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Abstract

An approach for building energy-stable Galerkin reducedtepmodels (ROMs) for linear hyperbolic or
incompletely parabolic systems of partial differentiabations (PDES) using continuous projection is de-
veloped. This method is an extension of earlier work by tha@s specific to the equations of linearized
compressible inviscid flow. The key idea is to apply to the BREansformation induced by the Lyapunov
function for the system, and to build the ROM in the transfedmariables. For linear problems, the desired
transformation is induced by a special inner product, terthe “symmetry inner product”, which is derived
herein for several systems of physical interest. Connestawe established between the proposed approach
and other stability-preserving model reduction methodgng the paper a review flavor. More specifi-
cally, it is shown that a discrete counterpart of this inn@rdpict is a weighted.? inner product obtained
by solving a Lyapunov equation, first proposed by Rowdéwl. and termed herein the “Lyapunov inner
product”. Comparisons between the symmetry inner prochuttlae Lyapunov inner product are made, and
the performance of ROMs constructed using these inner pteds evaluated on several benchmark test
cases.

Keywords: Reduced order model (ROM), proper orthogonal decompos{f®D)/Galerkin projection,
linear hyperbolic/incompletely parabolic systems, In@@ae-invariant (LTI) systems, numerical stability,
Lyapunov equation.

1. Introduction situation has prompted researchers to develop re
duced order models (ROMs): models constructed

Numerous modern-day engineering problems re- from high—fidelity simulat_ions that retainthe essen-
quire the simulation of complex systems with tens @l physics and dynamics of their corresponding
of millions or more unknowns. Despite improved full order models (FOMs), but have a much lower
algorithms and the availability of massively par- c0mputational cost. Since ROMs are, by construc-
allel computing resources, “high-fidelity” models t!on, small, they can enable uncertaln_ty_ quantlfllca-
are, in practice, often too computationally expen- ion (UQ) as well as on-the-spot decision making
sive for use in a design or analysis setting. The and/or control.

continuing push to incorporate into modeling ef-

forts the quantification of uncertainties, critical to In order to serve as a useful predictive tool, a ROM
many science and engineering applications, canshould possess the following properties: consis-
present an intractable computational burden duetency (with respect to its corresponding high-
to the high-dimensional systems that arise. This fidelity model), stability, and convergence (to the
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solution of its corresponding high-fidelity model). ROM that is stable at finite time even if the solution
The second of these properties, namely numerical energy of the full-order model is growing.
stability, is particularly important, as it is a prereg-
uisite for studying the convergence and accuracy The methods described above deria friori)
of a ROM. It is well-known that popular model re- a stability-preserving model reduction framework
duction approaches known as the proper orthog- that is specific to a particular equation set. There
onal decomposition (POD) method [25; 26; 19] exist, in addition to these techniques, approaches
and the balanced proper orthogonal decompositionwhich stabilize an unstable ROM through a post-
(BPOD) method [31; 23] lack, in general, an processing & posterior) stabilization step applied
priori stability guarantee. In [30], Amsallerat to an unstable algebraic ROM system. Ideally,
al. suggest that POD ROMs constructed for lin- the stabilization is such that it will only minimally
ear time-invariant (LTI) systems in descriptor form modify the ROM. In [5], Amsallemet al. pro-
tend to possess better numerical stability proper- pose a method for stabilizing projection-based lin-
ties than POD ROMs constructed for LTI systems ear ROMs through the solution of a small-scale
in non-descriptor form. Although heuristics such convex optimization problem. In [39], a set of lin-
as these exist, it is in general unknownpriori ear constraints for the left-projection matrix, given
if a ROM constructed using POD or BPOD will the right-projection matrix, are derived by Boatl
preserve the stability properties of the high-fidelity al. to yield a projection framework that is guar-
system from which the model was constructed. anteed to generate a stable ROM. An approach
Theredoesexist a model reduction technique that for stabilizing unstable ROMs for LTI systems,
has a rigorous stability guarantee, namely balancedtermed ROM stabilization via optimization-based
truncation [29; 10]; however, the computational eigenvalue reassignment, was proposed by Kalash-
cost of this method, which requires the computa- nikova et al. in the recent work [56]. In this
tion and simultaneous diagonalization of infinite approach, the unstable eigenvalues of an unstable
controllability and observability Gramians, makes ROM are modified through the numerical solution
balanced truncation computationally intractable for of a constrained nonlinear least-squares optimiza-
systems of very large dimensions (i.e., systems tion problem formulated such that the error in the
with more than 10,000 degrees of freedom [24]).  stabilized ROM output is minimal. In [40], a ROM
stabilization methodology that achieves improved
The importance of obtaining stable ROMs has been accuracy and stability through the use of a new set
recognized in recent years by a number of authors. of basis functions representing the small, energy-
It is shown by Patera, Veroy and Rozza in [27; 28] dissipation scales of turbulent flows is derived by
that a stable ROM can be constructed using the re-Balajewiczet al. In [35], Zhuet al. derive some
duced basis method. In [24], Rowley al. show large eddy simulation (LES) closure models for
that Galerkin projection preserves the stability of POD ROMs for the incompressible Navier-Stokes
an equilibrium point at the origin if the ROM is equations, and demonstrate numerically that the in-
constructed in an “energy-based” inner product. In clusion of these LES terms yields a ROM with in-
[6; 7], Baroneet al. demonstrate that a symmetry creased numerical stability (albeit at the sacrifice of
transformation leads to a stable formulation for a consistency of the ROM with respect to the direct
Galerkin ROM for the linearized compressible Eu- numerical simulation (DNS) from which the ROM
ler equations [6; 7] with solid wall and far-field is constructed).
boundary conditions. In [1], Sermet al. propose
applying the stabilizing projection developed by In this article, several approaches to building stable
Baroneet al. in [6; 7] to a skew-symmetric sys- ROMSs for linear systems, both in the continuous as
tem constructed by augmenting a given linear sys- well as in the discrete projection setting, are pre-
tem with its adjoint system. This approach yields a sented, connected and extended. The article has

2



a review flavor, but contains several new contribu-
tions, most notably the following:

e The energy-stable continuous projection
ROM method developed specifically for the
equations of linearized compressible inviscid
flow in [6; 7] is extended to generic systems
of PDEs of the hyperbolic or incompletely
parabolic type.

A stability preserving symmetry inner prod-
uct is derived for several physical systems
(the wave equation, the linearized shallow
water equations, the linearized compressible
Euler equations, the linearized compressible
Navier-Stokes equations).

Connections between the proposed energy-
stable continuous projection method and other
model reduction techniques with a pri-

ori stability guarantee, e.g., a discrete projec-
tion approach involving a Lyapunov equation-
based inner product introduced by Rowlkty

al. in [24], are established using the concept
of energy stability.

Numerical studies evaluating the performance
of ROMs constructed in the energy inner
products described herein are performed.

The remainder of this paper is organized as fol-
lows. The first part consists of some preliminaries:
projection-based model reduction (in particular,
the POD/Galerkin method) is overviewed (Sec-
tion 2), and several notions of stability (energy-
stability, Lyapunov stability, asymptotic stability,

exponential stability, time-stability) are defined
(Section 3). Attention is then turned to the con-
struction of energy-stable ROMs for linear systems
of PDEs using continuous projection (Section 4).
The energy-stability preserving model reduction

approach developed specifically for the equations
of linearized compressible inviscid flow in [6; 7]
is generalized. Examples of this inner product are
given for several systems of physical interest, and
some numerical results are presented. Next, it is
shown that a certain transformation applied to a
generic linear hyperbolic or incompletely parabolic
set of PDEs and induced by the Lyapunov function
for these equations will yield a Galerkin ROM that
is stable forany choice of reduced basis. It is then
shown that, for many PDEs, the desired transfor-
mation is induced by a special weighted inner
product, termed the “symmetry inner product”. It
is also demonstrated that a discrete weighteh-

ner product first derived by Rowlest al. in [24]
and termed herein the “Lyapunov inner product” is
a discrete counterpart of the symmetry inner prod-
uct. The weighting matrix that defines the Lya-
punov inner product can be computed in a black-
box fashion for a stable LTI system arising from the
discretization of a linear system of PDESs in space.
Numerical studies of POD ROMs constructed in
the Lyapunov inner product are performed. A uni-
fying summary of the energy-stability preserving
model reduction approaches described within this
paper is given Section 6, along with some conclu-
sions. It is anticipated that this discussion will aid
the reader in selecting the most appropriate model
reduction methodology for his/her application.

2. Projection-based model reduction

In this section, several approaches to building
projection-based reduced order models are re-
viewed. Attention is restricted to LTI systems.
A system is called time-invariant if the output re-
sponse for a given input does not depend on when
that input is applied [15].

At the continuous level, an LTI system can be rep-

IFor concreteness, itis assumed herein that the reduced batesented by a PDE (or system of PDESs) of the form

sis is constructed via the POD method, as the POD is a popular
method for computing reduced bases that is feasible even for

very large systems but can give rise to unstable ROMs. It is
emphasized that the energy-stability results discussegirhe
hold for any choice of reduced basis, not just the POD basis,
however.

3

X(t) Z(x(1)) + Z(u(t)),
y(t) Zo(x(1)),
in Q. Here,t denotes timex € R" is called the
state vectoru € RP represents the vector of con-
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trol variablesy € RYis the measured signal or out- and are assumed to have full column rank. In the

put, Q is a bounded domain, and theé symbol case thatly # @y, the projection is referred to as
denotes differentiation with respect to time, i.e., a Petrov-Galerkin projection. Otherwise W, =
X= %. The operatorZ : R" — R" is a smooth lin- @\, the projection is referred to as a Galerkin pro-
ear spatial-differential operator, a4, : RP — R" jection. This terminology is introduced here as it
and % : R" — RY are smooth linear mappings. will be shown later that the energy-stable model
The abstract operatot¥’, % and %, are intro- reduction approaches derived in this work are ef-

duced to keep the discussion as general as possiblefectively Petrov-Galerkin methods.
and used in subsequent analysis.

