
DYNAMIC DATA-DRIVEN INVERSION FOR TERASCALE SIMULATIONS:
REAL-TIME IDENTIFICATION OF AIRBORNE CONTAMINANTS∗
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Abstract. In contrast to traditional terascale simulations that have known, fixed data inputs, dynamic data-driven
(DDD) applications are characterized by unknown data and informed by dynamic observations. DDD simulations
give rise to inverse problems of determining unknown data from sparse observations. The main difficulty is that the
optimality system is a boundary value problem in 4D space-time, even though the forward simulation is an initial
value problem. We construct special-purpose parallel multigrid algorithms that exploit the spectral structure of the
inverse operator. Experiments on problems of localizing airborne contaminant release from sparse observations in
a regional atmospheric transport model demonstrate that 17-million-parameter inversion can be effected at a cost of
just 18 forward simulations with high parallel efficiency. On 1024 Alphaserver EV68 processors, the turnaround
time is just 29 minutes. Moreover, inverse problems with 135 million parameters — corresponding to 139 billion
total space-time unknowns — are solved in less than 5 hours on the same number of processors. These results
suggest that ultra-high resolution data-driven inversion can be carried out sufficiently rapidly for simulation-based
“real-time” hazard assessment.

1. Introduction. Traditionally, terascale supercomputers have been employed for sim-
ulations of complex physical systems that are based on static, known data. Typically, the
behavior of the physical system is modeled by partial differential equations (PDEs), and the
data comprise boundary conditions, initial conditions, sources, geometry, and material coef-
ficients. Simulations are carried out to study the behavior of the system for the given data. In
this realm of static data-driven simulations, absolute turn-around time is often subordinate to
considerations of desired accuracy and resolution.

Recently, a new class of dynamic data-driven (DDD) applications — requiring the high-
est levels of supercomputing performance — has emerged [9, 10]. These applications are
characterized by uncertain or unknown data, and are informed by observations or measure-
ments that become available dynamically. DDD simulations appear in such scenarios as haz-
ard assessment, emergency response, treaty verification, structural health monitoring, image-
driven surgery, weather forecasting, geophysical exploration, and closed-loop process con-
trol, to name just a few. All of these applications share the challenge of reconstructing un-
known input data from sparse, dynamically-obtained measurements — and the need to issue
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predictions rapidly.
In general, DDD applications can be cast as inverse problems, in which the goal is to

reconstruct the missing, uncertain, unknown, or errant data from sparse observations and
measurements over a finite time interval. The reconstruction must be model-based: that is,
the reconstructed input data must be mapped to the observed measurements in a manner
that is consistent with the PDE forward simulation model. Once an estimate of the input
data has been constructed, it can be used to initialize forward simulations that predict future
system behavior over an appropriate time horizon. The “observe–invert–predict” cycle is then
repeated for the next time interval of observations, and so on.

Rapid turn-around time is paramount for many DDD simulations. Historically, this meant
that simulation accuracy and resolution were sacrificed for speed. Where rapid prediction and
response are mandated, the supporting simulations have had to revert from high-resolution,
high-fidelity three-dimensional PDE models back to simplified models such as lookup tables,
algebraic models, or one- or two-dimensional PDEs.

However, in recent years it has become meaningful — and in many cases imperative —
to contemplate DDD simulations of complex physical systems that are both rapid and highly-
resolved. This has been motivated by advances in sensing technologies, deployment of very
high bandwidth networks, and the availability of terascale supercomputers. To capitalize on
this emerging infrastructure, a central challenge facing computational scientists is the con-
struction of robust scalable parallel algorithms for near-real time solution of the underlying
data-driven inverse problems. Unfortunately, inverse problems are often much more difficult
to solve than corresponding forward simulations, because inverse problems

• usually require numerous repeated forward simulations;
• are usually ill-posed despite the well-posedness of the forward problem; and
• are boundary value problems in four-dimensional space-time, despite the initial-

value, time-marching character of the forward problem.
Nevertheless, there is a pervasive need in many application areas for near-real time, high-
fidelity, dynamic data-driven inversion. The development of scalable parallel algorithms for
this task is the goal of our paper.

