorithmState object acts as a central

repository for these quantities. IndividualIterQuantity objects are identified by a

unique name (iq name). Aggregating all of the iteration quantities into one central lo-

cation helps to remove the data dependencies between Step objects. The Step objects use

2The UML [96] has a convention for the names of classes and objects which is used in this paper. The

names of concrete classes use the fontConcreteClass . This is also the font used for objects. An object

is an instantiation of a concrete class. Abstract class names, as well as abstract operation names, are in

italics such asAbstractClass andAbstractClass::operation(...). While a concrete class

may have direct object instantiations, an abstract class (interface) may not (i.e. because these classes always

have one or more undefined abstract operation).

84

theIterQuantityAccess<...> interface to update and access iteration quantities.

The operationset k(offset) is called to update a quantity for the specific iterationk

+ offset, while get k(offset) is used to access a quantity already updated. Such

an interface to iteration quantities relieves Step objects from having to know if a quantity

requires single or multiple storage. So in the previous mentioned scenario for our example

algorithm, when the class for step 2 is implemented after step 1, the class for step 1 would

not have to be modified at all or even recompiled. Also, the operationget k(offset)

validates that the quantity was indeed updated for the iterationk + offset. This feature

has been invaluable during the development of rSQP++ in catching mistakes in algorithm

logic and/or implementation. Finally, anAlgorithmTrack object is used to output in-

termediate information about the algorithm by examining theAlgorithmState object.

By creating a subclass ofAlgorithmTrack, clients can easily monitor the progress of

an algorithm. If more sophisticated monitoring and control of an algorithm by the client

is required, additional Step objects can be inserted into an already preformed algorithm.

In addition, an algorithm can be altered while it is running by adding and removing Step

objects, thereby allowing it to be adapted for changing needs.

Figure 4.8 shows an object diagram for the example algorithm in Figure 4.6. In this

diagram, the iteration quantities are shown aggregated inside theAlgorithmState ob-

ject where the link qualifier names are given for each quantity. The concrete type of each

of these quantities isIterQuantityAccessContiguous<...> which provides se-

quential storage for successive iterations.

This design also allows for distributed algorithmic control. Algorithm control is shared

between theAlgorithm andAlgorithmStep objects. TheAlgorithm object is re-

sponsible for executing steps sequentially (from Step 1 to Step 4 in our example).Algo-

rithmStep objects are responsible for initialing minor loops through theAlgorithm

object (Step 3 initiates the Minor Loop in the example). Figure 4.9 shows a UML collabora-

tion diagram illustrating how algorithm control is implemented for our example algorithm.

The scenario shown is for two major iterations (k = 0; 1) where the minor loop is executed

once in the first (k = 0) iteration.

The details for the interfaces and the collaborations between the objects in this frame-

work are documented in the Doxygen generated documentation starting in the file

85

A l g o r i t h m

«configuration»
...
«start algorithm»
do_algorithm()
«runtime configuration»
...
«algorithmic control»
do_step_next(step_name)
terminate(bool)

A l g o r i t h m S t a te

A l g o r i t h m T r a c k

output_iteration(:A lg o r i t h m &)
output_final(:Algorithm&, algo_return

A l g o r i t h m S t e p

do_step(...):bool

name():string&
next_iteration()

I te r Q u a n t i t y

next_iteration()
iter_quant(iq_name):IterQuantity&

set_k(offset:int):T_info&
get_k(offset:int):const T_info&

I te r Q u a n t i t y A c c e s s

T_info

0,1

1

1

- Central hub for algorithm
- Executes steps along major loop

- Strategy interface
- Performs computations
- Initiates minor loops

- Central Repository for
Iteration Quantities

GeneralIterationPack

step_name

iq_name

- Encapsulates iteration
quantit ies for one or more
iterations
- Hides knowledge of storage
requirements
- Runtime checks for updates

*

*

- Interface for outputting
information about the algorithm
during each iteration

* 0,1

Figure 4.7. UML Class Diagram: GeneralItera-

tionPack : An object-oriented framework for building iterative

algorithms

86

 :C o n c r e te T r a c k

: C o n c r e te S t e p 1

: I t e rQ u a n t i t y A c c e s s C o n t in u o u s < . . .>

"Step1"

"x"

: A lg o r i th m

: C o n c r e te S t e p 2"Step2"

: C o n c r e te S t e p 3"Step3"

: C o n c r e te S t e p 4"Step4"

: A lg o r i th m S ta te

"p"

"q"

"r"

: I t e rQ u a n t i t y A c c e s s C o n t in u o u s < . . .>

: I t e rQ u a n t i t y A c c e s s C o n t in u o u s < . . .>

: I t e rQ u a n t i t y A c c e s s C o n t in u o u s < . . .>

state

track

Figure 4.8. UML Object Diagram: Instantiations (objects) of

GeneralIterationPack classes for the example algorithm in

Figure 4.6

87

algo: Algorithm

Step1 Step2

Step3

Step4track

1: do_algorithm() →

state: AlgorithmState

1.8: next_iteration() ↓

1.2: do_step(algo,2) ↑
1.4: do_step(algo,2) ↑
1.10: do_step(algo,2) ↑

1.3: do_step(algo,3) →
1.3.1: do_step_next("Step2") ←
1.5: do_step(algo,3) →
1.11: do_step(algo,3) →

1.7: output_iteration(algo) ↓
1.13: output_final(algo
 ,TERMINATE_TRUE) ↓

1.6: do_step(algo,4) ↓
1.12: do_step(algo,4) ↓
1.12.1: terminate(true) ↑

1.1: do_step(algo,1) ↑
1.9: do_step(algo,1) ↑

Figure 4.9. UML Collaboration Diagram: Scenario for the

example algorithm in Figure 4.6

RSQPPPBASEDOC/GeneralIterationPack/html/index.html

4.2.5 Overview of Interfaces for Null-Space Decompositions

An important computation in a rSQP algorithm is the null-space decomposition used to

project the full-space QP subproblem into the reduced space. In rSQP++, the decomposi-

tion matricesZ, Y , Uz andUy in (4.1.23), (4.1.26)–(4.1.27) are represented byMatrix-

WithOp objects while the nonsingular matrixR in ((4.1.24) is represented by aMatrix-

WithOpNonsingular object. Once these matrix objects are initialized for the current

iteration, the rest of the rSQP++ algorithm can be implemented by interacting only with

these matrices through theMatrixWithOp andMatrixWithOpNonsingular inter-

faces. The basic interface that a rSQP++ algorithm uses to construct the matricesZ, Y , Uz,Uy andR from the matrixA isDecompositionSystem. This interface, as well as more

specialized interfaces for variable-reduction decompositions, is shown in Figure 4.10.

TheDecompositionSystem interface has an operation calledupdate decomp(...)

which the rSQP++ algorithm calls to update the decomposition matrices. TheDecomposition-

System interface also exposes a set of factory objects (not shown in the figure) that

88

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy)

DecompositionSystem

DecompositionSystemVarReduct

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy)

update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy)

DecompositionSystemVarReductImp

update_decomp(in Gc, out Z, out Y, out R, out Uz, out Uy)

DecompositionSystemOrthonormal

+update_basis(in Gc, out C, out D, out ...)

AbstractLinAlgPack::
BasisSystem

basis_sys

update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy)

DecompositionSystemCoordinate

update_matrices(in C, in N, in E, in F, in D, out Y, out R, out Uy)

DecompositionSystemOrthogonal

Figure 4.10. UML Class Diagram: Inheritance hierarchy for

null-space decompositions

can create matrix objects forZ, Y , R, Uz andUy that are compatible with the concrete

decomposition-system object.

DecompositionSystemVarReduct is a specialized interface that all variable-

reduction decompositions inherit from.DecompositionSystemVarReductImp is

an implementation node subclass that provides a common implementation that all variable-

reduction decompositions can share. This matrix subclass defines the factory objects forZ
andUz. The key to making the variable-reduction decomposition subclasses independent

of the special properties of the underlying NLP and linear solver is to use aBasisSystem

object which takes care of the basis handling. TheBasisSystem object provides access

to the basis matrixC as aMatrixWithOpNonsingular object as well as the ma-

tricesN , E, andF asMatrixWithOp objects. Given aBasisSystem object, the

DecompositionSystemVarReductImp subclass can fully define the null-space ma-

trix Z in (4.1.34) and the projected matrixUz in (4.1.35). This subclass performs all of the

interaction with theBasisSystem object to form the basis matrices. However, this sub-

class can not define the matrix objects forY ,R andUy since these depend on the definition

of the quasi-range-space matrixY . The computation of these matrix objects are deferred

to subclasses through the pure-virtual methodupdate matrices(...). This method

89

passes the basis matrix objects forC, N , E, F and potentially the direct sensitivity matrix

object forD to the subclass which then returns updated matrix objects forY , R andUy.

The coordinate decomposition defined in (4.1.36)–(4.1.38) is implemented by the sub-

classDecompositionSystemCoordinate. The implementation of this subclass is

very simple asR = C, Uy = E.

The orthogonal decomposition defined in (4.1.39)–(4.1.41) is implemented by the sub-

classDecompositionSystemOrthogonal. The implementation if this subclass is

more complex because of the more complicated definitions ofY , R, andUy. See the

Doxygen documentation for this subclass for more details on how these matrices are im-

plemented.

The last decomposition system subclass isDecompositionSystemOrthonormal

which implements a different type of null-space decomposition based on a QR factoriza-

tion. The linear algebra performed in this class uses dense computations and is therefore

only applicable to small serial NLPs.

Since the null-space decomposition is such an important part of a rSQP algorithm it is

very important to validate that decomposition matricesZ, Y ,R,Uz andUy obey the correct

properties. The test classDecompositionSystemTester has been developed for this

purpose. The tests performed by this class do not significantly increase the total runtime for

the application and can be performed on even the largest and most difficult problems. The

tests performed ,of course, catch gross programming and other errors but are also sensitive

to ill conditioning in the problem. If any of the tests fail, the overall rSQP algorithm

is terminated. This class accepts many different options that control the level of output

produced to therSQPppJournal.out file (see the options groupDecomposition-

SystemTester).

The decomposition system interfaces and subclasses are part of the package (names-

pace)ConstrainedOptimizationPack and are documented in the Doxygen collec-

tion starting in

RSQPPPBASEDOC/ConstrainedOptimizationPack/html/index.html

90

4.2.6 Interfaces to Quadratic Programming Solvers

Another very important numerical computation in a rSQP algorithm is the solution to the

reduced-space QP subproblem in (4.1.25)–(4.1.27). In order to decouple the rSQP code

away from the QP solver used to solve the QP subproblem, an abstract interface to QP

solvers calledQPSolverRelaxed has been developed. TheQPSolverRelaxed is

very general and has seen application in areas other than SQP (such as MPC in [11]). The

QP solved by this interface is of the form

mind 2 IRnd gTd+ 1=2 dTGd+M(�) (4.2.59)

s.t. �L � � (4.2.60)dL � d � dU (4.2.61)eL � op(E)d� b� � eU (4.2.62)op(F)d+ (1� �)f = 0 (4.2.63)

where:d; dL; dU 2 IRnd�; �L 2 IRM(�) 2 IR ! IRg 2 IRndG = GT 2 IRnd�ndop(E) 2 IRmin�ndeL; eU ; b 2 IRminop(F) 2 IRmeq�ndf 2 IRmeq
As shown in (4.2.59)–(4.2.63), a very simple relaxation of the constraints is built into

the formulation. The form of this relaxation is biased toward use in a SQP algorithm.

The form of the functionM(�) in the objective (4.2.59) is specified by the subclasses that

implement this interface. An appropriate form of this function for a convex QP solver might

91

beM(�) = (�+ 1=2�2)M̂ , whereM̂ is a large constant. For a QP solver capable of handling

an indefinite Hessian,M(�) = �M̂ , whenM̂ is a large constant, may be a better choice.

No matter how the functionM(�) is defined, as long asd(M(�))=d(�)j�=�L is sufficiently

large, then� will be at its lower bound� = �L (�L = 0 usually) in (4.2.60) if an unrelaxed

feasible region exits for (4.2.61)–(4.2.63).

The methodQPSolverRelaxed::solve qp(...) is called to pass the argu-

ments defining the QP to the QP solver and to return the solution. If the solution is not

found, then a partial solution will be returned and some information as to the status of the

returned point will be given (i.e. dual feasible, primal feasible, etc.). The problem vectorsg, b, f , dL, dU , eL andeU are represented asVectorWithOp objects. What makes this

interface different from other QP interfaces, such as described in [115], is that the defining

matrix objects are represented through the abstract interfacesMatrixSymWithOp for the

HessianG andMatrixWithOp for the Jacobian matricesE andF . In this way, the client

(i.e. the rSQP algorithm in the case of rSQP++) need not know about the special properties

of the Hessian or the Jacobian matrices or how the QP is solved.

For some QP solvers that implement theQPSolverRelaxed interface, such as QPOPT

and QPSOL, interaction with the matricesG,E andF through theMatrixWithOp inter-

face is all that is needed to solve the QP in a reasonably efficient manner (with respect to the

specific solver). However, most implementations of theQPSolverRelaxed interface

can not efficiently solve the QP with just the interface provided throughMatrixSym-

WithOp andMatrixWithOp. For many of these QP solver subclasses, more specialized

matrix interfaces must be supported by matrix objects forG, E and/orF . For example,

the subclass for QPKWIK [106] must be able to extract the dense inverse of the Cholesky

factor of the HessianG. In order to do this, the matrix object forG must support the

MatrixExtractInvCholFactor interface. Therefore, to use QPKWIK efficiently,

the HessianG is usually stored and manipulated using the dense inverse of the Cholesky

factor. For other QP solvers, other less intrusive matrix interfaces are all that are required.

For example, with QPSchur (see [10]) the QP can be efficiently solved ifG supports the

MatrixSymWithOpNonsingular interface. Other approaches for solving the QP de-

fined in (4.2.59)–(4.2.63) with QPSchur and the interfaces that the Hessian and Jacobian

matrix objects must support are discussed in [10].

92

In addition to passing in the matrices and vectors that define the QP, the client can also

pass in initial guesses for the solutiond (primal variables) and the Lagrange multipliers

(dual variables) for the simple bound�, general inequality� and general equality� con-

straints. Given good estimates for the primal and dual variables, an active-set QP solver

can find the solution in very few iterations.

At the time of this writing,QPSolverRelaxed subclasses have been developed

for QPOPT (QPSolverRelaxedQPOPT) [47], QPSOL (QPSolverRelaxedQPSOL)

[45], QPKWIK (QPSolverRelaxedQPKWIK) [106], LOQO (QPSolverRelaxed-

LOQO) [117] and QPSchur (QPSolverRelaxedQPSchur) [10].

The real variability among different types of QPs is in the form of the HessianG and

JacobianE andF matrices. By defining a single interface for QP solvers, most of the same

code that sets up the QP vectors, calls the solver, and interprets the returned solution can

be reused for many different QP solver implementations. Using this QP interface makes it

relatively easy to swap QP solvers in and out of rSQP++.

Another major advantage to having a single interface to many different QP solvers is

that it was possible to implement a testing class calledQPSolverRelaxedTester . The

methodQPSolverRelaxedTester::check optimality conditions(...) checks

the optimality conditions of the QP, defined in (4.2.59)–(4.2.63), given the solution (or par-

tial solution) returned fromQPSolverRelaxed::solve qp(...). It is critical to

stress how important this testing class is and has been for easing the development of new

QP solver subclasses and in regression testing existing QP solvers. In addition, this testing

method computes the relative errors in the optimality conditions and is useful in deter-

mining how much loss of precision has occurred due to round off and ill conditioning.

This helps to diagnose when a QP solver may be unstable or when the QP being solved

is very ill conditioned. A lot of work has gone into the development of theQPSolver-

RelaxedTester testing class, and this work can be leveraged whenever a new QP solver

implementation is created.

93

4.3 Configurations for rSQP++

An algorithm configuration object, as shown in Figure 4.2, is required to build a valid

rSQP++ algorithm and to initialize it before the algorithm is run. This is where a lot of

the complexity involved with a rSQP++ algorithm occurs. The individual step objects used

to build the algorithm generally are very compact and perform simpler, well defined tasks.

Most of these step objects are built to be fairly autonomous with little specific knowledge

about other steps. For the most part, Step objects communicate with each other through

the iteration quantities that they have in common. Because the individual Step objects are

decoupled, they can be used and reused in many related rSQP++ algorithms. However,

as is the case with any non-trivial application, the total complexity of the software is as

great or greater than the complexity of the algorithm it is implementing. This increase

in overall complexity is unavoidable. What has made object-oriented methods successful

in so many areas is that this overall complexity is decomposed into manageable chunks

that most of us can comprehend. There is a continuous struggle in software modeling and

design between more encapsulation to make entities appear simpler on the outside verses

less encapsulation with finer-grained objects that are more flexible but are also harder to

deal with and understand as a whole. It is our aim to implement algorithms in rSQP++ that

strike a reasonable balance between simplicity and flexibility.

Once an algorithm is configured (i.e. Step objects have been added to therSQPAlgo

object, and iteration quantity objects have been added to therSQPState object) it is

largely self contained. Automatic garbage collection is used extensively in the form of

smart reference counted pointers (see the classref count ptr<...> in Section 8.8).

These smart pointers allow the algorithm to be modified (Step and iteration quantity objects

to be added and removed) with minimal danger of causing a memory leak or other memory

usage problem often associated with development in C and C++.

A universal rSQP++ solver encapsulation class calledrSQPppSolver has been de-

veloped that hides many of the details of using a configuration object to setup and algorithm

and then solve a NLP. This encapsulation class uses an algorithm configuration class called

rSQPAlgo ConfigMamaJama (see Section 4.3.1) as the default but other configura-

tions can be used as well. The classrSQPppSolver provides simple access to a rSQP++

solver and should be used by even the most advanced user as the entry point to rSQP++.

94

Doxygen generated documentation for much of what is discussed here begins in the file

RSQPPPBASEDOC/html/index.html .

It is important to stress what a radical departure from typical algorithmic implementa-

tion methods that this design represents. In a typical numerical code that supports several

different options, each part of the algorithm is augmented with “if” statements or “select-

case” control structures that implement the logic for the different options. Adding a new

option to these types of codes requires adding another “else if” or “case” clause. If the

code already supports many different options, then the existing “if” or “select-case” logic

may be fairly complex and a developer may be fearful (and rightly so) to add a new option

without understanding all of the logic in all of the existing “if” or “select-case” control

structures. Now consider the design used for rSQP++. All of the complicated logic used to

sort out the user-specified options is contained in the configuration object. However, once

the configuration object constructs an algorithm, that algorithm is usually much simpler

since it does not have to consider all of the possible options and there are far fewer control

structures for different algorithmic options. As a result, it is much easier for a developer

to reason about what the algorithm does and how to modify it to meet more specialized

needs. All of this can be done without having to know very much at all about the ugly

configuration object that was used to configure the algorithm.

4.3.1 MamaJama Configurations

There is a rSQP++ class calledrSQPAlgo ConfigMamaJama that is used to configure

many related reduced-space SQP algorithms. This single configuration class was used

during much algorithm development and continues to be modified and enhanced. The name

“MamaJama” was used for a complete lack of something more appropriate and is meant

to signify that this is a do-all configuration class. In the future, more specialized rSQP++

algorithms will most likely be modifications of the algorithms constructed by objects of

this configuration class or initially based on its source code.

95

4.3.1.1 Solver options

Various options can be set in a flexible and user friendly format (see the classOptions-

FromStream in Appendix 8.8). Options are clustered into different “options groups”.

An example excerpt from an options file is shown in Appendix 8.8. These and many other

options may be included in therSQPpp.opt file.

The full set of options that can be used withrSQPppSolver and the “MamaJama”

configuration is described in the Doxygen documentation starting in the file

RSQPPPBASEDOC/ReducedSpaceSQPPack/html/rSQPppSolver*.html

Documenting rSQP++ is a major task and this issue is discussed in more detail in the

next section.

4.3.1.2 Documentation, Algorithm Description and Iteration Output

One of the greatest challenges in developing software of any kind is in maintaining docu-

mentation. This is especially a problem with software developed in a research environment.

Without good documentation, software can be very difficult to understand and maintain. In

addition to the Doxygen generated documentation, which is very effective in describing in-

terfaces and other specifications, there is also a need to document the more dynamic parts

of an optimization algorithm. Highly flexible and dynamic software, which rSQP++ is de-

signed to be, can be very hard to understand just by looking at the source code and static

documentation.

A problem that often occurs with numerical research codes is that the algorithm de-

scribed in some paper is not what is actually implemented in the software. This can cause

great confusion later on when someone else tries to maintain the code. Some of these dis-

crepancies are only minor implementation issues while others seriously impact the behavior

of the algorithm.

Primarily, two features have been implemented to aid in the documentation of a rSQP++

algorithm: the configured algorithm description can be printed out before the algorithm is

96

run, and information is output about a running algorithm.

The first feature is that a printout of a configured rSQP++ algorithm can be produced

by setting the optionrSQPppSolver::print algo = true in rSQPpp.opt, where

this is shorthand for theprint algo option in therSQPppSolver options group. With

this option set totrue , the algorithm description is printed to therSQPppAlgo.out file

before the algorithm is run. The algorithm is printed using Matlab-like syntax. The iden-

tifier names for iteration quantities used in this printout are largely the same as used in the

source code. There is a very careful mapping between the names used in the mathematical

notation of the SQP algorithm and the identifiers used in the source code and algorithm

printout. This mapping for identifiers is given in Appendix A. Each iteration-quantity

name in the algorithm printout has’ k’ , ’ kp1’ or ’ km1’ appended to the end of it to

designate the iteration,(k), (k + 1) or (k � 1) respectively, for which it was calculated.

Much of the difficulty in understanding an algorithm, whether in mathematical notation or

implemented in source code, is knowing precisely what a quantity represents. By using

a careful mapping of names and identifiers, it is much easier to understand and maintain

numerical software.

This algorithm printout is put together by therSQPAlgo object (through functionality

in the base classGeneralIterationPack::Algorithm) as well as theAlgorithm-

Step objects. Each step is responsible for printing out its own part of the algorithm.

The code for producing this output is included in the same source file as each of the

do step(...) functions for eachAlgorithmStep subclass. Therefore, this docu-

mentation is decoupled from other steps as much as the implementation code is, and main-

taining the documentation is more urgent since it is in the same source file. An example of

this printout for a rSQP algorithm is shown in Appendix 8.8. Each Step object is given a

name that other steps refer to it by (to initiate minor loops for instance). Also, the name of

the concrete subclass which implements each step is included as a guide to help track down

the implementations.

Many of the options specified in the input file are shown in the printed algorithm. The

user can therefore study the algorithm printout to see what effect some of the options have.

For example, the optionrSQPSolverClientInterface::opt tol is shown in step

5 (“CheckConvergence”) in Appendix 8.8. Some of the options determine the algorithm

97

configuration, which affects what steps are included, how steps are set up and in what

order they are included. These option names are not specifically shown in the algorithm

printout. For example, the optionrSQPAlgo ConfigMamaJama::max dof quasi-

newton dense determines when the algorithm configuration will switch from using

dense BFGS to using limited-memory BFGS but this identifier namemax dof quasi-

newton dense is not shown anywhere in the listing. However, the configuration object

can print out a short log (to therSQPppAlgo.out file) to show the user the logic for how

these options impact the configuration of the algorithm.

In addition to this printed algorithm, output can be sent to a journal filerSQPpp-

Journal.out while the algorithm is run to display information about each step’s com-

putations. The names given to quantities in the journal output are the same as in the algo-

rithm printout. The level of output is determined by the optionrSQPSolverClient-

Interface::journal print level and the valuePRINT ALGORITHMSTEPSis

usually the most appropriate and does not produce excessive output. Lower output levels

can be set for generating less output for faster execution times while higher output levels

can be set to generate lots of information that is useful in debugging or for other purposes.

See Appendix 8.8 for an example of this type of printout.

A more detailed look at the output filesrSQPppAlgo.out andrSQPppJournal.out

is given in Section 4.5 in the context of a specific example NLP.

4.3.1.3 Algorithm Summary and Timing

In addition to the more detailed information that can be printed to the filerSQPpp-

Journal.out , summary information about each rSQP++ iteration is printed to the file

rSQPppSummary.out . Also, if the optionrSQPppSolver::algo timing = true

is set, then this file will also get a summary table of the run-times and statistics for each step.

These timings are printed out in tabular format giving the time, in seconds, each step con-

sumed for each iteration as well as the sum of the times of all the steps. The bottom of the

table gives step statistics: the total time for each step for all the iterations (total(sec)),

the average step time per iteration (av(sec)/k), the minimum step time (min(sec)),

the maximum step time (max(sec)) and the total percentage of time each step consumed

98

(%total). See Appendix 8.8 for an example of arSQPppSummary.out file.

This timing information can be used to determine where the bottlenecks are in an al-

gorithm for a particular NLP. Of course for very small NLPs the runtime is dominated by

overhead and not numerical computations so the timing of small problems is not terribly

interesting.

Less detailed information can also be printed to the console through therSQPpp-

Solver class (see Appendix 8.8).

A more detailed look at the console output and the output filerSQPppSummary.out

is given in Section 4.5 in the context of a specific example NLP.

4.3.1.4 Algorithm and NLP Testing and Validation

Many computations are performed in order to solve a nonlinear program (NLP) using a

numerical optimization method. If there is a significant error (programming bug or round-

off errors) in any step of the computation, the numerical algorithm will not be able to solve

the NLP, or at least not to a satisfactory tolerance. When a user goes to solve a user-defined

NLP and the optimization algorithm fails or the solution found does not seem reasonable,

the user is left to wonder what went wrong. Could the NLP be coded incorrectly? Is

there a bug in the optimization software that has gone up till now undetected? For any

non-trivial NLP or optimization algorithm it is very difficult to diagnose such a problem,

especially if the user is not an expert in optimization. Even if the user is an expert, the

typical investigative process is still very tedious and time consuming.

Fortunately, it is possible to validate the consistency of the NLP implementation (i.e. gra-

dients are consistent with function evaluations) as well as many of the major steps of the

optimization algorithm. Such tests can be implemented in a way that the added cost (run-

time and storage) is of only the same order as the computations themselves and therefore

are not prohibitively expensive. There are several possible sources for such errors. These

sources of errors, from the most likely to the least likely are errors in the NLP implemen-

tation and user specialized parts of the optimization algorithm (e.g. a specializedBasis-

System object), errors in the core optimization code, or even errors in the compilers or

99

runtime environments used.

There are many ways to make a mistake in coding the NLP interface. For instance,

assuming the user’s underlying NLP model is valid (i.e. continuous and differentiable), the

user may have made a mistake in writing the code that computesf(x),
(x),rf(x) and/orr
(x). Suppose the gradient of the constraints matrixr
 is not calculated in some re-

gions. The matrixr
 may be used by a genericBasisSystem object to find and factor

the basis matrixC and therefore, the entire algorithm would be affected. To validater
,
the entire matrix could be computed by finite differences of course and then compared to

ther
 computed by the NLP interface, but this would be far too expensive in runtime

(O(nm)) and storage (O(nm)) costs for larger NLPs. Computing each individual com-

ponent of the gradients by finite differences is an option but it must be explicitly turned

on (see the optionNLPFirstDerivativesTester::fd testing method). As a

compromise, by default, directional finite differencing can be used to show thatr
 is not

calculated properly, but can not strictly prove thatr
 is completely correct. This works

as follows. The optimization algorithm asks the NLP interface to computer
k at the

point xk. Then, at the same pointxk, for a random vectorv, the matrix-vector productr
(xk)v is approximated, using central finite differences for instance, asr
(xk)v � t1 =(
(xk+hv)�
(xk�hv))=2h whereh � 10�5. Then the matrix vector productt2 = r
kv
is computed using ther
k matrix object computed by the NLP interface and the resultant

vectorst1 andt2 is then compared. Even if the user does an exemplary job of implementing

the NLP interface, the computedt1 andt2 vectors will not be exactly equal (i.e.t1 6= t2)
due to unavoidable round-off errors. Therefore, we need some type of measure of how wellt1 andt2 compare. For every such test in rSQP++ there are defined error (error tol) and

warning (warning tol) tolerances that are adjustable by the user but are given reason-

able default values. Any relative error greater thanerror tol will cause the optimization

algorithm to be terminated with an error message. Any relative error greater thanwarn-

ing tol will cause a warning message to be printed to the journal file to warn the user of

some possible problems. For example, relative errors greater thanwarning tol = 10�12
but smaller thanerror tol = 10�8 may concern us, but the algorithm still may be able

to solve the NLP. The finite-difference testing of the NLP interface can be controlled by

setting options in theNLPFirstDerivativesTester andCalcFiniteDiffProd

options groups as shown in Appendix 8.8. Testing the NLP’s interface at just one point,

such as the initial guessx0, is not sufficient to validate the NLP interface. For example,

100

suppose we have a constraint
10(x) = x32 with �
10=�x2 = 3x22. If the derivative was coded

as�
10=�x2 = 3x2 by accident, this would appear exactly correct at the pointsx2 = 0 andx2 = 1 but would not be correct for any other values ofx2. Therefore, it is important to test

the NLP interface at everySQP iteration if one really wants to validate the NLP interface.

Of course, just because the NLP interface is consistent, does not mean it implements the

model the user had in mind, but this is a different matter. If the NLP is unbounded, infea-

sible or otherwise ill posed, the SQP algorithm will determine this (but the error message

produced by the algorithm may not be able to state exactly what the problem is).

Every major computation in a rSQP algorithm can be validated, at least partially, with

little extra cost. For example, an interface that is used to solve for a linear systemx =A�1b such as theMatrixWithOpNonsingular can be checked by computingq =Ax and then comparingq to b. The interfaces can also be validated for the null-space

decomposition (seeDecompositionSystemTester in Section 4.2.5) and QP solver

(seeQPSolverRelaxedTester in Section 4.2.6) objects. Since sophisticated users

can come in and replace any of these objects, it is a good idea to be able to test everything

that can realistically be tested whenever the correctness of the algorithm is in question or

new objects are being integrated and tested. Much of this testing code is already in place

in rSQP++, but more is needed for more complete validation.

Such careful testing and validation code can save a lot of debugging time and also help

avoid reporting incorrect results which can be embarrassing in an academic research setting

or costly in business setting. Testing and validation is no small matter and should be taken

seriously, especially in a dynamic environment with lots of variability like rSQP++.

4.3.1.5 Debugging

Whenever software is involved, the need for debugging is unavoidable. When a new user

attempts to solve a NLP using rSQP++, the most likely bugs will be in the NLP imple-

mentation that the user has to provide. Here, some strategies for debugging are discussed

that should help a user to track down bugs associated with the NLP implementation and fix

them as quickly as possible. There are many different types of errors that can occur and

going into all of these types of errors would require a long discussion. However, below are

101

a few of the more common types of errors that are worth mentioning.

1. Segmentation fault do to runtime memory management error.

2. A linear algebra incompatibility exception is thrown.

3. Gradients of problem functions do not match function values (i.e. finite-difference

testing failed).

4. Algorithm prematurely terminated due to some algorithmic error.

5. Unexpected or unreasonable solution is found.

Segmentation faults or thrown exceptions are some of the easiest (or the hardest) bugs

to track down. These are almost always caused by some programming error and are not

related to the validity of the mathematical formulation for the NLP being implemented.

The other errors are harder to track down and are usually caused by a malformed NLP.

The easiest of these errors to track down is when a gradient of the objective or con-

straints does not match the function value to an acceptable tolerance. It is this type of error

that is discussed here. Debugging a large NLP with lots of variables and constraints is gen-

erally very difficult. Therefore, serious debugging should be performed on the smallest and

simplest example that does not exhibit the correct or expected behavior. For example, the

smallest possible mesh size and discretization method should be used for a scalable NLP

such as a PDE solver using the finite-element method. Assuming that a problem can be

derived that is sufficiently small (i.e.n;m < 20) here are the steps to follow in order to

diagnose a problem with the NLP formulation. First, the initial point for the NLP needs to

be dumped to the filerSQPppJournal.out and each component of the gradient has to

be checked independently (i.e. component-wise). To do this, set the optionsNLPTester-

::print all=true andNLPFirstDerivativesTester::fd testing method=FD COMPUT

This will cause the print out of the initial guessx0 (xinit), the boundsxL (xl), xU (xu),

the value of the objectivef(x0) (f), constraints
(x0) (c), the gradients of the objectiverf(x0) (Gf), constraintsr
(x0) (Gc) and the relative error in every gradient component.

From this information it will be easy to see which component ofrf(x0) or r
(x0) is

causing the problem.

102

4.4 Examples NLP subclasses

There are several example NLP projects that come with the base distribution of rSQP++.

Several of the included example projects implement the following simple NLP

min 1=2xTx (4.4.64)

s.t.
j = xj(x(j+n=2) � 1)� 10x(j+n=2) = 0; for j = 1 : : : n=2: (4.4.65)

This scalable NLP has(n � m) = n=2 = m degrees of freedom and is referred to

as example #2 in [115] and [104]. This NLP has very specialized structure and a valid

selection of dependent and independent variables is straightforward to find. Selecting the

first m variables as dependent variables gives the following definitions of the basis and

nonbasis matrices

C = 266664 xm+1 � 1 xm+2 � 1
. . . xm+m � 1

377775 (4.4.66)

N = 266664 x1 � 10 x2 � 10
. . . xm � 10

377775 (4.4.67)

which both happen to be diagonal matrices. Also, the exact Hessian of the LagrangianW and the reduced Hessian of the LagrangianB (using a variable-reduction decomposi-

tion) take the simple forms

103

W = " I ��T I # (4.4.68)B = NTC�TC�1N � �C�1N �NTC�T� + I (4.4.69)

where� is a diagonal matrix with components(�)(j;j) = �(j) for j = 1 : : :m. Note

that the reduced HessianB in (4.4.69) is also a diagonal matrix.

This NLP and its specific structure are of no practical interest but this NLP is sufficient

as a simple example to show how rSQP++ can be used to fully exploit the structure of a

class of NLPs from a specialized application area.

Three different implementations of this NLP are described. The first NLP subclass is

derived from the genericNLPSerialPreprocessExplJac node subclass. This exam-

ple NLP subclass is included to show how this generic NLP interface subclass can be used

and to provide a contrast to the more specialized implementations. The last two NLP sub-

classes derive directly from theNLPFirstOrderInfo andNLPFirstOrderDirect

interfaces and demonstrate how to exploit the structure and properties of a NLP.

This first NLP subclass is calledExampleNLPSerialPreprocessExplJac and

the source code for this project can be found at

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPSerialPreprocessExplJac .

The filesExampleNLPSerialPreprocessExplJac.h andExampleNLPSerial-

PreprocessExplJac.cpp contain the declarations and definitions for the NLP sub-

class and the fileExampleNLPSerialPreprocessExplJacMain.cpp contains the

simple driver program that uses arSQPppSolver object to solve the NLP.

The second two NLP subclasses are calledExampleNLPFirstOrderInfo and

ExampleNLPFirstOrderDirect . Both of these subclasses derive from a node sub-

classExampleNLPObjGradient which implements the bulk of the common function-

ality. The ExampleNLPObjGradient subclass takes aVectorSpace object as an

argument in its constructor. Using this singleVectorSpace object this entire NLP’s im-

104

plementation can be defined. This vector space is used to define the spacesXD, XI andC which happen to all be the same for this NLP. A composite vector-space object of type

VectorSpaceCompositeStd is used for the spaceX = XD � XI . A Specialized

RTOpoperator is used to implement the the constraints residual computation in (4.4.65).

Note that the objective in (4.4.64) is simply a dot product for which a defaultRTOpoperator

already exists.

The NLP subclassExampleNLPFirstOrderInfo derives fromNLPFirstOrder-

Info andExampleNLPObjGradient . A specializedBasisSystem subclass called

ExampleBasisSystem derives from the standard basis-system subclassBasisSystem-

CompositeStd . TheBasisSystemCompositeStd subclass implements theBasis-

System interface for the case where the matrix objectGc is simply an aggregate of

a MatrixWithOpNonsingular matrix object forC and aMatrixWithOp matrix

object forN. For the NLP, the standard matrix subclassMatrixSymDiagonalStd is

used for the matricesC andN since they are diagonal. The only functionality that the

ExampleBasisSystem subclass adds is the specialized formation of the direct sensitiv-

ity matrixD = �C�1N which is also diagonal for this simple NLP and is also represented

using aMatrixSymDiagonalStd object. The computation of the diagonal vectors forC andN is also performed by a specializedRTOpoperator object. The complete source

code for this example can be found at

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPFirstOrderInfo .

The last NLP subclassExampleNLPFirstOrderDirect derives fromNLPFirst-

OrderDirectandExampleNLPObjGradient . This subclass implements thecalc point(...)

method to compute the diagonal direct-sensitivity matrixD = �C�1N . Again, this direct-

sensitivity matrix is implemented as aMatrixSymDiagonalStd object. For complete

source code, see the directory

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPFirstOrderDirect .

Since the interfacesNLPFirstOrderInfoandBasisSystem can be implemented

easily for the NLP in (4.4.64)–(4.4.65) there was really no practical purpose for implement-

ing theNLPFirstOrderDirect interface since it provides only a subset of the func-

tionality. The only purpose for implementing theExampleNLPFirstOrderDirect

105

n n�m Np Wall Clock Time (sec) Scalability

2,000 1,000 1 0.21 1.00

2,000 1,000 2 0.27 2.57

2,000 1,000 4 0.53 10.10

20,000 10,000 1 1.50 1.00

20,000 10,000 2 0.96 1.28

20,000 10,000 4 0.75 2.00

200,000 100,000 1 21.00 1.00

200,000 100,000 2 11.00 1.05

200,000 100,000 4 5.60 1.07

2,000,000 1,000,000 1 190.00 1.00

2,000,000 1,000,000 2 93.00 0.97

2,000,000 1,000,000 4 47.00 0.98

Table 4.1. CPU times and scalability for the example NLP in

(4.4.64)–(4.4.65) whereNp is the number of processors and ’Scal-

ability’ is the wall-clock CPU time multiplied by the number of

processors divided by the CPU time for one processor.

subclass was to provide a simple complete example for theNLPFirstOrderDirect

interface.

All of the linear algebra for these NLP subclass is based on a singleVectorSpace

object as mentioned above. Therefore, any validVectorSpace object can be used along

with the vectors it creates. As a result, serial, parallel or other vector implementations can

easily be used. These NLP subclasses have been used various serial and parallel vector

implementations.