Suppose the PDE system (1) has been discretized2.1. Calculation of the reduced bases (Step 1)
in space using some numerical scheme, e.g., the
finite element method. The result will be a semi- There exist a number of approaches for calculating

discrete LTI system of the form: the reduced basis modeStép lof the model re-
. duction), e.g., the POD method [25; 26; 19], the
xn(t) = Axn(t)+Bup(t) @ BPOD method [31; 23], the balanced truncation
Yon(t) = Cxn(t). method [29; 10], the reduced basis method [27;

28]; also methods based on goal-oriented bases
[21], generalized eigenmodes [38], and Koopman
modes [41]. Attention is restricted here to the POD
basis, but it is noted that the energy-stability re-
sults derived in this paper hold f@ny choice of
reduced basis. The reason for the choice of the
The general approach to projection-based modelPOD reduced basis is two-fold. First, the POD
reduction consists of three steps, described below. is a widely used approach for computing efficient
bases for dynamical systems. Moreover, ROMs
constructed via the POD/Galerkin method lack in

Here,xy € RN is the discretized state vectarp €
RP is the discretized vector of control variables,
andyon € R is the discretized outpus € RN*N,

B € RN*P andC € RO*N are constant matrices (in
particular, they are not functions of tinie

Step 1: Calculation of reduced trial and test bases,

c(lelrl;oted“t')ytbhfp: g t‘g]; e.c't.i\;el %éa)cr? 2?;':3"; general ana priori stability guarantee (meaning
With1|;ﬂ <<7N M P Y. ’ POD/Galerkin ROMs would benefit from stability-

preserving model reduction approaches such as

Step 2: Approximation of the solution to (1) by those developed herein)

X(t) ~ iXM'i (1)@ = Pyxw (1), (3) Discussed in detail in Lumley [16] and Holmes

i= al. [19], POD is a mathematical procedure that,
given an ensemble of data and an inner product, de-
noted generically by-, -), constructs a basis for the
ensemble. This basis is optimal in the sense that it
describes more energy (on average) of the ensem-
ble in the chosen inner product than any other lin-
ear basis of the same dimensibh The ensemble
{xk:k=1,...,K} is typically a set oK instanta-
The result of this procedure is a “small” (size neous snapshots of a numerical solution field, taken
M << N) dynamical system that, for a suitable for K values of a parameter of interest, okatlif-
choice of reduced bases, accurately describes theerent times. Mathematically, POD seeks ldR
dynamics of the full order system for some set of dimensional 1 << K) subspace spanned by the
conditions. The reduced baség, ¢ RN*M and set{@;} such that the projection of the difference
W, € RN*M gre functions of space but not time, between the ensembt& and its projection onto the
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wherexy i (t) are the unknown ROM coefficients or
modal amplitudes, to be determined in solving the
ROM.

Step 3: Substitution of the approximation (3) into
the governing system ((1) or (2)) and projection of
this system onto the reduced test basis.



reduced subspace is minimized on average. It is2.3. Projection (Step 3)
a well-known result [6; 19; 34; 33] that the solu-
tion to the POD optimization problem reduces to
the eigenvalue problem

There are two approaches for performiBgep 3of

the model reduction: continuous and discrete pro-

jection. These approaches are described, as well
Ro=\0o, (4) as compared and contrasted, in the present subsec-

tion. Stability-preserving methods for constructing

where R is a self-adjoint and positive semi- ROMs using these approaches will be detailed in

definite operator with itéi, j) entry given byR;; = Sections 4 and 5.

% (x,x)) for 1 <i, j <K. Ifitis assumed thaR is

compact, then there exists a countable set of non- 3 1 - \odel reduction via continuous projection

negative eigenvaluey with associated eigenfunc-

tions @,. It can be shown [19; 16] that the sethf ~ In the continuous projection approach [6; 7], the

eigenfunctions, or POD modegp; :i=1,...,M} continuous system of PDEs (1) is projected onto

corresponding to thM largest eigenvalues & is @ continuous reduced test bagigg;}M; € R" in

precisely the desired basis. This is the so-called @ continuous inner produgt,-), for example, the

“method of snapshots” for computing a POD basis usualL? inner product

[25].
(X<1>7X(2>) _ / xOTx2dQ, ®)
Q

2.2. Approximation of solution in reduced basis

where thexw(t) are the unknown ROM co-
(Step 2)

efficients or modal amplitudegso that xJ, =
( Xm1, -+, Xmm )), to be determined in solv-

Once the reduced basis is computed, the solutloning the ROM dynamical system (derived below).

X(t) is approximated as a linear combination of the
reduced basis modes (3$tép 2. Given this ap-  Substituting (3) into (1), the following is obtained
proximation, the following error formula can be M . M

shown for the POD [19; 34]: YitiXmii(t) @, Z(3itwmi () @)

+ Z(u(t)), 9)
LKl M 2 yom(t) = Z(EMixmit)e),
- X -3 (X,0) Q|| = M, (5
K i; gl( ¢p,) ?i k:%H o ©) whereyqgu(t) is the reduced approximation of the
output.

_di 1 K
whereJ = dim ({x e X }) andwherel; > ... > Next, a reduced test bas{gy;}M; € R" is intro-
Aj > 0 are the positive eigenvalues of the operator duced, and the system of PDEs (9) is projected onto
R (4). the reduced test basis modgs for j = 1,2,...,M

Typically, the size of the reduced basis is chosen I the inner product:, -) to yield

based on an energy criterion. Thathéjs selected

Mosi(t) (W), 9) = 2 (Zhomi) e,
to be the minimum integer such that z'*lXM’()(wJ cp,) Y, (271XM,()¢P))

+ (W) %),
Epop(M) > tol, (6) yom(t) = Z(EMixwmit)e), 10
10
where 0< tol < 1 represents the snapshot energy for j =1,2,...,M. Typically, the reduced trial and
represented by the POD basis, and test baseg, and y); are chosen to be orthonormal
_ ZiM:l)\i 2 . . 2. .
EPOD(M) = = (7) Weighted variants of the“ inner product are considered

=K 5 Veigh
Zizl Ai later in this work.



in the inner product-,-), so that(y;, ;) = &,
whered; denotes the Kronecker delta function. In-
voking this property, as well as the linearity prop-
erty of the operators? and.%,, (10) simplifies to

XM.j(t) = XiM:]_XM.i(t)(quag(‘pi))
+ (@), Z(u()), (11)
you) = I¥ixmi(t)Zo(@),

for j =1,2,...,M. The equations (11) define a set
of M time-dependent ODEs for the modal ampli-
tudesxy i (t) in (3).

2.3.2. Model reduction via discrete projection

In the discrete projection approach, the FOM ODE
system (2) (the PDE system discretized in space)

2.3.3. Continuous vs. discrete projection

In the majority of applications of reduced order
modeling, the discrete projection approach is em-
ployed in constructing the ROM. This discrete ap-
proach has the advantage that boundary condition
terms present in the discretized equation set are of-
ten (depending on the implementation) inherited by
the ROM; that is, the ROM solution will satisfy the
boundary conditions of the FOM. Certain proper-
ties of the numerical scheme used to solve the full
equations may be inherited by the ROM as well.
The discrete approach can be black-box, at least
for linear systems of the form (2): it operates on
the matriced\, B andC, so that access to the high-
fidelity code that was used to generate these matri-
ces or the governing PDEs is not required provided
these matrices can be written out from the high-

is projected onto a discrete reduced test basis in afidelity code. In contrast, the continuous projection

discrete inner product. Suppose this discrete inner
product is the following weightedd? inner product:

).

whereP € RN*N is a symmetric positive-definite
matrix. Let®y € RN*M andW), € RN*M denote

(1) (2

(xN XN )= x,(\ll)T Px,(\,z) (12)
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the reduced trial and reduced test bases for (2), re-

spectively. Assume these matrices have full col-
umn rank, and are orthonormal in the inner product
(12), so thaWP|,P®y = I\, wherely denotes the

M x M identity matrix. The first step in construct-
ing a ROM for (2) using discrete projection is to
approximate the solutioxy (t) by (3). Substituting
(3) into (2), and projecting this system onto the re-
duced test basis, the following x M LTI system

is obtained:

Xm(t) = AMXM(t)—I—BMup(t), (13)
yom(t) = Cmxm(t),
where
Ay = W, PADy,
By = WPB, (14)
Cu = Coy,

and whereygw is a reduced approximation of the
output.

approach is tied to the governing PDEs — the con-
tinuous problem (1) needs to be translated to the
discrete setting, e.g., by interpolating the reduced
basis modes and evaluating the continuous inner
products in (11) using a numerical quadrature [6].

Although the continuous approach is inherently an

embedded method, its similarity to spectral numer-

ical approximation methods allows the use of anal-

ysis techniques employed by the spectral methods
community [37; 7].

Which of the two projection approaches described

above (continuous vs. discrete projection) is pre-

ferred depends on the application and the type of
model reduction approach sought (e.g., embedded
vs. black-box). The discussion in the remainder of

this paper is intended to aid the reader in selecting
one of these approaches for his or her problem of
interest.

Note that, regardless of which projection approach
is used to build the ROM, the ROM dynamical sys-
tem will have the form (13), as (11) has this form
when written as a matrix problem. The solution to
the ROM is obtained by advancing (13) forward
in time using a time-integration scheme. Since
the system considered here is linear, the projection
terms in (11) are not time-dependent. Hence, these



terms can be pre-computed and stored in the of- generality, the following scalar initial value prob-
fline stage of the model reduction — in particular, lem, known as a Cauchy problem [20]:
they need not be re-computed at each time step of

the online time-integration stage of the ROM. Xg))) = ;%(X(t)% t>0 (15)
X =f.