Although our approach is general and widely applicable, we have chosen a specific driv-
ing application to instantiate and evaluate our algorithms and implementation. We focus on
the localization of airborne contaminant releases in regional atmospheric transport models
from sparse observations [2], in time scales short enough for predictions to be useful for haz-
ard assessment, mitigation, and evacuation procedures. In particular, our goal is model-based
rapid reconstruction — via solution of a large-scale inverse problem — of the unknown initial
concentration of the airborne contaminant in a convection-diffusion transport model, from
limited-time spatially-discrete measurements of the contaminant concentration, and from a
velocity field as predicted, for example, by a mesoscopic weather model. Mathematically,
transport of the contaminant is described by the convection-diffusion equation

∂u

∂t
− ν∆u + v · ∇u = 0 in Ω × (0, T ),

ν∇u · n = 0 on Γ × (0, T ), (1.1)

u = u0 in Ω × {t = 0},

where u(x, t) is the contaminant concentration field, u0(x) is the initial concentration that,
together with the velocity field v(x, t), drives the system, and ν is the diffusion coefficient.
We seek to reconstruct the initial concentration u0 from measurements of the concentration u
over a short time horizon, taken at a small number of sensor locations throughout the domain.
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Then — using the just-reconstructed initial concentration — we can issue predictions of the
longer-time transport of the contaminant plume throughout the region.

Inverse problems for convective-diffusive transport of this type arise in several settings:
characterization of pollutants in the atmosphere, unintentional catastrophic accidents involv-
ing (for example) chemical plants, or intentional releases of hazardous chemical or biological
agents. Although studies have been conducted of the sensitivity of chemical concentration
with respect to source terms or observer placement, [8, 16, 18, 19], very little work has been
done on reconstruction of initial concentrations via solution of an inverse problem.

In Section 2 we formulate the inverse problem as an output least squares optimization
problem with a convection-diffusion PDE constraint. First order optimality conditions pro-
duce a coupled system of partial differential-algebraic equations, which includes the initial
value convection-diffusion PDE, the terminal-value adjoint convection-diffusion PDE, and
an algebraic equation for the initial concentration. As mentioned above, this system is an
ill-posed boundary value problem in 4D space-time, and typical problem sizes of interest
present a significant challenge for rapid solution. To overcome the four-dimensionality of
this system, we invoke a block elimination that reduces the system to one in just the (3D)
spatially-discretized initial concentration variable u0. Unfortunately, the operator for this re-
duced system is non-local and cannot even be formed for the problems we target, even with
petascale computing resources. Fortunately, the action of the reduced operator on a vector
can be formed by solving a pair of forward/adjoint convection-diffusion PDEs, and the spec-
tral character of the reduced operator (as for many inverse problems) guarantees that a Krylov
method applied to this system converges in a mesh-independent number of iterations.

However, a constant number of iterations independent of mesh size is by itself not suf-
ficient for real-time dynamic data-driven applications: the constant itself must be reduced so
that no more than a few iterations — and hence forward/adjoint simulations — are needed to
solve the inverse problem. This requires a scalable and effective preconditioner, which is par-
ticularly challenging because the inverse operator is never formed. In Section 3 we present a
parallel multigrid preconditioner designed to reduce the number of Krylov iterations for DDD
inverse problems. Unlike PDE operators, inverse operators are compact, and their spectral
properties are different from those of differential operators. As a result, standard multigrid
smoothers are not applicable for inverse operators. Instead, special-purpose smoothers that
are tailored to their spectral properties must be employed, and these are presented in Section
3. Section 4 provides a prototype inversion scenario: localization of the release of a contam-
inant in the Los Angeles harbor from short-term measurements of its transport by onshore
winds, followed by longer-term prediction of the transport of the contaminant throughout the
Greater LA Basin. We also provide results on the performance and scalability of our inver-
sion algorithm. Our results demonstrate that due to high parallel and algorithmic efficiency,
inverse problems with 17 million initial concentration unknowns, and 8.7 billion total space-
time unknowns, can be solved in less than 30 minutes on 1024 processors of an Alphaserver
EV68-based system. The time taken is just 18 times that of a single forward transport simu-
lation. Moreover, inverse problems with 135 million initial concentration parameters — and
139 billion total space-time unknowns — are solved in less than 5 hours on the same number
of processors.

Ultimately, our results demonstrate that — with careful attention to the design of scal-
able parallel algorithms — high-resolution inverse transport problems can be solved in “real
time,” i.e. in time scales feasible for simulation-based hazard assessment and response. More
generally, for DDD inverse problems characterized by other classes of forward simulations,
the turn-around time will, of course, depend on the complexity of the forward simulation.
However, our results indicate that model-based reconstruction of incomplete initial condi-
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tions — which is necessary for data-driven prediction — can be achieved in a small multiple
of the cost of the forward simulation, even when millions of uncertain parameters must be
estimated.

2. Formulation and optimality conditions. In this section we give details on the math-
ematical formulation of the inverse problem, its discretization, and the overall strategy for its
numerical solution.