Table 4.1 shows the CPU times and scalabilities for using an example parallelVector-

Space class (using MPI) on a distributed-memory Beowulf cluster. The example NLP was

run with bad initial guesses and the number of rSQP iterations was cut off at 100 in order to

get consistent timings. The rSQP algorithm used a limited-memory BFGS approximation

[31] with very good parallel scalability. As a result, all of the linear algebra computations

106

for this simple NLP are all fully scalable. Here we definescalability as the ratio of the

wall-clock CPU time multiplied by the number of processors divided by the wall-clock

time for running the problem on only one processor. Given this definition, perfect scala-

bility is 1.00 which simply means that if we double the number of processors, the best that

we can usually hope for is to have the wall-clock time halved. The timings in Table 4.1 are

typical for scalable parallel programs. When the amount of computation verses commu-

nication is small, the communication tends to dominate which is seen for vectors of sizem = n �m = 1; 000 where there is actually an overall slowdown as more processors are

utilized. However, for vectors of sizem = n � m = 10; 000 we see a definite speedup

as more processors are added but the scalability is less than perfect. When the size of the

vectors are increased tom = n �m = 100; 000, the algorithm shows almost perfect scal-

ability. Note that 25,000 unknowns per processors (i.e. forNp = 4) is considered small

for PDE simulators that use parallel iterative solvers. Finally, for very large vectors of sizem = n�m = 1; 000; 000, the timings show better than perfect scalability (i.e.0:97 < 1:00)

which can also be seen in other parallel programs from time to time (usually do to cache or

other hardware issues).

Note that all of the linear algebra operations for this simple example NLP are vector

operations which offer the worst computation to communication ratios. Therefore, these

results represent the worst-case scenario for rSQP++ with respect to parallel scalability.

For more practical applications, the amount of computation per process is much higher and

therefore these applications show better overall scalability for smaller problem sizes.

These results show that the rSQP++ framework imparts very little serial overhead and

therefore allows for the implementation of very scalable optimization algorithms for ap-

plication areas where parallelism can be exploited (e.g. PDE constrained optimization).

Therefore, the burden is completely on the developers of applications and parallel linear

algebra libraries to achieve scalability.

4.5 Detailed Descriptions of Input and Output Files

In this section, a detailed description of the input and output to rSQP++ is given. Here

it is assumed that a NLP subclass is developed and a driver program has been written

107

as explained in the examples (see Appendix B for a description of adding a new project

to the build system). For this discussion, we will use the included example NLP called

ExampleNLPBanded which project is located at

$RSQPPPBASEDIR/rSQPpp/examples/ExampleNLPBanded .

This is a fairly simple NLP that is designed to allow the independent scaling ofn andm so that basic serial algorithm scalabilities can be tested. For a more detailed description

of this NLP see the Doxygen generated documentation at

RSQPPPBASEDOC/ExampleNLPBanded/html/index.html .

Before solving this NLP a working directory needs to be created to store the input and

output files as follows

$ mkdir $RSQPPP_BASE_DIR/tests/ExampleNLPBanded

$ cd $RSQPPP_BASE_DIR/tests/ExampleNLPBanded

The next step is to create a symbolic link to the prebuilt executable. Assuming the test

suite for the release version was built this link can be created as follows

$ ln -s $RSQPPP_BASE_DIR/intermediate/ExampleNLPBanded/

release/solve_example_nlp .

The options filerSQPpp.opt needs to be created (usingemacs for instance) as

shown in Appendix 8.8. Note that most of the options are commented out and most of

those that are not are at the default values.

Executing NLP creates output to the console and the output filesrSQPppAlgo.out ,

rSQPppSummary.out andrSQPppJournal.out which are shown in Appendix D.

4.5.1 Output to Console

The console output shown in Appendix 8.8 is generated by a defaultAlgorithmTrack

object of typerSQPTrackConsoleStd which is automatically inserted by therSQPpp-

108

Solver object. The first thing printed is the size of the NLP wheren = 30400 is the

total number of variables,m = 30000 is the total number of equality constraints andnz

= 599910 is the number of nonzeros in the Jacobianr
 (Gc) for this example. Next, a

table containing summary information for each iteration is printed. Each column in this

table has the following meaning� k : The SQP iteration count. This count starts from zero so the total number of SQP

iterations in one plus the finalk .� f : The value of the objective functionf(x) at current estimate of the solutionxk� ||c||s : The scaled residual of the norm of the equality constraints
(x) at current

estimate of the solutionxk. The scaling is determined by the convergence check

(see step 6 in Appendix 8.8 & 8.8) and this value is actually equal to the iteration

quantityfeas kkt err (see the filerSQPppAlgo.out). This is the error that is

compared to the tolerancerSQPSolverClientInterface::feas tol in the

convergence check. The unscaled constraint norm can be viewed in the more detailed

iteration summary table printed in the filerSQPppSummary.out .� ||rGL||s : The scaled norm of the reduced gradient of the LagrangianZ TrxL
at current estimate of the solutionxk. The scaling is determined by the convergence

check (see step 6 in Appendix 8.8 & 8.8) and this value is actually equal to the

iteration quantityopt kkt err (see the filerSQPppAlgo.out). This is the error

that is compared to the tolerancerSQPSolverClientInterface::opt tol

in the convergence check. The unscaled norm can be viewed in the more detailed

summary table printed in the filerSQPppSummary.out .� QN : This field indicates whether a quansi-Newton update of the reduced Hessian was

performed or not. The following are the possible values:

– IN : Reinitialized (usually to identityI)

– DU : A dampened update was performed

– UP : An undamped update was performed

– SK : The update was skipped on purpose

109

– IS : The update was skipped because it was indefinite� #act : Number of active constraints in the QP subproblem. This field only has

meaning for an active-set algorithms. For interior-point algorithms, this will just

equal the number of bounded variables and does not provide any interesting infor-

mation.� ||Ypy||2 : The jj:jj 2 norm of the quasi-normal contribution(Y py)k. This norm

gives a sense of how large the feasibility steps are.� ||Zpz||2 : The jj:jj 2 norm of the tangential contribution(Zpz)k. This norm gives

a sense of how large the optimality steps are.� ||d||inf : The jj:jj1 norm of the total stepdk = (Y py)k + (Zpz)k. This norm

gives a sense of how large the full SQP steps are inx.� alpha : The step length taken alongx k+1 = xk + �dk. A step length of� = 0
represents a major event in the algorithm such as a line search failure followed by

the selection of a new basis or a QP failure followed by a reinitialization of the

reduced Hessian. A small number for� indicates that many backtracking line search

iterations where required and is an indication that the computed search directiondk
is a poor direction.

After the iteration summary is printed, the CPU time is given inTotal time . This is

the CPU time that is consumed from the time that therSQPTrackConsoleStd object

is created up until the time that the final state of the algorithm is reported. Therefore,

this CPU time may contain more than just the execution time of the algorithm. For more

detailed built-in timings, see the table at the end of the filerSQPppSummary.out .

Following the total runtime, the number of function and gradient evaluations is given

for the objective and the constraints (i.e. 96 evaluations off(x) and
(x) and 15 evalua-

tions ofrf(x) andr
(x)). Note that the reason there is an excessive number of func-

tion evaluations is that the optionsrSQPppSolver::test nlp = true andrSQP-

SolverClientInterface::check results = true are being used which re-

sults in many finite-difference computations for various tests. The results from some these

tests are shown in the filerSQPppJournal.out in Appendix 8.8. If these options are set

110

to false then the number of function evaluations come down to only 20 for this example

NLP.

Below, the major types of output that are written to each output file are discussed. The

purpose of this discussion is to familiarize the user with the contents of these files and to

give hints of where to look for a certain types of information. Much of the output produced

by rSQP++ is omitted from the files included in Appendix 8.8–8.8 for the sake of space.

Before going into the details of each individual file, first a few general comments are

made. At the top of every output file is a header that briefly describes the general purpose

of the output file. This header is followed by an echo of the options form theOptions-

FromSteam object. These options include those set in the input filerSQPpp.opt or by

some other means (e.g. in the executable or on the command line). The purpose of echoing

the options in each file is to help record what the setting were that were used to produce

the output in the file. Of course the output is also influenced by other factors (e.g. other

command-line options, properties of the specific NLP being solved etc.) and therefore these

options do not determine the complete behavior of the software.

4.5.2 Output torSQpppAlgo.out

After the initial header and the echoed options

**

*** Algorithm information output ***

*** ***

*** Below, information about how the the rSQP++ algorithm is ***

*** setup is given and is followed by detailed printouts of the ***

*** contents of the algorithm state object (i.e. iteration ***

*** quantities) and the algorithm description printout ***

*** (if the option rSQPppSolver::print_algo = true is set). ***

**

*** Echoing input options ...

...

the concrete type of the configuration object is printed (in this case’class Reduced-

SpaceSQPPack::rSQPAlgo ConfigMamaJama’) followed by a header produced

111

by the configuration object it self. The next few lines of output simply traces some of the

tasks the configuration object performs. For example, the line

Detected that NLP object supports the NLPFirstOrderInfo interface!

states that the configuration object has detected that the user’s NLP supports theNLP-

FirstOrderInfo interface which will determine what type of algorithm will be config-

ured. This detection is performed using the build-indynamic cast<...> C++ operator.

The next bit of output gives the logic for how the configuration object decides which

features to use with the given NLP. For example, the output

range_space_matrix == AUTO:

(n-r)ˆ2*r = (400)ˆ2 * 30000 = 505032704 > max_dof_quasi_newton_denseˆ2 = (500)ˆ2 = 250000

setting range_space_matrix = COORDINATE

shows that theO((n� r)2r) flops required for the orthogonal variable-reduction null-

space decomposition exceeds number of flops for the dense quasi-newton update and there-

fore the coordinate decomposition will be used. Similar logic is used to determine if dense

quasi-Newton or a limited-memory approximation will be used by the algorithm.

Later in the file, the output line

Configuring an algorithm for a nonlinear equality constrained NLP (m > 0 && mI == 0 && num_bounded_x == 0)

states that an algorithm will be configured for a NLP without any inequality constraints.

This type of output shows how a configuration object can tailor the algorithm it con-

structs to the specific demands of the NLP being solved. This is a fundamental difference

from the way that most numerical software is written. In most numerical software, the

code is written with switch statements for every possible option that is supported, mak-

ing the code hard to develop and understand. In rSQP++, the complexity of supporting

a large set of options is first-and-foremost handled by different object configurations. No

matter how complex the logic is that is used to setup an algorithm, the resultant configured

algorithm becomes a much simpler self-contained entity that is easier to understand.

112

The remainder of therSQPppAlgo.opt file gives details on the configured algo-

rithm. The first bit of information is a list of step objects that therSQPppAlgo object is

configured with along with the names of the concrete classes used to implement the steps.

This output begins with

*** Algorithm Steps ***

1. "EvalNewPoint"

(class ReducedSpaceSQPPack::EvalNewPointStd_Step)

...

This list of Step objects is followed by a listing of the iteration quantities

*** Iteration Quantities ***

...

that have been added to theAlgorithmState object. These iteration quantities are

of more interest to algorithm developers but they also show the list of possible iteration

quantities that an advanced user could query in a user-definedAlgorithmTrack object

that is passed to therSQPppSolver object.

Near the end of therSQPppJournal.out file is a fairly detailed description of the

configured algorithm, step-by-step, in a Matlab-like format. The purpose of this algorithm

description is to document the major aspects of the algorithm in a way that the user (or

algorithm developer) should be able to reason about the implemented algorithm. A short

sub-algorithm is output for each step object. Each step object shows all of the iteration

quantities that it accesses and updates. For example, the null-space contributionZpz k

is computed first in stepf7. "NullSpaceStep" g before it can be used to compute

the full directiond k in stepf8. "CalcDFromYPYZPZ" g. This type of information

is very helpful in determining what order quantities must be computed in and what the

dependencies are.

The last step in the algorithm printout is always the step"Major Loop" which is

an implicit step that simply states the logic build in to theAlgorithm class for perform-

ing the major loop (i.e. transitioning formk to k + 1) and in prematurely terminating the

algorithm if the maximum number of iterations or the maximum runtime is exceeded.

113

The very last part of this file contains the following

Warning, the following options groups where not accessed.

An options group may not be accessed if it is not looked for

or if an "optional" options group was looked from and the user

spelled it incorrectly:

Here, the name of any option group that was specified in the filerSQPpp.opt (or by

some other means) that was not read by some object is printed. In this example, all of the

specified options groups where read by at least one object during algorithm configuration.

The purpose of this printout is to show any options groups that may have been spelled

incorrectly or were just not read for some reason. None of the option from any of these

printed options groups had any influence on the algorithm what so ever. This information

helps a user to avoid the frustrating situation where an option is changed but the algorithm

runs unaltered. If there is ever any question as to why an option did not seem to have the

desired effect, this output in the the textttrSQPppAlgo.out file is the first place to look for

an explanation.

4.5.3 Output torSQpppSummary.out

The filerSQpppSummary.out is usually the first place to look (after the console output

as described above) to investigate the runtime behavior of a configured algorithm.

After the initial header and echoed options are printed the results of the NLP testing (if

rSQPppSolver::test nlp=true) is given. This is followed by a table where each

line is a summary of each iteration. Each column of this table is described in the Doxygen

documentation for the track classrSQPSummaryStd . The summary table is followed by

a printout of the number of function evaluations and the total solution time (just as in the

console output).

TherSQpppSummary.out file also produces a table (ifrSQPppSolver::print algo

= true) of the CPU times per step, per iteration. This output begins with the following

header and a list of major steps

114

*** Algorithm step CPU times (sec) ***

Step names

1) "EvalNewPoint"

...

These are the same steps that are printed in therSQPppAlgo.out file.

The table that follows this makes it easy to determine which step objects and which

computations are consuming the most CPU time. This type of gross timing is very impor-

tant in determining where the bottlenecks are occurring and what steps require the most

attention for a particular NLP. Note that the information produced in this table supplements

traditional profile timings that are produced but tools likegprof . For example, the same

linear solver may be called in several different steps and the profiler output may make it

difficult to determine in what steps most of the solves where being performed. In this ex-

ample NLP, for the options used, the bulk of the runtime (83.93%) is consumed by the stepf1) "EvalNewPoint" g. By looking in therSQPppAlgo.out file, it is easy to see

that the major computations in this step is the evaluation of the functions and the gradients

of the NLP and the formation of the decomposition matrices. By comparing iterationsk=0

andk=1 one can see that the runtime drops dramatically from 18.96 seconds to only 2.xxx

seconds for subsequent iterations. Therefore, one could quickly infer that the initialization

that goes on in this step is quite significant. Further investigation would reveal that the

dominate time in this step is consumed by the direct sparse solver (MA28 in this case) and

the initial analyze-and-factor used to select the basis is a dominate cost.

4.5.4 Output torSQpppJournal.out

The output filerSQpppJournal.out contains detailed, step-by-step, iteration-by-iteration

output for a running algorithm. The algorithm description in the output filerSQPpp-

Algo.out is very helpful in understanding the journal output. Depending on the output

level for the optionrSQPSolverClientInterface::journal print level set

in rSQPpp.opt this output can be fairly minimal (i.e.PRINT ALGORITHMSTEPS)

or dump everything (i.e.PRINT ITERATION QUANTITIES). The output shown in Ap-

115

pendix 8.8 is the output levelPRINT ALGORITHMSTEPSand therefore the amount of

output is independent of the NLP size which is usually the most appropriate level (un-

less debugging). For small NLPs, setting the level toPRINT ITERATION QUANTITIES

usually produces enough output for debugging that opening and debugger is unnecessary

in many cases.

After the header and the echoed options are printed, the trace from the initial NLP test-

ing is given (ifrSQPppSolver::test nlp=true). The first part of the testing output

is the basic tests on theVectorSpace objects returned from theNLP interface. More de-

tailed output for these vector-space tests can be produced by setting options in the options

group VectorSpaceTester (see the Doxygen documentation). Following the basic

tests of the vector-space objects and the vector objects (which are created by the vector-

space objects) are finished, other simple tests are performed which basically comprise a

unit test for theNLP interface. Following this simple unit test, the derivative objectsGf

andGc computed by theNLPFirstOrderInfo are checked against the functionsf and

c using directional finite differencing. This output shows the following relative errors for a

single random direction

rel_err(Gf’*y,FDGf’*y) = rel_err(6.53040559e+002,6.53040559e+002) = 1.93477565e-011

rel_err(sum(Gc’*y),sum(FDGc’*y)) = rel_err(2.20905038e+008,2.20905038e+008) = 1.37878129e-013

This output shows that the finite-difference directional products agree with the analytic

directional products by approximately 10 and 12 significant digits forGf andGc respec-

tively. Such a high accuracy for the finite-difference products is a result of the fourth-order

four-point finite differencing that is used by default. To set different (and cheaper) finite-

differencing strategies see the options groupCalcFiniteDiffProd (see Appendix

8.8).

After the initial NLP testing completes (successfully), the rSQP algorithm is started

with the line

*** Starting rSQP iterations ...

Most of the output produced for this example NLP is omitted for the sake of space and

the output that is included is used to point out several important items.

116

First note that each step prints out some basic logic and some information for most of

the iteration quantities that are computed. For example,"EvalNewPoint" prints out

the objective function valuef k and the infinitely norms of the gradient of the gradient of

the objectiveGf k and the constraintsc k . The number of significant digits printed for

floating point numbers in the journal output is controlled by the optionrSQPSolver-

ClientInterface::journal print digits (which is 6 by default).

Note that ifrSQPSolverClientInterface::check results=true that the

"EvalNewPoint" step will perform finite-difference tests of the NLP gradients for each

rSQP iteration. Also note that the results are slightly different than for the initial NLP

testing since a different random directional vector is generated. This time the relative er-

ror for the gradient of the objectiveGf is greater than the default warning tolerance of

NLPFirstDerivativesTester::warning tol=1e-10 . This resulted in the fol-

lowing warning being printed

For Gf, there were 1 warning tolerance

violations out of num_fd_directions = 1 computations of FDGf’*y and

the maximum violation was 4.408797e-010 > Gf_waring_tol =

1.000000e-010

If the relative error had been greater thanNLPFirstDerivativesTester::error tol ,

then an error message would have been printed and the algorithm would have been termi-

nated. For some difficult ill-conditioned NLPs, the finite-difference tests may fail even

though there is not a programming bug. Either the error tolerance can be increased or the

tests can be turned of all together in these cases.

The last important detail to point out is the convergence check in stepf5: "CheckConvergence" g
The output

(0) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)

scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)

scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)

opt_scale_factor = 1.100000e+001 (scale_opt_error_by_Gf = true)

opt_kkt_err_k = 1.230623e+002 > opt_tol = 1.000000e-008

feas_kkt_err_k = 1.208973e+007 > feas_tol = 1.000000e-010

comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006

117

step_err = 0.000000e+000 < step_tol = 1.000000e-002

Have not found the solution yet, have to keep going :-(

shows exactly how optimality and feasibility errors are computed and how they are

compared to the convergence tolerancesopt tol and feas tol that are set in the op-

tions grouprSQPSolverClientInterface . See the step"CheckConvergence"

in the printed algorithm description in the filerSQPppAlgo.out in Appendix 8.8 for the

details on how each of these quantities are computed and compare these computed errors

to the columns||c||s and||rGL||s in the console output as shown in Appendix 8.8.

The finial convergence check in iterationk=13 shows the final KKT errors

opt_kkt_err_k = 3.273859e-012 < opt_tol = 1.000000e-008

feas_kkt_err_k = 1.518593e-012 < feas_tol = 1.000000e-010

comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006

step_err = 0.000000e+000 < step_tol = 1.000000e-002

Jackpot! Found the solution!!!!!! (k = 13)

and then the algorithm is terminated and the optimal solution is communicated to the

NLP object.

118

Chapter 5

MPSalsa/rSQP++ Interface and Results

5.1 Introduction

Our first prototyping project consisted of interfacing a rSQP algorithm to a chemically re-

acting flow simulator in an attempt to solve an optimization problem for a Chemical Vapor

Deposition (CVD) reactor. We selected chemically reacting fluid flow because both the

simulation and optimization have very large-scale potential. In addition this problem did

not require transient modeling. The initial design problem involved only a single velocity

value as the design parameter.

Considering that very little information exists about interfacing rSQP algorithms to

large and massively parallel production codes, the primary goal was to identify issues as-

sociated with interfacing intrusive algorithms to existing parallel production codes. Our

strategy was to start as simple as possible and then consider higher levels of optimization.

We therefore started with the direct approach. (level 4). We were not able to completely

develop the adjoint interface but we could not conveniently solve the transpose Jacobian

matrix within the code.

Small number of design variables have been tested in serial and parallel. For the parallel

implementation, rSQP is duplicated on each process and that causes limited scalability.

rSQP++ has since then been modified and has demonstrated good scalability as shown in

119

table 4.1.

5.2 CVD Reactor Optimization Problem

The rotating disk reactor is a common configuration for performing Chemical Vapor De-

position (CVD) of thin films, including many important semiconducting materials. The

optimization problem formulated in this paper is generated from the work of Sandia re-

searchers attempting to improve the design of the inlet of a rotating disk CVD reactor for

use in growing thin films of Gallium Nitride (GaN). GaN is used in blue light emitting

diodes and other photonic devices. The quality of the electronic device is highly dependent

on the uniformity of the growth rate at different positions in the reactor. We are attempting

to use simulations and optimization algorithms to determine if a new reactor, designed with

a restricted inlet for reducing the costs of reactant gases, can achieve highly uniformGaN
film growth.

The finite element mesh for the base shape of the reactor is shown in Figure 5.1(a).

This is an axisymmetric (2D) model, where the left side is the axis of symmetry. A

mixture of trimethylgallium, ammonia, and hydrogen gases (Ga(CH3)3, NH3, andH2)
enter the top of the reactor, flow over the disk, which is heated, and then flow down the

annular region out the bottom of the mesh. At the heated disk, theGa(CH3)3 andNH3
react to deposit aGaN film and release three molecules of methane (CH4). This simplified

mechanism has been shown to work well in modelingGaN film uniformities since the

growth rate is predominantly transport limited [88]. This mesh depicts a restricted inlet

design, where the top of the reactor has a smaller radius than the lower part of the reactor.

The main parameter used in this paper is the inlet velocity of the gases,V . Two addi-

tional parameters in this model define the shape of the inlet, namely the Shoulder Radius

and Shoulder Height, which define the position where the mesh transitions from the inlet

radius to the larger reactor radius. The mesh is moved algebraically and continuously as a

function of these geometric design parameters. Figure 5.1(b) shows how the mesh changes

for a decreased shoulder radius, and Figure 5.1(c) shows how the mesh deforms continu-

ously for larger values of the shoulder radius and shoulder height. If the optimum occurs

120

(a)

(b)

(c)

Figure 5.1. Three different meshes for the restricted inlet design

of the rotating disk reactor are shown: (a) the baseline case mesh

where the shoulder radius is above the edge of the disk and the

height is half of the inlet height; (b) a mesh when the shoulder ra-

dius parameter is decreased; (c) a mesh where the shoulder radius

and height are both increased above the base case.
121

too far away from where the initial mesh is generated, it would be appropriate to remesh

the new geometry from scratch.

The objective function measures the uniformity of the growth rate ofGaN over the

disk. We chose anL2 norm over anLinf norm so that the objective is continuous and has a

continuous derivative. Since theL2 norm had very small values over a range of parameters,

the log was taken. The final form of the objective function is

Objective Function= F = log(SD + 10�10) (5.2.1)

whereSD is the standard deviation squared and is defined asSD = 1Nn NnXi=1 (gi � gavegave)2: (5.2.2)

HereNn is the number of nodes on the surface,gi is the growth rate ofGaN at nodei, andgave is the average growth rate.

5.3 Numerical Methods

5.3.1 Reacting Flow Simulation

The governing equations and numerical methods summarized in this section have been

implemented in the MPSalsa computer code, developed at Sandia National Laboratories.

More complete descriptions of the code and capabilities can be found in the following ref-

erences [108], [100], [109], [101], [88], [40]. The fundamental conservation equations for

momentum, heat, and mass transfer are presented for a reacting flow application. The equa-

tions for fluid flow consist of the incompressible Navier-Stokes equations for a variable-

density fluid and the continuity equation, which express conservation of momentum and

total mass. The steady-state momentum equation takes the form:�(u � r)u�r � T � �g = 0; (5.3.3)

whereu is the velocity vector,� is the mixture density, andg is gravity vector.T is the

stress tensor for a Newtonian fluid:

T = �P I � 23�(r � u)I + �[ru +ruT ℄ (5.3.4)

122

HereP is the isotropic hydrodynamic pressure,� is the mixture viscosity, andI is the unity

tensor. The total mass balance is given by:r � (�u) = 0 (5.3.5)

The density depends on the local temperature and composition via the ideal gas law. For

non-dilute systems, the multicomponent formulation is used:� = Po NgXj=1 WjXjRT ; (5.3.6)

wherePo is the thermodynamic pressure,R is the gas constant,T is the temperature,Xj is

the mole fraction of thejth species,Wj is the molecular weight of thejth species, andNg
is the number of gas-phase species (which is4 for the model in this paper.

The steady-state energy conservation equation is given as:�Ĉp(u � r)T = r � (�rT)� S; (5.3.7)

where Ĉp is the mixture heat capacity and� is the mixture thermal conductivity. The

last term on the right hand sideS is the source term due to the heat of reaction, which is

negligible under the process conditions in this example problem.

The species mass balance equation is solved forNg-1 species:�(u � r)Yk) = r � jk +Wk _!k for k = 1; : : : ; Ng-1; (5.3.8)

whereYj is the mass fraction of thejth species,j k is the flux of speciesk relative to the

mass averaged velocityu and _!k is the molar rate of production of speciesk from gas-

phase reactions. A special species equation, which enforces the sum of the mass fractions

to equal one, replaces one of the species balances (usually the species with the largest mass

fraction):NgXk=1 Yk = 1 for k = Ng (5.3.9)

123

The diffusive flux term (Multicomponent Dixon-Lewis Formulation) includes transport due

to both concentration gradients and thermal diffusion (Soret effect):

jk = �Yk 1XkW NgXj 6=k WjDkjrXj � DTk�Yk rTT !
(5.3.10)

WhereXj is the mole fraction of speciesj, Dkj is the ordinary multicomponent diffusion

coefficient, andDTk is the thermal diffusion coefficient.W is the mean molecular weight

of the mixture given by: W = NgXk=1XkWk = 1NgXk=1 YkWk (5.3.11)

The conversion between mass (Yk)and mole (Xk) fractions is:Yk = WkW Xk (5.3.12)

At the disk surface, surface chemical reactions take place. In general these can be very

complicated, but for this model problem the reaction has been shown to be approximated

very well by a transport limited model. In this case, the growth rate ofGaN on the sur-

face (as well as the consumption ofGa(CH3)3 andNH3, and the production ofCH4) is

proportional to the concentration of trimethylgallium (Ga(CH3)3) at the surface.

In general, the numerous physical properties in the above equations are dependent on

the local temperature and composition. In the MPSalsa code, we use the Chemkin library

and database format to obtain these physical properties. These terms add considerable

nonlinearity to the problem.

The above system of9 coupled PDEs (for unknownsur, uz, u�, P , T , YGa(CH3)3 , YCH4,YNH3 andYH2) are solved with the MPSalsa code. MPSalsa uses a Galerkin/least-squares

finite element method [109] to discretize these equations over the spatial domain. While

this code is designed for general unstructured meshes in 2D and 3D, and runs on massively

parallel computers, this application is 2D, uses the mesh shown in Figure 5.1(a), and was

run on a single processor workstation. The discretized system contains22000 unknowns.

A fully coupled Newton’s method is used to robustly calculate steady-state solutions.

While analytic Jacobian entries are supplied for derivatives with respect to the solution

124

variables and the density, derivatives of the other physical properties are only calculated

with the numerical Jacobian option. This option uses first order finite differencing on the

element level. The resulting linear system at each iteration is solved using the Aztec pack-

age of parallel, preconditioned iterative solvers. In this paper, we exclusively used an ILU

preconditioner and the GMRES solver with no restarts. On a single processor SGI worksta-

tion, a typical matrix formulation required9 seconds for the inexact analytic Jacobian and96 seconds to calculate the (nearly) exact finite difference numerical Jacobian. A typical

linear solve required40 seconds.

Parameter continuation methods have been implemented in MPSalsa via the LOCA li-

brary [99], [102]. LOCA includes an arclength continuation algorithm for tracking solution

branches even when they go around turning points (folds). As will be seen in Section 5.4,

this is a powerful tool for uncovering solution multiplicity. In addition, a turning point

tracking algorithm has been implemented to directly delineate the region of multiplicity as

a function of a second parameter. A complementary tool for performing linearized stability

analysis by approximating the few rightmost eigenvalues of the linearized time dependent

problem has also been successfully implemented [69], [102], [30].

5.4 Results

5.4.1 One Parameter Model

The first results are shown in Figure 5.2 for the one parameter system. Here the inlet

velocityV is the design parameter while the Shoulder Radius and Shoulder Height param-

eters are held fixed at6:35 and5:08 as in Figure 5.1(a). Starting at a velocity ofV = 20
(cm/sec), a simple continuation run down to a velocity ofV = 7 showed a clear minimum

nearV = 11:7 and Objective FunctionF = �6:9.

Two runs of this problem using the rSQP optimizer were performed. For this run, the

exact numerical Jacobian was used, and up to5 second order correction steps per iteration

were allowed. The linear solver tolerance was set at a relative residual reduction of10�8.
When starting atV = 20 and converged PDE constraints, the optimizer converged in15

125

Figure 5.2. Results for a 1 parameter continuation run (bold

line), showing the Objective Function as a function of the inlet

velocity of the reactant gases. Two results for the rSQP optimizer

are shown, where the run starting atV = 14 (circle symbols with

connecting arrow) converged to the expected local minimum while

the run starting atV = 20 (square symbols with connecting arrow)

converged to a point not seen on the continuation run.

126

Figure 5.3. Radial profiles of the surface deposition rate at three

different solutions: the initial guess atV = 20, and the final solu-

tions from the two optimization runs atV = 11:67 andV = 9:00.

iterations to a point atV = 9:00 andF = �6:36 (in about 3 hours compute time). However,

when starting atV = 14 and with a converged steady-state solution, the optimizer reached

the minimum atV = 11:67 andF = �6:967 in 14 iterations. As can be seen in Figure

5.2, the first run does not appear to even be on the solution branch of converged PDE

constraints.

Three deposition profiles as a function of radial position are shown in Figure 5.3. The

profile at the initial conditions ofV = 20 has a minimum growth rate at the center and

has a8:5% nonuniformity. The solution found by the optimizer atV = 11:67, that also

appears to be the minimum from the continuation run, shows a much flatter profile with an

internal maximum, and an overall non uniformity of1:2%. The other solution found by the

optimizer atV = 9:00 has a very similar shape, a smaller overall growth rate, and a1:8%
127

Figure 5.4. Results for a 1 parameter continuation run with arc

length continuation and linearized stability analysis are shown.

The dashed lines represent unstable solution branches. The sym-

bols show the results of the two optimization runs from Figure 5.2.

nonuniformity. Growth rate nonuniformities in the neighborhood of1:0% are desirable.

Subsequent parameter continuation and linearized stability analysis calculations re-

vealed that this solution is indeed a solution to the PDE constraints, yet a solution that

is linearly unstable. The results of an arc length parameter continuation run with linear

stability determinations are shown in Figure 5.4. The dashed line indicated physically un-

stable solutions while the solid lines are locally stable. One can see that there are three

local minima in the objective function, only one of which is linearly stable. Over a large

range of inlet velocities,6:11 < V < 15:86, there are three solutions that exist at the same

parameter values. The rSQP optimizer, when started atV = 20, jumped into the basin of

attraction for a local minimum atV = 9:00. The physical basis for the multiplicity is well

understood. Recirculation flow cells can develop as a result of the buoyancy force of the

heated reactor surface.

128

Figure 5.5. Results of turning point continuation runs showing

how the region of multiplicity identified in Figure 5.4 changes as

a function the geometric Shoulder Radius parameter.

5.4.2 Three Parameter Model

The one parameter model showed that it is imperative to be aware of solution multiplic-

ity and unstable solution branches. Continuation runs on the turning points defining the

boundaries of multiplicity were performed to see how the region of multiplicity changes

as a function of the additional geometric parameters. The effect of Shoulder Radius on

the multiplicity region is shown in Figure 5.5, and the effect of Shoulder Height on the

region of multiplicity is shown in Figure 5.6. The results show that the maximum velocity

where multiplicity occurs has a direct dependence on the Shoulder Radius and is relatively

insensitive to the Shoulder Height. The minimum velocity where multiplicity occurs is

insensitive to the Shoulder Radius but has an inverse dependence on the Shoulder Height.

129

Figure 5.6. Results of turning point continuation runs showing

how the region of multiplicity identified in Figure 5.4 changes as

a function the geometric Shoulder Height parameter.

130

Figure 5.7. A comparison of the 3-parameter optimization run

after60 iterations and the 1-parameter run, started at the same con-

ditions, which converged after14 iterations.

A single three-parameter optimization run was performed, starting at the same con-

ditions where the one-parameter run that converged to the stable minimum was started:

Velocity = 14:0, Shoulder Radius= 6:35, and the Shoulder Height= 5:08. The run was

performed with up to5 second order correction steps per optimization iteration. After60
iterations, the objective function had been driven down toF = �6:32, which is not as low

as theF = �6:967 achieved in the 1 parameter optimization. Possible reasons for this are

that the three-parameter model is converging to a local minimum or that the singularities

in the region are causing convergence problems. Future runs will need to be made to fully

understand this preliminary result. The result of the three-parameter run is compared to the

one-parameter run in Figure 5.7.

131

Figure 5.8. A comparison of4 runs for the 1-parameter model,

comparing exact and inexact Jacobians, and with and without sec-

ond order correction steps (S.O.C.).

5.4.3 Effects of Jacobian Inexactness and Second Order Corrections

To test the effects of inexactness in the Jacobian and Second Order Correction Steps on

the convergence of the optimization algorithm, three more runs of the 1-parameter model

were performed. These all started atV = 14 for comparison with the successful optimiza-

tion run, which was computed with a full numerical Jacobian and up to5 second order

correction steps per iteration. The results are shown in Figure 5.8.

In the first additional run, the analytic (inexact) Jacobian was used, and the second

order corrections were retained. This Jacobian leaves out the derivatives of all the physical

properties with respect to the local state (temperature and composition), only including

the correct density dependence. The Figure shows that this run converges visibly to the

same optimum as the original case, both in iteration11, though the original case reached

the optimum in14 iterations and the inexact case failed to meet the convergence criterion

132

after40 iterations. Two more runs were performed where no second order correction steps

were allowed. The run with the inexact Jacobian converged visibly to the optimum after86
iterations though had not converged within the tolerance after100 iterations. The run with

the exact numerical Jacobian without second order corrections had not yet converged to the

optimum and was prematurely stopped after120 iterations, surprisingly performing worse

than the run with the inexact Jacobian.

For this problem, MPSalsa required96 seconds to fill the full numerical Jacobian as

compared to only9 seconds for the analytic Jacobian, while an iterative linear solve re-

quired approximately40 seconds. The runs with second order corrections required, on av-

erage,5 linear solves per iteration, while the runs without second order corrections required

exactly2 linear solves per iteration. Therefore for this problem, the quickest numerical ap-

proach for visibly reaching the optimum was using the inexact analytic Jacobian and with

the second order correction steps. The runs with the inexact Jacobian did not trigger the

convergence tolerance set in the algorithm, and therefore performed many wasted iterations

after visibly reaching the optimum. Since there are numerous approximations in the model,

particularly with the chemistry mechanisms, the optimum needs only be converged to two

digits of accuracy.

5.5 Optimization problem - Source Inversion

The rSQP/MPSalsa code was also used to investigate source inversion problems. Poten-

tial application of this problem is chemical/biological/radiological attacks on our nation’s

infrastructure, such as water distribution systems, large facilities, and urban areas. Given

concentration data at several sensor locations within a facility, the goal is to determine

the original location and magnitude of the attack subject to Navier Stokes fluid flow. We

assume that chemical transport follows diffusive behavior and therefore we use heat as a

chemical source, and temperature as chemical concentrations. Even though this applica-

tion is a real time optimization problem, our initial development efforts were confined to the

steady state problem. Two models were investigated, the first was a simple box geometry

and the second was a two dimensional model emulating actual airport terminal dimensions

and operating conditions.

133

Figure 5.9 shows the box geometry that was initially used to test our inversion algo-

rithms. The left figure shows the convective steam lines, entering at the top left (Dirichlet

condition) and leaving at the bottom right (appropriate outflow conditions). The right figure

shows the diffusion behavior as a result of introducing three sources marked on the side of

the box with their relative magnitudes.

Prior to conducting the inverse problem, the forward problem was executed to calculate

the concentration values at various points in the box geometry, marked with a red “x”. The

concentrations at these 25 sensor locations were then used to solve the following optimiza-

tion problem:

A forward problem was solved using MPSalsa with a 1600 element finite element dis-

cretization. This led to 1681 constraints for the discretized Navier Stokes PDE. Three out

of 16 fluxes were set nonzero (of magnitudes 1,2, and 5 as seen in the figure) and sensor

data was recorded. Then the inverse problem was solved from a trivial initial guess using

rSQP/MPSalsa as follows:

minimize: 12 sXi Zd
 Æ(x� xi)(
�
�)2d
 (5.5.13)

subject to
(x; f) = 0 where
 represents the Navier Stokes equations (section 5.3.1).

The 16 fluxes converged to the values set in the forward problem in 88 rSQP iterations.

Because of our investment and experience in PDE constrained optimization applied

to CVD reactors, this prototype problem was solved within 2 days of first discussing the

potential of rSQP/MPSalsa as a counter-terrorism capability.

A more complex geometry and parameter values was tested to emulate the conditions

of an airport facility. Figure 5.10 shows a 2D representation of an actual two-story airport

terminal. This model represented one sixth of the terminal, which was controlled by a sin-

gle HVAC system. The model problem used realistic dimensions of a terminal, properties

of air, diffusion coefficient forSF6 (a common tracer for experiments). Flow rates were

varied but did approach reasonable conditions.

The problem was formulated the same as the box problem above, except that two of the

134

Figure 5.9. Source inversion of convection-diffusion in a box

geometry. This was out initial prototype problem for source in-

version of chem/bio/rad attack scenarios. The left box shows con-

vective streamlines and the right box shows the diffusive behavior

with the red “x” markers denoting sensor locations

135

air flow velocities entering this section of the terminal (from down the hall) were left as un-

knowns. This meant that the nonlinear Navier-Stokes PDE’s, in addition to the convection-

diffusion equation, were part of the constraints. In later runs, a one-equation (Spalart-

Almaras) turbulence model was solved in conjunction with these equations. In our first

prototype, only three locations along the bottom floor were selected as candidate source

locations, leading to a total of5 design variables. Ten sensor locations were picked (see red

x ’s in the bottom figure).

A finite element discretization of the PDE’s led to over200000 algebraic constraints

for the 5-parameter optimization problem. One run ran for 2 hours on 64 processors of the

Ross CPlant machine and successfully reduced the objective function 3 orders of magnitude

from a simple initial guess.