Here,.Z denotes a linear differential operator with
3. Stability definitions constant coefficients (e.g., the linear operator in
(1)), f € R"is the initial condition, and(t) € R"
As stated in Section 1, one of the objectives of this IS the system state at timie> 0. The operatorZ’
paper is to present and establish connections bedS said to be semi-bounded with respect to an inner
tween some model reduction techniques that havePreduct(-,-) if it satisfies the following inequality
an a priori stability guarantee. Before beginning for all sufficiently smooth functions L2
this discussion, some general definitions of stabil-
ity that will be used in subsequent analysis are re-

viewed. wherea € R. The following theorem (quoted from
[20]) states the conditions under which the Cauchy
problem (15) is well-posed.

Theorem 3.1.1 [20]: The Cauchy problem (15)
The concept of energy-stability originated in the is well-posed if and only if the operataf’ is
literature involving the numerical analysis of spec- semi-bounded with respect to an inner produgh
tral and finite difference discretizations to time- which corresponds to a norm equivalent to tife
dependent PDEs [48; 8; 12]. It has also appeared innorm.

tZIeZGalet:kln ft'rr:'te element T:tZOd Ilteratulre, ecigt” Consider now a Galerkin approximation to (15),
[4; 2], where the energy-method was employed to denoted here byy, and satisfying

derive stable Galerkin methods for hyperbolic con-
servation laws. It is well-known that physical sys- (*n, @) = (L (Xn), @), (17)
tems admit a certain energy structure. The basic
idea behind building energy-stable ROMs is that a for all ¢ sufficiently smooth, and suppos#’ is
ROM constructed for such systems should preservesemi-bounded with respect g-). Setting@ = xn
this energy structure. Among the authors who have in (17) leads to the following energy estimate for
explored the concept of energy-stability in the con- the Galerkin approximation:
text of model reduction are Rowlest al. [23] and dEy
Kwasniok [3]. In [23], Rowleyet al. introduced —— < 20Ey, (18)

. ) - dt
a family of “energy-based” inner products for the
purpose of constructing stable Galerkin ROMs for where Ey = 1||xn||? denotes the energy of the
fluid problems. In [3], Kwasniok recognized the Galerkin approximatiorxy, and||- || is the norm
role of energy conservation in ROMs of nonlinear, induced by the inner produ¢t, -). Applying Gron-
incompressible fluid flow for atmospheric model- wall’'s lemma ((71) in Appendix A.1) to (18) gives
ing applications, and proposed a Galerkin projec- the inequality
tion approach in which the ROM conserves turbu- .
lent kinetic energy or turbulent enstrophy. [Ixn ()] < €2[xn (0)]]. (19)

(W, 2w) < a(w,w), (16)

3.1. Energy-stability

The concept of energy-stability will be introduced The result (19) says that the energy of the numeri-
in the context of a specific canonical model prob- cal solution to (17) is bounded in a way that is con-
lem, then generalized. Consider, without loss of sistent with the behavior of the energy of the exact
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solution to the original differential equation (15),
i.e., the numerical solution is energy-stable. This
definition can be extended to a ROM LTI system of
the form (13).

Definition 3.1.2 (Energy-Stability [12]): A ROM
LTI system (13) is called energy-stable if

Ew(t) < €'Ew(0), (20)
for some constantr € R, where
1
Em = EHXMHZ (21)

is the system energy of the ROM numerical solu-
tion xy to (13), and|- || is a norm equivalent to the
L2 norm.

In general, a ROM LTI system (13) is not guar-
anteed to satisfy Definition 3.1.2 even if the PDE
system (1) is well-posed and the full order LTI sys-
tem arising from the discretization of these PDEs
in space (2) is stable. However, it is often possi-
ble to ensure (20) holds for the ROM LTI system

through a careful selection of the reduced trial and

test base®y andW,, and/or the inner product in
which the projection step of the model reduction is
performed (Sections 4 and 5).

3.2. Lyapunov, asymptotic and exponential stabil-
ity

The concept of energy-stability can be related to

classical notions of stability, namely Lyapunov sta-
bility, asymptotic stability and exponential stabil-
ity. Consider an autonomous nonlinear dynamical
system:

X =f(x),

x € R", (22)

wheref € R" is a given function, subject to some
initial condition x(0) = Xp. Let xe be an equilib-
rium point of the system (22), meanirfigxe) = 0
forallt > 0.

Definition 3.2.1 (Lyapunov, asymptotic and expo-
nential stability) [15]: The equilibrium poinixe of
(22) is said to be:

(a) Lyapunov stableif Ve > 0 there exists a
d(&) > 0 such that if[|x(0) — xe|| < d, then
[IX(t) —Xe|| < € ¥Vt > 0.

(b) Asymptotically stabldf there exists ad >
0 such that if [|x(0) — Xxe|| < 9, then

(c) Exponentially stablef there exista,3,0 >
0 such that if|[x(0) — Xe|| < &, then||x(t) —
Xe|| < a|x(0) — xe||e Pt Wt > 0.

In other words, if an equilibrium point of (22) is
Lyapunov stable, solutions within a distante- O
from it will remain a distances > 0 from it for

all time; if it is asymptotically stable, solutions
within this distance will eventually converge to the
equilibrium; if it is exponentially stable, the solu-
tions will not only converge, but at an exponen-
tial rate. In general, exponential stability implies
asymptotic stability, and asymptotic stability im-
plies Lyapunov stability.

The following theorem, known as the Lyapunov
stability theorem [15], can be used to characterize
the stability of the stability of an equilibrium point
Xe for (22).

Theorem 3.2.2 (Lyapunov Stability Theorem) [15]:
LetV be a non-negative function di” and letV
represent the time derivative ®f along trajecto-
ries of the system dynamics (22), i.¥.~ 94X =

9V f(x). LetB, = By (xe) be a ball of radius around
an equilibrium pointxe of (22). If there exists an

r > 0 such thaV is positive definite an¥ is neg-
ative semi-definite for alk € By, thenX, is Lya-
punov stable.

The functionV defined in Theorem 3.2.2 above is
known as the Lyapunov function for the system
(22). Observe that the numerical energy de-
fined in (18) satisfies the definition of a Lyapunov
function (Theorem 3.2.2) if (23) holds. Thus, if an
LTI ROM (2) is energy-stable witlw = 0 (Defini-
tion 3.1.2), then the ROM is Lyapunov stable. In
Section 5, it is shown how Theorem 3.1.2 can be
used to define a stability-preserving inner product
for building stable ROMs for (2).



The stability concepts introduced above simplify
for the specific case of LTI systems of the form
(2). It is straightforward to verify that for linear
systems, asymptotic and exponential stability are
equivalent. Moreover, the following result holds.

Theorem 3.2.3 (Asymptotic Stability Theorem for
LTI Systems) [15]:An LTI system (2) is asymp-
totically (and exponentially) stable if and only if
all the eigenvalues oA have strictly negative real
parts.

Theorem 3.2.3 is commonly used to check numer-
ically (a posterior) the stability of an LTI system
(2) or a ROM (13) constructed for an LTI system
(Section 5.2).

3.3. Time-stability

Another form of stability is what is referred to

herein as “time-stability”. Essentially, a system
that is time-stable is one whose solution will not
“blow up” (i.e., produce an unbounded output)
given a finite input and/or non-zero initial con-

dition. For a general nonlinear system, expo-
nential stability implies time-stability, but time-

stability is a stronger notion than asymptotic stabil-
ity [54]. Since exponential and asymptotic stability
are equivalent for LTI systems, asymptotic stability
doesimply time-stability in this special case.

The concept of time-stability can also be defined in
terms of the system energy.

Definition 3.3.1 (Time-Stability [12]): A ROM
LTI system (13) is called time-stable if the numer-
ical energy of the ROM solution is non-increasing
in time for an arbitrary time step, i.e., if

dEN<

W_O.

(23)

It is straightforward to demonstrate that a time-

inequality, En(t) < En(0). Thus, (20) holds with
a=0.

In general, the converse of the above statement
does not hold: energy-stability does not necessar-
ily imply time-stability. This is to be expected.
The practical implication of a ROM possessing the
energy-stability property is that its numerical so-
lution is bounded in a way that is consistent with
the behavior of the exact solutions of the govern-
ing equations (1). It is possible in general that the
governing PDEs support instabilities. In this case,
an energy-stable ROM may possess unbounded so-
lutions ast — oo, as (it can be argued) it should, if
these unbounded solutions are physical.

4. Stable model reduction for LTI systems via
continuous projection

In this section, an approach for building energy-
stable ROMs via continuous Galerkin projection is
developed for PDE systems of the form:

oq

0%

0%q

A+A 9%0%;

—Kij +Gq=H. (24)

In (24), g € R" denotes a vector of unknowns,

f € R" is a source termA;, Kj; andG arenx n
matrices, where X i, j < d, with d denoting the
number of spatial dimensions, and: N. The ma-
tricesAj, Kj; andG could be a function of space,
but they are assumed to be steady (not a function
of time t). The so-called Einstein notation (im-
plied summation on repeated indices) has been em-
ployed in (24) and subsequent expressions. Most
conservation laws, as well as many PDEs of phys-
ical interest, can be written in the form (24). If
Kij =0Vi, j, (24) is known as a hyperbolic system
[14]. An example of a system of this form is the
linearized compressible Euler system. A method
for constructing energy-stable ROMs specifically
for the compressible Euler system using continu-

stable scheme is also energy-stable. Suppose amus Galerkin projection was presented in [6; 7],

LTI ROM (13) is time-stable, so the ROM solu-
tion satisfies the energy estimate (23). Applying
Gronwall's lemma ((71) in Appendix A.1) to this

9

and is extended to generic systems of the form (24)
herein. Otherwise, iK;; # 0, (24) is known as an
incompletely parabolic system [14]. A canonical



example of such a system is the linearized com-

pressible Navier-Stokes system.