Given observations of the concentration {u∗
j}Ns

j=1 at Ns locations {xj}Ns
j=1 inside a do-

main Ω, we wish to estimate the initial concentration u0(x) that leads to the closest reproduc-
tion of the observed concentrations using the forward transport PDE. The inverse problem is
formulated as a constrained, least squares optimization problem:

min
u,u0

J (u, u0)
def=

1
2

Ns∑
j=1

∫ T

0

∫
Ω

(u − u∗)2 δ(x − xj)dx dt +
β

2

∫
Ω

u2
0 dx,

subject to
∂u

∂t
− ν∆u + v · ∇u = 0 in Ω × (0, T ), (2.1)

ν∇u · n = 0 on Γ × (0, T ),
u = u0 in Ω × {t = 0}.

The first term in the objective functional J represents a least-squares misfit of predicted
concentrations u(xj) with observed concentrations u∗(xj) (the delta function localizes the
u and u∗ fields to the sensor locations). The second term in J , scaled by the constant β/2,
is a regularization term that is needed to yield a well-posed problem. Inverting for the initial
concentration u0 would be well-posed — and the regularization term would not be needed —
if observations were available everywhere in space and time, that is if u∗ were known for all
(x, t) ∈ Ω × (0, T ).1 In practice, however, we can expect to have just limited measurements
in space and perhaps also in time. This sparsity of measurements induces the ill-posedness
of the inverse problem. In this case, we cannot hope to recover components of the initial
concentration that are much more oscillatory than dictated by the spacing of the sensors.
Therefore, oscillatory components of u0 lie in the null space of the inverse operator, and —
in the absence of regularization — will appear as arbitrary noise in the reconstructed initial
concentration field. To address this source of ill-posedness, we employ L2(Ω) regularization,
which penalizes the L2 norm of u0.

The constraints in the optimization problem (2.1) are just the contaminant transport con-
vection-diffusion equation, boundary condition, and initial condition. The transport of the
pollutant is driven by the initial conditions, the diffusion, and the velocity field. In practice,
the velocity field would be provided by a regional numerical weather prediction model such
as MM5 [20]. For our present purposes, however, we are interested in assessing the real-time
viability and algorithmic and parallel scalability of our inversion method. For simplicity we
employ a steady laminar incompressible Navier-Stokes solver to generate wind velocity fields
over a terrain of interest.

The inverse problem then is to determine the initial concentration field u0(x), and the
resulting space-time evolution of the concentration u(x, t), by solving the optimization prob-
lem (2.1). First-order necessary conditions for optimality — the so-called KKT conditions —

1As opposed to inverse problems for which just final time observations are available; any noise in the data is
thus exponentially amplified since it is convolved with the inverse of the heat kernel.
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may be derived by introducing a Lagrangian functional:

L(u, u0, p) def=
1
2

Ns∑
j=1

∫ T

0

∫
Ω

(u − u∗)2 δ(x − xj)dx dt +
β

2

∫
Ω

u2
0 dx

+
∫ T

0

∫
Ω

(
p
∂u

∂t
+ ν∇u · ∇p + pv · ∇u

)
dx dt +

∫
Ω

p(u − u0)dx,

(2.2)

in which the adjoint concentration p(x, t) is used to enforce the convection-diffusion equation
and initial condition. Requiring stationarity of the Lagrangian L with respect to p, u, and u0

(respectively) yields the KKT conditions, which consist of:

The forward convection-diffusion problem

∂u

∂t
− ν∆u + v · ∇u = 0 in Ω × (0, T ),

ν∇u · n = 0 on Γ × (0, T ), (2.3)

u = u0 in Ω × {t = 0}.

The adjoint convection-diffusion problem

−∂p

∂t
− ν∆p −∇ · (pv) = −

Ns∑
j=1

(u − u∗)δ(x − xj), in Ω × (0, T )

(ν ∇p + vp) · n = 0, on Γ × (0, T ), (2.4)

p = 0 in Ω × {t = T}.

The initial concentration equation

β u0 − p|t=0 = 0 in Ω. (2.5)

Equations (2.3) are just the original forward convection-diffusion transport problem for the
contaminant field. The adjoint convection-diffusion problem (2.4) resembles the forward
problem, but with some essential differences. First, it is a terminal value problem; that is, the
adjoint p is specified at the final time t = T . Second, convection is directed backward along
the streamlines. Third, it is driven by a source term given by the negative of the misfit between
predicted and measured concentrations at sensor locations. Finally, the initial concentration
equation (2.5) is in the present case of L2 regularization an algebraic equation. Together,
(2.3), (2.4), and (2.5) furnish a coupled system of linear PDEs for (u, p, u0). The principal
difficulty in solving this system is that — while the forward and adjoint transport problems are
parabolic-hyperbolic problems — the KKT optimality system is a coupled boundary value
problem in 4D space-time.