Much was learned from this prototype problem. For the optimization problem, this

direct sensitivity approach used here could work well up to 20 design variables, but an

adjoint sensitivity approach would be preferred to allow for numerous candidate sensor

locations. Allowing flow rates as design variables was a big step, since it invoked several

coupled nonlinear PDEs as constraints instead of one linear convection-diffusion PDE.

Issues that were not faced in this prototype problem are (1) solving the transient problem

and (2) dealing with noisy sensor data.

From a modeling standpoint, several areas have been identified where future work

would be needed to continue this effort. One is dealing with high Reynolds numbers (tur-

bulence) for air in the large domains. A second is a new interface for choosing potential

source locations, since our method of meshing them individually and assigning a side set

ID is not adequately flexible or scalable. Another is dealing with agents (such as anthrax

particles) that require extensions to the Navier Stokes equations.

5.6 Conclusions, Stability, Interface & Validation

Solution multiplicity of nonlinear steady-state problems must be recognized and can be

diagnosed using stability analysis tools. The technique in this paper of tracking the re-

gion of multiplicity is not scalable to larger numbers of design parameters, and is more

136

Figure 5.10. Source inversion 2D cross-sectional model of a

two-story airport facility. The top figure shows flow streamlines,

the middle figure shows concentrations of an agent being released

from two locations along the bottom floor, and the third shows

the ten sensor locations and concentration profiles from a different

source values.

expensive than the optimization calculations. At a minimum, the stability of the candidate

optimum must be checked with a linear stability analysis tool. Concerning inexactness in

the Jacobian matrix, and the effect of second order correction steps, we have gathered some

evidence. For this run, it appears that inexactness in the Jacobian does not seriously hinder

convergence, particularly if second order correction steps are used.

Several conclusions can be drawn from interfacing a rSQP algorithm to a complete fluid

flow simulator. Calculating sensitivities is perhaps the single most important modification

to a simulation code for PDECO. Once a sensitivity capability exists, the interface to a

rSQP algorithm is trivial. As a result of the MPSalsa project, several sensitivity projects

have been initiated with new simulation developments. In addition, a research project has

been started to investigate methods to handle transient optimization problems efficiently.

Another very important conclusion is that conducting algorithmic research with large-scale

simulation codes is very difficult. The rSQP algorithms can be tested on small systems, but

to validate our algorithms across many PDE-based problems is not practical, especially if

that means interfacing with production and cumbersome simulation codes. To address these

137

problems we have developed a symbolic simulation capability and interfaced it with our

rSQP algorithms. The next two chapters provide a description of Sundance and Sundance

coupled to rSQP++.

138

Chapter 6

Sundance

Traditional PDE codes solve one of a specific class of PDEs with little hope of obtaining the

gradients, adjoints, or Hessians needed for PDECO. Even with modern PDE frameworks

such as SIERRA and Nevada, it will require considerable development effort to obtain these

quantities. Thus, for optimization with existing PDE codes, one must use the PDE solver

as a “black box,” and we are restricted to relatively inefficientLevel-0or Level-1methods.

Since PDE-constrained optimization requires capabilities beyond those available in tra-

ditional PDE codes, we have developed a PDE solver system that has been designed from

the ground up with large-scale PDE-constrained optimization in mind. This system, called

Sundance, accepts a system of coupled PDEs and boundary conditions written in symbolic

form that is close to the notation in which a scientist or engineer would normally write them

with pencil and paper. Each function or variation appearing in this symbolic description

is annotated with a specification of the finite-element basis with which that object will be

discretized. This information, along with a mesh, is then used by Sundance to assemble the

implied discretized operators. At this point, the user could simply ask Sundance to solve

the system, or it could request certain evaluations to be made. These symbolic capabili-

ties make Sundance a powerful rapid prototyping and algorithmic research tool, however,

for present purposes the real power of Sundance’s symbolic interface is that the symbolic

expressions comprising the PDE and boundary conditions can be differentiated allowing

automated derivation of gradients and Hessians as needed in PDECO. We must emphasize

139

that for performance reasons, the high-level objects used for problem specification are not

used for numerical calculations. Rather, they are used to marshal a set of internal objects

that can be used for efficient calculations.

Sundance has been developed using a component-oriented design. Abstract concepts

such as linear solvers, basis functions, quadrature rules, or reordering schemes (to name

just a few) are represented in terms of abstract interfaces. A particular realization of such

a concept, for instance an Aztec solver, is then implemented as a concrete type and can be

plugged into the Sundance system via the interface. This design has two key advantages.

First, it makes Sundance highly extensible, since developers can add new components with-

out modifying the core of Sundance. Second, it allows the use of the highest-performance

third-party components with Sundance. Sundance does not have built-in meshers, solvers,

or visualization capabilities; rather, it uses third-party components for all of those tasks.

In this chapter we will start with an introductory example illustrating basic Sundance

syntax. We will then give an overview of the core components of Sundance, with code

examples as new capabilities are introduced. Simple examples of the use of Sundance for

a linear PDECO problem, a nonlinear PDE, and a transient PDE are given here. Further

examples of the use of Sundance in nontrivial, nonlinear PDECO problems are given in

Chapter 7. For a comprehensive presentation of Sundance’s capabilities and further exam-

ples of forward problems, see the Sundance User’s Guide [72].

6.1 An introductory example

We begin with a simple example of a forward problem that will show basic Sundance

components. Consider the Poisson equation with a unit sourcer2u = 1 (6.1.1)

on the rectangle[0; 0℄ - [1; 2℄. The sides of the rectangle will be labeled left, right, bottom,

top. For boundary conditions, we will choose� left Homogeneous Neumann,ru � n̂ = 0
140

� bottom Dirichlet,u = 12x2� right Robin,u+ru � n̂ = 32 + y3� top Neumann,ru � n̂ = 1=3
It is easy to check that the solution isu = 12x2 + 13y: (6.1.2)

The solution is in the subspace spanned by second-order Lagrange polynomials, so if we

choose that as our basis family we can expect to obtain the exact solution. We can compute

the error norm at the end of the calculation as a check that the code is working properly.

This is a simple problem, but it in fact requries most of the components used by Sun-

dance to do more complex problems.

6.1.1 Step-by-step explanation

We start with a step-by-step walkthrough of the code for solving the Poisson problem.

When finished, there will be a summary and then the complete Poisson solver code will be

listed for reference.

6.1.1.1 Boilerplate

A dull but essential first step is to show the boilerplate C++ common to nearly every Sun-
dance code:

#include "Sundance.h"

int main(int argc, void** argv)

{

try

{

Sundance::init(argc, argv);

/*

141

* code body goes here

*/

}

catch(exception& e)

{

Sundance::handleException(__FILE__, e);

}

Sundance::finalize();

}

The body of the code – everything else we discuss here – goes in place of the comment

code body goes here .

6.1.1.2 Getting the mesh

Sundance uses aMesh object to represent a discretization of the problem domain. There

are two ways to get aMesh object:� Create it using Sundance’s built-in mesh generation capability. This is limited to

meshing very simple domains such as rectangles.� Read a mesh that has been produced using a third-party mesh generator. TheMeshReader

class provides an interface for reading arbitrary file formats.

For this simple problem, we can use Sundance to generate the mesh.

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);

Mesh mesh = mesher.buildMesh();

If you know a little C++ – just enough to be dangerous – you might think it odd that the

result of thenew operator, which returns a pointer, is being assigned to aMeshGenerator

object which is – apparently – not a pointer. That’s not a typo: theMeshGenerator ob-

ject is ahandle class that stores and manages the pointer to theRectangleMesher

object. Handle classes are used throughout user-level Sundance code, and among other

things relieve you of the need to worry about memory management.

142

6.1.1.3 Defining coordinate functions

In the Poisson example, the boundary conditions involve functions of the coordinatesx andy. We will create objects to represent the coordinate functionsx andy.

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

You have probably guessed that the integer argument to theCoordExpr constructor

gives the coordinate direction: 0 forx, 1 for y, 2 for z.
The coordinate functions are wrapped inExpr handle objects. ClassExpr is used for

all symbolic objects in Sundance.Expr s can be operated on with the usual mathemati-

cal operators. With our coordinate functions represented asExpr objects, we can build

complicated functions of position.

6.1.1.4 Defining the cell sets

We’ve already read a mesh. We need a way to specifywhereon the mesh equations or

boundary conditions are to be applied. Sundance uses aCellSet object to represent

subregions of a geometric domain. ACellSet can be any collection of mesh cells, for

example a block of maximal cells, a set of boundary edges, or a set of points.

TheCellSet class has asubset() method that can be used as a “filter” that iden-

tifies cells that are in a subset defined by the arguments to thesubset method.

We will apply different boundary conditions on the four sides of the rectangle, so we

will want four CellSet s, one for each side. We first create a cell set object for the entire

boundary,

CellSet boundary = new BoundaryCellSet();

and then we find the four sides as subsets of the boundary cell set. The four sides of the

rectangle can be specified with logical operations on coordinate expressions, as shown in

the following code:

143

CellSet left = boundary.subset(x == 0.0);

CellSet right = boundary.subset(x == 1.0);

CellSet bottom = boundary.subset(y == 0.0);

CellSet top = boundary.subset(y == 2.0);

6.1.1.5 Creating a discrete function

We will use discrete functions several places in this problem. A discrete function takes

as a constructor argument a vector space object that specifies the mesh, basis, and vector

representation to be used in discretizing the function.

The first step is to create a vector space factory object that tells us what kind of vector

representation will be used. We’ll use Petra vectors, so we create aPetraVectorType .

TSFVectorType petra = new PetraVectorType();

We can now create aSundanceVectorSpace containing the mesh, a basis (2nd

order Lagrange in this case) and the vector space factory.

TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

Finally, we can create discrete functions to represent the source termf = 1:0 and

the expression32 + y3 that appears in the right BC. Note that there’s no particular need

to use discrete functions for those terms; we do so here simply to provide an example of

constructing a discrete function.

Expr f = new DiscreteFunction(discreteSpace, 1.0);

Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

6.1.1.6 Defining unknown and test functions

We’ll use 2nd order piecewise Lagrange interpolation to represent our unknown solutionu.

With a Galerkin method we define a test functionv using the same basis as the unknown.

Expressions representing the test and unknown functions are defined easily:

144

Expr v = new TestFunction(new Lagrange(2));

Expr u = new UnknownFunction(new Lagrange(2));

6.1.1.7 Creating the gradient operator

The gradient operator is formed by making aList containing the partial differentiation

operators in thex andy directions.

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

The gradient thus defined is treated as a vector with respect to the overloaded multipli-

cation operator used to apply the gradient, so that an operation such asgrad*u expands

correctly tofdx*u, dy*u g.
6.1.1.8 Writing the weak form

We will use the Galerkin method to construct a weak form. Begin by multiplying Poisson’s

equation Equation 6.1.1 by a test functionv and integrating� Z
 vr2u� Z
 vf = 0: (6.1.3)

The next step is to integrate by parts, which has the effects of lowering the order of dif-

ferentiation (and thus relaxing the differentiability requirements on the unknown and test

functions) and also making the boundary flux. The resulting weak form is� Z
rv � ru� Z
 vf + Z�
 vru � n̂ = 0 (6.1.4)

and we will require that this equation hold for any test functionv in the space of 2nd

order Lagrange interpolants on our mesh. The boundary term gives us a way to apply

certain boundary conditions: we can apply the Neumann and Robin BCs by substituting an

appropriate value forru � n̂ in the boundary term. Referring to the boundary conditions

above and our definition of the discrete functionrightBCExpr , the weak form is written

in Sundance as

145

Expr poisson = Integral(-(grad*v)*(grad*u) - f*v)

+ Integral(top, v/3.0)

+ Integral(right, v*(rightBCExpr - u));

Notice that the homogeneous BC on the left side does not need to be written explicitly

because that boundary term is zero.

6.1.1.9 Writing the essential BCs

The weak form contains the physics in the body of the domain plus the Neumann and Robin

boundary conditions. We still need to apply the Dirichlet boundary condition on the bottom

edge, which we do with anEssentialBC object

EssentialBC bc = EssentialBC(bottom, v*(u - 0.5*x*x));

The first argument gives the region on which the boundary condition holds, and the

second gives an expression that is to be set to zero. Notice that there is a test function in

the BC; this identifies the row space on which the BC is to be applied.

6.1.1.10 Creating the linear problem object

A StaticLinearProblem object contains everything that is needed to assemble a dis-

crete approximation to our PDE: a mesh, a weak form, boundary conditions, specification

of test and unknown functions, and a specification of the low-level matrix and vector repre-

sentation to be used. All of this information is given to the constructor to create a problem

object

StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);

It may seem unnecessary to providev andu as constructor arguments here; after all, the

test and unknown functions could be deduced from the weak form. In more complex prob-

lems with vector-valued unknowns, however, we will want to specify the order in which

146

the different unknowns and test functions appear, and we may want to group unknowns

and test functions into blocks to create a block linear system. Such considerations can

make a great difference in the performance of linear solvers for some problems. The test

and unknown slots in the linear problem constructor are used to pass information about

the function ordering and blocking to the linear problem; these features will be used in

subsequent examples.

6.1.1.11 Specifying the solver

A good choice of solver for this problem is BICGSTAB with ILU preconditioning. We’ll

use level 2 preconditioning, and ask for a convergence tolerance of10�14 within 500 iter-

ations.

TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(2);

TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);

6.1.1.12 Solving the problem

The syntax of Sundance makes the next step look simpler than it really is:

Expr soln = prob.solve(solver);

What is happening under the hood is that the problem objectprob builds a stiffness

matrix and load vector, feeds that matrix and vector into the linear solversolver . If all

goes well, a solution vector is returned from the solver, and that solution vector is captured

into a discrete function wrapped in the expression objectsoln .

6.1.1.13 Viewing the solution

We next write the solution in a form suitable for viewing by Matlab.

FieldWriter writer = new MatlabWriter("heat2D.dat");

writer.writeScalar(mesh, "temperature", soln);

147

6.1.1.14 Checking the error norm

Finally, we compare to the exact solution by computing the error norm. The solution has

been returned as a Sundance expression, so we can form an expression for the error

Expr exactSoln = 0.5*x*x + y/3.0;

Expr error = exactSoln - soln;

and then take theL2 norm

double errorNorm = error.norm();

6.1.2 Complete code for the poisson problem

#include "Sundance.h"

/** \example heat2D.cpp

* Solve Poisson’s equation with a unit source term on the

* rectangle [0,1] x [0, 2] with the following boundary conditions:

*

* Left: Natural, du/dx = 0

* Bottom: Dirichlet, u= 0.5 xˆ2

* Right: Robin, u + du/dx = 3/2 + y/3

* Top: Neumann, du/dy = 1/3

*

* The solution is u(x,y) = 0.5*xˆ2 + y/3.

*

* This problem can be solved exactly in the space of second-order polynomials.

*/

int main(int argc, void** argv)

{

try

{

Sundance::init(argc, argv);

/* create a simple mesh on the rectangle */

int nx = 20;

int ny = 20;

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);

Mesh mesh = mesher.getMesh();

/* define coordinate functions for x and y coordinates */

148

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

/* define cells sets for each of the four sides of the rectangle */

CellSet boundary = new BoundaryCellSet();

CellSet left = boundary.subset(x == 0.0);

CellSet right = boundary.subset(x == 1.0);

CellSet bottom = boundary.subset(y == 0.0);

CellSet top = boundary.subset(y == 2.0);

/* Create a vector space factory, used to

* specify the low-level linear algebra representation */

TSFVectorType petra = new PetraVectorType();

/* create a discrete space on the mesh */

TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

/* We’ll use a discrete function to represent the

* source term, providing a test

* of our ability to evaluate discrete functions on maximal cells */

Expr f = new DiscreteFunction(discreteSpace, 1.0);

/* We’ll use a discrete function to represent the imposed

* boundary value on the right-hand boundary. This provides a

* test of our ability to evaluate discrete functions on

* lower-dimensional cells. */

Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

/* create symbolic objects for test and unknown functions */

Expr v = new TestFunction(new Lagrange(2));

Expr u = new UnknownFunction(new Lagrange(2));

/* create symbolic differential operators */

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

/* Write symbolic weak equation and Neumann and Robin BCs */

Expr poisson = Integral(-(grad*v)*(grad*u) - f*v, new GaussianQuadrature(2))

+ Integral(top, v/3.0) + Integral(right, v*(rightBCExpr - u));

/* Write essential BCs:

* Bottom: u=xˆ2

*/

EssentialBC bc = EssentialBC(bottom, v*(u - 0.5*x*x),

new GaussianQuadrature(4));

/* Assemble everything into a problem object, with a specification that

149

* Petra be used as the low-level linear algebra representation */

StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);

/* create a preconditioner and solver */

TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(1);

TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);

/* solve the problem and return the solution as a symbolic object */

Expr soln = prob.solve(solver);

/* write to matlab */

FieldWriter writer = new MatlabWriter("heat2D.dat");

writer.writeField(soln);

/* compare to known solution */

Expr exactSoln = 0.5*x*x + y/3.0;

// compute the norm of the error

double errorNorm = (soln-exactSoln).norm(2);

double tolerance = 1.0e-9;

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

}

catch(exception& e)

{

Sundance::handleError(e, __FILE__);

}

Sundance::finalize();

}

6.2 A PDE-constrained optimization example

We now show a simple example of how to use Sundance to set up an optimization problem

with a PDE constraint. Consider the Poisson equation with source terms parameterized

with a design variable�, r2u =Xk �k sin k�x: (6.2.5)

A simple optimization problem is to choose� such that the state functionu is a good fit

to a target function̂u. This target-fitting problem can be posed as a least-squares problem

150

with objective function f(�) = 12 Z
 (u(�)� û)2 + R2 Xk �2k (6.2.6)

whereR sets the control cost. As written, we could solve this problem with a pattern search

method in which we solve 6.2.5 foru at each function evaluation. Alternatively, we can let

the states become independent variables, but impose equation 6.2.5 as a constraint. In that

case, we have a LagrangianL(�; u; �) = 12 Z
 (u� û)2 + R2 Xk �2k � Z
ru � r��Xk �k Z
 � sin k�x (6.2.7)

where� is a Lagrange multiplier. The necessary condition for solving the optimization

problem is that the variations of the Lagrangian with respect to�, u, and� are all zero.

This example is a quadratic program with an equality constraint, and the solution is ob-

tained with a single linear solve of the KKT system. However, the KKT system is indefinite

and is most efficiently solved using a block Schur complement method.

6.2.1 Sundance problem specification

With Sundance, all we need do to pose this problem is to write the Lagrangian using Sun-

dance symbolic objects.

Note that in this problem, the state variableu and Lagrange multiplier� are unknown

functions defined with a finite-element basis. However, the design parameters are unknown

“global” parameters, defined independently of the mesh. In Sundance, mesh-based un-

knowns areUnknownFunction expression subtypes and global unknowns areUnknownParameter

expression subtypes. To optimize performance in parallel, Sundance imposes the restriction

that all global unknowns must appear in a separate block from any meshed unknowns; that

block is then replicated across processors while blocks containing meshed unknowns are

distributed. Matrix blocks mapping between the global unknown space and a meshed un-

known space are implemented with multivectors, in which each row (or column, depending

on the orientation of the block) is a distributed vector. The specification of the unknowns

and block structure for this problem is done with the following Sundance code:

151

Expr u = new UnknownFunction(new Lagrange(2));

Expr v = u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));

Expr mu = lambda.variation();

Expr alpha1 = new UnknownParameter();

Expr alpha2 = new UnknownParameter();

Expr alpha3 = new UnknownParameter();

Expr alpha = List(alpha1, alpha2, alpha3);

Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();

TSFVectorType dense = new DenseSerialVectorType();

TSFArray<Block> unks = tuple(Block(alpha, dense), Block(u, lambda, petra));

TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Once the unknowns have been specified, we can write out the objective function and

Lagrangian in symbolic form:

Expr objectiveFunction = 0.5*Integral(pow(u-target, 2.0))

+ 0.5*alpha*alpha;

Expr lagrangian = objectiveFunction - Integral((dx*u)*(dx*lambda))

- Integral(lambda*forcing);

The equation set can be obtained by taking symbolic variations of the Lagrangian.

Expr eqn = lagrangian.variation(List(u, lambda, alpha));

We will solve the system using a Schur complement solver, using TSF’s block manip-

ulation capabilities. The user-level code to specify a Schur complement solver for a 2 by 2

block system is

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);

TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);

TSFLinearSolver outerSolver = new BICGSTABSolver(1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver);

152

Finally, we show complete source code for the PDE-constrained optimization example.

#include "Sundance.h"

/**

*

*/

int main(int argc, void** argv)

{

try

{

Sundance::init(&argc, &argv);

/*

Create a mesh object. In this example, we will use a built-in method

to create a uniform mesh on the unit line. In more realistic problems

we would use a mesher to create a mesh, and then read the mesh using

a MeshReader object.

*/

int n = 10;

const double pi = 4.0*atan(1.0);

MeshGenerator mesher = new LineMesher(0.0, pi, n);

Mesh mesh = mesher.getMesh().getSubmesh();

/* Define a symbolic object to represent the x coordinate function. */

Expr x = new CoordExpr(0);

Expr psi = List(sin(x), sin(2.0*x), sin(3.0*x));

Expr target = sin(x);

/*

* Define a cell set that contains all boundary cells

*/

CellSet boundary = new BoundaryCellSet();

/*

* Define a cell set that includes all cells at position x=0.

*/

CellSet left = boundary.subset(fabs(x - 0.0) < 1.0e-10);

/*

* Define a cell set that includes all cells at position x=1.

*/

CellSet right = boundary.subset(fabs(x - pi) < 1.0e-10);

153

/*

Define an unknown function and its variation. The constructor

argument is the basis family with which the function will be

represented, in this case second-order Lagrange (nodal) polynomials.

*/

Expr u = new UnknownFunction(new Lagrange(2));

Expr v = u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));

Expr mu = lambda.variation();

Expr alpha1 = new UnknownParameter();

Expr alpha2 = new UnknownParameter();

Expr alpha3 = new UnknownParameter();

Expr alpha = List(alpha1, alpha2, alpha3);

Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();

TSFVectorType dense = new DenseSerialVectorType();

TSFArray<Block> unks = tuple(Block(alpha, dense), Block(u, lambda, petra));

TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Expr forcing = alpha * psi;

/*

Define the differentiation operator of order 1 in direction 0.

*/

Expr dx = new Derivative(0);

Expr objectiveFunction = 0.5*Integral(pow(u-target, 2.0))

+ 0.5*alpha*alpha;

Expr lagrangian = objectiveFunction - Integral((dx*u)*(dx*lambda))

- Integral(lambda*forcing);

Expr eqn = lagrangian.variation(List(u, lambda, alpha));

/*

Now specify the boundary conditions on the left and right CellSets.

*/

EssentialBC bc =

EssentialBC(left, u*mu + v*lambda) && EssentialBC(right, u*mu + v*lambda);

154

/*

Create a solver object: stablized biconjugate gradient solver

*/

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);

TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);

TSFLinearSolver outerSolver = new BICGSTABSolver(1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver);

/*

Combine the geometry, the variational form, the BCs, and the solver

to form a complete problem.

*/

StaticLinearProblem prob(mesh, eqn, bc, vars, unks);

prob.printRowMaps();

mesh.printCells();

/*

solve the problem, obtaining the solution as a (discrete) Expr object

*/

Expr soln = prob.solve(solver);

/*

write the solution in a form readable by matlab

*/

FieldWriter writer = new MatlabWriter();

cerr << "u" << endl;

writer.writeField(soln[1][0]);

cerr << "lambda" << endl;

writer.writeField(soln[1][1]);

cerr << soln[0] << endl;

/*

compute the error and represent as a discrete function

*/

Expr exactSoln = sin(x);

/*

compute the norm of the error

*/

double errorNorm = (soln[1][0] - exactSoln).norm(2);

double tolerance = 1.0e-10;

/*

decide if the error is within tolerance

155

*/

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

Testing::timeStamp(__FILE__, __DATE__, __TIME__);

}

catch(exception& e)

{

TSFOut::println(e.what());

Testing::crash(__FILE__);

Testing::timeStamp(__FILE__, __DATE__, __TIME__);

}

Sundance::finalize();

}

6.3 Symbolic components

6.3.1 Constant expressions

The simplest type of Expr to create is a constant real-valued Expr, for example:

Expr solarMass = 2.0e33; // mass of the Sun in grams

Any constant that appears in an expression, for example the constant2:0 in the expres-

sion below,

Expr f = 2.0*g;

will also be turned into a constant-valued expression. It is important to understand that

once created and used in an expression, a constant’s value is immutable. If you want to

change the constant, you should instead use aParameter .

6.3.2 Parameter expressions

Often you will form a PDE with parameters that will change during the course of a calcula-

tion. For example, in a time-marching problem both the time and the timestep can change

156

from step to step. Or, you may want to run a fluid flow simulation at several different values

of the Reynolds number. To include in your equation a parameter that is constant in space

but can change with time or some other way, you should represent that parameter with a

Parameter expression.

Expr time = new Parameter(0.0);

for (int i=0; i<10; i++)

{

cerr << time << ‘‘ ‘‘ << sin(pi*time) << endl;

// update the time

time.setValue(time.value() + 0.1);

}

The above assumes that the parameter is known. However, in some problems a parame-

ter might be an unknown to be determined in the course of solving a problem; for instance,

it could be a design parameter to be determined through optimization. In that case, use an

UnknownParameter , described in section 6.3.6.

6.3.3 Coordinate expressions

CoordExpr is an expression subtype that is hardwired to compute the value of a given

coordinate. For example, the following constructs an Expr that represents the coordinate

on the zeroth (x) axis:

Expr x = new CoordExpr(0); // represents x-coordinate value

Such a coordinate expression can be used to define simple position-dependent func-

tions, for example

Expr f = sin(x) + 1/4.0*sin(2.0*x) + 1/8.0*sin(3.0*x);

157

6.3.4 Differential operators

The key expression subtype for forming differential operators is theDerivative object,

representing a partial derivative in a given direction. ADerivative is constructed with

a single integer argument giving the direction of differentiation, for example,

Expr dx = new Derivative(0); // differentiate with respect to 0 coordinate

Derivatives are applied using the multiplication (*) operator.

Sundance expression objects are programmed to obey the rules of differential calculus.

For example,

Expr dx = new Derivative(0); // differentiate with respect to 0 coordinate

Expr x = new CoordExpr(0); // represents x-coordinate value

Expr y = new CoordExpr(0); // represents y-coordinate value

Expr f = x*sin(x) + y*x;

Expr df = dx*f;

cout << df << endl; // prints sin(x) + x*cos(x) + y;

Differentiation of discrete functions requires special care, and is discussed in 6.3.7.4

6.3.5 Test and unknown functions

Expression subtypesTestFunction and UnknownFunction are used to represent

test and unknown functions in weak PDEs and boundary conditions. They are constructed

with a BasisFamily object which specifies the subspace to which solutions and test

functions are restricted. For example,

Expr T = new UnknownFunction(new Lagrange(1));

Expr varT = new TestFunction(new Lagrange(1));

constructs unknown and test functions that live in the space spanned by first-order La-

grange interpolates, i.e., all piecewise linear functions.

158

6.3.6 Test and unknown parameters

Expression subtypesTestParameters andUnknownParameter are used to repre-

sent test and unknown functions that are independent of space. Their constructors take no

arguments. See 6.2.1 for an example of the use of test and unknown parameters.

6.3.7 Discrete functions

Discrete functions represent the value of a field that has been discretized on a space of basis

functions. Discrete functions have a number of important uses:� representing the solution of a finite-element problem� representing a field for which no analytical expression is available

A discrete function object can be created in a number of ways: by computing the value of

an expression on the nodes in a mesh, by reading it from a file, or by “capturing” a solution

vector into a discrete function.

6.3.7.1 Creating a scalar-valued discrete function

To create a discrete function, we first need to know the discrete space on which the func-

tion will be defined. The construction of this space requires at minimum a mesh, a basis

function, and a vector type.

TSFVectorType petra = new PetraVectorType();

BasisFamily basis = new Lagrange(1);

TSFVectorSpace discreteSpace = new SundanceVectorSpace(myMesh, basis, petra);

Once you have a discrete space, you can create a discrete function as follows:

Expr f = new DiscreteFunction(discreteSpace, sin(x)*sin(y));

159

6.3.7.2 Creating a vector-valued discrete function

Discrete functions representing vector-valued fields have some wrinkles that are important

to understand. Consider a discrete function representing a two-component vector field,u = (ux; uy). How is the vector underlying this function stored? One can imagine creating

two independent discrete functions

Expr ux = new DiscreteFunction(discreteSpace, sin(x)*sin(y));

Expr uy = new DiscreteFunction(discreteSpace, cos(x)*cos(y));

and forming a vector-valued expression using theList operator,

Expr u = List(ux, uy);

This is well-defined Sundance code, but it is not usually what you want. A calculation

will have improved performance due to cache efficiency if both functions are aggregated

into a single vector, withux anduy at each cell listed together. To achieve this aggregation,

we need to create a discrete space capable of representing vector-valued functions.

TSFVectorType petra = new PetraVectorType();

BasisFamily basis = new Lagrange(1);

TSFArray<BasisFamily> multiVariableBasis = tuple(basis, basis);

TSFVectorSpace multiVariableDiscreteSpace

= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);

Expr u = DiscreteFunction::discretize(multiVariableDiscreteSpace,

List(sin(x)*sin(y), cos(x)*cos(y)));

In many problems, it is necessary to use a mixed set of basis functions. For example, in

the Taylor-Hood discretization of the incompressible Navier-Stokes equations, the velocity

components are represented with 2nd order polynomials and the pressure with 1st order

polynomials.

TSFVectorType petra = new PetraVectorType();

BasisFamily basis1 = new Lagrange(1);

BasisFamily basis2 = new Lagrange(2);

TSFArray<BasisFamily> multiVariableBasis = tuple(basis2, basis2, basis1);

TSFVectorSpace multiVariableDiscreteSpace

= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);

Expr uAndP = DiscreteFunction::discretize(multiVariableDiscreteSpace,

List(y, x, 0.0));

160

6.3.7.3 Reading a discrete function

Many mesh file formats have the ability to store field data along with the mesh. This field

data can be associated with elements or with nodes, depending on the application and the

physical meaning of the field. Different mesh file format will index fields in different ways;

for example, the Exodus format associates names with fields, while Shewchuk’s Triangle

format simply lists attributes. Generally, we can look up fields by either a name or by a

number indicating the position in an attribute list. Some examples follow:

MeshReader reader = new ShewchukMeshReader(‘‘myMesh’’);

Expr temperature = reader.getNodalField(0);

Expr velocity = reader.getNodalField(1, 2, 3)

Expr pressure = reader.getElementalField(4)

MeshReader reader = new ExodusMeshReader(‘‘myMesh.exo’’);

Expr pressure = reader.getElementalField(‘‘pressure’’);

Expr velocity = reader.getNodalField(‘‘ux’’, ‘‘uy’’, ‘‘uz’’)

Expr temperature = reader.getNodalField(‘‘temperature’’);

6.3.7.4 Derivatives of discrete function

Many basis functions used in finite elements calculations are only piecewise differentiable:

the function is continuous everywhere and differentiable in the interior of each cell, but the

derivative is not defined at boundaries between cells. Such basis functions, and functions

represented with them, are said to haveC0 continuity. Since the derivative of such a func-

tion will not be continuous at element boundaries, the derivative of aC 0 function is not

necessarilyC0. Thus, the derivative of a discrete function defined with a particular discrete

space cannot be represented exactly with another discrete function defined with that same

space.

For this reason, it is impossible to create directly a discrete function from the derivative

of another discrete function. The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));

Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);

161

If f is aC0 function, it is possible tointegratederivatives off . The integral is well-

defined since the region on whichf is nondifferentiable have no volume. Numerically,

it is usually possible to do such integrals because the quadrature points are usually in the

interiors of cells. So it’s perfectly sensible, and quite common, to write a weak PDE that

includes derivatives of discrete functions.

What is not possible is to obtain pointwise values of the derivative of a discrete function.

This is not a common operation during the solution of a PDE, but you may often want to

see derivative values during postprocessing and analysis. Because pointwise values are

not available, it is impossible to create directly a discrete function from the derivative of

another discrete function.

The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));

Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);

If you really want to look at pointwise derivative values, the best that can be done is to

approximate the derivative by projecting into aC0 space. There are many ways to do this;

one of the most common is a least-squares projection, in which you choose coefficients

such as to minimize the squared residual.

This is a common enough operation that Sundance has a predefined method for least-

squares projection:

// f0 is a discrete function

Expr gradF = L2Projection(discreteSpace, List(dx, dy)*f0);

Note that since this operation requires the solution of a linear system, it is time-consuming.

Again, it usually needs to be done only as a postprocessing step.

Finally, it should be pointed out that the difference between a derivative and itsL2
projection will decrease as the function becomes smoother. For this reason, theL2 residual

of a derivative can be used as an error estimator.

162

6.3.8 Cell property functions

In some problems, you will need an expression to represent properties of a mesh cell.

For example, stabilization methods such as SUPG have terms involvingh, the local mesh

spacing. In some problems, an explicit expression for a boundary normal is needed.

The local mesh spacing can be obtained using aCellDiameterExpr , created as

follows.

Expr h = new CellDiameterExpr();

Similarly, the outward normal of a boundary cell is given by aCellNormalExpr ,

constructed as

Expr n = new CellNormalExpr();

6.4 Geometric components

6.4.1 Meshes

Sundance can use unstructured meshes in 1, 2, or 3 dimensions. To Sundance, aMesh

object is a connected complex of cells. Azero-cell is a point. Amaximal cells is defined

with dimension equal to the spatial dimension of the mesh. Each facet of a maximal cell is

itself a cell, and so on down to zero cells. Every discrete geometric entity in Sundance is a

cell; there is no distinction between “elements”, “edges”, and “nodes”. All are represented

by Cell objects.

Sundance currently supports the following cell types:� zero-cells: points� one-cells: lines

163

� two-cells: triangles and quadrilaterals (“quads”)� three-cells: tetrahedra (“tets”) and hexahedra (“bricks” or “hexes”)

The system for representing cells is extensible, so that an advanced user can add additional

cell types such as prisms.

Most of the methods of theMesh class are for Sundance’s internal use and will almost

never appear at the user level. You will sometimes work withCell objects directly, for

instance when probing the value of a function at a point during postprocessing.

6.4.1.1 Mesh I/O

There are almost as many mesh file formats as there are engineers, and it would be foolish to

try to build support for file I/O directly into theMesh object. Sundance uses an extensible

MeshReader class heirarchy to provide an interface for reading from mesh formats. The

current version of Sundance supports readers for three mesh formats: a native Sundance

text format, Shewchuk’s Triangle format, and Sandia’s Exodus II format. If you want to

support some other mesh format you will have to implement your ownMeshReaderBase

subtype.

Using aMeshReader is very simple. You create aMeshReader object as a han-

dle to an appropriate subtype, and then you call thereadMesh() method to return a

Mesh object. The following code reads a mesh in Shewchuk’s Triangle format from files

tBird.1.poly andtBird.1.ele :

MeshReader reader = new ShewchukMeshReader("tBird.1");

Mesh mesh = reader.getMesh();

Similarly, to write a mesh to Triangle format one does

MeshWriter writer = new ShewchukMeshWriter("myMesh");

writer.writeMesh();

164

6.4.1.2 Mesh generator interface

ClassMeshGenerator provides an interface for mesh generators, and there are imple-

mentations for building several simple mesh types. In principle it would be possible to

connect a powerful third-party mesh generator to Sundance through the mesh generator

interface, but it is generally simpler to have the mesher write the mesh to a file which can

be read by aMeshReader object.

The most common use ofMeshGenerator is to build toy meshes for test problems.

The three built-inMeshGenerator subtypes are� LineMesher meshes a line� RectangleMesher meshes a rectangle with triangles� RectanglerQuadMesher meshes a rectangle with quadrilaterals

6.4.2 Cell sets

A CellSet object is used to define a set of cells on which an equation or boundary

condition is to be applied. ACellSet can be defined independently of any particular

mesh; instead of a list of cells, it is a condition or set of condition that can be used to

extract a list of cells from a mesh.

6.4.2.1 The set of all maximal cells

TheMaximalCellSet object identifies all maximal cells in a mesh. The constructor has

no arguments:

CellSet maxCells = new MaximalCellSet();

165

6.4.2.2 The set of all boundary cells

A BoundaryCellSet object identifies all boundary cells of dimensionN � 1. For ex-

ample, in a 3D problem aBoundaryCellSet will contain all 2D cells on the boundary,

but not lines or points that happen to lie on the boundary.

The constructor has no arguments:

CellSet boundaryCells = new BoundaryCellSet();

6.4.2.3 Defining subsets

Given a cell set, we can use thesubset() method to define a condition that can extract a

subset of the original cell set. The condition can be a mathematical equation or inequality

that must be satisfied by any cell to be accepted into the set, or it can be a string label. In

“real world” problems the most common condition for defining a cell set will be a label

that is associated with the cells by the code that produced the mesh.

CellSet boundary = new BoundaryCellSet();

CellSet wall = boundary.subset(‘‘wall’’);

CellSet arc = boundary.subset(x*x + y*y == 1.0 && x < 0.5);

6.4.2.4 Logical operations on cell sets

Cell sets can be created by doing set operations – union and intersection – on two or more

existing cell sets. Union and intersection are represented by the overloaded addition (+)

and logical AND (&&) operators.

166

6.5 Discretization

6.5.1 Basis families

Every unknown field or test function in a Sundance problem must be given abasis family.

Currently, the only basis families supported in Sundance are the Lagrange family and

the Serendipity family. Lagrange basis functions use Lagrange interpolation about the

element’s nodes. Serendipity basis functions are specialized to quadrilateral (“quad”) and

hexahedral (“brick”) cells; they require function values on corner and edge nodes only, not

on face or center nodes.

6.5.2 Quadrature families

The integrals in a Sundance weak form are done by numerical integration, or quadrature.

What is relevant to user-level Sundance code is how one can specify a suite of quadrature

rules to be used for a given weak form. Notice that it will not suffice to specify a quadrature

rule, because a given term may be integrated on several different cell types. For example,

a mesh may contain both quad cells and triangle cells, and the two different cell types will

require two different quadrature rules. What is needed is a specification of afamily of

quadrature rules rather than a single rule. The user-level specifier of a family of quadrature

rules is theQuadratureFamily object. ThebuildQuadraturePoints() method

of QuadratureFamily returns a set of quadrature points and weights appropriate to a

given cell type. The user picks a quadrature family by selecting the appropriate subtype

of QuadratureFamilyBase and supplying the desired constructor arguments. For

example,

QuadratureFamily gauss4 = new GaussianQuadrature(4);

creates an object that can produce a 4-th order Gaussian quadrature rule for any cell

type.