4.1. A stabilizing transformation
Suppose there exists a transformation

T: R" — RN

q — Vv (25)

such that in the new variables the system (24)
has the form

ks 9V 9%v

ov
S
A 1 9%0x;

"% +GSv =15,

(26)

where:

e Property 1: The matricesA> are symmetric
forall 1<i<d.

e Property 2: The matricesKﬁ are symmetric
forall1<i,j<d.

e Property 3: The augmented viscosity matrix:

K% K34
KS= : : (27)
K& K&d

is positive semi-definite.

Theorem 4.1.1:Suppose a ROM for (26) is con-
structed using continuous Galerkin projection in
the L?(Q) inner product. Suppose the matrices in
(26) satisfyProperties 1-3above. Suppose also

that the reduced basis modes satisfy the bound-

ary conditions of the full order system, or they
are implemented weakly in the ROM in a stability-
preserving waj. Letvy denote the ROM solution
to (26). Then the ROM is energy-stable with en-
ergy estimate

Tll2 < &7 v (-,

O)ll2,  (28)

HVM("

3The reader is referred to [7] for a discussion of stability-
preserving weak implementations of boundary conditioms fo
ROMs constructed using the continuous projection approach
In general, a weak implementation of boundary conditions
will be stability-preserving provided the boundary coiatis
are well-posed.
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wherefs is an upper bound on the eigenvalues of
the matrix

dAS %K}
_|_

0% | 0%0X;
Moreover, this energy-stability result holds my
choice of reduced basis.

BS= — 2GS,

(29)

Proof. To prove energy-stability of a ROM con-
structed for (26), it is necessary to bound the en-
ergy of the ROM solution to (26) witf® = 0:

d _1d 2
d—E{v' —?gHVMHz
:za(VM,VM)
o ov
= VM’z?_tM
_ Sov s 9%
= (vm, —A; 17X4M +KI] 5x,5¥ Gs\lm)
_ T ASO TS 92
——fQV A; ﬁv)g"dQ—i-fQV KIJ M\é")f 0Q

(30)
Each of the terms in (30) will be bounded sepa-
rately. First,

— Jo Vi, A?‘;VXM Q

T2 jQ X (VT A'SVM) dQ
zfQ Vi dA' vmdQ
janMA- nivpdr
+j§' Jo V-,\r/l %Q'SVNMQ
(31)

In (31), the property that each of the matridlq%
is symmetric has been employder¢perty 1. The
symboll” has been used to denote the boundary of
Q, 0Q.

Next, note that;

S 9% _ 0 S v K3 vy
Kiiaxox, = ox (Kija—x“f) - (d—a_>
(32)
Then,
92 P
fQVTKﬁﬁ)q:;ﬁj 2Q = Jq Mz?x,( ﬁa&“ﬂ)dg
oK ij 0
_fQ -I{-/I dxlj ﬁ\;(,\rl Q.
(33)

Again, each of the two terms in (33) will be
bounded separately.

Jovind (K5 %) do KS M40

= —Ja

IJ dx
+ oo VK ‘f,VX nidr

g T de
< [30Vm K3 aXMnldI'

(34)



provided the matrix (27) is positive semi-definite equations, the linearized compressible Euler equa-
(Property 3. tions, the linearized compressible Navier-Stokes
equations), the property th&t = 0 and theA; and

Ki;j are spatially-constant will in general hold if the

1 oK base flow is spatially uniform.
_ide_XJ V;\r/l % VM> dQ

Now for the second term in (33):

K3
vl 2o ov _
= JoV H0Q =

M7ox 9x;
1 9°K i
+_fQV1l\;I amxJ VMdQ 4.2. Stability-preserving “symmetry inner prod-
d 17 . .
=1 [oV] ZM am' njvmdr uct” and Petrov-Galerkin connection
+3 JaVhaxan x0x; o VmdQ. A key property of systems of the form (24) is that

S (35) they are symmetrizable [8; 6; 7]; that is, it is pos-
In (35), the property that th& matrices and  gjple to derive a symmetric positive-definite matrix
therefore their derivatives are symmetrlc has beeny sych that:
employed Property 2.
_ _ _ e Property I: The matrice$dA; are symmetric
Finally, (31) and (33) are substituted into (30). The forall 1<i<d.

boundary integral terms may be neglected if the re-
duced basis modes satisfy the boundary conditions e Property 2: The matriceHKj; are symmet-
or the boundary conditions have been implemented ricforall1<i,j<d.

in a stability-preserving way. The following bound e Property 3: The augmented viscosity matrix:

is obtained:
IAP HK ... HK
58 lvw1 _%vaTg 5 vdo ) " 1d
K" = L : (38)
+3 jQVM 0x.dx awax ymdQ (36) HKg1 ... HKgqg
=3Jo VT BSvmdQ, is positive semi-definite.

whereBSis given by (29). Applying Gronwall’sin-  SinceH is symmetric positive-definite, the follow-
equality ((71) in Appendix A.1) to (36), itis found ing defines a valid inner product:
that:

D q®@ = OTHa®@

(Tl < 57w (- 0)fl2. (37) (6:07) g = fp6*Ha "0 (@9
wherefs is an upper bound on the eigenvalues of Following the terminology introduced in [6; 7],
the matrixBS (29). the inner product (39) will be referred to as the
“symmetry inner product”. It is straightforward to
see that the following corollary to Theorem 4.1.1
The proof of Theorem 4.1.1 is one of the new con- holds.
tributions of this article.

O

Corollary 4.2.1: Suppose a ROM for (24) is con-
Note that, ifG = 0in (24) and theA; andK;; ma- structed using continuous Galerkin projection in
trices are spatially-constant, it follows thd¢ = 0 the symmetry inner product (39). Suppdd®per-
in (37). In this case, if the ROM for (24) is con- ties I*-3* hold. Suppose also, as in Theorem 4.1.1,
structed in the variableg, the ROM will be time- that the reduced basis modes satisfy the bound-
stable as well as stable in the sense of Lyapunov, inary conditions of the full order system, or they
addition to being energy-stable. For linearized con- are implemented weakly in the ROM in a stability-
servation laws (e.g., the linearized shallow water preserving way. Let denote the ROM solution

11



to (24). Then the ROM is energy-stable with en-
ergy estimate

1
[lam (Tl .0y < €2 T Jam (-, 0)l [ o). (40)

wheref4 is an upper bound on the eigenvalues of
the matrix

d(HA)
0%

0%(HK ;)
H ij)
B 3.9 2HG.

(41)

Moreover, this energy-stability result holds famy
choice of reduced basis.

Proof. Because of simple linear transformations,
the proof is analogous to the proof of Theorem
4.1.1.

g

Again, in the case thas = 0 and theA; andKj;
matrices are spatially-constant, it will follow from
Corollary 4.2.1 that a ROM constructed in the sym-
metry inner product (39) will be time-stable and
stable in the sense of Lyapunov, in addition to be-
ing energy-stable.

It is interesting to observe that a Galerkin projec-
tion of the governing (24) in the symmetry inner
product (39) is equivalent to a Petrov-Galerkin pro-
jection. Letg; fori =1,...,M denote the reduced
trial basis vector for the solutiog. Performing a
Galerkin projection of the equations (24) onto the
modes@, gives

Jo o H (q +Ai§—2 + Kij %dqxj —I—GQ> dQ
= Jo PcHfdQ,
(42)
for k=1,...,M. Equation (42) is equivalent to a
Petrov-Galerkin projection of the equations (24) in
the regulai_? inner product

: , 9 92
Jo l[l?(- (q +Aia_)?j+KijWaqu+Gq) dQ

43
= [L@TTdQ, *3)

4.3. Examples of stability-preserving transforma-
tion and symmetry inner product for several
physical systems

It is straightforward to derive the matrkt that de-
fines the symmetry inner product (39) for many
problems of physical interest. This matrix has been
derived herein by the authors for several hyperbolic
and incompletely parabolic systems (the wave
equation, the linearized shallow water equations,
the linearized compressible Euler equations, and
the linearized compressible Navier-Stokes equa-
tions), and is given below.

Example 1. Wave Equation

Consider the one-dimensional (1D) wave equation:
(44)

wherea € R denotes the wave speed, amnet ";%.
(44) is a canonical PDE of the hyperbolic type.
This equation can be written as a first order system

., 0q
a=A5. (45)
where
U 0 a2
u 1 0
Remark that if
1 0
H= < 0 a2 > s (47)

the matrixHA is symmetric [32].