To simplify discussion of solution approaches, we introduce operators A, T,B and R.
Here, A denotes the forward transport operator and A−1 its inverse; T extends a spatial field
at initial time into space-time; B is an observation operator that localizes space-time to points
at which sensors are placed; R is the regularization operator (in the present case the identity);
A∗ is the adjoint transport operator and A−∗ its inverse; and T ∗ restricts a space-time field to
a spatial field at t = 0. With these definitions, we can write the KKT conditions in operator
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form: ⎡
⎣B 0 A∗

0 βR −T ∗

A −T 0

⎤
⎦

⎡
⎣ u

u0

p

⎤
⎦ =

⎡
⎣Bu∗

0
0

⎤
⎦ (2.6)

Special-purpose Krylov solvers and parallel preconditioners can be very effective at solving
discretized versions of optimality systems such as (2.6) for optimization problems constrained
by steady-state PDEs [4, 5]. Here, however, the 4D space-time nature of (2.6) presents pro-
hibitive memory requirements for large scale problems. Solution of (2.6) in its full-space
form is essentially intractable for such problems using present computing resources. Instead,
we pursue a reduced-space method that amounts to a block elimination combined with a
matrix-free Schur complement solver.

Eliminating the concentration u and forward transport equation (third row of (2.6)) and
adjoint concentration p and adjoint transport equation (first row of (2.6)) from the KKT opti-
mality system, we obtain the Schur complement system for the initial concentration u0:

Hu0 = g, (2.7)

where the reduced Hessian (or inverse) operator H is defined by

H
def= T ∗A−∗BA−1T + βR, (2.8)

and the reduced gradient g is defined by

g
def= T ∗A−∗Bu∗.

It is immediately clear that H is a symmetric and strictly positive definite operator. Thus, the
optimization problem has a unique solution for non-vanishing β.

Notice that H is a non-local operator (when discretized it will be a full matrix) and
its explicit construction is completely out of the question. For example, for the problem
with 139 billion space-time unknowns solved in Section 4, H is of dimension 135 × 106 by
135 × 106. Thus, storing H would require about 1023 bytes of memory. Moreover, forming
H would require 135 million solutions of forward convection-diffusion transport equations;
on the 1024 processor Alpha system we used for the numerical experiments of Section 4,
this would require over 400 years of computing time. While explicit formation of H and its
singular value decomposition constitutes an attractive and popular approach for small-scale
inverse problems [14], alternative approaches are essential for large-scale problems, and in
particular those for which near real-time response is mandated.

Therefore, we opt to solve (the discretized form of) (2.7) using the preconditioned Con-
jugate Gradient (CG) method. H is never formed explicitly; instead, we compute w = Hv,
the action of the reduced Hessian on a given spatial field v, in matrix-free fashion as follows.
(i) Set u0 = v and solve the forward transport equation (2.3) to obtain the concentration
evolution u. (ii) Compute the misfit between measurements u∗ and predicted concentration u
at the sensor locations, and use this misfit as a source to solve the adjoint transport equation
(2.4) backward in time to obtain p|t=0, the adjoint at t = 0. (iii) Set w = βv − p|t=0. There-
fore, each application of the reduced Hessian requires two transport equation solutions, one
forward in time and one backward. Besides u0, we need to store the entire time history of u
(if we have measurements over the entire time interval (0, T )) but only at the sensor locations.
In contrast with full-space methods, we avoid storing the forward and adjoint concentration
time histories. Thus, memory requirements for the inverse problem (2.1) are similar to those
of the forward problem (1.1).
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The overall computational cost of the (unpreconditioned) CG method is the work per
iteration — dominated by the two transport equations solutions — multiplied by the number
of CG iterations. The latter depends on the condition number of the reduced Hessian. One
can show that, for fixed β, H is a compact perturbation of the identity and thus has a bounded
and hence mesh-independent, condition number [11]. Furthermore, its spectrum has a small
number of clusters; it collapses exponentially onto β. Therefore, if we use a Krylov method,
such as CG, to solve (2.7), the number of iterations for a specific relative residual reduction
will also be mesh-independent. This is an optimal number of iterations, and we have verified
it numerically (see Section 4). Thus, mesh-independent convergence comes for free (but the
constant deteriorates with β). The constant also depends on the Peclet number, the length of
the time horizon, the complexity of the velocity field, and the topography.