167

6.5.2.1 Gaussian Quadrature

Gaussian quadrature rules specify both points and weights to give optimal accuracy for all

polynomials through a given degree. Gaussian quadrature rules for a line can be derived

from the properties of the Legendre polynomials; see any textbook on numerical analysis

for a discussion. Gaussian quadrature rules for quadrilaterals and bricks can be formed as

“tensor products” of line rules. The development of Gaussian quadrature rules for triangles

and tetrahedra is an ongoing research area; an online literature survey through 1998 can be

found at Steve Vavasis’ quadrature and cubature page1. Symmetric Gaussian quadrature

rules through moderate order have been developed for triangles by Dunavant[36] and for

tetrahedra by Jinyun[63]. A summary of the quadrature rules that will be generated by

Sundance’sGaussianQuadrature object is given in the table below.

Cell type Available orders Reference Comments

Line all e.g. Hughes[59]

Triangle 1-12 Dunavant[36] Orders 3,7, and 11 have negative weights.

Quad any Tensor project of two line rules.

Tet 1-6 Jinyun[63] Order 3 has a negative weight.

Brick any Tensor project of three line rules.

6.5.3 Upwinding

Sundance has no built-in upwinding capability, however, it is straightforward to use exist-

ing Sundance components to do upwinding via the streamwise upwinding Petrov-Galerkin

(SUPG) method.

6.5.4 Specification of row and column space ordering

The order in which equations and unknowns are written can make a difference in the per-

formance of a linear solver, and in keeping with the goal of flexibility, Sundance gives you

1http://www.cs.cornell.edu/home/vavasis/quad.html

168

the ability to specify this ordering. In order to understand how Sundance’s ordering speci-

fication works, let’s look into how Sundance decides unknown and equation numbering.

Given a mesh and a set of unknowns, the Sundance discretization engine will traverse

the mesh one maximal cell at a time and find all unknowns associated with that cell and

its facets. In a problem with multiple unknowns, say velocity, pressure, and temperature,

there can be more than one unknown associated with a cell; if so, the unknowns are as-

signed in the order that their associatedUnknownFunction objects are listed in the

StaticLinearProblem constructor. This scheme gives us two ways to control the

unknown ordering:� Cell ordering specifies the order in which cells are encountered as the mesh is tra-

versed.� Function ordering specifies the order in which different functions are listed within

a singlecell.

6.5.4.1 Cell ordering

Cell ordering is controlled by giving the linear problem constructor aCellReorderer

object. Currently, there are two subtypes ofCellReorderer ,� RCMCellReorderer uses the reverse Cuthill-McKee reordering algorithm (e.g.,

Saad [98]). The RCM algorithm is a modified breadth-first search with desirable

behavior during matrix factoring.� IdentityCellReorderer uses the original ordering used by the mesh, i.e., it

does no reordering.

The default isRCMCellReorderer , and it is a good general choice. You might use

IdentityCellReorderer in cases where your mesh already has a favorable cell or-

dering, saving the (small) expense of doing an unnecessary reordering.

The cell reordering system is extensible; your favorite reordering algorithm can be

added to Sundance by writing a newCellReorderer subtype.

169

The same cell reordering scheme is used for equation numbering (rows) and unknown

numbering (columns). Thus, cell reorderings are always symmetric.

6.5.4.2 Function ordering

Function ordering is controlled by the order in which test or unknown functions appear

in the linear problem constructor. For example, ifux , uy , andp are unknowns we can

order them as:List(ux, uy, p) , or asList(p, ux, uy) or any of the other

permutations. A list with the desired ordering is given to theStaticLinearProblem

constructor,

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(ux,

uy, p), vecType);

Notice that the test functions need not have the same ordering as their corresponding

unknowns: a nonsymmetric ordering such as

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(p,

ux, uy), vecType);

is possible.

6.5.5 Block structuring

It is possible to group unknowns and equations intoblocks, in which case the stiffness

matrix becomes a block matrix with each block being an independent object. Sundance’s

blocking capability makes possible the use of block solvers and preconditioners.

As with function ordering, block structuring is specified by organization of the unknown

and test function arguments to theStaticLinearProblem constructor.

Array<Block> unkBlocks = List(Block(List(U, V), petraType), Block(P, petraType));

170

6.6 Boundary conditions

There are many ways to apply boundary conditions (BCs) in a finite element simulation,

and Sundance is designed to be flexible in methods of applying BCs. To begin with, the

way a BC gets written depends strongly on the way the weak problem has been formu-

lated; for example, BCs will be written quite differently in least-squares formulations than

in Galerkin formulations. For the purposes of user-level Sundance code, the most impor-

tant classification of boundary conditions is the distinction between BCs thatadd intoan

expression and BCs thatreplacean expression. BCs that add in to an expression are simply

incorporated into anIntegral object, while replacement-type boundary conditions are

specified usingEssentialBC objects. In Sundance, geometric subdomains are identified

usingCellSet objects. The surface on which a BC is to be applied is specified by passing

as an argument theCellSet representing that surface.

6.7 Problem manipulation

One of the most powerful features of Sundance is the ability to automate tranformations of

problems.

6.7.1 Linearization

It is possible to have Sundance automate the linearization of a nonlinear equation. Au-

tomated linearization is restricted to full Newton linearization; alternative linearization

schemes such as Oseen must be done by hand.

The linearization(u, u0) methods ofExpr andEssentialBC are used to

return a new linear expression or BC. Linearization is always done about an initial guess

u0 , which must be a discrete function with the same structure as the unknown argumentu.

The new expression has a new unknown function for the Newton step, or differential, which

will have the same structure as the original unknownu. Calling linearization() on

a linear expression simply obtains the same linear expression, but in terms of the Newton

171

step for the original unknown. Note that ifeither the PDE or BC are nonlinear, both must

be linearized in order to transform both into equations for the Newton step.

6.7.1.1 Example: Poisson-Boltzmann Equation

For example, the Poisson-Boltzmann equationZ ru � rv + ve�u = 0 (6.7.8)

with boundary conditions u(top) = uBC (6.7.9)

can be linearized as follows.

Expr eqn = Integral((grad*u)*(grad*v) + exp(-u)*v);

EssentialBC bc = EssentialBC(top, (u - uBC)*v);

Expr linearizedEqn = eqn.linearization(u, u0);

EssentialBC linearizedBC = bc.linearization(u, u0);

The resulting expression and BC are equations for the Newton step, accessible as an

unknown function through thedifferential() method on the original unknown,

Expr du = u.differential();

Complete code for the solution of the Poisson-Boltzmann equation (6.7.8) is shown

below.

#include "Sundance.h"

/** \example inlinePoissonBoltzmann1D.cpp

* Solve the Poisson-Boltzmann equation \f$\nablaˆ2 u = eˆ-u$ on the unit

* line with boundary conditions:

* Left: Natural, du/dx=0

* Right: Dirichlet u = 2 log(cosh(1/sqrt(2)))

*

* The solution is 2 log(cosh(x/sqrt(2))).

*

172

* The problem is nonlinear, so we use Newton’s method to iterate

* towards a solution.

*

*/

int main(int argc, void** argv)

{

try

{

Sundance::init(&argc, &argv);

/* create a simple mesh on the unit line */

double L=1.0;

int n = 10;

MeshGenerator mesher = new PartitionedLineMesher(0.0, L, n);

Mesh mesh = mesher.getMesh();

/* define an expression representing the x-coordinate function */

Expr x = new CoordExpr(0);

/* create a cell set representing the right boundary */

CellSet boundary = new BoundaryCellSet();

CellSet right = boundary.subset(x == L);

/* create a discrete space on the mesh */

TSFVectorSpace discreteSpace

= new SundanceVectorSpace(mesh, new Lagrange(2));

/* create an expression for the initial guess. This will be reused as the

* starting point for each newton step. Assume u(x)=x as an initial

* guess, and discretize it.

*/

Expr u0 = new DiscreteFunction(discreteSpace, x);

/* create symbolic objects for test and unknown functions. At each newton

* step we will solve a linearized equation for a step du, so our

* unknown is du. */

Expr u = new UnknownFunction(new Lagrange(2), "du");

Expr v = new TestFunction(new Lagrange(2), "du");

/* create a differential operator representing the x-derivative. */

Expr dx = new Derivative(0);

/* linearized weak equation for the step du */

Expr nonlinearEqn = Integral((dx*u)*(dx*v) + v*exp(-u));

Expr linearizedEqn = nonlinearEqn.linearization(u, u0);

Expr du = u.differential();

/* Dirichlet boundary condition */

double uBC = 2.0*log(cosh(L/sqrt(2.0)));

173

EssentialBC bc = EssentialBC(right, (u-uBC)*v) ;

EssentialBC linearizedBC = bc.linearization(u, u0);

/* linear problem for the step du */

StaticLinearProblem prob(mesh, linearizedEqn, linearizedBC, v, du);

/* create linear solver */

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);

TSFLinearSolver solver = new BICGSTABSolver(1.0e-12, 1000);

NewtonLinearization newton(prob, u0, solver);

Expr soln = newton.solve(NewtonSolver(solver, 8, 1.0e-12, 1.0e-12));

// compare to exact solution

Expr exactSoln = 2.0*log(cosh(x/sqrt(2.0)));

Expr error = new DiscreteFunction(discreteSpace, soln-exactSoln);

/* write to matlab */

string filename = "pb1D." + TSF::toString(MPIComm::world().getRank())

+ ".dat";

FieldWriter writer = new MatlabWriter(filename);

writer.writeField(soln);

// compute the norm of the error

double errorNorm = (exactSoln - soln).norm(2);

double tolerance = 1.0e-4;

TSFOut::printf("error = %g\n", errorNorm);

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

}

catch(exception& e)

{

Sundance::handleError(e, __FILE__);

}

Sundance::finalize();

}

6.7.2 Variations

Automated calculation of variations can be useful in a number of ways. For PDEs that

can be derived from a variational principle, Sundance’s variational capability can be used

to derive the PDE. A particularly interesting application of this is to derive a FOSLS dis-

cretization from a least-squares functional. Another important use of automated variational

174

calculations is to obtain the first-order necessary conditions for optimality.

An example of the use of thevariation() method to obtain first-order optimality

conditions for a PDE-constrained optimization problem was shown in section 6.2.

6.7.3 Sensitivities: Gradients and Hessians

With some optimization algorithms, we will want to evaluate the gradient or Hessian of an

objective function with respect to a fieldu or parameter�. In Sundance, this is done using

thedirectSensitivity method ofExpr .

6.8 Linear Algebra and Solvers

There are many high-quality numerical linear algebra packages in use, so Sundance is de-

signed to allow third-party linear algebra packages to be imported as plugins. All numerical

linear algebra in Sundance is done using the Trilinos Solver Framework (TSF), and the TSF

in turn supports plugins of third-party types.

User specification of a linear algebra representation is done by means of aTSFVectorType

object. This object knows how to build a vector space given a mesh and set of functions,

and the vector space in turn knows how to build a vector of the appropriate type.

6.9 Transient problems

Currently, Sundance has no high-level support for transient simulations. However, it is not

difficult to code simple timestepping schemes directly in Sundance.

Consider Crank-Nicolson (BE) time discretization for the transient heat equation. If we

discretize in time but leave space undiscretized for the moment, the step fromui to ui+1 is

175

given by the PDE ui+1 � ui = 12Æt �r2ui+1 +r2ui� (6.9.10)

plus associated BCs. We can now solve this equation using Sundance, and the solution may

be used as the starting value for the next step.

#include "Sundance.h"

/**

* \example timeStepHeat1D.cpp

*

* This example shows how to do timestepping in Sundance. We solve the

* transient heat equation in one dimension using Crank-Nicolson time

* discretization. The time discretization is done at the symbolic level.

* Spatial discretization is done via StaticLinearProblem, yielding system

* matrices and vectors that can be used to march the problem in time.

*

* We solve the heat equation u_xx = u_t with boundary conditions

* u(0)=u(1)=0 and initial conditions u(x,t=0)=sin(pi x). The solution

* is u(x,t)=exp(-piˆ2 t) sin(pi x).

*/

int main(int argc, void** argv)

{

try

{

Sundance::init(&argc, &argv);

/* create a simple mesh on the unit line */

int n = 100;

MeshGenerator mesher = new LineMesher(0.0, 0.5, n);

Mesh mesh = mesher.getMesh();

/* create unknown and variational functions */

Expr delU = new TestFunction(new Lagrange(1));

Expr U = new UnknownFunction(new Lagrange(1));

/* create a differentiation operator */

Expr dx = new Derivative(0);

/* the initial conditions will be u0(x,t=0) = sin(pi*x).

* create a coordinate expression to represent x, then

* create sin(pi*x), and then project it onto a discrete function. */

Expr x = new CoordExpr(0);

double pi = 4.0*atan(1.0);

TSFVectorSpace discreteSpace

= new SundanceVectorSpace(mesh, new Lagrange(1));

176

Expr u0 = new DiscreteFunction(discreteSpace, sin(pi*x));

/*

set up crank-nicolson stepping with timestep = 0.02. The time

discretization is done at the symbolic level, yielding

an elliptic problem that we solve repeatedly for the updated

solution at each time level.

*/

double deltaT = 0.02;

Expr cnStep = delU*(U - u0) + deltaT*(dx*delU)*(dx*(U + u0)/2.0);

Expr eqn = Integral(cnStep);

/* Define BCs to be zero at both ends */

CellSet boundary = new BoundaryCellSet();

CellSet left = boundary.subset(fabs(x - 0.0) < 1.0e-10);

CellSet right = boundary.subset(fabs(x - 1.0) < 1.0e-10);

EssentialBC bc = EssentialBC(left, delU*U);

/* create a solver object */

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);

TSFLinearSolver solver = new BICGSTABSolver(prec, 1.0e-14, 300);

/*

put the time-discretized eqn into a StaticLinearProblem object

which will do the spatial discretization.

*/

StaticLinearProblem prob(mesh, eqn, bc, delU, U);

/*

Now, loop over timesteps, solving the elliptic problem for u at each

step. At the end of each step, assign the solution solnU into u0.

Because Exprs are stored by reference, the updating of u0 propagates

to the copies of u0 in the equation set and in the

StaticLinearProblem. The same StaticLinearProblem can be reused

at all timesteps.

*/

int nSteps = 100;

for (int i=0; i<nSteps; i++)

{

/* solve the problem */

Expr soln = prob.solve(solver);

TSFVector solnVec;

soln.getVector(solnVec);

u0.setVector(solnVec);

/* write the solution at step i to a file */

char fName[20];

sprintf(fName, "timeStepHeat%d.dat", i);

ofstream of(fName);

177

FieldWriter writer = new MatlabWriter(fName);

writer.writeField(u0);

cerr << "[" << i << "]";

/* flush the matrix and RHS values */

prob.flushMatrixValues();

}

cerr << endl;

/* compute the exact solution and the error */

double tFinal = nSteps * deltaT;

Expr exactSoln = exp(-pi*pi*tFinal) * sin(pi*x);

/*

compute the norm of the error

*/

double errorNorm = (exactSoln-u0).norm(2);

double tolerance = 1.0e-4;

/*

decide if the error is within tolerance

*/

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

}

catch(exception& e)

{

Sundance::handleError(e, __FILE__);

}

Sundance::finalize();

}

178

Chapter 7

Sundance Optimization Survey

7.1 Sundance-rSQP++ Interface

Here we describe the basics of a software interface that allows rSQP++ to solve (possibly in

parallel) PDE-constrained optimization problems that are modeled using Sundance. One of

the requirements for this interface was that it should be as easy as possible (and require as

little new code as possible) to prototype a new optimization application. There are several

different aspects to a Sundance-rSQP++ application that are logically independent of each

other and the software structure reflects this separation of concerns. Before going into the

specifics of the software structure, we describe the different independent components that

have to be dealt with. A few of these independent components are (1) the statement of the

PDE-constrained optimization problem, (2) the linear algebra implementation, and (3) how

the optimization problem is solved.

The basic linear algebra implementations used by a Sundance application is deter-

mined by an abstractTSF:: TSFVectorType object. For example, as shown in Chap-

ter 6, everySundance::DiscreteFunction andSundance::StaticLinear-

Problem object must have aTSFVectorType object passed into their constructors. By

parameterizing a Sundance application with aTSFVectorType object and a compati-

bleTSF:: TSFLinearSolver object, the specification of the linear algebra implemen-

tations is completely determined. The interfaceNLPInterfacePack:: Sundance-

179

ProblemFactory (or SPF for short) has been defined to abstract the Sundance PDE-

constrained optimization formation. TheSPF interface allows the development of a Sun-

dance optimization formulation that is independent of the linear algebra implementation

and this component is discussed in Section 7.1.2.

Another critical part of the Sundance-rSQP++ interface is the linear algebra interface.

Sundance uses the Trilinos Solver Framework (TSF) as its abstract interface to linear alge-

bra in much the same way that rSQP++ usesAbstractLinAlgPack (ALAP for short).

BothTSFandALAPsupportRTOpoperators and have a very similar object model (both are

based on HCL [51], but withALAP to a lesser extent) so it was fairly trivial to develop the

“Adapter” [42] subclasses to putALAPinterfaces onTSF linear algebra objects. The details

of this ALAP-TSF interface are discussed in Section 7.1.1. The particulars of these basic

linear algebra interfaces are not of much concern to individuals that simply want to use

Sundance-rSQP++ to prototype PDE-constrained optimization problems. To relieve basic

users for the concerns about linear algebra implementations used by Sundance, by a simple

concrete C++ class calledNLPInterfacePack::SundanceLinAlgFactory (see

Figure 7.2) has been developed that automates the tasks of allowing users to select basic

options and of creating compatibleTSFVectorType andTSF::TSFLinearSolver

objects that are used by a specificSPF object to define the Sundance optimization prob-

lem. The example main program in Section 7.1.4 shows how this class is used to specify

the linear algebra for a Sundance-rSQP++ optimization problem.

Finally, once the linear algebra implementations and the PDE optimization problem

have been defined, the last component to specify is the optimization algorithm. This is

where rSQP++ comes in. The primary interface to rSQP++ is through the abstract base

classNLPInterfacePack:: NLPFirstOrderInfo (see Section 4.2.3.2). The sub-

classNLPInterfacePack::NLPSundance implements this interface for Sundance

optimization problems. The details of theNLPSundance subclass are described in Sec-

tion 7.1.2.

180

VectorSpace

VectorSpaceTSF

MatrixWithOpTSF

MatrixWithOpNonsingularTSF

MatrixWithOp

MatrixWithOpNonsingular

VectorWithOpMutable

VectorWithOpMutableTSF

TSF::
TSFVectorSpace

TSF::
TSFVectorSpaceBase

TSF::
TSFVector

TSF::
TSFVectorBase

TSF::
TSFLinearOperator

TSF::
TSFLinearOperatorBase

TSF::
TSFLinearSolver

TSF::
TSFLinearSolverBase

Figure 7.1. UML class diagram :

AbstractLinAlgPackTSF , Adapter subclasses forALAP-

TSF interface

7.1.1 AbstractLinAlgPack-TSF Linear Algebra interface

The Sundance-rSQP++ interface uses the explicit partitioning of variables into states and

controls as shown in Chapter 2. In order to implement the Sundance-rSQP++ interface,

vector-space objects for the state and control variables, a general matrix object for the sub-

Jacobian for the controls�
�u orN and a non-singular matrix object for the sub-Jacobian of

the states�
�y or C are all needed. Figure 7.1 shows a UML class diagram for the adapter

subclasses required for theALAP-TSF interface. These interface classes are collected into

a separate project library calledAbstractLinAlgPackTSF . These adapter classes are

very straightforward and require little explanation but some simple comments are in order.

TheVectorWithOpMutableTSFadapter simply forwardsRTOpoperators through

theapply reduction(...) andapply transformation(...) methods on to

the aggregateTSFVectorBase object (through aTSFVector handle object). That is

basically the extent of this subclass. Through these operator methods (which have the

same basic implementation) all of the advanced features of the rSQP++ algorithms can be

181

implemented through specializedRTOpobjects.

TheVectorSpaceTSFadapter uses thecreateMember() method of the aggre-

gateTSFVectorSpaceBase object to implement thecreate member() method and

returns aVectorWithOpMutableTSF with an embeddedTSF vector object.

TheMatrixWithOpTSFadapter simply forwards the vector arguments (after some

dynamic casting to get theTSF objects) from theVp StMtV(...) method on to the

TSFLinearOperatorBaseobject though itsapply(...) orapplyAdjoint(...)

methods (depending on the value of the transpose argument).

Since theTSFLinearOperatorBase interface defines the methodsapplyIn-

verse(...) andapplyInverseAdjoint(...), it would seem that the everyTSF-

LinearOperatorBaseobject should be able to support theMatrixWithOpNonsingular

interface but this is not the case. Instead, the subclassMatrixWithOpNonsingular-

TSF is needed which requires aTSFLinearSolverBase object to solve for linear sys-

tems in the methodV InvMtV(...). The inverse methods of on theTSFoperator object

are ignored since there is no guarantee that they will be implemented for a particular linear

operator object. This was an important concept that was discovered during the development

of the Sundance-rSQP++ interface.

See the Doxygen documentation for the packageAbstractLinAlgPackTSF for

more details on thisALAP-TSF interface.

7.1.2 NLPSundance: Interface between Sundance PDE-Constrained

Optimization Problems and rSQP++

Figure 7.2 shows the basic interfaces and subclasses that make up the Sundance-rSQP++ in-

terface. Users create subclasses of theSPF interface to implement a new PDE-constrained

optimization problem. ASPF object, along withTSFVectorType andTSFLinear-

Solver objects, are passed to the constructor of the NLP subclassNLPSundance .

ThecreateProblem(...) method of theSPF object is called by theNLPSundance

object to createSundance::StaticLinearProblem andSundanceObjective-

182

NLPSundance

createProblem(in vec_type, out constraints, out obj_func, out x_initial)

SundanceProblemFactory

NLPFirstOrderInfo

getOperator() : TSFLinearOperator

getRHS() : TSFVector

Sundance::
StaticLinearProblem

TSF::
TSFVectorType

TSF::
TSFVectorTypeBase

TSF::
TSFLinearSolver

TSF::
TSFLinearSolverBase

eval(in discr_states, in discr_designs) : double

grad(in discr_states, in discr_designs, out grad_states, out grad_designs)

SundanceObjectiveFunction

Sundance::
Expr

Sundance::
ExprBase

obj_func_expr

get_lin_alg_components(out vec_type, out linear_solver)

SundanceLinAlgFactory

«create»

«create»

linear_solver

obj_func

constriants

«create»

«create»

x_initial

ReducedSpaceSQPPack::
rSQPppSolver

nlp

Figure 7.2. UML class diagram : Sundance-rSQP++ interface

Function objects. TheStaticLinearProblem object is used to represent the set

of under-determined nonlinear constraints
(y; u) shown in (2.1.2). Associated with a

StaticLinearProblem object must be aSundance::Expr object (calledx initial

in the figure), that contains the Sundance discrete functions with the initial guess for the

states and controls. These discrete functions must be used to form the variational equations

for the PDE constraints. The setup of theStaticLinearProblem object must be done

in a specific way in order to be used withNLPSundance which is shown in the below

example program.

The classSundanceObjectiveFunction is not a built-in Sundance class but was

developed for the Sundance-rSQP++ interface to encapsulate how the objective function

and its gradients are computed. The concreteSPF object creates aSundance::Expr

object that represents the objective function (see Section 7.1.4 for an example) and it is this

183

expression object that gets embedded in theSundanceObjectiveFunction object

that is returned to theNLPSundance object.

TheNLPSundance object extractsTSFVector objects from theSundance::Expr

objectx initial for the initial guess for the states and the controls as

x_initital[0].getVector(states_vec);

x_initital[1].getVector(controls_vec);

and then builds aAbstractLinAlgPack::VectorSpaceCompositeStd ob-

ject for the concatenation of the spaces of the states and the controls

states_spc = states_vec.getSpace();

controls_spc = controls_vec.getSpace();

into a singleAbstractLinAlgPack:: VectorSpace object. Much of the ma-

chinery for handling the mapping from different spaces and vectors for the statesy and

the controlsu to a single space and vector for the variablesxT = h yT uT i is imple-

mented by the sameAbstractLinAlgPack::BasisSystemCompositeStd sub-

class used by the simple example NLP described in Section 7.1.4. This basis-system sub-

class also handles the formation of aAbstractLinAlgPack:: MatrixWithOp ob-

ject for the gradient matrixGc (r
).
7.1.3 PDE Constraints

Here we carefully spell out how the constraints must be modeled using Sundance to form a

StaticLinearProblem object that is returned fromSPF::createProblem(...).

What is required is that the discrete functions for the solution variables and the unknown

functions be blocked into single vectors for the states and controls. For example, ifr, s
andt are the unknown (i.e.Sundance::UnknownFunction) state variables andv, w
are the unknown control variables, then these variables must be combined into statey and

controlu variables as

184

y = 264 rst 375u = " vw #:
This is required so that theTSFLinearOperator Jacobian objectJac returned

from Jac = StaticLinearProblem::getOperator() is a block matrix where

C = Jac.getBlock(0,0) is the basis matrix object for the states whileN = Jac.getBlock(0,1)

is the non-basis matrix object for the controls. See the Doxygen documentation for the class

SPF for details on the assertions for the constraints object.

The example program in Section 7.1.4 shows how this blocking is done in the simple

case of single unknown variables for the states and controls. Blocking of multiple variables

for states and controls is shown in the 2-D Burger’s example.

7.1.4 Example Sundance-rSQP++ Application

In this section, we describe the solution of the following PDE-constrained optimization

problem that is modeled by the 1-D Poisson-Boltzman equation

min �2 R�
r(u� û)2 + ��12 R�
(�2) (7.1.1)

s.t. r2u� e�u = 0 on
 (7.1.2)u(x) = � on�
 (7.1.3)

where
 = [a; b℄, û is the target value of the state on the right boundary�
r, � is a

boundary control function, and� is an objective weighting term that balances the control

185

objective (foru) with the regularization term (for�). The header file for theSundance-

ProblemFactory subclass for this problem is shown below.

01 // ///

02 // SPFPoissonBoltzman1D.h

03

04 #ifndef SPF_POISSONBOLTZMAN1D_H

05 #define SPF_POISSONBOLTZMAN1D_H

06

07 #include "SundanceProblemFactory.h"

08 #include "RTOpPack/include/RTOp_config.h"

09 #include "NewtonSolver.h"

10

11 namespace NLPInterfacePack {

12

14

24 class SPFPoissonBoltzman1D: public SundanceProblemFactory

25 {

26 public:

27

29

31 SPFPoissonBoltzman1D(

32 value_type left, value_type right, int n, value_type uRight

33 ,value_type uGuess, value_type aGuess, value_type obj_wgt

34);

35

38

40 void createProblem(

41 const TSF::TSFVectorType &vec_type

42 ,MemMngPack::ref_count_ptr<Sundance::StaticLinearProblem> *constriants

43 ,MemMngPack::ref_count_ptr<SundanceObjectiveFunction> *obj_func

44 ,Expr *x_initial

45) const;

47 const Mesh& getMesh() const;

49 const CellSet& controlsCellSet() const;

50

52

53 private:

54 Mesh mesh_;

55 Expr coord_x_;

56 CellSet boundary_;

57 CellSet right_;

58 CellSet left_;

59 value_type uRight_;

60 value_type uGuess_;

61 value_type aGuess_;

62 value_type obj_wgt_;

63 };

64

65 } // end NLPInterfacePack

186

66

67 #endif

Note that the header fileSPFPoissonBoltzman1D.h is basically just boiler-plate

code with the exception of some of the private data members on lines 54–62. The interest-

ing code comes in the source file which is shown below.

01 // ///

02 // SPFPoissonBoltzman1D.cpp

03

04 #include "../include/SPFPoissonBoltzman1D.h"

05 #include "PartitionedLineMesher.h"

06

07 namespace NLPInterfacePack {

08

09 SPFPoissonBoltzman1D::SPFPoissonBoltzman1D(

10 value_type left, value_type right, int n, value_type uRight

11 ,value_type uGuess, value_type aGuess, value_type obj_wgt

12)

13 :coord_x_(new CoordExpr(0)), uRight_(uRight), uGuess_(uGuess)

14 ,aGuess_(aGuess), obj_wgt_(obj_wgt)

15 {

16 #ifdef RTOp_USE_MPI

17 MeshGenerator mesher = new PartitionedLineMesher(left, right, n);

18 mesh_ = mesher.getMesh();

19 #else

20 MeshGenerator mesher = new LineMesher(left, right, n);

21 mesh_ = mesher.getMesh();

22 #endif

23 // Define cell sets for the boundry and left and right edges

24 boundary_ = new BoundaryCellSet();

25 left_ = boundary_.subset(fabs(coord_x_ - left) < 1.0e-10);

26 right_ = boundary_.subset(fabs(coord_x_ - right) < 1.0e-10);

27 }

28

29 void SPFPoissonBoltzman1D::createProblem(

30 const TSF::TSFVectorType &vec_type

31 ,MemMngPack::ref_count_ptr<Sundance::StaticLinearProblem> *constraints

32 ,MemMngPack::ref_count_ptr<SundanceObjectiveFunction> *obj_func

33 ,Expr *x_initial

34) const

35 {

36 namespace mmp = MemMngPack;

37 using Sundance::List;

38

39 // Dimension of the finite-element basis functions used

40 const int u_basis_dim = 1, a_basis_dim = 1;

187

41

42 // Discrete state space on the entire mesh and discrete control space on boundary

43 TSFVectorSpace discreteStateSpace

44 = new SundanceVectorSpace(mesh_, new Lagrange(u_basis_dim), vec_type);

45 TSFVectorSpace discreteControlSpace

46 = new SundanceVectorSpace(mesh_, new Lagrange(a_basis_dim), boundary_, vec_type);

47

48 // Expression for the initial state and controls which are also used for the linearization

49 Expr u0 = new DiscreteFunction(discreteStateSpace, uGuess_, "u0");

50 Expr alpha0 = new DiscreteFunction(discreteControlSpace, aGuess_, "alpha0");

51

52 // Create the initial point for the optimizer

53 *x_initial = List(u0, alpha0);

54

55 // Test and unknown functions for the state and control

56 Expr u = new UnknownFunction(new Lagrange(u_basis_dim), "u");

57 Expr alpha = new UnknownFunction(new Lagrange(a_basis_dim), "alpha");

58 Expr v = u.variation();

59

60 // Nonlinear state equation and boundary conditions

61 Expr dx = new Derivative(0);

62 Expr nonlinearStateEqn = (dx*(u))*(dx*v) + v*exp(-u);

63 EssentialBC nonlinearBC = EssentialBC(boundary_, (u-alpha)*v, new GaussianQuadrature(1)) ;

64

65 // Integrated linearized state equation and boundary conditions

66 Expr linearizedStateEqn = nonlinearStateEqn.linearization(List(u,alpha), *x_initial);

67 EssentialBC bc = nonlinearBC.linearization(List(u,alpha), *x_initial);

68 Expr eqn = Integral(linearizedStateEqn, new GaussianQuadrature(4));

69

70 // Arrange test and (Newton) unknowns into [state, control] blocks

71 Expr du = u.differential(), dAlpha = alpha.differential();

72 TSFArray<Block> unkBlocks = tuple(Block(du, vec_type), Block(dAlpha, vec_type));

73 TSFArray<Block> varBlocks = tuple(Block(v, vec_type));

74

75 // Create the static linear problem for the step [du, dAlpha]

76 *constraints = mmp::rcp(new StaticLinearProblem(mesh_, eqn, bc, varBlocks, unkBlocks));

77

78 // Define the objective function.

79 const Expr obj_func_expr

80 = Integral(right_,0.5*obj_wgt_*(u-uRight_)*(u-uRight_)) // Control objective

81 + Integral(boundary_,0.5*(1.0 - obj_wgt_)*alpha*alpha); // Regularization

82 *obj_func = mmp::rcp(

83 new SundanceObjectiveFunction(

84 obj_func_expr, mesh_, u, alpha));

85

86 }

...

98 } // end NLPInterfacePack

Lines 9–27 in this source file contain the constructor which accepts the parameters for

188

the problem and then sets up the mesh and the cell sets for the boundaries of interest. The

input parameters for this problem are the domain (left andright) the number of finite

elements (n), the target value for the state (uRight), the guess for the state and control

(uGuess andaGuess) and the objective function wieght (obj wgt). On lines 17-18 the

mesh is set up for parallel execution while lines 20–21 set up for serial execution. The

boundary cell sets are specified on lines 24–26.

The most important part of this subclass is of course the implementation of thecreate-

Problem(...) method that begins on line 29. The dimensions of the finite-element ba-

sis functions are specified at the top of the function on line 40. Next, theTSFvector spaces

are defined for the states and controls on lines 43–46. Note that the inputvec type

argument is used as part of the definition for these vector spaces which determines the

implementations for the vectors. Also note that the space for the controlalpha is only

defined on the boundary as shown in line 46 and not over the entire domain. This is a very

useful feature that allows great flexibility in defining what data can be determined by the

optimizer and what data can be specified up front. Given theseTSF vector space objects,

the discrete functions for the states and the controls are defined on lines 49–50 and are sup-

plied with initial guesses. These discrete functions represent the current estimate for the

solution and are used as the unknowns in the optimization problem. Later, these discrete

functions are used to define the linearized equations. On line 53, the initial guess for the

states and controls is packed into an expressionx initial which is later returned to the

NLPSundance object.

Lines 56–63 define the set of nonlinear equations (state equation (7.1.2) on line 62

and the boundary condition (7.1.3) on line 63). What makes this set of equations dif-

ferent from for a standard Sundance problem is that a test function is only defined for

the states on line 58 and not for the controls which results in a set of under-determined

equations. This set of nonlinear equations must be linearized and this is done using the

linearization(...) method on lines 66–67. The linearized state equation is then

integrated over the entire domain on line 68.

Now that the linearized state equations and boundary conditions have been defined as

Sundance expressions, we must tell Sundance to properly block the variables as described

in Section 7.1.3. This is done on lines 72–73. Note that the blocked unknown variables are

189

the Newton stepsdu anddAlpha and not the original unknownsu andalpha used to

define the nonlinear equations. Finally, theStaticLinearProblem object is created

on line 76 for the linearized state equation and boundary conditions. This is the constraints

object that is returned to theNLPSundance object which is used to compute the residual

for the nonlinear constraints (which happens to be the negativeTSF vector returned from

the getRHS() method) and the Jacobian (which is returned for thegetOperator()

method).

The final part of thecreateProblem(...) method is the definition of the objective

function on lines 79–84. First, the expression for the objective function is defined on lines

80-81. Note the domains that the objective terms are integrated over and how they compare

to (7.1.1). This expression for the objective is passed into the constructor for aSundance-

ObjectiveFunction object on lines 82–84. Note that this constructor must be given

the mesh object and the unknown functions used to define the states and the controls. The

constraint objectconstraints and the objective-function objectobj func are then

returned to the callingNLPSundance object along with the initial guessx initial .

The discrete functions embedded in thex initial expression object are manipulated by

the NLPSundance object in order to compute the constraint residual and Jacobian and

different iterates.

The last piece of user code to write for this optimization problem is the main driver

program. This program is shown in the below source file.

01 // //

02 // NLPPoissonBoltzman1DMain.cpp

03

04 #include <iostream>

05 #include "../include/SundanceNLPSolver.h"

06 #include "../include/SPFPoissonBoltzman1D.h"

07 #include "../include/SundanceLinAlgFactory.h"

08

09 int main(int argc, char* argv[]) {

10

11 namespace NLPIP == NLPInterfacePack;

12 using CommandLineProcessorPack::CommandLineProcessor;

13

14 int prog_return; // return code

15

16 // Step 1: Initialize Sundance (i.e. MPI)

17 NLPIP::SundanceNLPSolver::init();

190

18 Sundance::init(&argc, (void***)&argv);

19

20 try {

21

22 NLPIP::SundanceNLPSolver sundance_nlp_solver;

23 NLPIP::SundanceLinAlgFactory lin_alg_fcty;

24

25 // Step 2: Read in input

26

27 double left = 0.0;

28 double right = 1.0;

29 int n = 2;

30 double uRight = 2.0*log(cosh(right/sqrt(2.0)));

31 double uGuess = 0.1;

32 double aGuess = 0.2;

33 double obj_wgt = 0.99;

34

35 CommandLineProcessor command_line_processor;

36

37 command_line_processor.set_option("left", &left, "x at the left boundary");

38 command_line_processor.set_option("right", &right, "x at the right boundary");

39 command_line_processor.set_option("n", &n, "Number of finite elements");

40 command_line_processor.set_option("uRight",&uRight, "Value at the right boundary");

41 command_line_processor.set_option("uGuess",&uGuess, "The Guess for u");

42 command_line_processor.set_option("aGuess",&aGuess, "The Guess for a");

43 command_line_processor.set_option("obj_wgt",&obj_wgt,"[0,1] Wieghting for u or a (1.0: all u,

44 lin_alg_fcty.setup_command_line_processor(&command_line_processor);

45 sundance_nlp_solver.setup_command_line_processor(&command_line_processor);

46

47 CommandLineProcessor::EParseCommandLineReturn

48 parse_return = command_line_processor.parse_command_line(argc,argv,&std::cerr);

49

50 if(parse_return != CommandLineProcessor::PARSE_SUCCESSFULL)

51 return parse_return;

52

53 // Step 3: create the linear algebra components

54 TSF::TSFVectorType vec_type;

55 TSF::TSFLinearSolver linear_solver;

56 lin_alg_fcty.get_lin_alg_components(&vec_type, &linear_solver);

57

58 // Step 4: Create the SundanceProblemFactory

59 NLPIP::SPFPoissonBoltzman1D probfac(left,right,n,uRight,uGuess,aGuess,obj_wgt);

60

61 // Step 5: Solve the NLP (or the forward problem)

62 prog_return = sundance_nlp_solver.solve(vec_type, MemMngPack::rcp(&probfac,false), &linear_solver

63

64 }// end try

65 catch(const std::exception& except) {

66 cerr << "\nCaught as std::exception : " << except.what() << std::endl;

67 prog_return = -1; // ToDo: return proper enum!