Example 2: Linearized Shallow Water Equations

Consider the linearized form of the shallow water
equations:

. oq
q’+Ai—q

Gq =0.
0x;+ g

(48)

where the reduced test basis functions are given byThese equations are obtained from the full (non-

Y, =He,, forallk=1,...,M.
12

linear) shallow water equations by decomposing



the fluid vectorq(x,t) into a steady mean plus an compressible Euler equations take the form (48).

unsteady fluctuation, i.e., In 3D, the convective flux matriced; in the lin-
earized compressible Euler hyperbolic system (48)
q(x,t) =q(x) +4'(xt), (49)  are given by:
and linearizing the full shallow water equations u 0 0 0 ¢
around the steady mean statp If q' = O uO0OO0UDO
(u v, w, @), then the convective flux ma- A;=| 0 Ou o0 0|,
trices in the hyperbolic system (48) in three- - 0 0OuoO
dimensions (3D) are given by: yp 0 0 0 u
_ _ v 0 00O
u 001 v0 00 0 Vv 00¢
Y IO BV V) A= 0 0O VOO (52
0.0 u 0 0 v 0 0 - 0V O
(p00u_ 0O o 0 v 0O yp 0 0 V
w0 00 WO0 0 00
seSun e
- A= 0 0 w 0 ¢
0 0 o w > =
(50) 0 0 -0 wo
0O 0 yp 0O w

where@ denotes the local height of the fluid above
the equilibrium depth, and, v, andw are the com-  Here,y = Cp /Gy is the ratio of specific heats. The
ponents of the fluid velocity vector [32]. Each reader may verify that if the linearized compress-
of the convective flux matrices (50) can be sym- jple Euler system (48) is pre-multiplied by the fol-

metrized by the matrix lowing symmetric positive definite matrix:
® 0 00 p OO0 O 0
0 g 00 0p 0 O 0
H= — 51 —
0 0 ¢ O (1) H=| 0 0 p 0 0 . (53)
0 001 0 0 0 a%yp?p pa?
000 pa2 @)

yp
Example 3: Linearized Compressible Euler Equa-

tions wherea is a real, non-zero parameter to yield the

system, the convective flux matricétA; are all

Consider the linearized compressible Euler equa- symmetric [6; 7].
tions. These equations may be used if a com-
pressible fIl_Jid system can_be described by inviscid, Example 4: Linearized Compressible Navier-
small-amplitude perturbations about a steady-states,[okes Equai

. . guations
mean flow. The equations are obtained from the
full (non-linear) compressible Euler equations by Consider the 3D linearized compressible Navier-
decomposing the fluid vectay(x,t) into a steady  Stokes equations. These equations are appropriate
mean plus an unsteady fluctuation (49) and lin- when a compressible fluid system can be described
earizing these equations around the steady mearby viscous, small-amplitude perturbations about a
stateq. If q" = ( u v, w, ¢, p ) whereu, steady-state base flow. As with the linearized shal-
v andw are the three components of the velocity low water equations and linearized compressible
vector, { is the specific volume (the reciprocal of Euler equations, to derive these equations from
the density), and is the pressure, the linearized the full (non-linear) compressible Navier-Stokes
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equations, the fluid vectar(x,t) is written as the  tions 4.1-4.2 is now evaluated numerically on a
sum of a steady mean plus an unsteady fluctuationtest case involving a 2D inviscid acoustic pres-
(49), and a linearization around the steady meansure pulse in a 2D prismatic domain. The govern-
is performed. If the viscous work terms are ne- ing equations are the equations of linearized com-
glected from the equatiohgappropriate, for ex-  pressible flow, given in Section 4.3 (Example 3)
ample, in a low Mach number regime), the re- above. Prior to showing these results, a stability-
sult is a linear incompletely parabolic system of preserving discrete implementation of the projec-
the form (24). |If the fluid vector is given by tion step of the model reduction is outlined.
q"'=(u, v w, T, p), whereT andp de-
note the fluid temperature and density respectively,
the convective and viscous flux matrices that ap-
pear in (24) are given by the expressions found in
[8]. The reader can verify that if the system (24) is The stability analysis of Sections 4.1-4.2 has as-
pre-multiplied by the symmetric positive definite sumed that the integrals resulting from the projec-
matrix given by tion of the governing equations onto the reduced
basis modes are evaluated exactly in continuous

4.4.1. Stability-preserving discrete implementa-
tion

p 0 O 0 0 : i
0p 0 0 0 form. ThIS contlnu_ous result can be transla_lted
H=| 0 0 p 0 0 (54) to th_e_ discrete _settlng through the use of h!gh—
- 0 0 0 PR 0 ’ precision numerical quadrature as follows. First,
Ty-1) the snapshots and the POD basis modes are cast
000 0 RT>T as a collection of continuous finite elements. It is

the “symmetrized” convective flux matricésA; then possible to construct a numerical quadrature
and diffusive flux matricesiK ;; satisfyProperties operator that computes exactly (with respect to the

1*—3* in Section 4.2. HereR denotes the universal finite element representation) all continuous inner

gas constant. products arising from the continuous Galerkin pro-
jection of the equations onto the POD modes. Sup-

Note that the symmetry transformations in the ex- ppse the domai is broken up intang finite ele-

amples above are not unique. For example, in [9], mentsQ, such that 2, Q. = Q. Suppose each of
Abarbanelet al. exhibit a transformation of the these elements have nodes. Then’ the finite ele-
form (26) for the linearized compressible Navier- ment representation of the vectpin (24) in each
Stokes equations written in the primitive variables glementQ, is:

a'=(p, u v, w, p).

nn
_ _ ds = 2 NOaikx),  xeQ%  (59)
4.4. Numerical experiments i=

The stability-preserving model reduction approach By the discussion in Section 4.2, it is necessary to
based on continuous projection described in Sec-compute numerically integrals of the form:

4To the authors’ knowledge, the viscous work terms are (q(1)7q(2)> — / q(l)THq(z)dQ_ (56)
invariably neglected from the linearized compressibleibiav (H.Q) Q

Stokes equations by researching studying energy-stabilit ) ) o
these equations [8; 9]. The omission of these terms is jus- SUPPOSE, without loss of generality, that the finite
tified only in the low Mach number regime, or in the case element shape functions are chosen to be bilinear,
that the base flow is uniform. The extension of the energy- sgonn= 4. The discrete representations of the vec-
staplllty symmetrlz.atlon ap.proach presenteq her.e to tme li tors q(l) and q(z) are denoted bthm and qh(z),
earized compressible Navier-Stokes equations in which the . .
viscous work terms are retained is the subject of present re- FeSpectively. The length of these vectors is equal to

search. the number of mesh nodé&times the dimension
14



of the vectorr. Let Hf be ther x r element inner
product matrix, taken to be piecewise constant over
each element. Then, the formula for numerical in-
tegration of (56) can be written as

(qm,q(z))

whereW is a sparse block matrix comprisedibk
N blocks of dimensiom x r. The (k)" block of
this matrix given bywy |, where

— q"OTygh@),

Ha) (57)

el
Nkl 4

Wig = 3 HE'Y Nie(Xjo )N (Xj)wj,.  (58)
e=1 J=1

are the linearized compressible Euler equations
(Example 3 in Section 4.3). The base flow is uni-

form, with the following values:p = 101, 325 Pa,

T =300K, p= 2 =117kgm?, 4 = lp =

0.0 m/s, andc = 3480 m/s, wherec = /yRT is

the mean speed of sound. The problem is initial-
ized with a pressure pulse in the middle of the do-
main:

P/ (x;0) = 141.9e100¢+y)

0) — P(x0
p'(x;0) = B, (59)
T'(x;0) =0,

Uy (X;0) = Uy(x;0) = 0.

Here, the outer sum is over the elements connectedIn terms of the mean values, the amplitude of the

to thek—1 nodal “edge”; thaw;, are the integration
weights and the;, are the integration points.

A parallel C++ code that reads in the snapshot data

written by a high-fidelity code, assembles the nec-
essary finite element representation of the snap
shots and computes the numerical quadrature nec
essary for evaluation of the inner products has
been written by the authors. The code, known as
Spirit, performs all the calculations in paral-
lel using distributed matrix and vector data struc-
tures and parallel eigensolvers from the Trilinos
project [49], and uses tHe bnesh finite element
library [50] to compute element quadratures. The
parallelism inSpi ri t allows for large data sets
and a relatively large number of POD modes. The
I i bnesh finite element library [50] was used to
compute element quadratures. The online time-
integration of the ROM system (2) (with the ROM
coefficient matrix computed withispi rit and
written to disk) is then performed using a fourth-
order Runge-Kutta scheme in MATLAB.

4.4.2. 2D inviscid acoustic pulse example

For the sake of brevity, the proposed model re-
duction approach is evaluated on only one of the

initial pressure pulse (59) is@1pc2.

For the problem considered, the high-fidelity fluid
simulation data were generated using a Sandia in-
house finite volume flow solver known as SIGMA
CFD. This code is derived from LESLIE3D [51],

a Large Eddy Simulations (LES) flow solver origi-
nally developed in the Computational Combustion
Laboratory at the Georgia Institute of Technology.
For a detailed description of the schemes and mod-
els implemented within LESLIE3D, the reader is
referred to [52; 53].

As both the high-fidelity code as well as the ROM
code are 3D codes, a 2D mesh of the donfaiis
converted to a 3D mesh by extruding the 2D mesh
in the z-direction by one element. The computa-
tional grid for this test case is composed of 3362
nodes, cast into 9600 tetrahedral finite elements
within the ROM code. A no-penetration (slip wall)
boundary condition is imposed on the four sides of
the domain in thex andy plane. To ensure the solu-
tion has no dynamics in thedirection, the follow-
ing values of thez-velocity component are spec-
ified: uz =0, U3(x;0) = 0. Symmetry boundary
conditions are imposed far= constant in the high-
fidelity code. The high-fidelity computational fluid

physics sets given in Section 4.3. The test case con-dynamics (CFD) simulation from which the ROM

sidered is that of a 2D inviscid acoustic pressure
pulse in the following 2D prismatic domairf2 =
(-1,1) x (—=1,1) € R2. The governing equations
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is generated is performed until tinfe= 0.01 sec-
onds. During this simulation, the initial pressure
pulse (59) reflected from the walls of the domain



a number of times. Snapshots from this simula- tween the high-fidelity solution and the symmetry
tion were saved every 510> seconds, to yield ROM solution (Figure 4(a), (b)). The same cannot
a total of 200 snapshots. These snapshots werebe said of thd.?2 ROM solution, however. It is ap-
used to construct 20 mode POD bases. Two differ- parent from Figure 4(c) that tHe? ROM solution
ent procedures were used to generate a fluid ROMhas blown up byt = 7.95 x 10~2 seconds, which
for this problem: the POD/Galerkin method with confirms the instability of the 20 mode? ROM
the symmetry inner product (39) witH given by suggested in Figures 1-2.
(53), and the POD/Galerkin method with the clas-
sical L? inner product. The size of the POD basis
was determined using an energy criterion (6) (see S Stable model reduction for LTI systems via
Section 2.1):M was selected such that the modes  discrete projection
capture 99.9% of the snapshot energy. Since the
base flow for this example is uniforn = 0 and In Section 4, a method for constructing energy-
A; and Kj;j are spatially-constant in (24), mean- stable ROMs via continuous projection of a linear
ing an energy-stable ROM is expected to be time- system of PDEs was presented. The discussion in
stable and stable in the sense of Lyapunov. Figure Section 4 motivates the following question: can the
1 shows a time history of the first two ROM modal energy inner product be determined in a black-box
amplitudes (circles) compared to the projection of fashion for any given full order model system? It is
the FOM CFD simulation onto the first two POD shown in the present section that there is a discrete
modes (solid lines) for the symmetry (a) arii(b) counterpart of the symmetry inner product, first de-
ROMSs. Mathematically, this figure compares as a rived by Rowleyet al. [24] and termed the “Lya-
function of timet: punov inner product” herein. Although the Lya-
, punov inner product has appeared in several pub-