However, mesh-independence of CG iterations is by itself not sufficient for DDD prob-
lems requiring real-time inversion. Although algorithmically optimal, the number of unpre-
conditioned CG iterations is often so large that the cost of solving the inverse problem is
equivalent to many tens to hundreds of forward transport solutions, which precludes the use
of high-resolution models in the real-time setting. Our goal therefore is to reduce the ab-
solute number of iterations so that the cost is equivalent to a handful of forward transport
solves. To achieve this goal, we must reduce the constant in the complexity estimate. The
immediate idea is to precondition the reduced Hessian system to further decrease the number
of CG iterations and, most importantly, reduce the overall wall-clock time. One challenge
in constructing suitable preconditioners for the reduced Hessian is the impossibility of ex-
plicitly forming this operator for reasons stated above. For this reason — and due to their
demonstrated success as preconditioners for second-kind integral operators [12, 17], we pur-
sue multigrid preconditioners. Details are given in the next section.

3. Multigrid Preconditioner. Multigrid methods have revolutionized scientific com-
puting, especially for linear systems related to elliptic and parabolic partial differential equa-
tions. Such multigrid schemes, however, are not directly applicable to reduced Hessian op-
erators for inverse problems. For this reason, there has been recent interest in developing
specific multigrid-like methods for inverse problems (for example see [11, 13, 15, 17, 21]).
The main difficulty lies in constructing a proper smoothing operator for the reduced Hessian
operator H .

For our problem, the continuous reduced Hessian operator is spectrally equivalent to a
Fredholm integral operator of the second kind. Multigrid solvers for such problems have
been very successful [12]. The overall algorithm follows the standard multigrid hierarchy:
pre-smoothing, restriction to a coarser grid, solution, prolongation back to the fine grid, cor-
rection, and post-smoothing. The key aspect is the smoother, which must address the spec-
trum of the reduced Hessian.

Classical solvers such as Jacobi and Gauss-Seidel work well as smoothers for elliptic
PDE operators, where the large eigenvalues of the differential operator correspond to high
frequency eigenvectors (see [6]). These methods rapidly eliminate oscillatory components
of the numerical error, but are notoriously slow at eliminating the smooth components. The
multigrid method can be used to effectively eliminate the smooth error components by iterat-
ing on coarser scales.

Unlike elliptic operators, however, the continuous reduced Hessian is a strongly smooth-
ing, compact, and nonlocal operator (hence its discrete version H is represented by a dense
matrix). Its eigenvector–eigenvalue correspondence is reversed, with large eigenvalues asso-
ciated with smooth eigenvectors, and small eigenvalues associated with oscillatory eigenvec-
tors. Neither Krylov-subspace methods, nor stationary methods such as Jacobi and Gauss-
Seidel, act as smoothers for H; in fact, in addition to being expensive to apply, they act more
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as roughers, since the “high energy” (large eigenvalue) components, which correspond to
smooth eigenvectors, are typically resolved first, leaving oscillatory components in the error.

The smoothing properties of the continuous reduced Hessian, combined with its approx-
imation of the discrete counterpart, imply that by decreasing the mesh size, both H and the
“high energy” eigenvectors are increasingly well represented on the immediately coarser grid.
For clarity we denote by Hh the discrete reduced Hessian at resolution h. If we assume that
the “coarse” space V2h is embedded into the “fine” space Vh (as is often the case with finite
element discretizations), and we denote by Ph : Vh → V2h the L2-orthogonal projection,
then the action of the reduced Hessian Hh on the “coarse” space is well approximated by
H2h. If in addition we regard the orthogonal complement W2h = (I −Ph)Vh of V2h in Vh as
the space of high frequency functions (this is only approximately true; in fact W2h actually
has both smooth and oscillatory components [6]), then the strong smoothing properties of the
continuous reduced Hessian imply that

Hh ≈ β(I − Ph) + H2hPh , (3.1)

which combined with orthogonality between Ph and I−Ph suggests 2 the following two-level
preconditioner Mh [17]:

H−1
h ≈ Mh

def= β−1(I − Ph) + (H2h)−1Ph . (3.2)

One can generalize this procedure recursively to obtain a multigrid preconditioner. Note that
the first part of the preconditioner, β−1(I − Ph), acts as a smoother, since it removes high
frequency components from the residual. If Vh are finite element spaces, and we invert for
the initial value given the entire final-time state, it has been shown in [11] that for h small
enough

1 − Chp/β ≤ 〈Mhu, u〉 〈
(Hh)−1u, u

〉−1 ≤ 1 + Chp/β, for all u ∈ Vh, u �= 0 , (3.3)

where 〈·, ·〉 is the L2-inner product, p is the convergence order of the forward method (p = 2
for piecewise linear polynomials) and C is independent of h. A similar result holds for the
multigrid preconditioner when using a W-cycle. The statement (3.3) shows that the two-level
preconditioner becomes increasingly effective at high resolution.