68 }

191

69

70 // Step 6: Finalize Sundance (i.e. MPI)

71 Sundance::finalize();

72

73 return prog_return;

74 }

As with any Sundance application,Sundance::init(...) and Sundance-

::finalize() must be called as shown on lines 18 and 71. The next section of code

(lines 27–51 in thetry block) performs the input of the command-line parameters for the

optimization problem that are passed into the constructor for theSPFPoissonBoltzman-

1D object that is created on line 59. Command-line options for theSundanceLinAlg-

Factory object declared on line 23 are inserted into the command-line processor object

on line 44 after the application specific options. These options are read from the command-

line on line 48. Options are also processed for aSundanceNLPSolver object which

controls a lot of the default behavior that is independent of the particular problem being

solved. To see all of the valid command-line options, the option--help can be specified

on the command line and will cause the program to print a help message, which for this

executable is

Usage: ./sundance_nlp_bolt [options]

options:

--help Prints this help message

--left double x at the left boundary

(default: --left=0)

--right double x at the right boundary

(default: --right=1)

--n int Number of finite elements

(default: --n=2)

--uRight double Value at the right boundary

(default: --uRight=0.463163)

--uGuess double The Guess for u

(default: --uGuess=0.1)

--aGuess double The Guess for a

(default: --aGuess=0.2)

--obj_wgt double [0,1] Wieghting for u or a (1.0: all u, 0.0: all a)

(default: --obj_wgt=0.99)

--use-petra bool Determine if Petra (parallel) or serial (LAPACK) linear algebra is used

--use-serial (default: --use-petra)

--use-aztec bool Determine if Aztec or the default BICGSTAB solver is used

--use-bicgstab (default: --use-bicgstab)

--ilu_fill int Fill-in factor for ILU

(default: --ilu_fill=1)

192

--ilu_overlap int Overlap for ILU

(default: --ilu_overlap=1)

--iter_solve_tol double Solve tolerance for iterative solver

(default: --iter_solve_tol=1e-10)

--iter_solve_maxiter int Maximum number of iterations for iterative solver

(default: --iter_solve_maxiter=5000)

--do-optimization bool Determine if optimization or simulation problem is solved

--do-simulation (default: --do-optimization)

--root-process int Index (zero-based) of the root process

(default: --root-process=0)

--states-guess-file string Filename where initial guess for states data is stored (same format

(default: --states-guess-file="")

--controls-guess-file string Filename where initial guess for states data is stored (same format

(default: --controls-guess-file="")

--states-sol-file string Filename where solution for states data is written (flat values only)

(default: --states-sol-file="")

--controls-sol-file string Filename where solution for contorls data is written (flat values only)

(default: --controls-sol-file="")

--states-matlab-sol-file string Filename where solution for states data is written (matlab format)

(default: --states-matlab-sol-file="")

--controls-matlab-sol-file string Filename where solution for contorls data is written (matlab format)

(default: --controls-matlab-sol-file="")

--max_nl_iter double Simulation maximum number of nonlinear iterations

(default: --max_nl_iter=1000)

--resid_tol double Simulation tolerance (in the ||.||2 norm) for the constraints

(default: --resid_tol=1e-08)

--compute-gradient bool Compute the reduced gradient or not

--no-compute-gradient (default: --no-compute-gradient)

--use-adjoints bool Compute the reduced gradient with adjoints or direct sensitivities

--use-direct (default: --use-direct)

Once the command-line options are read in, the linear algebra implementations selected

by the user on the command-line are created on lines 54–56. By using aSundance-

LinAlgFactory object, every Sundance optimization problem can automatically sup-

port new linear algebra options whenever they are added.

After the linear algebra implementations have been defined and the concreteSundance-

ProblemFactory object has been initialized, the rest of the code required to solve the

optimization problem is exactly the same for every application. This common code is

encapsulated in a helper object of typeSundanceNLPSolver which is called on line

62. This helper class care of creating aNLPSundance object (which in turn calls the

createProblem(...) method on theSundanceProblemFactory object) and

then passes this NLP object on to arSQPppSolver object which attempts to solve the

optimization problem. A status value (program return) is then is returned from the

193

main driver program to the shell. Any exceptions that are throw (that are not caught else-

where) will be caught and reported tostd::cerr on lines 65–68.

7.1.5 TheSundanceNLPSolverhelper class

TheSundanceNLPSolver class does more than just solve the NLP. It also also allows

any SundanceProblemFactory object to be used to solve the forward simulation

problem where the control variables are fixed at the initial guess. The above example

Possion-Boltzman program, or any of the other example programs, can be used to solve

the forward problem by selecting the command-line argument--do-simulation . This

will result in the simulation only being performed with the finial objective function value

being output to a file callednle sol file.out . In this mode, the reduced gradient at

the converged simulation can also be computed by setting the option--compute-gradient .

The options-use-adjoints and--use-direct select the adjoint verses the direct

sensitivity methods for computing this reduced gradient respectively. The adjoint method

is by far the most efficient.

The ability to do the forward simulation and to compute exact reduced gradients (using

both the adjoint and the direct approaches) allows any Sundance/rSQP++ application to

also be used in lower-level NAND methods such as described in Chapter 2.

7.2 Example Sundance Optimization Application -

Source Inversion of a Convection Diffusion System

Several forward problems from the Sundance test directory have been converted to opti-

mization problems to test the rSQP++ interface. The direct and adjoint interfaces were

tested on a heat transfer, Burgers, and a convection diffusion problem. More in depth anal-

yses were conducted using a source inversion problem constrained by convection-diffusion

equations. In addition to testing the rSQP++/Sundance interface, the objective of this ex-

ercise was to present numerical efficiencies associated with all 7 levels of optimization,

and demonstrate this formulation to solve the “chemical/biological attack on a large facil-

194

ity” problem, similar to the work done with MPSalsa. However, in this case we tested the

inversion problem with large numbers of inversion parameters.

By specifying a limited number of state values at various points in the domain as targets,

a least-squares formulation constrained by a convection-diffusion PDE is used to determine

the location of the original source(s) on the boundary. In the case of chemical diffusion,

these state values could be concentrations and in the case of heat diffusion these state values

could be temperatures. We obtain from a forward simulation 16 “sensor” locations out of

1600 grid points as targets, which are then used in the inversion problem. Since this is

an ill-posed problem, a regularization term needs to be added to the objective function.

Three obvious options can be considered: the square off , the square ofrf and finally the

square root ofrf . Unfortunately as a result of an implementation limitation, the boundary

inversion can not make use of gradient based terms for the regularization and therefore

the numerical experiments were conducted with the square off . Our formulation allows

locating the source term anywhere on one of the boundaries (i.e.�F):

min
;f 12 sXi Z
 Æ(x� xi)(
�
�)2 + �2 Z�F f 2 (7.2.4)

s.t. �k�
+r
 � v = 0; in
 (7.2.5)�
�n = 0; on �N (7.2.6)
 = 0; on �D (7.2.7)
 = f; on �F (7.2.8)

where: " vxvy # = " (�L + y)(L+ y)0 #
 = f(x; y) : (�L � x � +L) ^ (�L � y � +L)g�N = f(x; y) : (�L � x � +L) ^ (y = �L _ y = +L)g�D = f(x; y) : (x = +L) ^ (�L � y � +L)g�F = f(x; y) : (x = �L) ^ (�L � y � +L)g
whereÆ(x � xi) is a delta function that specifies the location of the sensors,
 is the

195

vector of calculated state value (concentrations),
� is the vector of concentration measure-

ments (or targets),� is the regularization parameter which is set to 1E-5 for our numerical

experiments,f is the source/inversion term,k is the diffusivity constant, andv is the ve-

locity field. The velocity field is given for this problem and makes (7.2.5) linear in
 and

therefore no Newton iterations are required to converge to the solution for the forward prob-

lem. Figure 7.3 shows the forward simulation on a 40x40 grid (i.e.nx = 40 andny = 40
finite elements per dimension) for a Gaussian-like source on the left boundary.

Figure 7.4 shows the solution for the inversion problem defined in (7.2.4)–(7.2.8) on a

40x40 grid. The rSQP algorithm was able to successfully solve the problem and recover

the entire profile. Small oscillations on the boundary are observed which may be reduced

by choosing a different regularization term. Additional experiments were conducted to

evaluate different regularization terms and are presented in the next section. The sensor

data used for this NLP was taken from a 160x160 forward problem with the same source

shown in Figure 7.3.

The source inversion problem was used to demonstrate the numerical efficiencies of the

7 optimization levels by inverting for the boundary source using different grid resolutions.

For levels 1-3 we used rSQP++ through the DAKOTA framework and for levels 4 and 5 we

used the rSQP++/Sundance interface. Level 6 was not solved for the boundary inversion

problem because of implementation limitations. Instead an inversion problem was solved

using the full space method where inversion parameters are located within the domain.

As the formulation in (7.2.8) suggests, the number of inversion parameters scales with the

size of the boundary. The numerical experiment was conducted on a Pentium 4, 2.1 GHz

processor and even though Sundance and rSQP++ are parallel capable, the experiments

were run serially. Each optimization level was used to complete the inversion for a grid size

of 10x10, 20x20, 40x40, 80x80, and a 160x160 grid. The number of inversion parameters

matched the size of the grid dimension of a single sided boundary (10, 20,40,80 and 160

inversion parameters). The convergence criteria is controlled by various tolerances, but

in our experiment we choose to match objective functions as closely as possible. Table

7.1 shows the objective function values and CPU times for various levels of optimization

methods. As expected, the lower-level optimization methods are not able to efficiently

drive the objective value down to levels comparable to the higher-level methods.

196

−4

−2

0

2

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.3. Forward simulation for 40x40 boundary source

−4

−2

0

2

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.4. Inversion for 40x40 boundary source

197

Figure 7.5 shows graphically the numerical results. Level 0 used a local coordinate

pattern search and it is the least efficient algorithm for this problem. These methods are

obviously not preferred for smooth and differentiable processes but we have include the

results for completeness. Level 1 shows a considerable improvement over level 0 as a re-

sult of using gradient information. Direct sensitivities for both NAND and SAND show

significant improvements over level 1 because the reduced gradients for level 1 are calcu-

lated through finite differences which requires the convergence of a simulation for each

inversion parameter. Calculating reduced gradients with direct sensitivities avoids this nu-

merical overhead. Additional seperation between NAND and SAND methods using direct

sensitivities can be expected if this had been a non-linear problem.

The adjoint sensitivities are by far the most efficient method to calculate the reduced

gradient. There is a significant difference between NAND and SAND because of the sim-

ulation overhead that NAND incurs at each optimization iteration. This difference is better

observed in Figure 7.6. One would expect that a non-linear simulation problem would incur

additional Newton iterations which would add to the NAND expense for each optimization

iteration and the gap between levels 3 and 5 would be even greater. Estimated times for

level 6 are presented that equals three times the forward simulation cost. This is a con-

servative estimate considering the full space inversion of a 40x40 grid with 1600 inversion

parameters required less than 10 seconds to converge.

The exact value of12 R�F f 2 for the source shown in Figure 7.3 is 1.1788 (to five signif-

icant figures). Therefore, for� = 1� 10�5, the minimum value of the objective function in

(7.2.4) that can be obtained for a perfect inversion is1:1788� 10�5. The actual objective

function value must always be larger than this since the regularization term causes the solu-

tion to perturb the sensor matching term in (7.2.4) resulting in an overall elevated objective

function. Without the regularization term, the theoretical objective function value should

be near zero. This explains why the objective function value for discretization of 40x40

and larger obtain an objective value of1:18� 10�5 which is less than one percent off from

the perfect inversion value of1:1788� 10�5.
198

Method nx = ny = 10 nx = ny = 20 nx = ny = 40 nx = ny = 80 nx = ny = 160
Sim 0.591 2.119 8.214 32.831 134.396

L-0 Inv 13974.8 31239.3 - - -

L-1 Inv 1278.63 1642.32 5385.14 27128.3 -

L-2 Inv 58.5 182.5 293.4 1840.8 22003.2

L-3 Inv 55.1 165.8 465.8 882.8 3620.4

L-4 Inv 9.47 17.32 55.87 835.65 13911

L-5 Inv 8.6 13.0 26.6 151.1 986.5

Method nx = ny = 10 nx = ny = 20 nx = ny = 40 nx = ny = 80 nx = ny = 160
Sim - - - - -

L-0 Inv 7.79e-2 5.94e-2 - - -

L-1 Inv 9.41e-3 2.52e-5 1.89e-5 1.79e-5 -

L-2 Inv 8.64e-3 1.37e-5 1.70e-5 1.65e-5 1.18e-5

L-3 Inv 8.64e-3 1.37e-5 1.70e-5 1.65e-5 1.18e-5

L-4 Inv 8.61e-3 1.32e-5 1.18e-5 1.18e-5 1.18e-5

L-5 Inv 8.61e-3 1.32e-5 1.18e-5 1.18e-5 1.18e-5

Table 7.1.Summary of CPU times / objective function values for

source-inversion on a boundary.

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

Number of grid and design values

W
a
ll
 c
lo
c
k
 t
im
e
 (
s
e
c
)

Level 0

Level 1

Level 2

Level 3

Level 5

Level 4

Figure 7.5. Numerical Results for Source Inversion for Convec-

tion Diffusion for levels 0-5

199

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200

Number of grid and design variables

W
a
ll
 c
lo
c
k
 t
im
e

(s
e
c
)

Level 6

Level 5

Level 3

Figure 7.6. Numerical Results for Source Inversion for Convec-

tion Diffusion levels 3-6

200

7.2.1 Inverse problem formulation

We investigate a full space solution methods (level 6) using the source inversion problem

where the inversion parameter is located anywhere in the domain. We formulate the prob-

lem as follows: minf 12 sXi Z
 Æ(x� xi)(
�
�)2 d
 + �2 Z
 p(f) d

subject to:�k�
 +r
 � v + f = 0; in
;�
�n = 0; on �N ;
 = 0; on �D: (7.2.9)

Thep(f) term in the second part of the objective function is a regularization functional,

with � as the regularization parameter. If the error was measured throughout the domain,

no regularization is needed, the inverse problem can in fact be seen as a matching control

problem—which is known to have a unique solution for small Peclet numbers. However,

discrete measurements imply multiple solutions, and thus some regularization is necessary.

Possible functionals forp(�) are:R
 f 2 d
 (7.2.10)R
rf � rf d
 (7.2.11)R
(rf � rf) 12 d
: (7.2.12)

We use the following notation:a(f1; f2) := Z
 krf1 � rf2 d
; (f1; f2) := Z
 f1f2 d
; (f1; f2)� := Z� f1f2 d�
The Lagrangian functional that corresponds to (7.2.9) is given by:L(
; f; �) :=12Xi Z
 Æ(x� xi)(
�
�)2 d
 + �2(f; f)+a(�;
) + (r
 � v; �) + (f; �) (7.2.13)

201

Assuming that the regularization term for the inversion forcef is given by (7.2.10) the weak

formulation for the optimality conditions (Karush-Kuhn-Tucker conditions) of (7.2.9) is the

following: Findf;
; �;2 H1(
) such thata(;
) + (r
 � v;) + (f;) = 0; 8 2 H1(
)Xi (Æ(x� xi)(
�
�)) + a(; �) + (r � v; �) = 0; 8 2 H1(
)�(; f) + (; �) = 0; 8 2 H1(
): (7.2.14)

7.2.2 Algorithm

There are several ways to solve the optimality conditions. rSQP++ uses a block-elimination

procedure to solve (7.2.14). Givenf first solve for
a(;
) + (r
 � v;) + (f;) = 0; 8 2 H1(
);
then solveXi (Æ(x� xi)(
�
�)) + a(; �) + (r � v; �) = 0; 8 2 H1(
)
for �; and finally solve �(; f) + (; �) = 0; 8 2 H1(
):
to updatef . The block-elimination has been used as a preconditioner for (7.2.14). Here we

solve the resulting KKT conditions simultaneously:264 W

 W
f AT
Wf
 Wff ATfA
 Af 0 3758><>:
f� 9>=>; = �8><>: g
 +AT
 �gf +ATf �
 9>=>; : (7.2.15)

7.2.3 Numerical Experiments

Various experiments were conducted using this full space formulation including the eval-

uation of regularization terms, number of sensors, and number of sources. Both the total

202

variation and Tikhonov regularization were evaluated and for our source selections both

were able to recover the original source at similar levels of quality. The total variation reg-

ularization however, makes the objective function nonlinear which then requires a Newton

method. Because the Tikhonov regularization term makes the objective function linear and

thereby requiring no Newton iterations, we used Tikhonov for all of our experiments.

The full space (level 6) method is the most efficient in comparison to levels 0 to 5.

Even though we do not have a consistent comparison and if we could generate a boundary

inversion problem using full space methods, it would most likely not be as numerically

taxing as the full domain inversion problem. The full domain inversion problem converged

under 10 seconds whereas level 2, 3, 4, and 5 for the boundary inversion problem for the

same size grid (but with smaller number of inversion parameters) converged in 293, 465,

55, and 26 seconds respectively.

Figures 7.7 and 7.8 show results for using different number of sensors.

−4

−2

0

2

4

−4

−2

0

2

4
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−4

−2

0

2

4

−4

−2

0

2

4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.7. Signal Inversion, left 4x4 sensors, right 10 x 10 sen-

sors

203

−4

−2

0

2

4

−4

−2

0

2

4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7.8.Signal Inversion, 40x40 sensor

204

Chapter 8

Split, O3D and Hierarchical Control

8.1 Overview

Split is a full-space sequential quadratic programming (SQP) algorithm for general large-

scale nonlinear programming problems. As noted above, SQP methods proceed by forming

at each major step a quadratic programming (QP) approximation to the general problem at

the current iterate. The solution of this QP provides a step to adjust the variables and the

associated Lagrange multipliers. Thus, an important part of any successful SQP algorithm

is a robust QP solver. In this chapter, we concentrate on O3D, our interior-point QP solver

that has many advantages for this particular application. We also briefly describe Split.

Finally, we discuss our approach to formulating certain control problems where there are

multiple objectives, leading to a novel class of hierarchical control problems. Our formula-

tion yields more practical answers than traditional approaches, i.e., our answers tend to be

smoother and more robust.

An important part of our research in SQP methods was the design and development

of software to implement these methods. Both Split and O3D were implemented to be

compatible with Sundance and Trilinos (TSF) and thus be able to take advantage of the

unprecented control of the PDE systems that Sundance provides. Earlier in this project, we

experimented with a Java implementation and the use of “proxy vectors.” Although these

experiments did not work as hoped, we report on this work and the conclusions that we can

205

draw from them.

8.2 O3D

Although quadratic programs arise in independent applications, the primary emphasis in

this report is their appearance as a step generator for the solution of general nonlinear pro-

gramming problems. In this context, there exist numerous features of an algorithm for

solving quadratic programs that would be particularly useful, but would not necessarily be

of value in a stand-alone solver. This statement is especially true in the large scale case

where procedures that approximate the solution can lead to substantial efficiencies. Here,

we examine the issues of (approximately) solving large scale quadratic programming prob-

lems in the context of the sequential quadratic programming (SQP) algorithm for solving

general nonlinear programming problems.

The general nonlinear programming problem can be taken to be of the formminimize f(x)x
subject to: g(x) � 0h(x) = 0 (NLP)

wheref : Rn ! R1, g : Rn ! Rm1 andh : Rn ! Rm2 . At each step of the

SQP algorithm a quadratic programming approximation to(NLP) is constructed and its

solution is used as a step to improve the current iterate. More specifically we construct a

quadratic program of the formminimize
tÆ + 12ÆtQÆÆ
subject to: AÆ + b � 0FÆ + d = 0 (QP)

whereÆ 2 Rn,Q 2 Rn�n, A 2 Rm1�n, b 2 Rm1 , F 2 Rm2�n, andd 2 Rm2 .
Let `(x; �; �) = f(x) + �tg(x) + �th(x)

206

be the Lagrangian of(NLP) with multipliers� 2 Rm1 and� 2 Rm2 . If the current iterate

is xkthen the correspondence between(NLP) and(QP) is as follows:
 = rf(xk)A = rg(xk)b = g(xk)F = rh(xk)d = h(xk)
andQ is a symmetric approximation to the Hessian of the Lagrangian at(xk; �k; �k).

The subproblem(QP) is approximately solved to yield the stepÆk and the next iterate

is calculated by xk+1 = xk + �Æk
where� is the steplength To guarantee convergence� must be chosen carefully. Typically

a merit function is used to guide this choice. A merit function is a scalar-valued function

whose reduction implies progress towards to solution. Thus an important factor in using(QP) as a step generator is to ensure that approximate solutions are such that they are

descent directions on the merit function. (See [26] for a more complete discussion of the

general issues concerning SQP methods.)

There are numerous issues to consider in solving(QP) and the resolution of these

issues depends on whether or not(QP) is to be solved as a stand-alone problem or as a

subproblem. First, for a solution to exist, the constraints must be consistent, i.e., there

must be at least on pointÆ such that all of the constraints are satisfied. If the constraints

of a stand-alone problem are inconsistent, then it suffices for a solver simply to report this

fact back to the user. In the context of SQP, however, it is often the case that subproblems

are inconsistent, so a procedure must be devised to use the subproblem to create a descent

direction for the merit function. Even if the constraints are consistent, there is no guarantee

that a feasible point will be given, so a “phase I” procedure must also be provided.

Another consideration is the nature ofQ. If Q is positive definite, then the solution

of (QP) is unique. Otherwise, multiple local minima may exist and the question arises

of which solution is desired. Furthermore, ifQ is indefinite (or negative definite) and the

207

feasible set is not bounded, then there may exist unbounded solutions. When(QP) is a

subproblem for SQP, it is reasonable to assume that a solution that is too large will not be

of interest since one would expect that(QP) would only be a reasonable approximation

for (NLP) in a relatively small region aboutxk. From a computational point of view, ifQ
is indefinite, then directions of negative curvature may be possible to construct and exploit.

Finally,Qmay be in the form of a quasi-Newton update or a limited memory quasi-Newton

update in which case it will represented as a low rank update of a scaled identity matrix.

A quadratic program solver for a stand-alone problem would probably only return the

solutionx� and the associated multipliers, along with an indication of which of the inequal-

ity constraints are active. This would in turn require procedures to estimate the multipliers

and convergence criteria to halt the iteration. For a subproblem solver, there need to be

additional features to control the solution process. In particular, as noted above, the length

of the step may be important, e.g., in trust-region algorithms, and there it is important to

have reasonable estimates of the multipliers when the solver is terminated since these are

often used in constructing approximations to the Hessian of the Lagrangian. In addition,

several different termination criteria may be needed and, as noted above, a procedure to

produce a descent step on the merit function even if the constraints are inconsistent.

Different SQP algorithms can be constructed that favor certain applications and these

factors influence the choice of underlying quadratic program solvers. For example, appli-

cations with a large number of highly nonlinear inequality constraints should probably be

handled differently from applications with only mildly nonlinear constraints. Similarly, the

algebraic structure of problems with a large number of equality constraints might receive

special consideration. The applications also account for structure in the gradients of the

constraints and in the Hessian of the Lagrangian. In large scale problems, this structure

often needs to be considered carefully both in the formulation of the problem and in the so-

lution techniques. For example, in the control of partial differential equations one can trade

off the size of the problem with the nonlinearity of the problem, i.e., one can sometimes

construct a very large, but mildly nonlinear problem or a smaller, but more nonlinear one.

We are primarily concerned with applications in which there is a large number of non-

linear inequality constraints. First, we briefly discuss some features and properties of QP

solvers that affect their use in the SQP setting. We then describe the interior-point method,

208

O3D, and its properties that show it to be a good candidate for a step generator in an SQP

algorithm. Next, we suggest enhancements ofO3D that improve the performance and ro-

bustness of the basic algorithm. Finally, we discuss its implementation and preliminary

numerical results.

In light of the above discussion of the types of quadratic programming problems that

arise in(NLP) applications, we briefly review here the issues that should be addressed in

designing a QP solver that can be used as a step generator for SQP.

8.2.1 The Constraints

The proper handling of the constraints has a profound effect on many other aspects of the

algorithm. In this discusion, we assume that the constraints are consistent; inconsistent

constraints are discussed under the heading of early termination below.

First, there is certainly no guarantee that an initial feasible point will be given. Thus a

Phase I procedure to compute one must be specified. Typically such a procedure uses a “BigM ” method wherein the feasible region is enlarged to enclose the initial approximation to

the solution and then shrunk to its original size in the course of the subsequent calculations.

If such a method is used, then the size ofM , the initial size of the associated “artificial

variable,” the nature of the enlargement (i.e., should all of the constraints be changed, or

just a few), and the procedure to ensure that the artificial variable is reduced, must be

specified. The issues in terminating the algorithm while still in Phase I are similar to those

in the case of inconsistent constraints and are discussed below.

Although a given initial point may be infeasible, it is possible that it is “close” to the

optimal solution. Such a situation is called a “warm start.” Interior-point methods have

usually not been amenable to taking advantage of warm starts, but significant savings may

be possible if such information could be exploited. We intend to investigate this issue

further.

209

8.2.2 Multiplier Estimates

Estimating the multipliers is a particularly difficult problem for primal methods, i.e., primal-

dual methods would seem to have an obvious advantage. In the case of nonconvex prob-

lems, however, this advantage is not so clear. The issue is to design a method to estimate the

multipliers that gives reasonable approximations when far from the optimal solution, and

does so at reasonable computational cost. Degenerate constraints, a common occurance in

large scale problems, give rise to nonunique multipliers and a lack of strict complimentar-

ity, but degeneracy itself typically does not pose a difficulty for interior-point methods. In

primal methods, estimating the multipliers requires a determination of which constraints

are active at the solution. This is not an easy task. Our approach for this is to use so-called

“Tapia indicators” to estimate the active set, followed by a particulary simple interior-point

method on the dual problem. We have implemented this idea and have recorded some

excellent results on some highly degenerate problems, including problems with equality

constraints where we are guaranteed to have degeneracy.

8.2.3 Early Termination

All of the above considerations are exacerabed by the possibility of early termination of the

algorithm. For the solution to be useful in the SQP setting, it must be such that it leads to a

descent direction on the merit function. It is often easier to show that the optimal solution

has the required descent properties than that an approximate solution does. A major cause

of this is that when far from the optimal solution, the determination of the active set and

the associated multipliers is especially problematic. This is even more difficult in the case

of nonconvex problems. The effect of poor multiplier estimates is to create difficulties in

the SQP algorithm which uses these estimates for calculations involving the Lagrangian.

In order to terminate early, the algorithm must have a set of criteria for testing the

adequacy of the current approximation. Standard convergence criteria may be adequate

for obtaining a highly accurate solution, but may not be particularly good at determining

the adequacy of more remote solutions. For example, poor multiplier estimates may may

cause a good approximate solution to appear to be much poorer. Criteria for termination

may include a simple test to terminate if the length of the solution exceeds a certain length.

210

Such a procedure may allow useful steps in unbounded problems.

8.2.4 Computational Issues

The overriding concern for any QP solver that is to be used as a step generator is that

the it be computationally efficient. Most of the work in solving(QP) using an interior-

point method is in the solution of the underlying linear system of equations. Using direct

factorization methods is quite efficient as long as the linear systems are not too large. If

larger problems are to be solved, then iterative methods must be considered. Issues of how

to precondition these systems and how accurately they must be solved remain to be ad-

dressed. Our implementation using TSF facillitates experimentation with iterative methods

and, more importantly, with preconditioners.

8.2.5 Recentering in O3D

Recentering in O3D is an attempt to prevent the early iterates from staying too close to

the boundary of the feasible region and thus significantly slowing the algorithm. Complete

recentering involves moving the current iterate as far as possible towards the center of the

polytope along the level curve corresponding to the current iterate. Because doing this in

the full space is prohibitively expensive, we had developed a method based on doing the

recentering in a subspace, in the same spirit asO3D itself. Although this procedure had

often reduced the number of iterations modestly in early test problems, it did not appear

to be effective on the problems arising from PDE constraints. The reasons for this are not

entirely clear, and several attempts to improve this procedure were not successful. These

attempts included constructing the subspace to be orthogonal to the 3-dimensional subspace

generated by the mainO3D algorithm and increasing the dimension to four or five.

We finally developed an entirely new approach which has turned out to be much simpler

and much more effective. The main idea is move along the Newton recentering direction

from the fullO3D step until it intersects the level curve corresponding to the current value.

Using this idea has proved to be quite effective. The computational cost to form the step

is a third that of the subspace recentering algorithm and never more than one iteration is

211

needed as compared to an average of five iterations for the old method. In two early tests,

we found unbounded solutions after only a few iterations whereas the old method was still

making slow progress after 1000 iterations. More testing here is necessary to tune the entire

algorithm.

8.2.6 The O3D AlgorithmO3D is a primal method, implying that it only operates in the primal space and does so

by attempting to reduce the objective function. It does this by forming a 3-dimensional

approximation to(QP) that can be easily solved. In particular,O3D generates three in-

dependent directions at the given feasible point. These directions and the feasible point

determine a 3-dimensional affine space. The reduced(QP) is then taken to be the original(QP) restricted to this space. The three-dimensional problem is then solved and the next

(strictly feasible) iterate is taken to be 99% of the distance to the boundary in this direc-

tion or to the minimum of the quadratic in this direction. Convergence is checked and the

procedure repeated as necessary. In discussing the details, we consider only the inequality

constraints in(QP); equalities can be included by writing them as two inequalities.

We assume that an initial strictly feasible pointÆ0 is given and that the algorithm gener-

ates a sequencefÆkg as follows. Letfpi; i = 1; : : : ; 3g be a set of normalized vectors (that

depend onÆk) and set Hk =
kQ+ At(Dk)2A
whereDk is the diagonal matrix whosej th diagonal component isdj = 1=(AÆk + b)j
and
k is a positive scalar. Denoting byPk then� 3 matrix whose columns are thepj we

set ~Æk+1 = Æk +H�1k Pk �:
where� 2 R3. Substituting this value of~Æk+1

into the(QP) we obtain the 3-dimensional

“baby” problem minimize ~
t� + 12� t ~Q��
subject to:~A� +~b � 0 (8.2.1)

212

where ~
 = PkH�1k (
 +QÆk);~b = AÆk + b;~Q = P tkH�1k QH�1k Pk and~A = AH�1k Pk (8.2.2)

The solution procedure for (8.2.1) is discussed below; here we simply assume that a

solution,�k, is at hand. We form the composite directions = H�1k Pk �k and compute the

step length�k according to�k = arg minimize q(Æ + �s)�
and �k = minf�k; :99g:
We now choose the next iterate asÆk+1 = Æk + �ks:

The standard convergence tests are as follows: The algorithm is said to have converged

on the relative objective function criterion ifjq(Æk+1)� q(Æk)j1 + jq(Æk+1)j � �obj (8.2.3)

where�obj is appropriately set, usually around10�8. The algorithm is said to have con-

verged on the relative step criterion ifmaxi � j(Æk+1)i � (Æk)ij1 + j(Æk+1)ij � � �step (8.2.4)

where�step is appropriately set, typically at10�9. Other convergence criteria are used in

conjunction with the procedure to estimate the multipliers as described in the next section.

The key to the effectiveness ofO3D is, of course, the choice of the directions,pi. The

arguments and derivations of the directions used inO3D are the same as those given in

[27] and [35]. The ideas are based on considering the method of centers [58] and deriving

the differential equation that describes the trajectory of the center points for a continuous

213

version of the method of centers. The first direction is therefore the tangent to the trajectory

at the given feasible point (also known as the “dual affine direction”) and is given byp1 = � (AtD2A+Q=
)�1 (
+QÆ) (8.2.5)

where
 is interpreted as the residual on the objective function. For reasons given in [27]

we take
 = �����(
+QÆ)t(
+QÆ)(
+QÆ)t(AtDe) ����� :
The second direction is the so-called “third-order correction” top1 given byp2 = (AtD2A +Q=
)�1 mXk=1 Atk [Akp1℄2rk(Æ)3 ! (8.2.6)

whereAk is thekth row ofA.

The third direction is taken as one of the following. When the current iterate is judged

to be “far” from the solution, the direction is an “update” top1 based on the first constraint

encountered in the directionp1. Let j be the index of this constraint. Thenpu = (AtD2A+Q=
)�1Atj: (8.2.7)

If the current iterate is judged to be “close” to the solution, then the third direction is based

on the Newton recentering direction. This direction consists of a linear combination of the

directionp1 and pr = (AtD2A+Q=
)�1AtDe: (8.2.8)

To complete this description, we need to specify how we decide between the directionspu
andpr. We judge the iterates to be close if both of the above convergence tests are satisfied

with a tolerance of5� 10�3.
Note that all of these directions can be computed by forming only onen � n matrix.

Assume for the moment that this matrix is positive definite, which it will be in the convex

case, i.e., whenQ is positive definite. In this casep1 is always a descent direction for

the objective function and it is easy to show that the objective function is reduced in the

composite direction.

214

The three-dimensional baby problem (8.2.1) is solved by a simple interior-point method.

The point� = 0 is always feasible by construction. Our procedure is to compute the di-

rection corresponding top1 for the baby problem and to use it alone to determine the next

iterate. As above, we use this direction to go 99% of the distance to the boundary or to the

minimum of the objective function in that direction. We use the same convergence criteria

as above and, as a practical matter, limit the number of iterations. Again, the matrix to be

factored in formingp1 may not be positive definite; we discuss this in the next section.

8.2.7 Implementation and Preliminary Results

All of O3D is implemented using C++ using a style that is in conformance with that of

Sundance and Trilinos/TSF. TSF, in particular, provides the ideal framework for the com-

plex vectors and linear operators that are needed byO3D. Therefore, theO3D algorithm

itself can be written in terms of generic operators and vectors with no concern needed for

the underlying complexity.

To be more specific, consider the quadratic program to have only inequality constraints

(if there are equality constraints, they can be written as two sets of inequality constraints)minimize
tÆ + 12ÆtQÆÆ
subject to: AÆ + b � 0: (QP=I)

We takeA andQ to be TSFLinearOperators and
 andb to be TSFVectors, with the only

restrictions being those necessary to maintain consistency of the operations, i.e.,
 andÆ
must be from the same TSFVectorSpace;b must be in the range space ofA; andQ andA
must have the same domain. These are all checked by TSF, thus ensuring at compile time

that everything is consistent. Aside from these consistency requirements, the operators may

have arbitrary complexity. The code to solve the problems can thus be greatly simplified,

since the details of the linear algebra can be hidden in this abstraction. We illustrate some

of this complexity by describing how a rather complicated problem can be assembled.

To clarify the presentation, we us square brackets to indicate a “block” of a matrix. For

example, W = [[W1 W2℄℄
215

represents a block matrix with one block. This block, in turn, is a(1� 2) block matrix. To

construct an objective function, we need a linear operator, sayQorig, and a vector, say
orig.
These are constructed by the user and used to create an O3DObjective. O3DObjective, in

turn, creates theQ matrix and the
 vector thatO3D will use by “wrapping” these in two

levels of blocks as follows: Q = [[Qorig℄℄
and
 = [[
orig℄℄ :
Note that the two levels of blocking will be consistent with how the constraints need to

be constructed to accomodate equality constraints, described next.O3D allows a general

collection of constraint sets to be used where each set consists of a linear operator, sayAorig, and a vector, sayborig. These are passed to construct an instance of O3DConstraint,

which wraps them in a block operator. Note that this allows equality constraints to be

consistent with inequality constaints, i.e., inequality constraints are of the formAe = [Aorig℄
and equality constraints are of the formAi = " Aorig�Aorig # ;
since equalities are written as two inequalities. The finalA matrix is then a block with all

of the sets, i.e., A = 266664 [A1℄[A2℄
...[Ak℄
377775

where there arek sets of constraints. This structure allows some constraints to be con-

structed by Sundance and others to be constructed by other means. This complexity, how-

ever, is never seen directly byO3D. Thus the code to set up a PDE constraint using

Sundance is somewhat complex, but only needs to be done once.

As noted above, the main work in solving a QP usingO3D is the formation and solution

of the linear systems of equations of the form(AtD2A+Q=
) pi = r:
216

Note that forming this operator is not feasible in many large problems, since the fill-in may

lead to a virtually dense matrix. This will certainly be the case in any problem whereQ
is a quasi-Newton approximation. Thus, to solve such systems, we must consider the use

of “matrix-free” iterative methods. This essentially implies that we can form matrix-vector

products, but we cannot get access to individual elements of the matrix. TSF allows the easy

creation of the operator, while not actually forming it. Thus we can use conjugate gradient

or other methods to solve these systems iteratively. Unfortunately, these systems are poorly

conditioned, and become more so as the solution is neared, so that preconditioning becomes

necessary almost immediately. We are continuing to persue strategies to precondition these

systems effectively.

We have, however, been able to solve some example problems that show the effective-

ness of the full-space (SAND) approach on these problems. One example problem is as

follows:

Consider the rectangular reagon
 = [0; �℄ � [0; 1℄ and let� = f(x; 0)j0 � x � �g.
The differential equation is given by4u(x; y) = 0 in
u(x; y) = 0 on�
n�u(x; 0) = k=NXk=1 ak sin(kx)
where we wish to choose the parametersak to force the solution to match a given target as

closely as possible. The particular objective function we choose isf = 12 Z �0 (u(x; :5)� û)2dx
where û = x(� � x):

We were easily able to solve this problem using Sundance to create all of the operators

and vectors on a20� 20 grid. Given the choice of finite element method and usingN = 5
this resulted in a full-space problem of 1686 variables with 3362 constraints.O3D required

only 10 iterations to solve this problem.

217

8.3 Split

Split, an SQP method designed to work withO3D is described in detail in [24]. Its features

include:� It uses an augmented Lagrangian type of merit function.� Any number of iterations ofO3D on the quadratic programming subproblem yields

a descent step on the merit function. ThusO3D and Split are ideally suited for each

other.� A global convergence theory has been developed and published.� An early implementation has been used to solve many interesting problems.� It is flexible, allowing control over the use of perturbations and the rate of approach-

ing feasibility. This is important in some applications where we have observed that

better answers are obtained by delaying the approach to feasibility.� Split does not require monotonic decrease in the merit function.

The main advantage of Split andO3D is that they provide a complementary capability

to rSQP++. Split/O3D is a full-space method that handles problems with a large number

of inequality constraints, but it also allows the use of in-between approaches where some,

but not necessarily all of the state equations are optimization variables.

We have now a prototype implementation of Split in C++ using TSF, implemented with

the same strategy asO3DẆe plan to test this in conjunction withO3D and Sundance soon.

8.4 Other Work

In this section we briefly discuss the implementation ofO3D in Java and our ideas on the

use of proxy vectors. First, we wanted to test the use of Java for implementing a nontrivial

numerical algorithm. We knew that there would probably be a significant performance

218

penalty due to the way in which Java is implemented. To overcome this problem, we

developed the idea of “proxy vectors” and “proxy operators.” The concept is that local

objects used by an optimizer on the front-end machine are proxies for remote objects living

in a PDE code on a back-end machine. The front-end machine communicates with the

back-end machine via sockets. The vector objects on the front-end contain only references

to back-end vector objects; the vector objects on the back-end contain actual vector data,

possibly distributed over many processors. Method invocation on the front-end results in

a message sent to the back-end instructing it to execute the same method using the actual

vectors. The same mechanism can be used for proxy operators. If a new vector or operator

is needed, it is stored on the back-end with a proxy created on the front-end. If the result

of an operation is a scalar, it is retruned to the front-end, but if the result is another vector,

then the result stays on the back-end with only an message that the result was completed

returned. For example, if the front-end machine requests the norm of a vector, that value

will be returned, but if the request is to add two vectors, only a confirmation is returned.

Thus all messages between the two machines are short. See [28] for a more complete

discussion of this work.