Xwi(t) vs. (qFOM>‘pi)(H,Q)’ (60) lications [24; 1; 30], to the authors’ knowledge, a
. ;. Co numerical study of the properties and performance
fori =1,2, wheredgoy IS the high-fidelity CFD of POD ROMs constructed in the Lyapunov inner

solution from which the ROMs were constructed. . . .
The reader may observe reasonable agreement be;_)roduct is lacking from the literature at the present

tween the symmetry ROM and the full simulation time, and one of the contributions of this work.
(Figure 1(a)) for the time interval considered. In

contrast, agreement between t#HfeROM and the ~ 5.1. Stability-preserving Lyapunov inner product
full simulation is reasonable only until approxi- and Petrov-Galerkin connection

matelyt = 0.005 seconds (Figure 1(b)). The oscil- . .

lations in the .2 ROM modal amplitudes observed Suppose the LTI system (2) is stable in the sense of

for t > 0.008 seconds suggest the presence of anLyapuno_v_, e, aIII eigenvalue”s ofthe mama\./e
instability in theL2 ROM. If the modal amplitudes ”O'L‘Iposr':"’e real parts (Coro a“]ﬁ 3.4.2). fsmes
Xm,i(t) are plotted up to a longer time horizon (Fig- stable, there exists a Lyapunov function for

ure 2), the instability in th&= ROM is apparent. ki (t) = Axn(t). (61)

Figures 3—4 compare the FOM pressure field (a) _

with the field reconstructed from the symmetry (b) N Particular,
andL? (c) ROM solutions at times= 4.5x 10~

and 795 x 1072 seconds. At timé = 4.5x 1074

seconds, both the symmetry aiROM solutions s a Lyapunov function for (61), wheis the so-
are in good agreement with the high-fidelity so- |ytjon of the following Lyapunov equation:
lution (Figure 3). At the later time, .95 x 103

seconds, there is a good qualitative agreement be- ATP+PA=—-Q. (63)
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Here, Q is some positive-definite matrix [15]. A wherexy(t) denotes the ROM solution. Theorem

positive definite solutiorP to (63) exists provided 5.1.1 (summarized here from [24] to keep this work
A is stable. Moreover, i is symmetricP is sym- self-contained) shows that (64) is the energy inner
metric as well. GiverA andQ, a solution to the  product for this system.

Lyapunov equation (63) can be obtained, for in-

stance, using theyap function in the MATLAB Theorem 5.1.1 (from [24]):Assume the linear full

control toolbox [44]: order system (61) is stable. Suppose a ROM for
(61) is constructed via a Galerkin projection in the
P=1Ilyap(A, Q [], speye(N, N)). (+,-)p inner product (64), to yield the following re-

. . duced linear system:
Assume the system (61) is stable and a positive-

definite symmetri® has been computed from (63). . T

SinceP is symmetric positive-definite, the follow- Xu = Oy PADXY, (66)

in

? where it has been assumed that the bdsjshas
been constructed to be orthonormal in the)p in-

ner product, i.e.®,P®y = Iy wherely denotes

the M x M identity matrix. Then, the ROM (66)

is energy-stable, time-stable and stable in the sense
of Lyapunov.

xn (1) = @yx (1), (65)  Proof. Itis shown that the energiiv = 3|xm||3
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(x,(\,1> ; x,(\l )> o= x,(\,1>T Px,(\l ), (64)

defines an inner product. L@y, be a reduced ba-
sis of sizeM, so that
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Figure 4: Pressure field at tinte= 7.95x 10~3 seconds

of the ROM system (66) is hon-increasing: to the matrixW (57) that is used to perform the
dEy  _ 1d (X X) continuous projection in the symmetry inner_prod—
dt )%Tdtx M>2MJ2 uct. In general, the answer is no. In particular,
— MM W is by construction a sparse matrix (Figure 5(a)),
] T PAGYX y P (Figure 5())

whereas? may be dense even K is sparse. This
is clear from Figures 5(b) and (c), which show (re-
spectively) the sparsity pattern of a samplena-
trix>, and its corresponding matrix.

=xy Py (APA+IPTA)Ddyxy  (67)
=X} Py (%PAJr 3ATP) ®yxy

= _%X-I\I;I q)MQq)MXM

<0,

One downside of the Lyapunov inner product is
that the matri¥P which defines this inner product is
admittedly expensive to compute: the cost of solv-
ing the Lyapunov equation (63) requiré$N2) op-

0 erations. As a consequence, the Lyapunov inner
product has the same downside as another model
reduction approach with aa priori stability guar-
antee, namely balanced truncation [29; 10]: it may
not be practical to compute the matrix defin-

sinceQ > 0. It follows that (66) is time-stable,
stable in the sense of Lyapunov and energy-stable
(Section 3).

The Lyapunov inner product (64) is a discrete
counterpart of the continuous symmetry inner
product (39). This inner product can be employed
to construct stable Galerkin ROMs for (2) using
discrete projection. An interesting question that 5The A matrix whose sparsity pattern is shown in Figure

arises is whether the matri® defining the Lya- g is the “PDE example” in the SLICOT model reduction
punov inner product (64) is related in some way benchmark repository [42].
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Figure 5: Sparsity structure of representafmatrix for a given sparsA matrix compared to sparsity structure of representative
W matrix

ing the Lyapunov inner product for very large sys- relative to the full order model output, defined by
tems. It is worthwhile to note that computirig) -

(63) is less computationally intensive than reducing £9, = 2i-1 |)I/<QN(t|) —me(tl)I’ (68)
a system using balanced truncation, which requires i yon(t)]

the solution oftwo Lyapunov equations for the so-
called obs_erv_ability and reachabi!ity Gramiamd denotes the integer such thahax = Kmadtsnap

the factgrlzatlons of these Gra_lmlans [29; 10] (see where T, is the maximum time until which the
Appendlx A.2_). The computatlonal f:ost of calcu- ROM is run. The notation| - | in (68) denotes
lating the weighting matrix that defines the Lya- the absolute value, which evaluates to a scalar for

punov inner product relative t_o the computational the numerical examples considered herein, as they
cost of reducing a system using balanced trunca- both have one outpu(= 1)

tion is studied numerically in Section 5.2. Note that
it can be shown that the balanced truncation algo-
rithm may be viewed as a projection algorithm in a

special Lyapunov inner product [24]. A proof un-  The first numerical example considered here in-
covering this connection is given in Appendix A.3. \glves a structural dynamics model of component

As observed earlier for the symmetry inner prod- 1r (Russian service module) of the international
uct, itis clear from (66) that the Galerkin projection SPace station (ISS) [36]. The model consists of
of the system (61) in the Lyapunov inner product @n LTI system of the form (2) witlN = 270 and

(64) can be viewed as a Petrov-Galerkin projection P = Q = 3. In the numerical test performed here,
of this system in the reguldr inner product, with only the first input and first output is considered,

the reduced test basis given Wy, = P®y, where ~ S0P = Q= 1. The matricesA, B andC defin-
®,, is the reduced trial basis. ing (2) are downloaded from the ROM benchmark

repository [42]. It is verified that the FOM system

_ _ is stable: the maximum real part of the eigenvalues
5.2. Numerical experiments of A is —0.0031.

is computed and reported. Here the symKghx

5.2.1. International space station (ISS) example

The stability-preserving model reduction approach To generate the snapshots from which POD bases
based on discrete projection presented in Sectionare constructed, the full order model (2) is solved
5.1 is now evaluated on two examples: the interna- using a backward Euler time integration scheme
tional space station problem, and a problem involv- with an initial condition ofxy(0) = 0 andup(t) =

ing a model of an electrostatically actuated beam. (1 x 10*)&—o. That s, at timet = 0, an impulse of
For both examples, the error in the ROM output magnitude 1x 10* is applied. A total oK = 2000
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Figure 6: Maximum real part of eigenvalues of ROM system ixa§, for ISS problem

snapshots are collected, eveifnap = 5 x 10°° structed, as exactli{ = 2000 snapshots (taken up
seconds, until tim& = 0.1 seconds. These snap- tot = 0.1 seconds) were used to generate these
shots are used to construct POD bases of sizesbases. Although the? POD ROM is unstable for

M =5, 10, 20, 30, and 40. For eabh a POD basis  all values ofM considered (Figure 6), this ROM
is constructed using thie? inner product, as well  still produces a reasonable solution fdr= 5 and

as the Lyapunov inner product (64). The matrix M = 10 (Figure 7(a) and Table 1). The instability
P defining the inner product (64) is obtained using manifests itself if a larger basis size is used, how-
thel yap function in MATLAB’s control toolbox ever. The Lyapunov ROM remains stable and accu-
with Q = Iy, the N x N identity matrix (Section rate — orders of magnitude more accurate than the
5.1). The POD ROM solutions are compared with balanced truncation ROM for ead¥ considered
solutions obtained by reducing the system using (Table 1).