There are a number of implementation issues to consider. At the coarsest level, the
approximate inverse is replaced by an “exact” solve. The mesh size for the coarse level cannot
be chosen arbitrarily, and is a function of the regularization parameter β and the compact part
of H (see [11]). Since the reduced Hessian is not available explicitly (even at the coarsest
scale) the exact coarse solve is performed by the CG solver. The orthogonal decomposition
(I − Ph) can be replaced by less expensive projection-like operators, such as the standard
interpolation-restriction operators from classical multigrid theory. Our preconditioner then
becomes

H−1
h ≈ Mh = β−1(I − Ih

2hI2h
h ) + Ih

2hM2hI2h
h , (3.4)

where Ih
2h : V2h → Vh is the natural interpolation operator, and I2h

h : Vh → V2h is the full-

weighting restriction operator defined by I2h
h = c

(
Ih
2h

)T
with c chosen so that a constant

function is restricted to itself. The operator β−1(I − Ih
2hI2h

h ) acts as a smoother, replacing

2Assume that β = 0. If v ∈ Vh is decomposed into a smooth vs ∈ V2h and an oscillatory wo ∈ W2h then
Hhv = Hhvs + Hhw0 ≈ H2hvs = H2hPhv. Furthermore, we can write Hh = (1 − Ph)Hh(1 − Ph) +
PhHh(1 − Ph) + (1 − Ph)HhPh + PhHhPh ≈ PhHhPh. Then for β �= 0, (3.1) follows easily.
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the more expensive β−1(I − Ph). Note that the smoothing operator is explicit, symmetric,
and sparse; it acts only on initial concentrations, and therefore its application has negligi-
ble computational cost compared to the pair of forward/adjoint convective-diffusive transport
solves at each CG iteration. Since we coarsen in both temporal and spatial dimensions at
the same rate (in our implementation the time-stepping and spatial discretization methods
have the same approximation order), the cost of one reduced Hessian–vector multiplication
on level l is 24 times more expensive than that at the immediately coarser level l − 1. There-
fore, by using just three levels, the cost of a reduced Hessian-vector product on the finest grid
is 256 times the cost of a similar operation at the coarsest level. By using a simple V-cycle
strategy at the finest level we avoid computing the finest-level residual inside the precondi-
tioner; however, we use a W-cycle (as in King’s original algorithm) at the middle level, in
order to make up for a possible loss of quality of the preconditioner at coarser resolution, as
would follow from (3.3). As stated before, CG is used as a direct solver on the coarsest level.
We employ the full multigrid framework (i.e. grid sequencing) to compute initial guesses for
each level. In the next section, we discuss numerical results.

4. Implementation and Numerical Results. We demonstrate our dynamic data-driven
inversion framework on a hypothetical atmospheric contamination event in the Greater Los
Angeles Basin (GLAB) region. Using real topographical data and synthesized velocity fields,
we conduct numerical experiments in which sparse observations are extracted from forward
simulations and subsequently used in the inverse problem. Our implementation builds on
PETSc [3] to manage parallel data structures, coordinate different grid resolutions in our
multigrid preconditioner, interface with linear solvers and domain decomposition precondi-
tioners, and utilize a range of software services. We first discuss discretization and geometry
details and problem setup. We then briefly present numerical results for initial concentration
inversions in the GLAB. Finally, we provide parallel and algorithmic scalability results on
structured grids without topography.

In our actual implementation, we first discretize the optimization problem (2.1), and
then write optimality conditions (as opposed to the writing the infinite-dimensional optimal-
ity conditions (2.6) and then discretizing; in the present case the two are not identical [1]).
We employ Streamline Upwind Petrov-Galerkin (SUPG) finite elements [7] in space and
Crank-Nicolson in time. For problems with high Peclet number, stabilized methods such
as SUPG are more accurate than standard Galerkin on coarse meshes. We use a logically-
rectangular topography-conforming isoparametric hexahedral finite element mesh on which
piecewise-trilinear basis functions are defined. Since the Crank-Nicolson method is implicit,
we “invert” the time-stepping operator using a restarted GMRES method, accelerated by an
additive Schwarz domain decomposition preconditioner, both from the PETSc library.

Contaminant transport is modeled over a 360 km × 120 km × 5 km in the GLAB. Land
surface elevations are obtained at 1 km spacing from the USGS Land Processes Distributed
Active Archive Center (GTOPO30 digital elevation model).3 The three-dimensional mesh is
created from the surface elevations by inserting equally spaced grid points vertically from the
surface grid to the top of the domain at 5 km.