We were able to create a working proxy-vector system, but the communication delays

created an unacceptable penalty in the computations. We decided that this approach needed

much more work to be successful, but that the results would probably not be worth the

effort. Part of the effort would be to create an implementation of TSF in Java, and this

does not seem to be a good idea. Thus, we think that there may be a future for proxy linear

algebra, it will most likely be from our current C++ implementations.

8.5 Hierarchical Control

Optimal control problems constitute an interesting case of PDE-based optimization prob-

lems. There is a rich history of work in this area, beginning with the development of the

calculus of variations and work in the control of ordinary differential equations. More re-

cently, researchers have begun to investigate the control of PDEs (see the survey papers

[49] and [50]). Instances of these types of problems abound in applications. Thus the de-

velopment of efficient numerical methods for the solution of these problems has also been

219

the subject of significant recent research.

In this paper we examine a particular instance of optimal control problems where mul-

tiple controls seek to force behavior close to multiple “targets” simultaneously. These

problems belong to the class of problems calledmulticriteria optimization. There is no

unique mathematical formulation of these types of problems; indeed different formulations

can generate completely different “optima” solutions. In one formulation the problem is

posed as the minimization of a weighted sum of the deviations from the targets with the

weights corresponding to an established priority among the targets. (see [68]). Another

formulation, sometimes referred to asgoal programminginsists that a set of preferred tar-

gets be satisfied to within certain tolerances and the others be reduced as much as possible

within these constraints (see [60]). Both of these approaches involve the choice of a set of

weights or tolerances for which there may be little theoretical guidance. In the approach

that is employed in this paper, calledmultilevel optimization,the problem is modelled as

as a set of nested optimization problems in which the solutions of the inner problems are

determined using the variables in the outer problems as parameters (see [120]).

Motivated by specific engineering applications, such as those arising in optimal well

placement in reservoir engineering, we investigate a means of formulating a class of opti-

mal control problems in which the targets can be partitioned into categories of increasing

relative importance. This approach, based on the work of von Stackelberg [121] in an

economic context, requires that the deviations from the least important targets, called the

“follower” targets, be decreased only after the deviations from the most important targets,

called the “leader” targets, satisfy prescribed bounds. This type of optimal control problem

has been termedhierarchical control. One way of formulating this type of problem is in

terms of a nested optimization structure in which, in an “inner minimization”, the follower

targets are minimized subject to fixed values of certain of the control variables and then

an “outer minimization” is performed over the remaining control variables to obtain opti-

mal leader target satisfaction. The resulting accuracy on the follower targets is therefore

determined by and is subordinate to the optimization over the leader targets. This type of

bilevel optimizationproblem has been the object of a great deal of research (see [120] for

an exhaustive bibliography) in finite-dimensional optimization and was given a theoretical

grounding in the work of Lions [70] for PDE-constrained control problems where the state

equations were a linear hyperbolic system. In this paper, we carry out the analysis for a

220

specific parabolic system and obtain preliminary numerical results that we believe illustrate

the promise of this approach.

8.6 Model Formulation

We are concerned with a class of optimal control problems in which there are multiple

goals that are to be satisfied, i.e., a multicriteria control problem, and in which the under-

lying state variables are governed by the parabolic partial differential equation with mixed

boundary conditions:yt �A y = f(x; t) + V (x; t); (x; t) 2 Qy(x; 0) = b0(x); x 2
; (8.6.9)y(x; t) = b1(x; t); (x; t) 2 �1 � (0; T);dyd� (x; t) = b2(x; t); (x; t) 2 �2 � (0; T);
where
 is a bounded open subset ofR2, T > 0 is finite,Q =
 � (0; T) and�1 [�2
is the boundary of
. We assume that the functions in the model are well-behaved, i.e.,f(x; t) 2 L2(0; T ;
); b0(x) 2 L2(
), andbj(x; t) 2 L2(0; T ;
); j = 1; 2. HereA is a

strongly elliptic operator andV (x; t) represents the action of the controls on the system.

In particular, we consider the case in which there arek pointwise controlsv1(t); : : : ; vk(t)
located respectively at the pointsa1(t); : : : ; ak(t) and that for a given choice of the controls,V (x; t) = kXj=1 vj(t) Æ(x� aj(t)):
Our goal is to formulate and solve an optimization problem that results in a selection of

controls, including both time-dependent magnitudes and locations, that force the solution

to the above system at timeT to be “close” to a set of targets,Y1; : : : ; Yk, eachYj 2 L2(
),
while minimizing a cost functionalC(v; a). In addition, a set of restrictions on the location

of the sites,aj(t); j = 1; : : : ; k, are possible.

Obviously, it is generally impossible to force all of the targets to be satisfied to within

some preassigned tolerance (in fact, it is not always possible to satisfy one target exactly).

221

To formulate an optimization problem that can be solved, some priority must be established

among the set of targets. A variety of methods have been proposed for carrying out this

task. One such formulation is obtained by assigning a set of weights to the targets and

minimizing the weighted sum of deviations from the targets. This problem can be expressed

in the formminimize C(v; a) +Pkj=1
j2 R
 (y(x; T)� Yj(x))2 dxsubje
t to : yt �A y = f(x; t) + V (x; t); (x; t) 2 Qy(x; 0) = b0(x); x 2
 (SD)y(x; t) = b1(x; t); (x; t) 2 �1 � (0; T)dyd� (x; t) = b2(x; t); (x; t) 2 �2 � (0; T);
where the
j are the respective weights associated with the different targets. A second

approach is to assign acceptable deviations of the state variable from each of the targets

and express these tolerances as constraints in the optimization problem. In this case the

problem becomesminimize C(v; a)subje
t to : yt �A y = f(x; t) + V (x; t); (x; t) 2 Qy(x; 0) = b0(x); x 2
y(x; t) = b1(x; t); (x; t) 2 �1 � (0; T)dyd� (x; t) = b2(x; t); (x; t) 2 �2 � (0; T)R
 (y(x; T)� Yj(x))2 dx � �j; j = 1; : : : ; k:
In these formulations, additional constraints on the controls could be included. Each of

these formulations has certain drawbacks; in the first case a choice of weights is necessary

without anya priori indication of how this choice will affect the solution; in the latter case

it is difficult to specify the small tolerances in such a way as to avoid infeasibilities.

In this paper we follow the work of von Stackelberg (see [121]) and Lions (see [70])

and formulate the problem as ahierarchical controlproblem. This means that we prioritize

the goals, i.e., specify a hierarchy of targets. The leading target is taken to be the one of the

highest priority and the overriding task of the control problem is to have the state variable

approximate this target as accurately as possible att = T . Given this highest priority, the

deviation from the target of next highest priority is minimized subject to the satisfaction of

222

this primary goal. Then the deviation from the target of the third highest priority is mini-

mized subject to the condition that the higher targets are satisfactorily approximated, and

so on. This hierarchical structure requires a partition of the controls and control locations

into corresponding hierarchies. In some problems there may be a natural correspondence

but in other cases some flexibility in choosing the controls is available.

For this preliminary study we presume that there is a single leader target, denotedYL(x),
and a single target of lower priority called the follower target and denotedYF (x). We also

assume that there are two controls that we arbitrarily partition into leader and follower

controls,(vL(t); aL(t)) and (vF (t); aF (t)), respectively. Additional follower targets and

controls can be added without fundamentally affecting the nature of the model. The control

problem we consider is the nested optimization problem, denoted by (OP):minaL;aF C(v; a)subje
t to :
(IP2)

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
minvL C(v; a)subje
t to :

(IP1) 8>>>>>>>><>>>>>>>>:
minvF ;y C(v; a) +
F2 R
 (y(x; T)� YF (x))2 dxsubje
t to :yt �A y = f(x; t) + V (x; t); (x; t) 2 Qy(x; 0) = b0(x); x 2
y(x; t) = b1(x; t); (x; t) 2 �1 � (0; T);dyd� (x; t) = b2(x; t); (x; t) 2 �2 � (0; T);R
 (y(x; T)� YL(x))2 dx � �g(a) � 0

where
F and� are fixed positive constants,C(v; a) represents a general convex cost func-

tion depending on the controls, and the last inequalities involvingg : R4 ! Rm represent

constraints on the locations of the controls. These inequalities may be nonlinear and non-

convex; for example,aL(t) andaF (t) might be constrained to be a certain minimal distance

apart.

223

This problem is interpreted in the following manner. The control variablesaL; aF ,

and vL are held fixed and the inner problem (IP1) is solved to determine the optimal

choices forvF andy, thus theoretically determining optimality functionsv�F (aL; aF ; vL)
andy�(aL; aF ; vL). It is well known that the problem (IP1) has a unique solution for fixedaL; aF ; andvL. Next, these optimality functions are substituted into the objective function

and the target constraint for the second inner problem, (IP2). Then this problem is solved

with aL andaF held fixed determining another optimality functionv�L(aL; aF). Finally, the

outer problem, (OP), now having the formminaL;aF C(v�L(aL; aF); v�F (aL; aF); v�L(aL; aF); aL; aF)subje
t to : g(aL; aF) � 0;
is solved. Note that the cost function can be thought of as a regularization term in the inner

problems, i.e., a term that is used to guarantee the existence of a solution. However, it

also has a role as a general objective function to be minimized to the extent possible. In

this model, we have optimized the variables (aL; aF) outside the optimization with respect

to the other control variables and the state variables in order to facilitate the solution of

the problem. As noted above, in applications the constraints on these variables can be

nonlinear and nonconvex and if included in the inner optimization problems would make

these problems difficult to solve and negate the advantages of the hierarchical structure.

The theory underlying the hierarchical control problem defined by the pair of problems

(IP1) and (IP2) has been studied by Lions [70], albeit for a different underlying PDE and

with boundary controls. Lions shows that a solution existsfor every positive� although in

general the target cannot be met exactly (� = 0); i.e., the problem is approximately con-

trollable (see also Glowinski and Lions [49, 50]). These existence proofs for the solutions

to the inner pair of optimization problems given by Lions are not constructive and hence

provide no blueprint as to how to obtain numerical solutions. One natural approach is to use

a variational method to obtain the optimality conditions for the innermost problem (IP1)

and use these equations as constraints when solving (IP2). In the following we establish

the optimality conditions for solving (IP1) and then discuss how to approach (IP2).

In order to simplify the notation and make the development more transparent we assume

that C(v; a) = 12 Z T0 (v2L(t) + v2F (t)) dt;
224

thatA is the Laplacian operator�, and that the boundary conditions are of the Dirichlet

type. Extensions to more general parabolic systems are straightforward in concept (but

may require significantly more effort to obtain numerical solutions). Thus our PDE has the

form yt �� y = f(x; t) + vL(t) Æ(x� aL(t)) + vF (t) Æ(x� aF (t)); (x; t) 2 Q(8.6.10)y(x; 0) = b0(x); x 2
; (8.6.11)y(x; t) = b1(x; t); (x; t) 2 �� (0; T); (8.6.12)

where� is the boundary of
.

Proposition 1. Let aL; aF , andvL be fixed. IfvF andy are optimal for (IP1) then there

exists a dual functionp(x; t) 2 L2(0; T ;
) satisfying the PDEpt +�p = 0; (x; t) 2 Q (8.6.13)p(x; T) = �
F (y(x; T)� YF (x)); x 2
; (8.6.14)p(x; t) = 0; (x; t) 2 �� (0; T); (8.6.15)

andvF is given by vF (t) = p(aF (t); t): (8.6.16)

Proof: If vF and y are optimal for (IP1) then the variational equality for the objective

function isZ T0 vF (t) v̂F (t) dt+
F Z
(y(x; T)� yF (x)) ẑ(x; T) dx = 0 (8.6.17)

for all admissiblev̂F 2 L2(0; T) and ẑ 2 L2(0; T ;
). v̂F and ẑ are admissible if they

satisfyẑt �� ẑ = v̂F (t) Æ(x� aF (t)); (x; t) 2 Q; (8.6.18)ẑ(x; 0) = 0; x 2
: (8.6.19)ẑ(x; t) = 0; (x; t) 2 �� (0; T): (8.6.20)

225

Multiplying (8.6.18) byp(x; t), integrating overQ, and applying Green’s theorem givesZQ(pt +�p) ẑ(t) dx dt + Z
(p(x; T) ẑ(x; T)� p(x; 0) ẑ(x; 0)) dx+ Z��(0;T)(p(x; t) dẑd� (x; t)� dpd� (x; t) ẑ(x; t)) dx dt(8.6.21)= ZQ v̂F (t) Æ(x� aF (t)) p(x; t) dx dt
where dd� represents the normal derivative. Using (8.6.13)–(8.6.15), and (8.6.18)–(8.6.20)

this equation becomes�
F Z
(y(x; T)� YF (x)) ẑ(x; T) dx = Z T0 v̂F (t) p(aF (t); t) dt: (8.6.22)

Equation (8.6.16) follows immediately from this last equation and the Euler equation,

(8.6.17).

Using these necessary conditions, the second inner problem (IP2) can now be writtenminvL;y;p R T0 (v2L(t) + p(aF (t); t)2) dtsubje
t to : yt �� y = f(x; t) + vL(t) Æ(x� aL(t))+ p(x; t)) Æ(x� aF (t)); (x; t) 2 Qy(x; 0) = b0(x); x 2
;y(x; t) = b1(x; t); (x; t) 2 �� (0; T);pt +�p = 0; (x; t) 2 Q;p(x; T) = �
F (y(x; T)� YF (x)); x 2
;p(x; t) = 0; (x; t) 2 �� (0; T);R
 (y(x; T)� YL(x))2 dx � �;
with aL andaF fixed.

At this stage there are several possible approaches. One approach would be to in-

corporate the control variablesa(t) directly into the problem (so in effect (IP2) becomes

(OP)) and solve the resulting problem. However, this approach severely restricts the nu-

merical methods that we can apply since the state variable occurs in a nonlinear inequality

226

constraint. For example, a reduced variable approach could not be employed. Another

approach would be to obtain the optimality conditions for this problem (as was done for

(IP1)) and then use these conditions in the formulation of the outer problem. If we take

this approach then we are forced to include complementary slackness conditions as part of

the necessary conditions which is an added nonlinear difficulty. Both of these methods also

suffer from the fact that ana priori choice of� is required.

As a result of these complications, we have chosen, following Glowinski and Lions (see

[49]) to include the leader target goal as a penalty term in the objective function. That is,

we reformulate (IP2) asminvL;y;p R T0 (v2L(t) + p(aF (t); t)2 dt+
L2 R
 (y(x; T)� YL(x))2 dxsubje
t to : yt �� y = f(x; t) + vL(t) Æ(x� aL(t)) + p(x; t)) Æ(x� aF (t)); (x; t) 2 Qy(x; 0) = b0(x); x 2
;y(x; t) = b1(x; t); (x; t) 2 �� (0; T); (IP3)pt +�p = 0; (x; t) 2 Q;p(x; T) = �aF (y(x; T)� YF (x)); x 2
;p(x; t) = 0; (x; t) 2 �� (0; T);
where
L is a specified constant. By choosing
L sufficiently large we can, in theory, force

the deviation from the leader target to be less than� although such a solution will not, in

general, be the solution to the original problem (IP2).

We now derive the optimality conditions for this reformulated problem.

Proposition 2. Let aL andaF be fixed. IfvL, y, andp are optimal for the problem (IP3)

given above, then there exist functionsP (x; t) andY (x; t) in L2(0; T;
) satisfyingYt +�Y = 0; (x; t) 2 Q (8.6.23)Y (x; T) = �
F P (x; T)�
L (y(x; T)� YL(x)); x 2
; (8.6.24)Y (x; t) = 0; (x; t) 2 �� (0; T); (8.6.25)Pt ��P = �Æ(x� aF) (p(x; t)� Y (x; t)); (x; t) 2 Q (8.6.26)P (x; 0) = 0; x 2
; (8.6.27)P (x; t) = 0; (x; t) 2 �� (0; T); (8.6.28)

227

andvL is given by vL(t) = Y (aL(t); t); t 2 (0; T): (8.6.29)

Proof: If vL, y, andp are optimal for (IP3) then the variational equationZ T0 (vL(t) v̂L(t) + p(aF (t); t) p̂(aF (t); t)) dt+
F Z
(y(x; T)� YL(x)) ẑ(x; T) dx = 0
(8.6.30)

must be satisfied for every admissible (v̂L; ẑ; p̂), i.e., for every (̂vL; ẑ; p̂) satisfyingẑt ��ẑ = v̂L Æ(x� aL(t)) + p̂(x; t) Æ(x� aF (t)); (x; t) 2 Q; (8.6.31)ẑ(x; 0) = 0; x 2
; (8.6.32)ẑ(x; t) = 0; (x; t) 2 �� (0; T); (8.6.33)p̂t +�p̂ = 0; (x; t) 2 Q; (8.6.34)p̂(x; T) = �
F ẑ(x; T); x 2
; (8.6.35)p̂(x; t) = 0; (x; t) 2 �� (0; T): (8.6.36)

Now multiplying (8.6.31) byY (x; t) and (8.6.34) byP (x; t), integrating overQ, and again

applying Green’s theorem, we obtainZQ (Yt +�Y) ẑ(x; t) dx dt + Z
 (Y (x; T) ẑ(x; T)� Y (x; 0) ẑ(x; 0)) dx+ Z��(0;T) (Y (x; t) dẑd� (x; t)� dYd� (x; t) ẑ(x; t)) dx dt (8.6.37)= ZQ (v̂L(x; t) Æ(x� aL(t)) + p̂(aF (t); t) Æ(x� aF (t))Y (x; t) dx dt
and ZQ (Pt ��P) p̂(x; t) dx dt + Z
 (P (x; T) p̂(x; T)� P (x; 0) p̂(x; 0)) dx+ Z��(0;T) (P (x; t) dp̂d� (x; t)� dPd� (x; t) p̂(x; t)) dx dt(8.6.38)= 0

228

Using the various PDE’s and boundary conditions for the functions in (8.6.37) and (8.6.38)

we arrive at�
F Z
 P (x; T) ẑ(x; T) dx �
L Z
(y(x; T)� YL(x)) ẑ(x; T) dx= Z T0 (v̂L(t)Y (aL(t); t) + p̂(aF (t); t)Y (aF (t); t)) dt:(8.6.39)

and� Z T0 (p(aF (t); t)� Y (aF (t); t)) p̂(aF (t); t) dt+ Z
 P (x; T) p̂(x; T) dx = 0: (8.6.40)

Using (8.6.35) and rerranging the terms in (8.6.40) yields
F Z
 P (x; T) ẑ(x; T) dx = Z T0 p̂(aF (t); t) (p(aF (t); t)� Y (aF (t); t)) dt: (8.6.41)

Substituting this last equation into (8.6.39) yields the variational equation (8.6.30).

With this derivation the formulated optimization problem (OP) becomesminaL;aF 12 R T0 (p(aF (t); t)2 + Y (aL(t); t)2) dt+
L2 R
 (y(x; T)� YL(x))2 dxsubje
t to : equations (8:6:10)� (8:6:15)equations (8:6:23)� (8:6:29)g(a) � 0:
(8.6.42)

Several additional comments need to be made concerning this formulation. First, the

relative sizes of the constants
L and
F affect how accurately the different targets can

be approximated. In order to approximate the leader target as accurately as possible,
L
must be made large. However, the effect of increasing its size is influenced by the size of
F . Thus, as in the first formulation of this section, (SD), with a single objective function

incorporating both targets, the magnitudes of
F and
L required to achieve the desired

target deviations must be determined by experimentation. Our preliminary numerical stud-

ies have suggested that if both targets are in the objective function and both constants are

large, then there can be difficulties in achieving convergence to the optimal solution. One

229

of the goals of the numerical study described in the next section was to determine how the

effect of differing scales of magnitude on the choice of these leader and follower constants

affected the optimal solutions in the hierarchical formulation. Secondly, it should be em-

phasized that in order to provide useful results the optimal control generated by the model

must be implementable, e.g., wildly oscillating optimal controls are undesireable. Again

our studies to date have indicated that the controls achieved in the hierarchical formulation

are better-behaved than those from (SD) for large values of the parameters. Both of these

conjectures need further testing and, if possible, theoretical grounding.

Finally, it is clear that this formulation of the problem is fundamentally different from

other models. As is well-documented in the finite-dimensional cases of bilevel program-

ming, an optimal solution to a bilevel optimization problem need not be aPareto optimal

solution in the sense of multiobjective optimization (see [120]) and there is no reason to

assume that this is not the case here. Also, the inclusion of the follower control sitesaF
as part of the outer optimization, rather than the inner optimization problem, may seem

inconsistent. In formulating the problem in this manner, we were again motivated by an

effort to make the problem tractable; complicated (and possibly nonconvex) inequality con-

straints in the control locations would seriously degrade the ability to express concisely the

necessary conditions for the inner problem. All of these points speak to the difficulty in

formulating state equations and in solving large scale multicriteria optimization problems.

The results presented here represent an initial effort in this direction.

We conclude this section by observing that hierarchical control might profitably be used

to formulate a multitude of important scientific applications. For example, in the area of

oil reservoir simulation one can formulate optimal well placement problems as hierarchical

control problems where desired well productions might form mandatory (or leader) targets

while revenue or efficiency based goals are a secondary (follower) targets. Problems in

optimal airfoil design can be viewed in a similar way with structural constraints being

posed as leader objectives and vorticity minimizing goals being follower targets. Remote

manipulator systems, like those employed by space-craft, are required to solve optimal

control problems rapidly. In some instances, these systems must accomplish a goal while

maintaining prescribed distances from other pieces of machinery. One could formulate a

class of hierarchical control in which leader targets include primary objectives and follower

targets maintain minimal separation from sensitive machinery whenever possible.

230

8.7 Numerical Results

In this section we report on some numerical experiments we have run to test some of the

issues raised by the formulation of the hierarchical control problem given in the preced-

ing section (also see [25]). The problem addressed is that of the preceding section with

the domain
 taken to be the unit square with the boundary conditions chosen to be zero.

Moreover, we have assumed that the control sites are not functions oft but constant. We

don’t believe that these simplifications prohibit us from making preliminary assessments

about the prospects for this type of formulation. In any case, we intend to continue experi-

mention.

We had several goals for these preliminary numerical experiments. First we wanted to

determine the possibility of efficiently solving the problem in its hierarchical formulation.

Second, we wanted to determine how sensitive the solutions were to different choices of the

constants
L and
F and to compare these results with those obtained by solving the prob-

lem with a single objective function containing a weighted sum of the target discrepancies.

Finally, we wanted to ascertain if we could solve a problem with nonconvex constraints on

the control locations.

We begin by describing the time discretization. LetNT be the number of time steps

desired, so that�t = TNT . We will denote the estimate ofy at thenth time step byyn wheren = 1 : : : NT . If NX denotes the number of spatial steps in thex1 and in thex2 directions,

the spatial step is denoted byh with h = 1NX . The discrete approximation toy isy(n�t; ih; jh) � yni;j:
We follow the two-step implicit schemefor parabolic problems as outlined in Glowinski

[48]. Accordingly, we define�y�t ((n+ 1)4t) � 12�t �3yn+1i;j � 4yni;j + yn�1i;j � :
Experience with this time discretization has led us to use it on stiff problems when we need

to integrate to large values ofT . In such cases, the fact that it assures unconditional stability

and produces an accuracy to second order in time amply justifies the storage costs.

At each time step we must solve an elliptic problem to obtainyn+1i;j . The domain is so

simple that we use the very common finite-element triangulation of
 consisting of bisected

231

squares. The space of polynomials of degree� 1 is used to form a finite dimensional ap-

proximation toL2(
) andH1(
). More sophisticated schemes are certainly available for

both linear and nonlinear parabolic equations. However, for testing optimization formu-

lations of the control problem here, this simple numerical scheme is both adequate and

appropriate. For specific applications, more specialized or hybrid discretizations may be

called for (see for example [66]).

Two target states,yL(x) andyF (x), are used to test the performance of the formulation

of the control problem from section 3. While a myriad of test shapes are possible, we

choose one specific pair of test shapes that illustrates behavior seen in most of our numerical

experiments. The leader target shape is a smooth function with a peak of approximately

1.3 at the pointx1 = 1=3; x2 = 1=2 and the follower is a pyramid with a peak of unity at

the pointx1 = 910 ; x2 = 12 (see Figures 8.1 and 8.2). Specifically, the target functions are

Figure 8.1. The leader target Figure 8.2.The follower targetyL(x) = 35x1x2(1� x2)(1� x1)2;yF (x) = 2minf5x1 � 4; 3� 5x2; 5� 5x1; 5x2 � 2g : (8.7.43)

These test problems are similar to those used to study hierarchical control with stationary

controls ([13]).

As constraints on the control locations, we required that the parametersaL andaF be

constrained to be contained inside disjoint balls. The leader location,aL is constrained

to lie within the circle centered at(14 ; 12) where the follower location is constrained to lie

232

within the circle centered at(34 ; 12). Both constraints have radius0:15 so that the two circles

do not intersect (see Figure 8.7).

 Leader
Control

Follower
Control

Spatial Domain

Figure 8.3. Geometric constraints separating the controls

The optimization problem that arose from our formulation was solved using a sequential

quadratic programming (SQP) algorithm. The specifics of the algorithm are contained in

[24] and a theoretical analysis that can be found in [23].

The numerical results are summarized in Table 8.1 together with Figures 8.4–8.9. The

first two columns of of Table 8.1 give the problem size. The values of
L and
F are given

in the third column. The next two columns give the relative discrepancy between state

variables and targets in theL2 norm. The final two columns of the table report on the norm

of the controls.

Our problem formulation worked well with our numerical optimization algorithm. In

numerical results not presented here we were able to solve problems with values of
 as

large as1:e16 and values approaching machine precision. Here we concentrate on the

results for more reasonable values of
. In Figures 8.4, 8.6 and 8.8 the dotted and dashed

profiles respectively denote leader and follower target profiles along the linex2 = 12 . The

233

NX NT (
F ;
L) kyF � ykL2=kyFkL2 kyL � ykL2=kyLkL2 kvFk kvLk
64 32 (1.e+3,1.e+3) 2.395302 0.4873116 25.774 3.4065

64 32 (1.e+6,1.e+3) 2.181885 0.4978943 151.05 28.420

64 32 (1.e+3,1.e+6) 2.415231 0.2635630 34.279 448.49

128 32 (1.e+3,1.e+3) 2.371236 0.4732074 28.195 3.5591

128 32 (1.e+6,1.e+3) 2.200413 0.5009123 155.89 29.093

128 32 (1.e+3,1.e+6) 2.418927 0.2701232 34.861 449.12

Table 8.1.Numerical Performance Summary

solid lines are the state variabley at terminal timeT = 1 also along the linex2 = 12 .

Clearly both the leader and follower targets were approximately attained. In Figures 8.5,

8.7 and 8.9 the leader and follower controls,vL(t) andvF (t) are shown fort 2 (0; 1℄, by

solid and dashed lines respectively. In Figure 8.5 the total variations in the two controls

are comparable while in Figure 8.9 the value of
F is large enough, when compared with
L, that the effect of the leader control is greatly diminished. In fact the follower control

oscillated so violently that it eclipsed the behavior of the leader control. Finally, it is worth

noting that for the numerical examples presented here, the optimal location of both controls

was inside the constraint circles.

Our numerical experience illustrated that the difficulty of the SQP algorithm in solving

the hierarchical problem tested here increased with the values of the penalty parameters
L and
F . This fact is not surprising in light of the fact that similar behavior has been

observed for the case of hierarchical control of Burgers’ Equation ([65]).

8.8 Future Research

The freedom to specify multiple targets is extremely important for many practical prob-

lems. The high cost of solving multicriteria optimization problems suggests that there

may be instances where hierarchical control problem formulations could yield a computa-

tional advantage in an affordable way. We plan to investigate the use of this formulation

234

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

Figure 8.4. The state variables restricted to the linex2 = 12 with
L =
F = 1:e + 3
0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

15

t

Figure 8.5. The control variables with
L =
F = 1:e+ 3
technique to attack more complicated physical phenomena, including those modeled by

nonlinear equations. We anticipate the ideas will be fruitful when formulating problems of

optimal well placement, contaminant transport, and bioremediation among others.

235

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

Figure 8.6. The state variables restricted to the linex2 = 12 with
L = 1:e + 6 and
F = 1:e+ 3
0 0.2 0.4 0.6 0.8 1

−80

−60

−40

−20

0

20

40

60

80

100

t

Figure 8.7. The control variables with
L = 1:e + 6 and
F =1:e+ 3

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

Figure 8.8. The state variables restricted to the linex2 = 12 with
L = 1:e + 3 and
F = 1:e+ 6
0 0.2 0.4 0.6 0.8 1

−400

−300

−200

−100

0

100

200

300

t

Figure 8.9. The control variables with
L = 1:e + 3 and
F =1:e+ 6
236

Bibliography

[1] Space station external contamination control requirements. Technical report,

NASA/JSC 30426, 1986.

[2] E.M. Cliff A. Shenoy, M. Heinkenschloss. Airfoil design by an all-at-once method.

Technical Report 97-15, CAAM Rice University, Department of Computational and

Applied Mathematics, 1997.

[3] V. Akcelik, G. Biros, and O. Ghattas. Parallel multiscale gauss-newton-krylov meth-

ods for inverse wave propagation. InProceedings of the IEEE/ACM SC2002 Con-

ference, Baltimore. IEEE/ACM, 2002.

[4] F. Alexander and G. Garcia. The direct simulation monte carlo method.Computers

in Physics, (11):588, 1997.

[5] W. K. Anderson and D. L. Bonhaus. Aerodynamic design on unstructured grids for

turbulent flows. Technical Report TM 112867, Langley Research Center, Hampton,

Virginia, 1997.

[6] W. K. Anderson and V. Venkatakrishnan. Aerodynamic de-sign optimization on

unstructured grids with a continuous adjoint formulation. In97-0643. AIAA, 1997.

[7] E. Arian and Salas M.D. Admitting the inadmissible: Adjoint formulation for in-

complete cost functionals in aerodynamic optimization. Technical Report 97-69,

ICASE, NASA Langley, 1997.

[8] E. Arian and V. N. Vatsa. A preconditioning method for shape optimization governed

by the euler equations. Technical Report 98-14, ICASE, NASA Langley, 1998.

237

[9] S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc 2.0.

http://www.mcs.anl.gov/petsc.

[10] R. A. Bartlett.Object Oriented Approaches to Large Scale NonLinear Programming

For Process Systems Engineering. Ph.D Thesis, Chemical Engineering Department,

Carnegi Mellon University, Pittsburgh, 2001.

[11] R. A. Bartlett, L. T. Biegler, J. Backstrom, and V. Gopal. Quadratic programming

algorithms for larg-scale model predictive controls.J. Process Control, 12:775–795,

2002.

[12] A. Battermann and M. Heinkenschloss. Preconditioners for karush-kuhn-tucker ma-

trices arising in the optimal control of distributed systems. InOptimal Control of

Partial Differential Equations, Vorau 1997, Birkhuser Verlag, Basel, Boston, Berlin,

pages 15–32, 1998.

[13] M. Berggren.Control and Simulation of Advection–Diffusion Problems. Ph.D The-

sis, Computational and Applied Mathematics, Rice University, Houston, Tx., 1995.

[14] M. Berggren. Nunmerical solution of a flow-control problem: Vorticity reduction by

dynamical boundary action.SIAM Jounrnal Scientific Computing, (Vol 19, No. 3 pp

829-860), 1998.

[15] L. T. Biegler, J. Nocedal, and C. Schmid. A reduced hessian method for large-scale

constrained optimization.SIAM J. Opt., 5:314, 1995.

[16] L.T. Biegler, A. Cervantes, and A. Wächter. Advances in simultaineous strategies

for dynamic optimization. Technical Report CAPD Technical Report B-01-01, De-

partment of Chemical Engineering, Carniege Mellon University, 2001.

[17] L.T. Biegler, C. Schmidt, and D. Ternet. A multiplier-free, reduced hessian method

for process optimization. 1996.

[18] G.A. Bird. Molecular Dynamics and the Direct Simulation of Gas Flows. Clarendon,

Oxford, 1994.

[19] G. Biros. Parallel newton-krylov algorithms for pde-constrained optimization.the

SCXY Conference Series, November 1999.

238

[20] G. Biros and O. Ghattas. Parallel preconditioners for KKT systems arising in opti-

mal control of viscous incompressible flows. InProceedings of Parallel CFD ’99,

Williamsburg, VA, May 23–26, 1999, Amsterdam, London, New-York, 1999. North

Holland. to appear,http://www.cs.cmu.edu/�oghattas/.

[21] G. Biros and O. Ghattas. Parallel lagrange-newton-krylov-schur methods for pde-

constrained optimization. part i: The krylov-schur solver. Technical report, Lab-

oratory for Mechanics, Algorithms, and Computing, Carnegie Mellon University,

2000.

[22] G. Biros and O. Ghattas. Parallel lagrange-newton-krylov-schur methods for pde-

constrained optimization. part ii: The lagrange-newton solver, and its application to

optimal control of steady viscous flows. Technical report, Laboratory for Mechanics,

Algorithms, and Computing, Carnegie Mellon University, 2000.

[23] P. T. Boggs, A. J. Kearsley, and J. W. Tolle. A global convergence analysis of an

algorithm for large scale nonlinearly constrained optimization problem.SIAM J.

Optim., 9(4):833–862, 1999.

[24] P. T. Boggs, A. J. Kearsley, and J. W. Tolle. A practical algorithm for general large

scale nonlinear optimization problems.SIAM J. Optim., 9(3):755–778, 1999.

[25] P. T. Boggs, A. J. Kearsley, and J. W. Tolle. Hierarchical control of a linear diffusion

equation.in press, 2002.

[26] P. T. Boggs and J. Tolle. Successive quadratic programming.Acta Numerica, 1996.

[27] Paul T. Boggs, Paul D. Domich, and Janet E. Rogers. An interior-point method

for general large scale quadratic programming problems.Annals of Operations Re-

search, 62:419–437, 1996.

[28] Paul T. Boggs and Kevin R. Long. A software system for pde-constrained optimiza-

tion problems. In G. DiPillo and A. Murli, editors,High Performance Algorithms

and Software for Nonlinear Optimization, page in Press, Dordrecht, 2002. Kluwer

Academic Publishers.

[29] Brooke et al.GAMS Release 2.25, Version 92 Language Guide. GAMS Develop-

ment Corperation, Washington, DC, 1997.

239

[30] E. A. Burroughs, L. A. Romero, R. B. Lehoucq, and A. G. Salinger. Large scale

eigenvalue calculations for computing the stability of buoyancy driven flows.Sandia

Technical Report, SAND2001-0113, 2001.

[31] R. H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-Newton matri-

ces and their use in limited memory methods.Math. Prog., 63:129–156, 1994.

[32] A. Carle, M. Fagan, and L. L. Green. Preliminary results from the application of

automated adjoint code generation to cfl3d. InAIAA-98-4807. AIAA, 1998.

[33] J. Demmel.Applied Numerical Linear Algebra. SIAM, 1997.

[34] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente. Trust-region interior-point sqp

algorithms for a class of nonlinear programming problems.SIAM Journal on Control

and Optimization, (Volume 36 Number 5), 1998.

[35] Paul D. Domich, Paul T. Boggs, Janet E. Rogers, and Christoph Witzgall. Opti-

mizing over three-dimensional subspaces in an interior-point method for linear pro-

gramming.Linear Algebra and its Applications, 152:315–342, July 1991.

[36] D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for the

triangle. International Journal for Numerical Methods in Engineering, 21:1129–

1148, 1985.

[37] M.S. Eldred, A.A. Giunta, B.G. van Bloemen Waanders, S.F. Wojtkiewicz, W.E.

Hart, and M.P. Alleva. Dakota, a multilevel parallel object-oriented framework for

design optimization, parameter estimation, uncertainty quantification, and sensitiv-

ity analysis. version 3.0 users manual. Technical report SAND2001-3796, Sandia

National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California

94550, April 2001.

[38] M.S. Eldred, A.A. Giunta, B.G. van Bloemen Waanders, S.F. Wojtkiewicz, W.E.

Hart, and M.P. Alleva. Dakota, a multilevel parallel object-oriented framework for

design optimization, parameter estimation, uncertainty quantification, and sensitiv-

ity analysis. version 3.0 users manual. Technical report SAND2001-3515, Sandia

National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California

94550, April 2001.

240

[39] M.S. Eldred, A.A. Giunta, B.G. van Bloemen Waanders, S.F. Wojtkiewicz, W.E.

Hart, and M.P. Alleva. Dakota, a multilevel parallel object-oriented framework for

design optimization, parameter estimation, uncertainty quantification, and sensitiv-

ity analysis. version 3.0 users manual. Technical report SAND2001-3515, Sandia

National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California

94550, April 2001.

[40] M.S. Eldred, W.E. Hart, W.J. Bohnhoff, V.J. Romero, S.A. Hutchinson, and A.G.

Salinger. Utilizing object-oriented design to build advanced optimization strategies

with generic implementation.Proceedings of the 6th AIAA/NASA/ISSMO Sympo-

sium on Multidisciplinary Analysis and Optimization, AIAA-96-4164-CP, Bellevue,

WA, pages 1568–1582, 1996.

[41] R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL: A Modeling Language for

Mathematical Porogramming. Scientific Press, 1993.

[42] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements fo

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[43] O. Ghattas and J. Bark. Optimal control of two- and three-dimensional navier-stokes

flows. Journal of Computational Physics, (136):231, 1997.

[44] O. Ghattas and C. Orozco. A parallel reduced hessian sqp method for shape opti-

mization. InMultidisciplinary Design Optimization: State of the Art. SIAM, 1997.

[45] P. Gill, W. Murry, M. Saunders, and M. Wright.User’s Guide for SOL/QPSOL: A

Fortran Package for Quadratic Programming. Systems Optimization Laboratory,

Department of Operations Research, Stanford University, 1983.

[46] P.E. Gill, L.O. Jay, M.W. Leonard, and L.R.and Petzold V. Sharma. An sqp method

for the optimal control of large scale dynamical systems.Jounal Computational

Applied Mathematics, (120 197-213), 2000.

[47] Gill, P., W. Murry and M. Saunders.User’s Guide for QPOPT 1.0: A Fortran Pack-

age for Quadratic Programming. Systems Optimization Laboratory, Department of

Operations Research, Stanford University, 1995.

241

[48] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-

Verlag, New York, 1984.

[49] R. Glowinski and J.L. Lions. Exact and approximate controllability for distributed

parameter systems i.Acta Numerica, pages 269–378, 1994.

[50] R. Glowinski and J.L. Lions. Exact and approximate controllability for distributed

parameter systems ii.Acta Numerica, pages 159–333, 1995.

[51] M. S. Gockenbach and W. W. Symes. The hilbert class library.

http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html.

[52] R.T. Haftka. Simultaneous analysis and design.AIAA Journal, 1985.