balanced truncation [29; 10]. First, the eigenvalues

of the ROM matrixAy for eachM are computedto  The objective of thd,ax= 5000 ([hax= 0.25 sec-
determine stability using Theorem 3.2.3. The max- onds) andax= 10,000 (Tmax= 0.5 seconds) runs
imum real part of the eigenvalues of these ROM is to test the predictive capabilities of the POD
system matrices is plotted in Figure 6 as a function ROMs relative to the balanced truncation ROMs
of M. The reader can observe that the Lyapunov for long-time simulations. The reduced order mod-
inner product POD ROMs and balanced truncation els are run for a much longer time horizon than
ROMs are stable for aM considered — all the real  the run used to generate the POD bases employed
parts of the eigenvalues of these systems’ matricesin building the ROMs. FoKpax= 5000, Thel?
are< 0. In contrast, thé.2 POD ROMs are unsta- POD ROM exhibits an instability for aM consid-

ble for allM. ered excepM = 10. For this value oM, the bal-
anced truncation ROM and Lyapunov POD ROM
are more accurate than thé POD ROM, how-
ever (Figure 7(b) and Table 1). Fiék,ax= 10,000,

the L2 POD ROM is unstable for alM consid-
ered. This instability is apparent in Figure 7(c).
Hence, the instability identified in the earlier eigen-
value analysis (Figure 6) manifests itself if thé
POD ROM is run for a long enough time. For
Kmax = 5000 andKnax = 10,000, the Lyapunov
The objective of thénax= 2000 (Thax= 0.1 sec- POD ROM is more accurate than the balanced trun-
onds) run is to test how well the POD bases can cation ROM for smalM. However, its accuracy is
reproduce the snapshots from which they were con-limited, as there does not appear to be a conver-
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Having checked stability, each ROM is run until

a specified timélna, and the average error in the

output relative to the full order model (68) is com-

puted. The relative errors (68) in the output for
ROMs of different sizes run up to different values

of Tmax are summarized in Table 1. In the case a
ROM went unstable and (68) overflowed, the table
contains an entry of~’.



Table 1: Relative errors (68}, in ROM output for ISS problem

M

Kimax Method 5 | 10 | 20 | 30 | 40
BT 9.80x10 2] 639%x10 2] 9.56x10 3 [ 234x10 3| 834x107

2000 PODL? 1.09x 1074 | 3.14x 10/ - - -
POD LyapunowP || 8.69x10°° | 405x 107 | 1.13x10°° | 844x 107 | 9.22x 107’
BT 764x10 2] 468x10 2] 814x10°3]187x10° [ 558x10 7

5000 PODL?2 2.41 473%x10°2 - - -
POD Lyapunow || 2.88x 1072 | 524x 103 | 1.31x 102 | 1.21x 102 | 2.86x 102
BT 6.87x10 2] 447x10 2] 7.08x10 3 [ 1.78x10 3 | 5.76x 107

10,000 PODL?2 165 3.24 — — -
POD LyapunoWP || 5.25x 102 | 6.46x 102 | 9.92x 102 | 1.08x 101 | 9.92x 102
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Figure 7:ygm(t) for M = 10 ROMs (FOM = full order model) for ISS problem

gence withM-refinement. their local counterparts, and reassembled to yield a
discretization of any desired size. In the full order
model for which results are reported here, the FOM

5.2.2. Electrostatically actuated beam example  hasN = 10,000 degrees of freedom. It is verified
that the full order system is stable: the maximum

The second numerical example is that of an elec- ., part of the eigenvalues Afis —0.0016.

trostatically actuated beam. One application for _
this model is analysis of microelectromechanical 10 generate the snapshots from which POD bases

systems (MEMS) devices, such as electromechan-2'€ cons;[)rucl'ied, éheEfllj” order model (2) is sglved
) ) ' : *“"using a backward Euler time integration scheme
ical radio frequency (RF) filters [45]. Given a sim- with an initial condition ofxy(0) = 0 and an in-

ple enough shape, these devices can be modeledy,t corresponding to a periodic on/off switching,
as 1D beams embedded in two or three dimen-je

sional space. It is assumed that the beam deflec- 0.005<t < 0.01.0.015< t < 0.02
tion is small, so that geometric nonlinearities can ) { 1, 0.03<t< 0_035; ’

be neglected. The resulting linear PDEs are dis- 0, otherwise

cretized using the finite element method follow- (69)

ing the approach presented in [46; 45] to yield a A total of Knhax= 1000 snapshots are collected, ev-
ROM LTI system of the form (2). The matrices ery dtspap= 5 x 10~° seconds, until timé = 0.05

A andB in (2) are downloaded from the Oberwol- seconds. From these snapshots, 5, 10, 20 and 30
fach model reduction benchmark collection [47]. mode ROMs are constructed using POD in ke
These global matrices are then disassembled intoinner product, and POD in the Lyapunov inner

21



product. In solving the Lyapunov equation (63)
for the Lyapunov inner product weighting matrix
P, the matrixQ is taken to be thé&l x N identity
matrix. The system (2) is reduced also using bal-
anced truncation.

As for the ISS example, the first step is to study the
stability of each ROM. Figure 8 shows the maxi-
mum real part of the ROM system matrickg for
eachM considered. It is found that tHe ROM is
unstable for eaclv, and becomes more unstable
with increasingM. In contrast, the balanced trun-
cation and POD Lyapunov inner product ROMs are
stable for allM considered, as expected.

Next, the accuracy of each ROM is examined. Ta-
ble 2 summarizes the errors (68) in the ROM so-
lutions relative to the full order model solution for
three runs of different lengths. As before, an en-
try of *—’ in the table indicates that the error over-
flowed due to an instability in the ROM.

The objective of the first runKmax = 1000) is
to study how well the POD ROMs can reproduce

the snapshots from which they were constructed,

Figure 9 that the balanced truncation ROMs are in
general the most accurate. The POD ROMs con-
structed in the Lyapunov inner product nonetheless
produce reasonable results (Figures 9(b)-(c)) and
appear to be converging to the full order model so-
lution with M-refinement (Table 2). The POD?
ROM result is not shown in Figures 9(b)-(c), as the
solution produced by this ROM blows up around
timet = 0.02 seconds.

Lastly, the level of computational resources re-
quired for computing the Lyapunov inner product
and the level of computational resources required
for performing model reduction via balanced trun-
cation [29; 10] are compared. Table 3 gives the
CPU times for the sum of the following operations
in the balanced truncation [29; 10] algorithm as a
function of N, the problem size: calculation of the
observability Gramian, calculation of the control-
lability Gramian, and calculation of the balancing
transformation (Appendix A.2). All computations
are performed in serial using MATLAB's linear al-
gebra capabilities and MATLAB's control toolbox
[44], on a Linux workstation with 6 Intel Xeon 2.93

and to compare these ROMSs’ performance with the GHz CPUs. Both methods exhit@(N3) scaling.

performance of ROMs constructed using balanced Although the Lyapunov inner product computation
truncation. The reader can observe that the PODIS costly, as it requires the solution of a Lyapunov
ROM constructed in the Lyapunov inner product is equation, it completes in 2-3 times less CPU time

the most accurate. The PAB ROM is both un-
stable as well as inaccurate (Figure 9(a)).

The second two runsKfnax = 2000 andKmax =
5000) are aimed to study the predictive capabili-

than the balanced truncation algorithm. This is be-
cause balanced truncation requires the solution of
two Lyapunov equations for the observability and
reachability Gramians, as well as the Cholesky and
eigenvalue factorizations of these Gramians.

ties of the ROMs for long-time simulations. The
full order model is run until times.@ and 25 sec-
onds respectively. As before, only snapshots up
to timet = 0.05 seconds are used to construct the 6. Summary and conclusions
POD bases for the ROMs. In addition to the signal
(69), the following inputs are applied in both the
full order model and the ROM:

0.055<t < 0.06,0.065<t < 0.07,
0.08<1t < 0.0850.105<t < 0.11,
0.115<1t<0.12,0.13<t < 0.135
0.205< 1< 0.21,0.215<t < 0.22,
1, 0.23<t<0.235
0, otherwise

The energy-stability preserving model reduction
approach developed specifically for the equations
of linearized compressible inviscid flow in [6; 7]
is generalized: for ROMs constructed using the
continuous projection approach, it is shown that
a transformation of a generic PDE system of the
hyperbolic or incompletely parabolic type leads to
(70) a stable formulation of the Galerkin ROM for this
The reader may observe by examining Table 2 and system. It is then shown that, for many linear PDE
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Table 2: Relative errors (68]2; in ROM output for electrostatically actuated beam problem

M
Kmax Method 5 | 10 | 20 | 30
BT 6.29x10 2] 451x103]6.93x10° | 3.60x10°°
1000 PODL? 8.56x 101 6.62 — —
POD LyapunowP’ || 2.05x 103 | 6.23x10°° | 209x 108 | 1.35x 108
BT 584x10 2] 447x103]6.29x10°] 3.17x10°©
2000 PODL? 7.76 4.26x 10° - -
POD Lyapunow || 3.62x102 | 1.12x 102 | 3.47x 104 | 413x10°°
BT 736x102 ] 477x103[548x10° [ 277x10°°
5000 PODL? 4.40x% 10° — — —
POD Lyapunow’ || 1.80x 101 | 1.09x 101 | 203x 1072 | 6.09x 1073
3500
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2500 POD Lyapunov P|
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Figure 8: Maximum real part of eigenvalues of ROM system ixa§, for electrostatically actuated beam problem

Table 3: CPU Times (in seconds) for balanced truncation yapunov inner product computations

N
Method 1250 | 2500 | 5000 | 10,000
Lyapunov Inner Producl] 5.08x 10" | 4.60x 107 | 4.02x 10° | 6.09x 10*
Balanced Truncation || 1.09x 10? | 1.10x 10° | 1.04x 10* | 1.24x 10°

systems, the said transformation is induced by a The performance of POD ROMSs constructed us-
special inner product, referred to as the “symme- ing the symmetry and Lyapunov inner products are
try inner product”. If the Galerkin projection step assessed on several numerical examples for which
of the model reduction procedure is performed in POD ROMs constructed in the? inner product
this inner product, the resulting ROM is guaran- manifest instabilities.