To simulate a contamination event, an initial contaminant plume with a Gaussian concen-
tration given by 20 exp(−0.04|x−xc|) is centered at xc =(120 km, 60 km, 0 km). The plume
is transported over the GLAB region by solving the convection-diffusion equation (1.1) with
specified velocity field over a time horizon of 120 minutes. Sensor measurements are taken
every 3 minutes to develop a time history from which to invert. For this contaminant, the
diffusion coefficient is taken as ν = 0.05. The regularization parameter is fixed at β = 0.01.

3http://edcdaac.usgs.gov/gtopo30/dem_img.asp
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The forward and inverse problems are solved on a mesh with 361 × 121 × 21 grid points,
representing 917,301 concentration unknowns at each time step. The time step is the same
as the sensor recording rate, i.e. 3 minutes, for a total of 40 time steps. Therefore, there are
about 74 × 106 total space-time variables in the KKT optimality system (2.6).

The velocity field v in the convection-diffusion equation is synthesized by solving the
steady-state incompressible Navier-Stokes equations, ρ (v · ∇) v+∇p−µ∆v = 0, ∇·v = 0,
where p is the fluid pressure and (ρ, µ) are its density and viscosity. To simulate an onshore
wind, an inflow Dirichlet boundary condition with vx = vmax (z/(5.0 − zsurface))

0.1 and
zero for the other components is applied to the x = 0 plane, where vmax is specified as
30 km/hr. Traction-free boundary conditions are applied to the outflow plane at x = 360
km. Traction-free tangential and no-slip normal boundary conditions are applied to the re-
maining portions of the boundary. An SUPG-stabilized finite element method is employed
to solve the Navier-Stokes equations using linear tetrahedral elements derived by subdividing
the convection-diffusion hexahedral mesh.

We sample the concentrations from the forward transport simulations on a uniformly-
spaced array of sensors, and use them as synthetic observations to drive the inverse problem.
Figure 4.1 depicts inversion results for different sensor array densities, along with the actual
initial concentration (labeled Target in the figure). One of the critical issues is to determine
the number of sensors required to resolve the initial concentration. As the number of sensors
in each direction increases, the error between the actual initial concentration and predicted
initial concentration is reduced. The relative L2 norm error for the 21× 21× 21 sensor array
is 34%, but as can be observed in the final image, the initial concentration is localized very
accurately. Recall that due to the non-vanishing regularization parameter and the fixed mesh
size, we cannot expect to recover the initial concentration exactly.

The run-time on a modest number of Alphaserver processors (64) is 2.5 hours for the
finest sensor array. As the sensor array becomes denser, the number of CG iterations in-
creases, causing an increase in wall-clock time. With new information provided by the
additional more finely-spaced sensors, one might expect a quicker inversion due to a less-
poorly-posed problem. In fact, the opposite is true: richer information provided by more the
finely-spaced sensors provides more energy to the oscillatory components of the residual; the
CG solver thus must work harder to recover these solution components. (Note that in this set
of experiments we have not used the multigrid preconditioner.) In addition to the influence
of the number of sensors, we have also studied the sensitivity of the inversion to the regular-
ization parameter β, the Peclet number, and the added noise level in the measurements. For
brevity we defer presenting these results to a separate article.

What is of ultimate interest is how successful the reconstructed initial field is in predict-
ing the actual transport of the contaminant. Figure 4.2 compares the actual evolution (left)
and predicted evolution (right) of the contaminant plume in time. It is evident from this figure
that although the reconstructed concentration does not match the actual concentration exactly
at t = 0, the difference between the two diminishes over time, due to the dissipative nature
of the forward convection-diffusion problem.

We next study the parallel and algorithmic scalability of the multigrid preconditioner. In
all experiments, we use a regular grid with a constant unidirectional velocity field. This is
an important simplification of the problem. Further tests are necessary for the case of more
complex and time-dependent velocity fields. The corresponding Peclet number is 3. We take
synthetic measurements on a 7 × 7 × 7 sensor array. CG is terminated when the residual of
(2.7) has been reduced by six orders of magnitude.

Table 4.1 presents fixed-size scalability results. The inverse problem is solved on a 257×
257 × 257 × 257 grid, i.e. there are 17 × 106 inversion parameters in (2.7) and 4.3 × 109
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FIG. 4.1. Sensitivity of the inversion result to the sensor array density. The target initial concentration is
shown in the upper-left corner, and inversion results using successively-finer sensor arrays are shown in the subse-
quent images. As the number of sensors in each direction increases, the quality of the reconstruction of the initial
concentration plume improves. L2(Ω) norm relative errors are 0.79, 0.49, and 0.34 for the 6×6×6, 11×11×11,
and 21× 21× 21 sensor arrays, respectively. Inversion using the 21× 21× 21 sensor array takes 2.5 hours on 64
processors of the Alphaserver EV68 system at the Pittsburgh Supercomputing Center. CG iterations are terminated
when the norm of the reduced gradient is reduced by five orders of magnitude. Topographical elevation has been
exaggerated for visualization purposes.