[53] B. He, O. Ghattas, and J.F. Antaki. Computational strategies for shape optimiza-

tion of time dependent navier stokes flow. Technical Report CMU-CML-97-102,

Carnegie Mellon University, 1997.

[54] M. Heinkenschloss. Time domain decomposition iterative methods for the solution

of distributed linear quadratic optimal control problems. Technical Report TR00-31,

Rice University, 2000.

[55] M. Heroux. The trilinos project. http://www.cs.sandia.gov/Trilinos/.

[56] M. Heroux, R. Lehoucq, K. Long, and A. Williams. Trilinos solver framework.

http://www.cs.sandia.gov/Trilinos/doc/tsf/doc/html/index.html.

[57] P. D. Hough and T. G. Kolda. Asynchronous parallel pattern search for nonlinear

optimization. Technical report, Sandia National Laboratories, 2000.

[58] P. Huard. Resolution of mathematical programming with nonlinear constraints by

the method of centers. In J. Abadie, editor,Nonlinear Programming, pages 209–219,

Amsterdam, 1967. North-Holland.

[59] T. J. R. Hughes.The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Dover, 2000.

[60] J. P. Ignizio. Goal Programming and Extensions. Lexington Books, Lexington,

Massachusetts, 1976.

242

[61] A. Iollo, G.Kuruvilla, and S. Ta’asan. Pseudo-time method for optimal shape design

using the euler equations. Technical Report 95-59, ICASE, 1995.

[62] A. Jameson. Aerodynamic design via control theory.journal of Scientific Comput-

ing, (3):233, 1988.

[63] Y. Jinyun. Symmetric gaussian quadrature formulae for tetrahendronal regions.

Computer Methods in Applied Mechanics and Engineering, 43:349–353, 1984.

[64] R.D. Joslin, M.D. Gunzburger, R.A. Nicolaides, G. Erlebacher, and M.Y. Hussaini.

A methodology for the automated optimal control of flows including transitional

flows. Technical report, ICASE NASA Langley, 1995.

[65] A. J. Kearsley. The use of optimization techniques in the solution of partial differen-

tial equations from science and engineering. Technical Report & P.h.D. Thesis, Rice

University, Department of Computational & Applied Mathematics, 1996.

[66] A. J. Kearsley, L. C. Cowsar, R. Glowinski, M. F. Wheeler, and I. Yotov. An opti-

mization approach to multiphase flow.Jounal of Optimization Theory and Applica-

tions, 111(3):473–488, 2001.

[67] D.E. Keyes, P.D. Hovland, L.C. McInnes, and W. Samyono. Using automatic dif-

ferentiation for second-order matrix-free methods in pde-constrained optimization.

In Automatic Differentiation of Algorithms: From Simulation to Optimization (G.

Corliss et al., eds.), Springer, pages 35–50, 2000.

[68] J. Koski, H. Eschenauer, and A. Osyczka.Multicriteria Design Optimization.

Springer - Verlag, Berlin, Germany, 1990.

[69] R. B. Lehoucq and A. G. Salinger. Large-scale eigenvalue calculations for stability

analysis of steady flows on massively parallel computers.International Journal for

Numerical Methods in Fluids, 36:309–327, 2001.

[70] J. L. Lions. Hierarchical control.Proceedings of the Indian Academy of Sciences

(Mathematical Sciences), 104(1):295–304, February 1994.

[71] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-

0730, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Liver-

more, California 94550, May 1998.

243

[72] Kevin R. Long. Solving partial differential equations with sundance. Technical

report, Sandia National Laboratories, 2002.

[73] A. Lumsdanie and J. Siek. The matrix template library.

http://www.lsc.nd.edu/research/mtl/, 1998.

[74] J.M. Marotzke, R. Giering, K.Q Zhang, D.Stammer, C. Hill, and T. Lee. Construc-

tion of the adjoint mit ocean general circulation model and application to atlantic

heat transport sensitivity. Technical Report 63, Center for Global Change Science -

MIT, 1999. submitted to Journal of Geophyics.

[75] A. Jameson N.A. Pierce L. Martinelli. Optimum aerodynamics design using the

navier stokes equations. InProceedings of the AIAA-91-0100, 35th Aerospace Sci-

ence Meeting and Exhibition, 1997.

[76] S. Meyers.More Effective C++. Addison-Wesley, 1996.

[77] E.P. Munz. Rarified gas dynamics.Ann. Rev. Fluid Mech., (21):387, 1989.

[78] B.A. Murtagh and M.A. Saunders. MINOS 5.4 user’s guide. Technical Report Re-

port SOL 83-20R, Department of Operations Research, Stanford University, 1995.

[79] S. K. Nadarajah and A. Jameson J. Alonso. An adjoint method for the calculation of

remote sensitivities in supersonic flow. InAIAA-2002-0261. AIAA, 2002.

[80] S. Nash and A. Sofer.Linear and Nonlinear Programming. McGraw Hill, 1996.

[81] G.A. Newman and D.L. Alumbaugh. 3-d electric magnetic inversion using conjugate

gradients. Technical Report SAND97-1296C, Sandia National Laboratories, 1997.

[82] G.A. Newman and D.L. Alumbaugh. Three dimensional massively parallel electro-

magnectic inversion.Geophysics Journal International, (128):345–354, 1997.

[83] P.A. Newman, G.J. WHou, and A.C. Taylor. Observations regarding use of ad-

vanced analysis, sensitivity analysis, and design codes in cfd. Technical Report 96-

16, NASA ICASE, Institute for Computer Applications in Science and Engineering,

1996.

244

[84] J. Nocedal and M. Overton. Projected hessian updating algorithms for nonlinear

constrained optimization.SIAM J. Numer. Anal., 22:821, 1985.

[85] J. Nocedal and S. Wright.Numerical Optimization. Springer, New York, 1999.

[86] C. E. Orozco and O. Ghattas. A reduced sand method for optimal design of nonlinear

structures.International Journal for Numerical Methods in Engineering, 1997. to

appear.

[87] B. Parker. Template composite operators. http://www.gil.com.au/bparker, 1997.

[88] R. P. Pawlowski, C. Theodoropoulos, A. G. Salinger, T. J. Mountziaris, H. K. Moffat,

J. N. Shadid, and E. J. Thrush. Fundamental models of the metalorganic vapor-phase

epitaxy of galluim nitride and their use in reactor design.Journal of Crystal Growth,

221:622–628, 2000.

[89] L. Petzold, J. B. Rosen, P.E. Gill, L.O. Jay, and K. Park. Numerical optimal control

of parabolic pdes using dasopt. InLarge Scale Optimization with Applications, Part

II: Optimal Design and Control Eds L. Biegler T. Coleman A. Conn F Santosa. IAM

Volumes in Mathematics and Its Applications Vol 1997 pp 288-311, 1997.

[90] O. Pironneau. On optimum design in fluid mechanics.Journal of Fluids Mechanics,

(64), 1974.

[91] R. Pozo.LAPACK++ v 1.1: High Performance Linear Algebra User’s Guide. NIST,

1996.

[92] U. Ringertz. Optimal design of nonlinear shell structures. Technical Report TN

91-18, The Aeronautical Research Institute of Sweden, 1991.

[93] U. Ringertz. An algorithm for optimization of nonlinear shell structures.Interna-

tional Journal for Numerical Methods in Engineering, (38):299–314, 1995.

[94] J. Sobieszczanski-Sobieski R.J. Balling. Optimization of couple systems: A critical

overview of approaches. Technical Report 94-100, NASA ICASE Tech. Rep 94-100,

Institute for Computer Applications in Science and Engineering, 1994.

[95] S. Roberts et al. Meschach++: Matrix computations in c++.

http://www.netlib.org/c/meschach/, 1996.

245

[96] G. Booch J. Rumbaugh and I. Jacobson.The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

[97] J. Rumbaugh et al.Object-Oriented Modeling and Design. Prentice Hall, Englewood

Cliffs, New Jersey, 1991.

[98] Y. Saad.Iterative Methods for Sparse Linear Systems. PWS, Boston, MA, 1996.

[99] A. G. Salinger, N.M. Bou-Rabee, E.A. Burroughs, R.B. Lehoucq, R.P. Pawlowski,

L.A. Romero, and E.D. Wilkes. LOCA: A library of continuation algorithms -

Theroy manual and user’s guide. Technical report, Sandia National Laboratories,

Albuquerque, New Mexico 87185, 2002. SAND2002-0396.

[100] A. G. Salinger, K. D. Devine, G. L. Hennigan, H. K. Moffat, S. A. Hutchinson,

and J. N. Shadid. MPSalsa: A finite element computer program for reacting flow

problems - part II user’s guide. Technical report, Sandia National Laboratories,

Albuquerque, New Mexico 87185, 1996. SAND96-2331.

[101] A. G. Salinger, J. N. Shadid, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and

H. K. Moffat. Analysis of gallium arsenide deposition in a horizontal chemical

vapor deposition reactor using massively parallel computations.Journal of Crystal

Growth, 203:516–533, 1999.

[102] A.G. Salinger, R.B. Lehoucq, and L.A Romero. Stability analysis of large-scale

incompressible flow calculations on massively parallel computers.CFD Journal,

9(1):529–533, 2001.

[103] Sandia National Labs. ESI: Equation Solver Interface.

http://z.ca.sandia.gove/esi , 2001.

[104] C. Schmid.Reduced Hessian Successive Quadratic Programming for Large-Scale

Process Optimization. PhD thesis, Department of Chemical Engineering, Carnegie

Mellon University, Pittsburgh, PA, 1994.

[105] C. Schmid and L. T. Biegler. Acceleration of reduced-hessian methods for large-

scale nonlinear programming.Comp. Chem. Eng., 17:451, 1993.

246

[106] C. Schmid and L. T. Biegler. Quadratic programming methods for reduced hessian

sqp.Comp. Chem. Eng., 18:817, 1994.

[107] R.M. Sega and A. Igntiev. A space utlra-vacuum experiment - application to material

processing. InProceedings of the AIAA/IKI Microgravity Science Symposium, 1991.

[108] J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and

A. G. Salinger. MPSalsa: A finite element computer program for reacting flow

problems - Part I theoretical development. Technical report, Sandia National Labo-

ratories, Albuquerque, New Mexico 87185, 1996. SAND95-2752.

[109] J.N. Shadid. A fully-coupled Newton-Krylov solution method for parallel unstruc-

tured finite element fluid flow, heat and mass transport.IJCFD, 12:199–211, 1999.

[110] Standish, T.A.Data Structures, Algorithms & Software Principles in C. Addison-

Wesley, 1994.

[111] J.R. Stewart and H.C. Edwards. The sierra framework for developing advanced

parallel mechanics applications. InSpringer Verlag Lecture Notes.

[112] B. Stroustrup. The C++ Programming Language, 3rd edition. Addison-Wesley,

New York, 1997.

[113] Sun Microsystems. Java: The pure object oriented language for the web.

http://java.sun.com .

[114] S. Tasan. One shot methods for optimal control of distributed parameter systems i:

Finite dimensional control. Technical Report 91-2, ICASE NASA Langley, 1991.

[115] D. Ternet and L.T. Biegler.New Approaches to a Reduced Hessian Successive

Quadratic Programming Method for Large-Scale Process Optimization. PhD thesis,

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA,

1998.

[116] I. B. Tjoa and L. T. Biegler. A reduced successive quadratic programming strategy

for errors-in-variables estimation.Comp. Chem. Eng., 16:523, 1992.

[117] Vanderbi, R.J. . An Interior Point code for Quadratic Programming. Technical

Report SOR 94-15, Princeton Univeristy, 1994.

247

[118] Varvarezos, D.K, L.T. Biegler, and I.E. Grossmann. Multiperiod Design Optimiza-

tion with SQP Decomposition.Comp. Chem. Eng., 18:1087, 1994.

[119] Veldhuizen, T. and E. Gannon. Active Libraries: Rethinking the Roles of Compilers

and Libraries. http://oonumerics.org/blitz/papers/, 1998.

[120] L. Vicente and P. Calamai. Bilevel and multilevel programming: A bibliography

review. Journal of Global Optimization, 6:1–16, 1994.

[121] H. von Stackelberg.Marktform und Gleichgewicht. J. Springer, Vienna, 1934.

[122] A. Wachter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization

with Applications in Process Engineering. PhD thesis, Carnegie Mellon University,

2002.

[123] S. Wright. Optimization software packages. Technical Report ANL/MCS-P8xx-

0899, Mathematics and Computer Science Division, Argonne National Laboratory,

1999.

[124] Z.Wang, K.K Droegemeier, L. White, and I.M. Navon. Application of a new adjoint

newton algorithm to the 3-d arps storm scale model using simulated data. 19.

248

A rSQP++ Equation Summary and Nomenclature Guide

This is a summary of the mathematical expressions in an rSQP algorithm and the quan-

tities in the rSQP++ implementation. This guide provides a precise mapping from mathe-

matical quantities to identifier names used in rSQP++.

Standard NLP Formulation

min f(x)
s.t.
(x) = 0xL � x � xU

where: x; xL; xU 2 Xf(x) : X ! IR
(x) : X ! CX 2 IR nC 2 IR m

Lagrangian L(x; �; �L; �U) = f(x) + �T
(x)+(�L)T (xL � x)+(�U)T (x� xU)rxL(x; �; �) = rf(x) +r
(x)�+ �r2xxL(x; �) = r2f(x) + mXj=1 �jr2
j(x)
where: � 2 C� � �U � �L 2 X

249

Full Space QP Subproblem (Relaxed)

min gT d+ 1=2dTWd+M(�)
s.t. AT d+ (1� �)
 = 0xL � xk � d � xU � xk

where: d = xk+1 � xk 2 Xg = rf(xk) 2 XW = r2xxL(xk; �k) 2 XjXM(�) 2 IR ! IRA = r
(xk) 2 XjC
 =
(xk) 2 C

Null-Space DecompositionZ 2 XjZ s.t.(Ad)TZ = 0Y 2 XjY s.t.
h Y Z i

nonsingularR � [(Ad)TY ℄ 2 CdjY nonsingularUz � [(Au)TZ℄ 2 CujZUy � [(Au)TY ℄ 2 CujYd = (1� �)Y py + Zpz
where: pz 2 Z � IR (n�r)py 2 Y � IR r

Quasi-Normal (Range-Space) Subproblempy = �R�1
d 2 Y
Tangential (Null-Space) Subproblem (Relaxed)

min gTqppz + 1=2pTz Bpz +M(�)
s.t. Uzpz + (1� �)u = 0bL � Zpz � (Y py)� � bU

where:gqp � (gr + �w) 2 Zgr � ZT g 2 Zw � ZTWY py 2 Z� 2 IRB � ZTWZ 2 ZjZUz � [(Au)TZ℄ 2 CujZUy � [(Au)TY ℄ 2 CujYu � Uypy +
u 2 Cu
bL � xL � xk � Y py 2 XbU � xU � xk � Y py 2 X

250

Variable-Reduction Null-Space

DecompositionsAT = " (Ad)T(Au)T # = " C NE F #
where: C 2 CdjXD (nonsingular)N 2 CdjXIE 2 CujXDF 2 CujXI

CoordinateZ � " �C�1NI #Y � " I0 #R = CUz = F �EC�1NUy = E
OrthogonalD � �C�1N 2 XDjXIZ � " DI #Y � " I�DT #R = C(I +DDT)Uz = F +EDUy = E � FDT

251

Mathematical Notation Summary and rSQP++ Identifier Mapping

Mathematical rSQP++ Description

Iterationk 2 I+ k Iteration counter for the SQP algorithm

NLPn 2 I+ n Number of unknown variables inxm 2 I+ m Number of equality constraints in
(x)X 2 IRn space x Vector space forxC 2 IRm space c Vector space for
(x)x 2 X x Unknown variablesxL 2 X xl Lower bounds for variablesxU 2 X xu Upper bounds for variablesf(x)jx 2 IR f Objective function value atxg � rf(x) 2 X Gf Gradient of the objective function atx
(x)jx 2 C c General equality constraints evaluated atxA � r
(x)jx 2 XjC Gc Gradient of
(x) evaluated atx,r
 = h r
1 : : : r
m i
Lagrangian� 2 C lambda Lagrange multipliers for the general equality constraints� 2 X nu Lagrange multipliers (sparse) for the variable boundsrxL(xk; �k; �k)2 X GL Gradient of the LagrangianW �r2xxL(xk; �k)2 XjX HL Hessian of the Lagrangian

SQP Stepd 2 X d Full SQP step for the unknown variables,d = (xk+1)+ � xk� 2 IR eta Relaxation variable for QP subproblem

Null-Space Decompositionr 2 I+ r Number decomposed equality constraints in
d[1 : r℄ 2 I2+ con decomp Range for decomposed equalities
d =
(1:r)[r + 1 : m℄ 2 I2+ con undecomp Range for undecomposed equalities
u =
(r+1:m)Cd 2 IRr space c

.sub space(

con decomp)

Vector space for decomposed equalities
d
252

Cu 2 IR (m�r) space c

.sub space(

con undecomp)

Vector space for undecomposed equalities
u
d =
(1:r) 2 Cd c.sub view(

con decomp)

Vector of decomposed equalities
u =
(r+1:m) 2 Cu c.sub view(

con undecomp)

Vector of undecomposed equalitiesZ 2 IR (n�r) Z.space rows() Null space. Accessed from the matrix objectZ.Y 2 IRr Y.space rows() Quasi-Range space. Accessed from the matrix objectY.Z 2 XjZ Z Null-space matrix for(r
d)T ((r
d)TZ = 0)Y 2 XjY Y Quasi-range-space matrix for(r
d)T ([Y Z] nonsingular)R = [(r
d)TY ℄2 CdjY RUz = [(r
u)TZ℄2 CujZ UzUy = [(r
u)TY ℄2 CujY Uypz 2 Z pz Tangential (null-space) stepZpz 2 X Zpz Tangential (null-space) contribution todpy 2 Y py Quasi-normal (quasi-range-space) stepY py 2 X Ypy Quasi-norm (quasi-range-space) contribution todgr = ZTrf 2 Z rGf Reduced gradient of the objective functionZTrL 2 Z rGL Reduced gradient of the Lagrangianw � ZTWY py 2 Z w Reduced QP cross termB � ZTWZ 2 ZjZ rHL Reduced Hessian of the Lagrangian

Reduced QP Subproblemgqp � (gr + �w)2 Z qp grad Gradient for the Reduced QP subproblem� 2 IR zeta QP cross term damping parameter (descent for�(x))
Global Convergence� 2 IR alpha Step length forxk+1 = xk + �d� 2 IR mu Penalty parameter used in the merit function�(x)�(x) : X ! IR merit func nlp Merit function object that computes�(x)�(x)jx 2 IR phi Value of the merit function�(x) atx
Variable Reduction Decomposition[1 : r℄ 2 I2+ var dep Range for dependent variablesxD = x(1:r)

253

[r + 1 : n℄ 2 I2+ var indep Range for independent variablesxI = x(r+1:n)Qx 2 XjX P var Permuation for the variables for current basisQ
 2 CjC P equ Permuation for the constraints for current basisXD 2 IR r space x

.sub space(

var dep)

Vector space for dependent variablesxDXI 2 IR (n�r) space x

.sub space(

var indep)

Vector space for independent variablesxIxD 2 XD x.sub view(

var dep)

Vector of dependent variablesxI 2 XI x.sub view(

var indep)

Vector of independent variablesC � rD
d(xk)T� (AT)(1:r;1:r)2 CdjXD C Nonsingular Jacobian submatrix (basis) for dependent

variablesxD and decomposed constraints
d(x) atxkN � rI
d(xk)T� (AT)(1:r;r+1:n)2 CdjXI N Jacobian submatrix for independent variablesxI and de-

composed constraints
d(x) atxkE � rD
u(xk)T� (AT)(r+1:m;1:r)2 CujXD E Jacobian submatrix for dependent variablesxD and un-

decomposed constraints
u(x) atxkF � rI
u(xk)T� (AT)(r+1:m;r+1:n)2 CujXI F Jacobian submatrix for independent variablesxI and un-

decomposed constraints
u(x) atxk

254

B Installation of rSQP++

The C++ source code for rSQP++, its supporting packages and a few simple examples

are distributed as a single source tree. The build system uses GNU make which is available

on Linux, Unix and even Microsoft Windows (using cygwin). The build system is designed

primarily for development work and therefore not as easy to install as with installation

methods based on GNU automake and autoconf. The distribution comes as a gziped tar file

of the namerSQPpp.tar.gz . To install the core distribution (assuming a Linux/Unix

system), create a base directory and untar the sources. For example, assuming the userid is

joesmith and the tar file is in Joe’s home directory, Joe would perform the following

$ mkdir /home/joesmith/rSQPpp.base

$ cd /home/joesmith/rSQPpp.base

$ tar -xzvf /home/joesmith/rSQPpp.tar.gz

An environment variableRSQPPPBASEDIR should then be set to the base directory

for rSQP++ as follows (assuming thebash shell is being used)

$ export RSQPPP_BASE_DIR=/home/joesmith/rSQPpp.base

This environment variable (as well as a few others) is used extensively by the build

system and the test suite.

The untared source tree should look like the following

$RSQPPP_BASE_DIR/

|

-- rSQPpp/

|

|-- build

|

|-- core

| |

255

| |-- AbstractLinAlgPack

| |

| ...

|

|-- design

|

|-- doc

|

|-- examples

| |

| |-- ExampleNLPBanded

| |

| ...

|

|-- design

|

|-- testing

For detailed up-to-date information on the installation of rSQP++ for various platforms,

see the file

$RSQPPPBASEDIR/rSQPpp/README

The aboveREADMEfile references several other README files that describe the build

system, the Doxygen documentation system, the test suite and other topics. The included

test suite is fairly extensive and is self checking. The test suite should build and run success-

fully before any work with rSQP++ attempted. The test suite is also extensible and allows

an advanced user to easily add new test modules that can be run with a single command.

Once the proper environment variables are setup the Doxygen generated html pages can

be generated. Before the documentation can be generated, the Doxygen configuration files

must be setup. To find out how to do this see the file

$RSQPPPBASEDIR/rSQPpp/doc/README.DOCUMENTATION.

256

After the configuration files are setup the doxygen documentation can be build using

the script

$RSQPPPBASEDIR/rSQPpp/build doc .

For most users, however, building the documentation locally is not necessary as pre-

build documentation can be found at

RSQPPPBASEDOC/html/index.html

whereRSQPPPBASEDOC1 is the URL to the rSQP++ documentation web site.

Although, using Doxygen for your own source code can be very useful in helping to

navigate the code.

The simplest way to get starting in solving a custom NLP using rSQP++ is to add a new

project to the rSQP++ build system. There is a HowTo file that describes the process of

adding a new project to the build system which can be found at

$RSQPPPBASEDIR/rSQPpp/doc/HowTo.NewBuildProject .

Using the rSQP++ build system is optional as it is possible to simply include the proper

Cpp directives in your own build system and then to link to precompiled rSQP++ libraries

but this will be much more involved. Using the rSQP++ build system is much easier.

For simpler use of rSQP++, it is possible to use the solvers through one of the prebuilt

interfaces to modeling environments like AMPL (see ???). See ??? for a description of

some example NLPs for rSQP++.

1RSQPPPBASEDOC = http://dynopt.cheme.cmu.edu/roscoe/rSQPpp/doc

257

258

C Descriptions of Individual rSQP++ Packages

Misc : Heterogeneous Collection of Utilities

Misc is not a package (i.e. C++namespace) at all. Instead, it is just of heterogeneous

collection of general programming utilities that really do not belong to any other higher

level package exclusively. This package is not shown in Figure 4.3 but all of the other

packages depend on components inMisc. Most of these utilities fall into one of two cate-

gories: memory management and options setting.

There are several C++ classes to aid in memory management. Since C++ allows dy-

namic memory allocation, does not have garbage collection, and uses pointers to raw mem-

ory, memory management is one of the more difficult, if not the most difficult, aspect to

using C++. By far, the most important utility class for memory management isMemMng-

Pack::ref count ptr<T> . This is a templated smart reference counted pointer class

modeled afterstd::auto ptr<T> and the ideas in [76]. The careful and consistent use

of objects of this class effectively allow garbage collection in C++. Many other strategies

have been proposed for automatic memory management in C++ but the style used byref-

count ptr<T> is the most flexible in many respects. This class forms the foundation

for all dynamic memory management in rSQP++ and its lower level packages. The devel-

opment of this class has been very significant and has allowed things to be done in rSQP++

that would have been nearly impossible to do otherwise.

While ref count ptr<T> is more than adequate for memory management when all

the peers know at least a base class of the objects to be garbage collected, this is not always

possible (unlike Java [113], C++ does not have a universal base class calledObject from

which all other classes derive). For example, suppose one peer is given a pointer to a row

of a dynamically allocated matrix while another peer is given a pointer to a column of

the same matrix. Also, suppose that for the sake of flexibility, these same peers may be

given pointers to separately allocated vectors to use. In each case, once each of the peers is

finished using the vectors they have been given, it is important that the memory is released

so that a memory leak does not occur. In the latter case, once a peer is finished with a vector,

the separately allocated buffer of memory should be released. This is done independently

259

of the other peer. However, in the former case, the dynamically allocated matrix should not

be released until both of the peers are finished using vectors from this matrix.

So the basic idea here is that a client may be given an object of one type that is de-

pendent on some other dynamically allocated object(s), but does not know how to prop-

erly release memory associated with the object once it has finished using it. To allow

this type of greater flexibility in memory management, the abstract interfaceMemMng-

Pack:: ReleaseResource has been defined. The use of this class is very simple. A

client is given an objecta of known typeA to interact with and a pointerr to a com-

panionReleaseResource object. Once the client is finished using the objecta, it

calls delete r and the overridden virtual destructorr->˜ReleaseResource() is

called on an object that knows what to delete. A single subclass implementation of the

ReleaseResource interface calledReleaseResource ref count ptr has been

implemented using theref count ptr<T> class. When the overridden virtual function

ReleaseResource ref count ptr::˜ReleaseResource ref count ptr()

is called, it calls the destructor on the compositeref count ptr<T> memberptr

which callsdelete on the raw memory to be released. This might seem like much ado

about nothing but these two classes have been sufficient for all the (sometimes complex)

memory management in rSQP++. This important concept was designed late in the devel-

opment of rSQP++ but has allowed the creation of some much more flexible software since

its adoption.

While the classesMemMngPack::ref count ptr<T> andMemMngPack:: Release-

Resource allow the flexible deletion of an object or objects after a client is finished using

them, they do not allow the flexible creation of objects. For this purpose, the interface

MemMngPack::AbstractFactory<T>has been developed which is a universal tem-

plated interface for the “factory” pattern [???]. The single virtual method iscreate()

which returns aref count ptr<T> object containing the allocated object. There is a

single subclass

namespace MemMngPack {

template <class T_itfc, class T_impl, class T_PostMod = PostModNothing<T_impl>

,class T_Allocator = AllocatorNew<T_impl> >

class AbstractFactoryStd : public AbsractFactory<T_itfc>;

}

260

which is templated on the interface typeT itfc that is represented by theAbstract-

Factory base interface, the concrete implementation typeT impl , and also by policy

classes that determine how the underlying object is allocated (T PostMod) and how it is

modified after allocation (T Allocator). The policy classes have default types which

allocate usingnew (AllocatorNew<T impl>) and do no post modification after the

initial construction (PostModNothing<T impl>). Using these policy classes with

the C++ template mechanisms to create different instantiations allows complete flexibil-

ity in how objects are allocated and initialized and therefore theAbstractFactory-

Std<...> subclass is really the only abstract factory subclass needed.

Aside from the type of general dynamic memory management that the C++ operators

new anddelete and the C functionsmalloc(...) andfree(...) were designed

for, there is also a need for general workspace that is used during the execution of a C++

function. In Fortran 77, this type of memory must be explicitly passed into a subroutine

and clutters the interface. In Fortran 90, this type of memory can be created on-the-fly

within a subroutine, but most implementations allocate this memory from the stack and not

the heap. The Fortran 90 implementation of automatic workspace has caused problems on

several platforms when allocating huge amounts of data. What is needed is a more flexible

means to efficiently allocate and release workspace used in a function. For this purpose,

the templated classWorkspacePack::Workspace<T> has been designed. Objects of

this type can only be allocated on the stack (i.e. operatorsnew anddelete have been

made private and are not defined as discussed in [76]) and must be given a reference to

a WorkspacePack::WorkspaceStore object which is used to obtain a temporary

buffer of data. The current implementation ofWorkspaceStore allocates a large chunk

of memory at once from the operating system and then gives it out as needed. Any memory

demands beyond the preallocated amount are handled bynew. TheWorkspaceStore

implementation also keeps statistics that can be used for fine tuning the memory usage later

on. Because of the order that C++ creates and destroys automatic objects that are put on the

stack, the implementations ofWorkspacePack::Workspace<T> andWorkspace-

Pack::WorkspaceStore are very simple and require onlyO(1) overhead. This is

very different from the overhead that can occur from usingmalloc(...) because of the

more complex tasks the operating system has to perform to manage the heap (i.e. regulate

fragmentation etc.) as described in [110, Section 8.6]. See the fileWorkspacePack.h

for more details.

261

Aggregation and composition are so common and the tasks of writing access functions

and data members for C++ classes with aggregate objects are so monotonous that prepro-

cessor macros have been written to automatically insert all the needed declarations. The

macro

STANDARDMEMBERCOMPOSITIONMEMBERS(type name,attribute name)

is used to insert to declarations for a simple member object of a concrete class with

value semantics. For example, options such as tolerances (i.e.type name = double),

flags (i.e.type name = bool) and maximum iteration counts (i.e.type name = int)

can be included in a class interface using this macro. This has relieved the writing of a lot

of boiler plate code that had to be written by hand before. However, many objects are poly-

morphic and do not use value semantics (i.e. those that are instantiations of a subclass). For

composition relationships (i.e. memory management obligations assumed) for these types

of objects (both polymorphic and non-polymorphic) the macro

STANDARDCOMPOSITIONMEMBERS(basetype name,obj name)

has been defined. This macro inserts the declarations for the member access functions

and includes a private data member of typeref count ptr<basetype name> to han-

dle the dynamic memory management. For these types of composite associations, when the

client object is destroyed, the composite objectobj name may also be destroyed (if no

other clients are using it) andref count ptr<T> takes care of this automatically. For

associations that are strictly aggregate (i.e. no ownership of memory is assumed) the macro

STANDARDAGGREGATIONMEMBERS(basetype name,obj name)

is used. This macro inserts a private data member that is a simple pointer.

Another very useful class isOptionsFromStreamPack::OptionsFromStream .

This class allows options to be read from a text stream, which is formatted in a very hu-

man readable, self documenting manner. Many of the major classes in rSQP++ can accept

options in this form. These options can be included in a file or generated in a string within

code. Strictly speaking, this is a weakly typed way to specify options but there are a lot

of safeguards that make its use more or less bulletproof. For example, see how this text

stream is formatted in Section 4.3.1.1. A lot more could be said about how to use the

262

classOptionsFromStream from both a user’s and developer’s point of view, but the

interested user can look in the code for examples.

263

264

D Samples of Input and Output for rSQP++

Here, portions of the output generated for the example programExampleNLPBanded

is given. Lines in the output consisting of three dots

...

are for parts of the output that have been ommited for the sake of space. This output

was generated using the command line

$./solve_example_nlp --nD=30000 --bw=10 --nI=400 --diag-scal=1e+4 --xo=10.0

and the options file shown in Section 8.8. The output to the console is shown in Section

8.8 while excepts from the output filesrSQPppAlgo.out , rSQPppSummary.out and

rSQPppJournal.out are shown in Sections 8.8–8.8.

Note that the content of the output may be different a more current version of rSQP++

than the one used at the time of this writting. However, the general layout of the information

will be generally the same.

Input file rSQPpp.opt

begin_options

options_group rSQPppSolver {

test_nlp = true; *** (default)

* test_nlp = false;

print_algo = true; *** (default)

* print_algo = false;

algo_timing = true; *** (default)

* algo_timing = false;

configuration = mama_jama; *** (default)

* configuration = interior_point;

}

options_group rSQPSolverClientInterface {

* max_iter = 1000; *** (default?)

* max_iter = 3;

* max_run_time = 1e+10; *** (default?)

* opt_tol = 1e-6; *** (default?)

opt_tol = 1e-8; *** (default=1e-6)

* feas_tol = 1e-6; *** (default?)

feas_tol = 1e-10; *** (default=1e-6)

* step_tol = 1e-2; *** (default?)

* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm

265

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually

journal_output_level = PRINT_ALGORITHM_STEPS; * O(iter) output to journal (default)

* journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)

* journal_print_digits = 6; *** (default?)

check_results = true; *** (costly?)

* check_results = false; *** (default?)

}

options_group DecompositionSystemStateStepBuilderStd {

null_space_matrix = AUTO; *** Let the solver decide (default)

* null_space_matrix = EXPLICIT; *** Store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicity with C, N

range_space_matrix = AUTO; *** Let the algorithm decide dynamically (default)

* range_space_matrix = COORDINATE; *** Y = [I; 0] (Cheaper computationally)

* range_space_matrix = ORTHOGONAL; *** Y = [I; -N’*inv(C’)] (more stable)

max_dof_quasi_newton_dense = 500; *** (default=-1, let the solver decide)

}

options_group rSQPAlgo_ConfigMamaJama {

quasi_newton = AUTO; *** Let solver decide dynamically (default)

* quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically (default)

* line_search_method = NONE; *** Take full steps at every iteration

line_search_method = DIRECT; *** Use standard Armijo backtracking

* line_search_method = FILTER; *** Filter

}

options_group NLPTester {

* print_all = true;

print_all = false; *** (default)

}

options_group NLPFirstDerivativesTester {

* fd_testing_method = FD_COMPUTE_ALL; *** Compute all of the derivatives (O(m))

fd_testing_method = FD_DIRECTIONAL; *** Only compute along random directions (O(1))

num_fd_directions = 1; *** [fd_testing_method == DIRECTIONAL]

warning_tol = 1e-10;

error_tol = 1e-5;

}

options_group CalcFiniteDiffProd {

* fd_method_order = FD_ORDER_ONE; *** Use O(eps) one sided finite differences

* fd_method_order = FD_ORDER_TWO; *** Use O(epsˆ2) one sided finite differences

* fd_method_order = FD_ORDER_TWO_CENTRAL; *** Use O(epsˆ2) two sided central finite differences

* fd_method_order = FD_ORDER_TWO_AUTO; *** Uses FD_ORDER_TWO_CENTRAL or FD_ORDER_TWO

* fd_method_order = FD_ORDER_FOUR; *** Use O(epsˆ4) one sided finite differences

fd_method_order = FD_ORDER_FOUR_CENTRAL; *** Use O(epsˆ4) two sided central finite differences

* fd_method_order = FD_ORDER_FOUR_AUTO; *** (default) Uses FD_ORDER_FOUR_CENTRAL or FD_ORDER_FOUR

* fd_step_select = FD_STEP_ABSOLUTE; *** (default) Use absolute step size fd_step_size

* fd_step_select = FD_STEP_RELATIVE; *** Use relative step size fd_step_size * ||x||inf

* fd_step_size = -1.0; *** (default) Let the implementation decide

* fd_step_size_min = -1.0; *** (default) Let the implementation decide.

* fd_step_size_f = -1.0; *** (default) Let the implementation decide

* fd_step_size_c = -1.0; *** (default) Let the implementation decide

* fd_step_size_h = -1.0; *** (default) Let the implementation decide

}

end_options

266

Console output

The following is output to the console.

$./solve_example_nlp.rel --nD=30000 --bw=10 --nI=400 --diag-scal=1e+4 --xo=10.0

*** Start of rSQP Iterations ***

n = 30400, m = 30000, nz = 599910

k f ||c||s ||rGL||s QN #act ||Ypy||2 ||Zpz||2 ||d||inf alpha

---- --------- --------- --------- -- ---- -------- -------- -------- --------

0 1.5e+006 1.2e+007 1.2e+002 IN 0 2e+003 4e+005 2e+003 0.001

1 7.1e+005 1.1e+007 41 SK 0 1e+003 1e+005 6e+002 0.01

2 7.7e+004 3.7e+006 0.35 SK 0 2e+002 2e+002 6 1

3 3.2e+004 1.1e+006 0.23 SK 0 1e+002 8e+001 3 1

4 1.5e+004 3e+005 0.64 SK 0 6e+001 1e+002 6 1

5 4.4e+003 5.1e+004 2.4 SK 0 8e+001 4e+002 8 0.1

6 2.5e+003 3.3e+004 0.4 SK 0 3e+001 4e+001 2 1

7 8e+002 9.6e+003 0.03 SK 0 3e+001 1 0.2 1

8 4.5e+002 6e+002 0.6 SK 0 1 3e+001 2 1

9 0.78 1.2e+002 0.014 UP 0 1 0.1 0.01 1

k f ||c||s ||rGL||s QN #act ||Ypy||2 ||Zpz||2 ||d||inf alpha

---- --------- --------- --------- -- ---- -------- -------- -------- --------

10 0.012 3.3 0.019 SK 0 0.01 0.2 0.02 1

11 2.1e-007 0.12 8.7e-005 UP 0 0.0002 0.0006 9e-005 1

12 3.4e-015 2.1e-005 3.6e-008 UP 0 2e-008 8e-008 4e-008 1

---- --------- --------- --------- -- ----

13 6.3e-024 1.5e-012 3.3e-012 - - 1e-015 - -

Total time = 6e+001 sec

Jackpot! You have found the solution!!!!!!

Number of function evaluations:

f(x) : 96

c(x) : 96

Gf(x) : 15

Gc(x) : 15

Solution Found!

Output file rSQPppAlgo.out

**

*** Algorithm information output ***

*** ***

*** Below, information about how the the rSQP++ algorithm is ***

*** setup is given and is followed by detailed printouts of the ***

*** contents of the algorithm state object (i.e. iteration ***

*** quantities) and the algorithm description printout ***

*** (if the option rSQPppSolver::print_algo = true is set). ***

**

*** Echoing input options ...

...

267

*** Setting up to run rSQP++ on the NLP using a configuration object of type ’class ReducedSpaceSQPPack::rSQPAlgo_ConfigMamaJama’ ...

*** rSQPAlgo_ConfigMamaJama configuration ***

*** ***

*** Here, summary information about how the algorithm is ***

*** configured is printed so that the user can see how the ***

*** properties of the NLP and the set options influence ***

*** how an algorithm is configured. ***

*** Creating the rSQPAlgo algo object ...

*** Setting the NLP and track objects to the algo object ...

*** Probing the NLP object for supported interfaces ...

Detected that NLP object supports the NLPFirstOrderInfo interface!

range_space_matrix == AUTO:

(n-r)ˆ2*r = (400)ˆ2 * 30000 = 505032704 > max_dof_quasi_newton_denseˆ2 = (500)ˆ2 = 250000

setting range_space_matrix = COORDINATE

*** Setting option defaults for options not set by the user or determined some other way ...

null_space_matrix_type == AUTO: Let the algorithm deside as it goes along

*** End setting default options

*** Sorting out some of the options given input options ...

...

quasi_newton == AUTO:

nlp.num_bounded_x() == 0:

n-r = 400 <= max_dof_quasi_newton_dense = 500:

setting quasi_newton == BFGS

...