teed to satisfy certain stability bounds regardless

of the reduced basis employed. It is demonstrated The key properties of the symmetry inner product
that a discrete counterpart of the symmetry inner and Lyapunov inner product are summarized in Ta-
product is the weightetl inner product obtained  ple 4. Both inner products are weighted inner

by solving a Lyapunov equation, derived in [24] by products and have the same origin: they are in-
Rowley et al. For completeness, this inner prod- duced by the Lyapunov function for the governing
uct, referred to as the “Lyapunov inner product’, system of equations. The symmetry inner product
is re-derived herein, and it is shown using the en- js a continuous inner product derived for a spe-
ergy method that this inner product gives rise to cific PDE system of the form (24). Projection in
stable ROMs constructed via discrete projection. this inner product requires access to the governing
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Figure 9:ygm(t) for M = 10 ROMs (FOM = full order model) for electrostatically adtecbeam problem

PDEs, which gives rise to a projection algorithm t — . The discussion above may lead the reader
that is embedded. The Lyapunov inner product is to prefer the Lyapunov inner product to the symme-
discrete, on the other hand, and operates on an LTltry inner product, as the former inner product can
system of the form (2) arising from the discretiza- be computed in a black-box fashion for any stable
tion of a PDE of the form (1) in space using some linear system, and can be used to build a ROM for
numerical scheme, e.g., the finite element method. this system without accessing the PDEs. One of
Projection in the Lyapunov inner product is there- the biggest drawbacks of the Lyapunov inner prod-
fore a black-box algorithm, as only tiAg B andC uct projection approach involves its large compu-
matrices in (2) are needed; in particular, access totational cost. To solve numerically the Lyapunov
the governing equations it required. The sym-  equation that defines this inner produgt,N®) op-
metric positive definite matrix that defines the Lya- erations are required. Moreover, since the matrix
punov inner product can also be computed numeri- that defines the Lyapunov inner product is typi-
cally in a black-box fashion by solving a Lyapunov cally dense (in contrast to the matrix defining the
equation. The existence of a solution to this Lya- symmetry inner product, which is sparse), at least
punov equation is certain only if the full order sys- ¢(N?) storage is required [11]. As a result, creat-
tem (2) is stable; hence the Lyapunov inner prod- ing ROMs using the Lyapunov inner product may
uct is not defined for unstable systems. In contrast, not be practical for systems of very large size. The
the symmetry inner produds defined for unstable  Lyapunov inner product may nonetheless be prefer-
systems. In this case, a ROM constructed in this able to balanced truncation, which requires the so-
inner product will be energy-stable, by construc- lution of two Lyapunov equations, and the stor-
tion. However, it will not be time-stable, i.e.,itmay age of two Gramians, in addition to Cholesky and
produce (physical) solutions that are unbounded aseigenvalue factorization of these Gramians. For
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Table 4: Comparison of symmetry inner product and Lyapunoeii product

Symmetry Inner Product (39) \ Lyapunov Inner Product (64)
Continuous Discrete

For linear PDE system of the form For linear ODE system of the form
. 2 .

q—i—Aig—Q—i—Kij%—FGq:f XN = AXN

Defined for unstable systems but

time-stability of ROM is not guaranteedl'mdeﬁned for unstable systems

Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Computed numerically
by solving a Lyapunov equation
Sparse Dense

Derived analytically in closed form

large-scale unsteady problems, the symmetry innerthe reachability (or controllability) and observabil-
product combined with the continuous projection ity Gramians. The reachability (or controllability)
approach is recommended by the authors, despiteGramian (Chapter 30 of [17])

its more involved implementation.

p= / " ABBTA L, (72)
0

Appendix . . . . .
is the unique symmetric (at least) positive semi-

definite solution of the Lyapunov equation

A.l. Gronwall's Lemma

Gronwall's lemma (also known as Gronwall’s in- AP +PAT +BB' =0. (73)
equality) allows one to bound a function that is
known to satisfy a certain differential or integral
inequality by the solution of the corresponding dif- o
ferential or integral equation [55]. The differential Q E/ et tcteetdt, (74)
form of this inequality is used herein: 0

The observability Gramian (Chapter 30 of [17])

_ T e is the unique symmetric (at least) positive semi-
X(t) < BU)X(t) = x(T)<x(0)el P& (71)  Gefinite solution of the Lyapunov equation

forfcl?t>00<T<t. ATQ+QA+C'C=0. (75)

A.2. Balanced truncation algorithm for model re- It will be assumed herein that the mataxdefin-
duction ing the full order system (2) is stable, i.e., it has no

eigenvalues with a positive real part. It will also be
The balanced truncation algorithm, first introduced assumedA,C) is observable andA,B) is reach-
by Moore [29], assumes a semi-discrete full order able (controllable). If this is true, the Lyapunov
model of the form (2). The linear system (2) is equations (73) and (75) will have positive definite
first transformed into a balanced form that isolates solutionsP andQ respectively (Chapter 6 of [18]).
observable and reachable (or controllable) modes.For a discussion of balanced truncation applied to
This is achieved by simultaneously diagonalizing unstable systems, the reader is referred to [22].

25



The balanced truncation algorithm is summarized whereAy = All, Bm =By, Cy= Cl. The left and
below for the specific case of real system matfices right reduced bases are given respectively by:
A, B andC. First, the reachability GramiaR is T 4 B .

obtained by solving the Lyapunov equation (73). W =Toa(,1:M), - ®n =Sa(,1:M), (82)
Next, the observability Gramia® is obtained by  whereSyy = Tgeﬁ.
solving the Lyapunov equation (75). The Cholesky

N . In effect, balanced truncation is a method for com-
factorization ofP is computed,

puting the test and trial basél, and®y, in (13).
P—UuUT. (76) Given the test and trial bases defined in (82), the
ROM system matrices (81) can be obtained from
followed by an eigenvalue decomposition of the formulas (14). The entries of the diagonal ma-

uTQu: T o1 trix Z in (78) are known as the Hankel singular val-
U'QU =KZK". (77) ues of the system (2). Assuming a ROM of sMe
The balancing transformation matrices: has been constructed using balanced truncation, the

following error bound on the output can be shown
Toa =ZV2KTU™ T i=UKZ Y2 (78)  [a1);

can now be computéd where the entries ok N
are in decreasing order. The change of variables |IYoN(t) =Yom(t)[[2 < zi, HUiHuP(t)HZ' (83)
%n(t) = Tpaxn(t) is applied to the full-order LTI B
system (2) to yield: Generally, balanced truncation is viewed as the
5~<N(t) =Tba|ATb_§>~<N(t)+Tba|BUp( ), _gold star_ldaro_l in model reduction. Although it
-1 (79) is not optimal in the sense that there may be other
yQN(t) _CTbalxN(t). ;
ROMs with smaller error norms, the approach has
Next, the matriced ETba|ATbj. B=TpB, C= a priori error bounds that are close to the low-
CTEeﬁ are partitioned as follows: est bounds achievable by any reduced order model

5 5 . [23]. Unfortunately, balanced truncation becomes
A [ Aw| A =_( B1 computationally intractable for systems of very
A , B : ) ) .
Ao Az )7 B2 (80)  large dimension (e.g., of siz§ > 10,000), and
C=(Ci|Ca). hence is not practical for many systems of physical

interest [24]. This is due to the high computational

Here, the blocks with subscript 1 correspond to the : X
Lost of solving the Lyapunov equations (73) and

most observable and reachable states, and block ) i )
with subscript 2 correspond to the least observable (75) for the reachability and observability Grami-

and reachable states. Finally, the reduced systemNS ¢ (N°) operations). The storage requirements
for a ROM of sizeM is given by: of balanced truncation can be prohibitive as well.

Even efficient iterative schemes developed for large

Xm(t)  =Amxm(t)+Bmup(t), (81) sparse LyapunO\_/ equations compute the soluti_on

yom(t) = Cuxm(t), to (73) and (75) in dense form, and hence require
0(N?) storage [11]. Unlike POD, balanced trun-

6in the case these matrices are complex, the transpose op-cation delivers ROMs that preserve stability of a

eration! in the algorithm (and all analysis of this algorithm) ~ Stable system (2) [29], however.
should be replaced with a Hermitian transpbse

In practice, the transformation matrices (78) are typicall . . .
Compuﬁ)ed aFpa = VTZT, andT, 1 = UW, V\fheZeZ isﬁ’g A.3. Lyapunov inner product associated with bal-
Cholesky factor of the observability Gramia@ & zZT), and anced truncation

W is the left singular vector df7Z (UTZ = WZVT). This is . i
due to numerical stability issues that could arise in coingut ~ |N comparing the steps of the balanced truncation

s 12in (78). algorithm with the discussion in Section 5.1, the
26




reader may observe some similarities. In particu- Itis clear that (91) defines a projection of the origi-
lar, both algorithms require the solution of a Lya- nal LTI system (2) in ai.? inner product weighted
punov equation for a Gramian used to transform by the reachability Gramian matriR. This ma-
and reduce the system. Here, this connection is in-trix defines a true inner product in the case when
vestigated further. In particular, it is shown that P is symmetric positive-definite, which will hold if
the balanced truncation algorithm (Appendix A.2) (A,B) is reachable (controllabl?)

may be viewed as a projection algorithm in a spe-

cial Lyapunov inner product. A property of balanced truncation is that it pre-

serves stability when applied to stable systems [10]
Suppose the stable LTI system (2) has been reducedAppendix A.2). This result can be proven using
using the balanced truncation model reduction al- the energy method. The proof is analogous to the
gorithm summarized in Appendix A.2. In order to proof of Theorem 5.1.1.

uncover the inner product associated with balanced

truncation, several transformations are required.
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