*** Creating the state object and setting up iteration quantity objects ...

*** Creating and setting the step objects ...

Configuring an algorithm for a nonlinear equality constrained NLP (m > 0 && mI == 0 && num_bounded_x == 0) ...

*** Algorithm Steps ***

1. "EvalNewPoint"

(class ReducedSpaceSQPPack::EvalNewPointStd_Step)

2. "RangeSpaceStep"

(class ReducedSpaceSQPPack::RangeSpaceStepStd_Step)

2.1. "CheckDecompositionFromPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromPy_Step)

2.2. "CheckDecompositionFromRPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromRPy_Step)

2.3. "CheckDescentRangeSpaceStep"

(class ReducedSpaceSQPPack::CheckDescentRangeSpaceStep_Step)

3. "ReducedGradient"

(class ReducedSpaceSQPPack::ReducedGradientStd_Step)

4. "CalcReducedGradLagrangian"

(class ReducedSpaceSQPPack::CalcReducedGradLagrangianStd_AddedStep)

5. "CheckConvergence"

(class ReducedSpaceSQPPack::CheckConvergenceStd_AddedStep)

6.-1. "CheckSkipBFGSUpdate"

(class ReducedSpaceSQPPack::CheckSkipBFGSUpdateStd_Step)

6. "ReducedHessian"

(class ReducedSpaceSQPPack::ReducedHessianSecantUpdateStd_Step)

7. "NullSpaceStep"

268

(class ReducedSpaceSQPPack::NullSpaceStepWithoutBounds_Step)

8. "CalcDFromYPYZPZ"

(class ReducedSpaceSQPPack::CalcDFromYPYZPZ_Step)

9.-2. "LineSearchFullStep"

(class ReducedSpaceSQPPack::LineSearchFullStep_Step)

9.-1. "MeritFunc_PenaltyParamUpdate"

(class ReducedSpaceSQPPack::MeritFunc_PenaltyParamUpdateMultFree_AddedStep)

9. "LineSearch"

(class ReducedSpaceSQPPack::LineSearchFailureNewDecompositionSelection_Step)

*** NLP ***

class NLPInterfacePack::ExampleNLPBanded

*** Iteration Quantities ***

...

*** Algorithm Description ***

1. "EvalNewPoint"

(class ReducedSpaceSQPPack::EvalNewPointStd_Step)

*** Evaluate the new point and update the range/null decomposition

if nlp is not initialized then initialize the nlp

if x is not updated for any k then set x_k = xinit

if m > 0 and Gc_k is not updated Gc_k = Gc(x_k) <: space_x|space_c

if mI > 0 Gh_k is not updated Gh_k = Gh(x_k) <: space_x|space_h

if m > 0 then

For Gc_k = [Gc_k(:,equ_decomp), Gc_k(:,equ_undecomp)] where:

Gc_k(:,equ_decomp) <: space_x|space_c(equ_decomp) has full column rank r

Find:

Z_k <: space_x|space_null s.t. Gc_k(:,equ_decomp)’ * Z_k = 0

Y_k <: space_x|space_range s.t. [Z_k Y_k] is nonsigular

R_k <: space_c(equ_decomp)|space_range

s.t. R_k = Gc_k(:,equ_decomp)’ * Y_k

if m > r : Uz_k <: space_c(equ_undecomp)|space_null

s.t. Uz_k = Gc_k(:,equ_undecomp)’ * Z_k

if m > r : Uy_k <: space_c(equ_undecomp)|space_range

s.t. Uy_k = Gc_k(:,equ_undecomp)’ * Y_k

if mI > 0 : Vz_k <: space_h|space_null

s.t. Vz_k = Gh_k’ * Z_k

if mI > 0 : Vy_k <: space_h|space_range

s.t. Vy_k = Gh_k’ * Y_k

begin update decomposition (class ’class ReducedSpaceSQPPack::DecompositionSystemHandlerVarReductPerm_Strategy’)

*** Updating or selecting a new decomposition using a variable reduction

*** range/null decomposition object.

...

end update decomposition

if ((decomp_sys_testing==DST_TEST)

or (decomp_sys_testing==DST_DEFAULT and check_results==true)

) then

check properties for Z_k, Y_k, R_k, Uz_k, Uy_k, Vz_k and Vy_k.

end

end

Gf_k = Gf(x_k) <: space_x

if m > 0 and c_k is not updated c_k = c(x_k) <: space_c

if mI > 0 and h_k is not updated h_k = h(x_k) <: space_h

if f_k is not updated f_k = f(x_k) <: REAL

if ((fd_deriv_testing==FD_TEST)

or (fd_deriv_testing==FD_DEFAULT and check_results==true)

) then

check Gc_k (if m > 0), Gh_k (if mI > 0) and Gf_k by finite differences.

end

2. "RangeSpaceStep"

(class ReducedSpaceSQPPack::RangeSpaceStepStd_Step)

*** Calculate the range space step

py_k = - inv(R_k) * c_k(equ_decomp)

269

Ypy_k = Y_k * py_k

2.1. "CheckDecompositionFromPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromPy_Step)

...

2.2. "CheckDecompositionFromRPy"

(class ReducedSpaceSQPPack::CheckDecompositionFromRPy_Step)

*** Try to detect when the decomposition is becomming illconditioned

...

2.3. "CheckDescentRangeSpaceStep"

(class ReducedSpaceSQPPack::CheckDescentRangeSpaceStep_Step)

*** Check for descent in the decomposed equality constraints for the range space step

...

3. "ReducedGradient"

(class ReducedSpaceSQPPack::ReducedGradientStd_Step)

*** Evaluate the reduced gradient of the objective funciton

rGf_k = Z_k’ * Gf_k

4. "CalcReducedGradLagrangian"

(class ReducedSpaceSQPPack::CalcReducedGradLagrangianStd_AddedStep)

*** Evaluate the reduced gradient of the Lagrangian

if nu_k is updated then

rGL_k = Z_k’ * (Gf_k + nu_k) + GcUP_k’ * lambda_k(equ_undecomp)

+ GhUP_k’ * lambdaI_k(inequ_undecomp)

else

rGL_k = rGf_k + GcUP_k’ * lambda_k(equ_undecomp)

+ GhUP_k’ * lambdaI_k(inequ_undecomp)

end

5. "CheckConvergence"

(class ReducedSpaceSQPPack::CheckConvergenceStd_AddedStep)

*** Check to see if the KKT error is small enough for convergence

if scale_(opt|feas|comp)_error_by == SCALE_BY_ONE then

scale_(opt|feas|comp)_factor = 1.0

else if scale_(opt|feas|comp)_error_by == SCALE_BY_NORM_2_X then

scale_(opt|feas|comp)_factor = 1.0 + norm_2(x_k)

else if scale_(opt|feas|comp)_error_by == SCALE_BY_NORM_INF_X then

scale_(opt|feas|comp)_factor = 1.0 + norm_inf(x_k)

end

if scale_opt_error_by_Gf == true then

opt_scale_factor = 1.0 + norm_inf(Gf_k)

else

opt_scale_factor = 1.0

end

opt_err = norm_inf(rGL_k)/opt_scale_factor

feas_err = norm_inf(c_k)

comp_err = max(i, nu(i)*(xu(i)-x(i)), -nu(i)*(x(i)-xl(i)))

opt_kkt_err_k = opt_err/scale_opt_factor

feas_kkt_err_k = feas_err/scale_feas_factor

comp_kkt_err_k = feas_err/scale_comp_factor

if d_k is updated then

step_err = max(|d_k(i)|/(1+|x_k(i)|), i=1..n)

else

step_err = 0

end

if opt_kkt_err_k < opt_tol

and feas_kkt_err_k < feas_tol

and step_err < step_tol then

report optimal x_k, lambda_k and nu_k to the nlp

terminate, the solution has beed found!

end

6.-1. "CheckSkipBFGSUpdate"

270

(class ReducedSpaceSQPPack::CheckSkipBFGSUpdateStd_Step)

*** Check if we should do the BFGS update

...

6. "ReducedHessian"

(class ReducedSpaceSQPPack::ReducedHessianSecantUpdateStd_Step)

*** Calculate the reduced hessian of the Lagrangian rHL = Z’ * HL * Z

...

7. "NullSpaceStep"

(class ReducedSpaceSQPPack::NullSpaceStepWithoutBounds_Step)

*** Calculate the null space step by solving an unconstrainted QP

qp_grad_k = rGf_k + zeta_k * w_k

solve:

min qp_grad_k’ * pz_k + 1/2 * pz_k’ * rHL_k * pz_k

pz_k <: Rˆ(n-r)

Zpz_k = Z_k * pz_k

nu_k = 0

8. "CalcDFromYPYZPZ"

(class ReducedSpaceSQPPack::CalcDFromYPYZPZ_Step)

*** Calculates the search direction d from Ypy and Zpz

d_k = Ypy_k + Zpz_k

9.-2. "LineSearchFullStep"

(class ReducedSpaceSQPPack::LineSearchFullStep_Step)

if alpha_k is not updated then

alpha_k = 1.0

end

x_kp1 = x_k + alpha_k * d_k

f_kp1 = f(x_kp1)

c_kp1 = c(x_kp1)

9.-1. "MeritFunc_PenaltyParamUpdate"

(class ReducedSpaceSQPPack::MeritFunc_PenaltyParamUpdateMultFree_AddedStep)

*** Update the penalty parameter for the merit function to ensure

*** a descent direction a directional derivatieve.

*** phi is a merit function object that uses the penalty parameter mu.

...

9. "LineSearch"

(class ReducedSpaceSQPPack::LineSearchFailureNewDecompositionSelection_Step)

do line search step : class ReducedSpaceSQPPack::LineSearchDirect_Step

*** Preform a line search along the full space search direction d_k.

Dphi_k = merit_func_nlp_k.deriv()

if Dphi_k >= 0 then

throw line_search_failure

end

phi_kp1 = merit_func_nlp_k.value(f_kp1,c_kp1,h_kp1,hl,hu)

phi_k = merit_func_nlp_k.value(f_k,c_k,h_k,hl,hu)

begin direct line search (where phi = merit_func_nlp_k): "class ConstrainedOptimizationPack::DirectLineSearchArmQuad_Strategy"

*** start line search using the Armijo cord test and quadratic interpolation of alpha

...

end direct line search

if maximum number of linesearch iterations are exceeded then

throw line_search_failure

end

end line search step

if thrown line_search_failure then

if line search failed at the last iteration also then

throw line_search_failure

end

271

new decomposition selection : class ReducedSpaceSQPPack::NewDecompositionSelectionStd_Strategy

if k > max_iter then

terminate the algorithm

end

Select a new basis at current point

x_kp1 = x_k

alpha_k = 0

k=k+1

goto EvalNewPoint

end new decomposition selection

end

10. "Major Loop" :

if k >= max_iter then

terminate the algorithm

elseif run_time() >= max_run_time then

terminate the algorithm

else

k = k + 1

goto 1

end

Warning, the following options groups where not accessed.

An options group may not be accessed if it is not looked for

or if an "optional" options group was looked from and the user

spelled it incorrectly:

Output file rSQPppSummary.out

**

*** Algorithm iteration summary output ***

*** ***

*** Below, a summary table of the SQP iterations is given as ***

*** well as a table of the CPU times for each step (if the ***

*** option rSQPppSolver::algo_timing = true is set). ***

**

*** Echoing input options ...

...

*** Setting up to run rSQP++ on the NLP using a configuration object of type

’class ReducedSpaceSQPPack::rSQPAlgo_ConfigMamaJama’ ...

test_nlp = true: Testing the NLP!

Testing the supported NLPFirstOrderInfo interface ...

... end testing of nlp

*** Start of rSQP Iterations ***

n = 30400, m = 30000, nz = 599910

k f ||Gf||inf ||c||inf ||rGL||inf quasi-Newton ...

---- ------------ ------------ ------------ ------------ ------------ ...

0 1.52e+006 10 1.20897e+007 1353.69 initialized ...

1 713384 11.7743 1.10232e+007 524.977 skiped ...

...

272

12 3.37179e-015 3.63585e-008 2.08817e-005 3.63585e-008 updated ...

---- ------------ ------------ ------------ ------------ ------------ ...

13 6.34035e-024 3.27386e-012 1.51859e-012 3.27386e-012 - ...

Number of function evaluations:

f(x) : 96

c(x) : 96

Gf(x) : 15

Gc(x) : 15

**** Solution Found ****

total time = 61.9129 sec.

*** Algorithm step CPU times (sec) ***

Step names

1) "EvalNewPoint"

2) "RangeSpaceStep"

3) "ReducedGradient"

4) "CalcReducedGradLagrangian"

5) "CheckConvergence"

6) "ReducedHessian"

7) "NullSpaceStep"

8) "CalcDFromYPYZPZ"

9) "LineSearch"

10) Iteration total

steps 1...10 ->

iter k 1 2 3 4 5 6 7 8 9 10

-------- -------- -------- -------- -------- -------- -------- -------- -------- -------- --------

0 18.96 0.2031 0.1093 0.0001131 0.01497 0.2985 2.189 0.009146 0.2678 22.06

1 2.398 0.1752 0.11248.409e-005 0.002709 0.002098 0.1186 0.006983 0.294 3.111

2 2.399 0.1757 0.1116 7.99e-005 0.002728 0.002192 0.1183 0.007003 0.04079 2.857

3 2.421 0.175 0.11348.297e-005 0.002717 0.002115 0.1183 0.006929 0.04122 2.881

4 2.428 0.172 0.1108 7.99e-005 0.002711 0.02247 0.1181 0.006949 0.041 2.902

5 2.404 0.1748 0.1115 8.13e-005 0.002742 0.002087 0.1183 0.006936 0.07081 2.892

6 2.443 0.1714 0.1094 7.99e-005 0.002707 0.002139 0.1156 0.006912 0.0409 2.892

7 2.397 0.1747 0.1115 7.99e-005 0.002715 0.00211 0.1184 0.006978 0.04138 2.855

8 2.415 0.1749 0.11158.046e-005 0.002724 0.002148 0.141 0.007056 0.04127 2.896

9 2.403 0.1752 0.11158.102e-005 0.002751 0.3873 0.1167 0.006928 0.0412 3.244

10 2.42 0.1715 0.10928.185e-005 0.002711 0.002126 0.1159 0.006915 0.04102 2.869

11 2.416 0.1747 0.11148.269e-005 0.002704 0.02088 0.118 0.006951 0.04134 2.892

12 2.402 0.1753 0.11168.018e-005 0.02678 0.02145 0.1156 0.006994 0.04093 2.9

13 2.404 0.1749 0.11158.185e-005 0.008906 0 0 0 0 2.699

-------- -------- -------- -------- -------- -------- -------- -------- -------- -------- --------

total(sec) 50.32 2.468 1.557 0.001169 0.08058 0.7677 3.622 0.09268 1.044 59.95

av(sec)/k 3.594 0.1763 0.11128.351e-005 0.005756 0.05483 0.2587 0.00662 0.07455 4.282

min(sec) 2.397 0.1714 0.1092 7.99e-005 0.002704 0 0 0 0 2.699

max(sec) 18.96 0.2031 0.1134 0.0001131 0.02678 0.3873 2.189 0.009146 0.294 22.06

% total 83.93 4.118 2.596 0.00195 0.1344 1.281 6.041 0.1546 1.741 100

total CPU time = 59.95 sec

...

273

Output file rSQPppJournal.out

**

*** Algorithm iteration detailed journal output ***

*** ***

*** Below, detailed information about the SQP algorithm is given ***

*** while it is running. The amount of information that is ***

*** produced can be specified using the option ***

*** rSQPSolverClientInterface::journal_output_level (the default ***

*** is PRINT_NOTHING and produces no output) ***

**

*** Echoing input options ...

...

*** Setting up to run rSQP++ on the NLP using a configuration object of type

’class ReducedSpaceSQPPack::rSQPAlgo_ConfigMamaJama’ ...

test_nlp = true: Testing the NLP!

Testing the supported NLPFirstOrderInfo interface ...

*** test_nlp_first_order_info(...) ***

Testing the vector spaces ...

Testing nlp->space_x() ...

nlp->space_x() checks out!

Testing nlp->space_c() ...

nlp->space_c() checks out!

*** NLPTester::test_interface(...) ***

nlp->force_xinit_in_bounds(true)

nlp->initialize(true)

*** Dimensions of the NLP

nlp->n() = 30400

nlp->m() = 30000

nlp->mI() = 0

*** Validate the dimensions of the vector spaces

check: nlp->space_x()->dim() = 30400 == nlp->n() = 30400: true

check: nlp->space_c()->dim() = 30000 == nlp->m() = 30000: true

check: nlp->space_h().get() = 00000000 == NULL: true

||nlp->xinit()||inf = 1.00000000e+001

*** Validate that the initial starting point is in bounds ...

check: xl <= x <= xu : true

xinit is in bounds with { max |u| | xl <= x + u <= xu } -> -1.00000000e+050

check: num_bounded(nlp->xl(),nlp->xu()) = 0 == nlp->num_bounded_x() = 0: true

Getting the initial estimates for the Lagrange mutipliers ...

||lambda||inf = 0.00000000e+000

*** Evaluate the point xo ...

f(xo) = 1.52000000e+006

274

||c(xo)||inf = 1.20897308e+007

*** Report this point to the NLP as suboptimal ...

*** Print the number of evaluations ...

nlp->num_f_evals() = 1

nlp->num_c_evals() = 1

Calling nlp->calc_Gc(...) at nlp->xinit() ...

Calling nlp->calc_Gf(...) at nlp->xinit() ...

Comparing products Gf’*y Gc’*y and/or Gh’*y with finite difference values FDGf’*y, FDGc’*y and/or FDGh’*y for random y’s ...

**** Random directional vector 1 (||y||_1 / n = 5.00741357e-001)

rel_err(Gf’*y,FDGf’*y) = rel_err(6.53040559e+002,6.53040559e+002) = 1.93477565e-011

rel_err(sum(Gc’*y),sum(FDGc’*y)) = rel_err(2.20905038e+008,2.20905038e+008) = 1.37878129e-013

Congradulations! All of the computed errors were within the specified error tolerance!

... end testing of nlp

*** rSQPppSolver::solve_nlp() ***

*** Starting rSQP iterations ...

(0) 1: "EvalNewPoint"

x is not updated for any k so set x_k = nlp.xinit() ...

||x_k||inf = 1.000000e+001

Updating the decomposition ...

...

Printing the updated iteration quantities ...

f_k = 1.520000e+006

||Gf_k||inf = 1.000000e+001

||c_k||inf = 1.208973e+007

*** Checking derivatives by finite differences

Comparing products Gf’*y and/or Gc’*y with finite-difference values FDGf’*y and/or FDGc’*y for random y’s ...

**** Random directional vector 1 (||y||_1 / n = 4.995094e-001)

rel_err(Gf’*y,FDGf’*y) = rel_err(1.959355e+002,1.959355e+002) = 4.408797e-010

rel_err(sum(Gc’*y),sum(FDGc’*y)) = rel_err(4.737147e+008,4.737147e+008) = 5.088320e-013

For Gf, there were 1 warning tolerance violations out of num_fd_directions = 1 computations of FDGf’*y

and the maximum violation was 4.408797e-010 > Gf_waring_tol = 1.000000e-010

Congradulations! All of the computed errors were within the specified error tolerance!

(0) 2: "RangeSpaceStep"

275

||py|| = 1.000000e+001

||Ypy||2 = 1.732051e+003

(0) 2.1: "CheckDecompositionFromPy"

beta = ||py||/||c|| = 8.271483e-007

(0) 2.2: "CheckDecompositionFromRPy"

beta = ||(Gc(decomp)’*Y)*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number)

= 5.587935e-009 / (1.208973e+007 + 2.225074e-308)

= 4.622051e-016

(0) 2.3: "CheckDescentRangeSpaceStep"

Gc_k exists; compute descent_c = c_k(equ_decomp)’*Gc_k(:,equ_decomp)’*Ypy_k ...

descent_c = -4.369965e+018

(0) 3: "ReducedGradient"

||rGf||inf = 1.353686e+003

(0) 4: "CalcReducedGradLagrangian"

||rGL_k||inf = 1.353686e+003

(0) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)

scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)

scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)

opt_scale_factor = 1.100000e+001 (scale_opt_error_by_Gf = true)

opt_kkt_err_k = 1.230623e+002 > opt_tol = 1.000000e-008

feas_kkt_err_k = 1.208973e+007 > feas_tol = 1.000000e-010

comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006

step_err = 0.000000e+000 < step_tol = 1.000000e-002

Have not found the solution yet, have to keep going :-(

(0) 6.-1: "CheckSkipBFGSUpdate"

(0) 6: "ReducedHessian"

Basis changed. Reinitializing rHL_k = eye(n-r) ...

(0) 7: "NullSpaceStep"

||pz_k||inf = 1.353686e+003

||Zpz_k||2 = 4.271437e+005

(0) 8: "CalcDFromYPYZPZ"

(Ypy_k’*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = 9.979894e-001

||d||inf = 2.471247e+003

(0) 9.-2: "LineSearchFullStep"

f_k = 1.520000e+006

||c_k||inf = 1.208973e+007

alpha_k = 1.000000e+000

||x_kp1||inf = 2.461247e+003

f_kp1 = 9.123131e+010

||c_kp1||inf = 4.579853e+013

(0) 9.-1: "MeritFunc_PenaltyParamUpdate"

276

Update the penalty parameter...

Not near solution, allowing reduction in mu ...

mu = 8.286385e-006

(0) 9: "LineSearch"

Begin definition of NLP merit function phi.value(f(x),c(x)):

*** Define L1 merit funciton (assumes Gc_k’*d_k + c_k = 0):

phi(f,c) = f + mu_k * norm(c,1)

Dphi(x_k,d_k) = Gf_k’ * d_k - mu * norm(c_k,1)

end definition of the NLP merit funciton

Dphi_k = -7.389329e+008

Starting Armijo Quadratic interpolation linesearch ...

Dphi_k = -7.38932862e+008

phi_k = 4.52030000e+006

itr alpha_k phi_kp1 phi_kp1-frac_phi

---- ---------------- ---------------- ----------------

0 1.00000000e+000 1.14557884e+013 1.14557839e+013

1 1.00000000e-001 1.34428112e+010 1.34382983e+010

2 1.00000000e-002 2.53185818e+007 2.07990207e+007

3 1.31074052e-003 3.44902601e+006 -1.07117714e+006

alpha_k = 1.310741e-003

||x_kp1||inf = 1.177433e+001

f_kp1 = 7.133842e+005

||c_kp1||inf = 1.102321e+007

phi_kp1 = 3.449026e+006

(1) 1: "EvalNewPoint"

...

(13) 5: "CheckConvergence"

scale_opt_factor = 1.000000e+000 (scale_opt_error_by = SCALE_BY_ONE)

scale_feas_factor = 1.000000e+000 (scale_feas_error_by = SCALE_BY_ONE)

scale_comp_factor = 1.000000e+000 (scale_comp_error_by = SCALE_BY_ONE)

opt_scale_factor = 1.000000e+000 (scale_opt_error_by_Gf = true)

opt_kkt_err_k = 3.273859e-012 < opt_tol = 1.000000e-008

feas_kkt_err_k = 1.518593e-012 < feas_tol = 1.000000e-010

comp_kkt_err_k = 0.000000e+000 < comp_tol = 1.000000e-006

step_err = 0.000000e+000 < step_tol = 1.000000e-002

Jackpot! Found the solution!!!!!! (k = 13)

277

278

E A Simple Convention for the Specification of Linear-

Algebra Function Prototypes in C++ using Vector and

Matrix Objects

A simple convention for the specification of C++ function prototypes for linear alge-

bra operations with vectors and matrices is described. This convention leads to function

prototypes that are derived directly from the mathematical expressions themselves (and are

therefore easy to remember), allow for highly optimized implementations (through inlin-

ing in C++), and do not rely on any sophisticated C++ techniques so that even novice C++

programs can understand and debug through the code.

Introduction

Linear algebra computations such as matrix-vector multiplication and the solution of linear

systems serve as the building blocks for numerical algorithms and consume the majority of

the runtime of numerical codes. These linear algebra abstractions transcend details such as

matrix storage formats (of which there are many) and linear system solver codes (sparse or

dense, direct or iterative). Primary linear algebra abstractions include vectors and matrices

and the operations that can be performed with them. C++ abstractions for vectors and

matrices abound.

Given that convenient vector and matrix abstractions are defined,Vec andMat for in-

stance, there is a need to implement BLAS-like linear algebra operations. Given that C++

has operator overloading, it would seem reasonable to implement these operations using a

Matlabc
 like notation. For example, the matrix-vector multiplicationy = y +ATx might

be represented in C++ with the statementy = y + trans(A) * x (the character’

can not be used for transpose since it is not a C++ operator). Matlab is seen by many in

the numerical computational community to be the ideal for the representation of linear al-

gebra operations using only ASCII characters [33]. The advantages of such an interface

are obvious. It is almost the same as standard mathematical notation, which makes it very

easy to match the implementation with the operation for the application programmer, and

makes the code much easier to understand. The primary disadvantage for this in C++ is

279

that the straightforward implementation requires a lot of overhead because operators are

implemented in a binary fashion. For example, for the operationy = y + trans(A)

* x , a temporary matrix (n2 overhead) and two temporary vectors (2n overhead) would

be created by the compiler. Specifically, the compiler would perform the following opera-

tions:Mat t1 = trans(A); Vec t2 = t1 * x; Vec t3 = y + t2; y =

t3; . Attempts have been made to come up with a strategy in C++ to implement opera-

tions likey = y + trans(A) * x in a way where little overhead is required beyond

a direct BLAS call [87]. It is relatively easy to implement these operator functions with

only a little constant-time overhead for a small set of linear algebra operations [112, pages

675-677]. However, for more elaborate expressions, a compile time expression parsing

method is needed. Some have advocated preprocessing tools, while others have looked at

using C++’s template mechanisms [119], [87]. In any case, these methods are complex and

not trivial to implement. Also, compilers are very fickle with respect to methods that rely

on templates. Perhaps in the future when many C++ compilers implement the ANSI/ISO

C++ standard [112], such methods may be more portable and reliable. But for now, such

methods are not really appropriate for general application development. Methods based

on runtime parsing are also possible but add more of a runtime penalty. Aliasing is also

another big problem. For example, suppose we allow users to write expressions like the

following: y = x+ v + �MT + �y
An efficient parser that tries to minimize temporaries will have to scan the entire expres-

sion and realize thaty = �y must be performed first and then no temporaries are needed.

A naive parser may performy = x first and then result in an incorrect evaluation. The

problem is that the more efficient the parser the more complicated it is and the harder it

will be for inexperienced users to debug through this code.

Without using operator overloading to allow application code to use syntax likey =

y + trans(A) * x , how can linear algebra operations be implemented efficiently?

The simple answer is to use regular functions (member or non-member) inlined to call the

BLAS. For example, for the operationy = y + ATx, one might provide a function like

add to multiply transpose(A,x,&y); . It is trivial to implement such a function

280

Function Call

y += alpha * A’ * x y � AT x# # # # # # # # # # #
V

z}|{
p S t M t V (&y, alpha,

z }| {
A, trans, x) =) Vp StMtV(&y,alpha,A,trans,x)

Function Prototype
void Vp StMtV(Vec* vs lhs, double alpha

, const Mat& gms rhs1, BLAS Cpp::Transp trans rhs1

, const Vec& vs rhs2);

Figure E.1. Example of the linear algebra naming convention fory+ = �ATx
to call the BLAS with no overhead if a good inlining C++ compiler is used. The problem

with using functions is that it is difficult to come up with good names that users can remem-

ber. For example, the above operation has been calledBlas Mat Vec Mult(...) in

LAPACK++ [91], vm multadd(...) in Meschach++ [95], andmult(...) in MTL

[73]. Even knowing the names of these functions is not enough. You must also know the

order the arguments go in and how are they passed.

Convention for specifying function prototypes

Here we consider a convention for constructing C++ function prototypes. The function

prototypes are constructed according to this convention where the name of the function and

the order of the arguments is easily composed from the mathematical expression itself. To

illustrate the convention, consider the operationy = y+�ATx. First, rewrite the operation

in the formy+= �ATx (this is well understood by C, C++ and Perl programmers). Next,

translate into Matlab-like notation asy += alpha*A’*x (except Matlab does not have

the operator+=). Finally, for Vec objectsy andx and aMat objectA, the function call

and its prototype are shown in Figure E.1. The typeBLAS Cpp::Transp shown in

this function prototype is a simple C++enum with the valuesBLAS Cpp::trans or

BLAS Cpp::no trans .

281

Operation Character (Lower Case)

=(assignment,equals) (underscore)

+=(plus equals) p

+(addition,plus) p

- (subtraction,minus) m

* (multiplication,times) t

Operand Type Character (Upper Case) Argument(s)

Scalar S double

Vector V (rhs)const Vec&

(lhs)Vec*

Matrix M (rhs)const Mat&, Transp

(lhs)Mat*

Figure E.2. Naming convention for linear algebra functions in

C++

Figure E.2 gives a summary of this convention. Given this convention, it is easy to go

back and forth between the mathematical notation and the function prototype. For example,

consider the following function call and its mathematical expression:

Mp StMtM(&C, alpha, A, no trans, B, trans)=)C+= �ABT
One difficulty with this convention is dealing with Level-2 and Level-3 BLAS that have

expressions such as:C = � op(A) op(B) + �|{z}
?

C (xGEMM)

Given� 6= 1 we can not simply rewrite the above BLAS operation using +=. To deal

with this problem,� is moved to the end of the argument list and has a default value of 1.0

as shown below:

282

Mp StMtM(&C, alpha, A, trans A, B, trans B , beta| {z }
default to 1.0

)

Only exact equivalents to the Level-2 and Level-3 BLAS need be explicitly imple-

mented (i.e.Vp StMtV(...) andMp StMtM(...)). Functions for simpler expres-

sions can be generated automatically using template functions. As an example, consider

the following linear algebra operation and its function call:y = Ax (xGEMV! y = � op(A)x + �y)=)
V MtV(&y, A, no trans, x)

In the above example, the template functionV MtV(...) can be inlined to call

Vp StMtV(...) which in turn can be inlined to call the BLAS functionDGEMV(...) .

The use of these automatically generated functions makes the application code more read-

able and also allows for specialization of these simpler operations later if desired. The

implementation of the above template functionV MtV(...) is trivial and is given below:

template<class M_t, class V_t>

inline void V_MtV(V_t* y, const M_t& A, BLAS_Cpp::Transp trans_A, const V_t& x)

{

Vp_StMtV(y, 1.0, A, no_trans, x, 0.0);

}

Longer expressions such asy = �ATx+Bz are easily handled using multiple function

calls such as:y = �ATx+Bz=)
V StMtV(&y, alpha, A, trans, x);

Vp MtV(&y, B, no trans, z);

As stated above, only the base BLAS operationsVp StMtV(...) (e.g.xGEMV(...))

andMp StMtM(...) (e.g. xGEMM(...)) must be implemented for the specific vector

and matrix typesVec andMat . For example, if these are simple encapulations of BLAS

compatible serial vectors and matrices (e.g. TNT style) then the call the the BLAS func-

283

tions can be written as template functions for all serial dense vector and matrix (column

oriented) classes. For example:

template<class M_t, class V_t>

inline void Vp_StMtV(V_t* y, double alpha, const M_t& A, BLAS_Cpp::Transp trans_A

, const V_t& x, double beta = 1.0)

{

DGEMV(trans_A == no_trans ? ’N’ : ’T’, rows(A), cols(A), alpha

,&A(1,1), &A(1,2) - &A(1,1), &x(1), &x(2) - &x(1), beta

,&(*y)(1), &(*y)(2) - &(*y)(1));

}

Of course the above function would also have to handle the cases whererows(A)

and/orcols(A) was 1 but the basic idea should be clear. By callingrows(...) and

cols(...) as nonmember functions, they can be overloaded to call the appropriate

member functions on the matrix object since there is not standard.

WhenVec andMat are polymorphic types we can use a trick to implementVp StMtV(...)

andMp StMtM(...) using member functions. For example:

class Vec { ... }

...

class Mat {

public:

virtual void Vp_StMtV(V_t* y, double alpha, BLAS_Cpp::Transp trans_A

, const V_t& x, double beta) const = 0;

...

};

...

inline void Vp_StMtV(Vec* y, double alpha, const Mat& A, BLAS_Cpp::Transp trans_A

, const Vec& x, double beta = 1.0)

{

A.Vp_StMtV(y,alpha,trans_A,x,beta);

}

Using these inlined non-member functions there is no extra overhead beyond the in-

avoidable virtual function calls. In this way there is consistent calling of linear algebra

operations irregardless whether the vector and matrix objects are concrete or abstract.

284

Conclusions

In summary, this convention makes it easy to write out correct calls to linear algebra oper-

ations without having to resort to complex operator overloading techniques. After all, the

main appeal for operator overloading is to make it easy for users to remember how the call

linear algebra operations and to make written code easier to read. The convention described

in this paper meets both of these goals and also results in code that is easy for novice C++

developers to understand and debug. Debugging code can easily take longer than writing it

in the first place. When concrete abstractions of dense linear algebra types are used, it was

shown that these functions do not have to impose any overhead beyond direct BLAS calls

if inlining is used. When polymorphic vector and matrix types are used, inlining to call the

virtual functions also results in no extra overhead.

285

286

F Unified Modeling Language (UML) Quick Reference Guide

The Unified Modeling Language (UML) is a newly standardized graphical language for

Object-Oriented modeling (http://www.omg.org).

UML : Types of Diagrams

Structural / Static Diagrams / Models

• Class Diagrams (Object Diagrams) : Abstractions and relationships

• Package Diagrams : Organizational Units

Dynamic / Behavioral Diagrams / Models

• Interaction Diagrams : Object interactions dur ing scenar ios

• Sequence Diagrams : Stresses sequences of events

• Collaboration Diagrams : Stresses object relationships

• Activity Diagrams (extended flowcharts)

• State (Transition) Diagrams : State specific behavior of a class

287

UML Structural Entities : Classes and Objects

C la s s N a m e

This is a note about this classattribute_name : type = init_value

operation(arg_name:type = init_value)

name
attributes

operations

note
link

note

o b je c t N a m e : C la s s N a m e

attribute_name :value

object name class name

: C la s s N a m e

class name

o b je c t N a m e

object name Object
Object

C la s s N a m e

name Class
C la s s N a m e

operation(arg_name:type = init_value)

name

operations

Class

Class (General Form)

Object (General Form)

UML Structural Diagrams : Class & Object with Relationships

q u a l i f i e r

C la s s 1association

C la s s 2

D e r iv e d C la s s 3

C la s s 4

1

1...*

multiplicity

generalization

dependency

C la s s 5

1...*

1

navigation

composition

S c h o o l

T e a c h e r

1

1...*

class diagram

s o u t h M id d l e : S c h o o l

J e n B o b

: S c h o o l

: T e a c h e r

object diagram
(explicit)

object diagram
(general)

Class Diagram

Object Diagram

qualified
association

288

UML Structural Diagrams : Packages Diagrams

C la s s 1

C la s s 2

1

Package1

1...*

Package Package Diagram

Package1

Package2

Package3

«import»

d e p e n d a n c y

s te r e o t y p e

UML Dynamic Diagrams : Interaction Diagrams

o b je c t 1 : C la s s 1

o b je c t 3

o b je c t 2Cl ient

1: operation1(...) →

1.2: operation1(...) ↓

operation name
direction

1.2.1: operation1(...) →
1.2.1.1: operation2(...) ←

actor

name

sequence number

1.1: operation1(...) →

o b je c t 1 : C la s s 1 o b je c t 2 o b je c t 3

Cl ient

operation1(...)

operation1(...)

operation1(...)

operation2(...)

life line
time

message

message

activation

operation1(...)

c a l l recussion

Collaboration Diagram

Sequence Diagram

289

DISTRIBUTION:

1 Omar Ghattas

Carnegie Mellon University

5000 Forbes Ave.Porter Hall,

Pittsburgh, PA 15213

1 Larry Biegler

Carnegie Mellon University

5000 Forbes Ave., Pittsburgh,

PA 15213

1 George Biros

251 mercer street Courant In-

stitute of Mathematical Sci-

ences New York University

New York, NY 10012

1 Matthias Heinkenschloss

Department of Computational

and Applied Mathematics -

MS 134 Rice University 6100

S Main Street Houston, TX

77005 - 1892

1 Jon Tolle

CB 3180 Smith Building,

University of North Carolina,

Chapel Hill, NC 27599-3180

1 Tony Kearsley

Mathematical and Computa-

tional Science Division Na-

tional Institute of Standards

and Technology Room 375

- North 820 Quince Orchard

Road Gaithersburg, MD 20899-

0001

1 Roger Ghanem

Dept. of Civil Engineering,

John Hopkins University, Balti-

more, MD 21218

1 MS 0321

Bill Camp, 9200

1 MS 9003

Kenneth Washington, 8900

1 MS 1110

David Womble, 9214

1 MS 0316

Sudip Dosanjh, 9233

1 MS 9217

Steve Thomas, 8950

1 MS 9217

Paul Boggs, 8950

1 MS 9217

Kevin Long, 8950

1 MS 9217

Patricia Hough, 8950

1 MS 9217

Tamara Kolda, 8950

1 MS 9217

Monica Martinez-Canales,

8950

1 MS 9217

Pamela Williams, 8950

290

1 MS 0847

Scott Mitchell, 92a11

5 MS 0847

Bart van Bloemen Waanders,

9211

1 MS 1110

Roscoe Bartlett, 9211

1 MS 1110

Andrew Salinger, 9233

1 MS 1110

Roger Pawlowski, 9233

1 MS 1110

John Shadid, 9233

1 MS 0847

Mike Eldred, 9211

1 MS 0819

Tim Trucano, 9211

1 MS 0847

Tony Giunta, 9211

1 MS 1110

Bill Hart, 9214

1 MS 1110

Cindy Phillips, 9214

1 MS 0847

Steven Wojtkiewicz, 9124

1 MS 1110

Mike Heroux, 9214

1 MS 1110

Rich Lehoucq, 9214

1 MS 0316

Curt Ober, 9233

1 MS 0316

Tom Smith, 9233

1 MS 0316

Eric Keiter, 9233

1 MS 0316

Scott Hutchinson, 9233

1 MS 1110

Martin Berggren, 9214

1 MS 0750

Greg Newman, 6116

1 MS 0188

Donna Chavez, 1011

1 MS 0188

LDRD Office, 1011

1 MS 9018

Central Technical Files,

8945-1

2 MS 0899

Technical Library, 9616

1 MS 0612

Review & Approval Desk,

9612

291