TABLE 4.1
Fixed size scalability of unpreconditioned and multigrid preconditioned inversion. Here the problem size

is 257 × 257 × 257 × 257 for all cases. We use a three-level version of the multigrid preconditioner described
in Section 3. The variables are distributed across the processors in space, whereas they are stored sequentially
in time (as in a multicomponent PDE). Here hours is the wall-clock time in hours, and η is the parallel efficiency
inferred from the runtime. The unpreconditioned code scales extremely well since there is little overhead associated
with its single-grid simulations. The multigrid preconditioner also scales reasonably well, but its performance
deteriorates since the problem granularity at the coarser levels is significantly reduced. Nevertheless, wall-clock
time is significantly reduced over the unpreconditioned case.

CPUs no preconditioner multigrid
hours η hours η

128 5.65 1.00 2.22 1.00
512 1.41 1.00 0.76 0.73
1024 0.74 0.95 0.48 0.58
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FIG. 4.2. Illustration of the predictive capabilities of our inversion algorithm, using an 11 × 11 × 11 sensor
array. Forward transport of the actual initial concentration is compared with forward transport of the reconstructed
initial concentration plume. The trajectories are close to each other, and the comparison improves with time.
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total space-time unknowns in (2.6). Note that while the CG iterations are insensitive to the
number of processors, the forward and adjoint transport simulations at each iteration rely on a
single-level Schwarz domain decomposition preconditioner, whose effectiveness deteriorates
with increasing number of processors. Thus, the efficiencies reported in the table reflect
parallel as well as (forward) algorithmic scalability. The multigrid preconditioner incurs non-
negligible overhead as the number of processors increases for fixed problem size, since the
coarse subproblems are solved on ever larger numbers of processors. For example, on 1024
processors, the 65 × 65 × 65 coarse grid solve has just 270 grid points per processor, which
is far too few for a favorable computation-to-communication ratio.

On the other hand, the unpreconditioned CG iterations exhibit excellent parallel scala-
bility since the forward and adjoint problems are solved on just the fine grids. Nevertheless,
the multigrid preconditioner achieves a net speedup in wall-clock time, varying from a factor
of 2.5 for 128 processors to 1.5 for 1024 processors. Most important, the inverse problem is
solved in less than 29 minutes on 1024 processors. This is about 18 times the wall-clock time
for solving a single forward transport problem.

Table 4.2 presents isogranular scalability results. Here the problem size ranges from

TABLE 4.2
Isogranular scalability of unpreconditioned and multigrid preconditioned inversion. The spatial problem

size per processor is fixed (stride of 8). Ideal speedup should result in doubling of wall-clock time. The multigrid
preconditioner scales very well due to improving algorithmic efficiency (decreasing CG iterations) with increasing
problem size. Unpreconditioned CG is not able to solve the largest problem in reasonable time.

grid size problem size CPUs no preconditioner multigrid
u0 (u, p, u0) hours iterations hours iterations

1294 2.15E+6 5.56E+8 16 2.13 23 1.05 8
2574 1.70E+7 8.75E+9 128 5.65 23 2.22 6
5134 1.35E+8 1.39E+11 1024 — — 4.89 5

5.56× 108 to 1.39× 1011 total space-time unknowns, while the number of processors ranges
from 16 to 1024. Because we refine in time as well as in space, and because the number of
processors increases by a factor of 8 with each refinement of the grid, the total number of
space-time unknowns is not constant from row to row of the table; in fact it doubles. How-
ever, the number of grid points per processor does remain constant, and this is the number
that dictates the computation to communication ratio. For ideal overall (i.e. algorithmic +
parallel) scalability, we would thus expect wall-clock time to double with each refinement of
the grid. Unpreconditioned CG becomes too expensive for the larger problems, and is unable
to solve the largest problem in reasonable time. The multigrid preconditioned solver, on the
other hand, exhibits very good overall scalability, with overall efficiency dropping to 95%
on 128 processors and 86% on 1024 processors, compared to the 16 processor base case.
From the fixed-size scalability studies in Table 4.1, we know that the parallel efficiency of the
multigrid preconditioner drops on large numbers of processors due to the need to solve coarse
problems. However, the isogranular scalability results of Table 4.2 indicate substantially bet-
ter multigrid performance. What accounts for this? First, the constant number of grid points
per processor keeps the processors relatively well-populated for the coarse problems. Sec-
ond, the algorithmic efficacy of the multigrid preconditioner improves with decreasing mesh
size (as predicted by (3.3)); the number of iterations drops from 8 to 5 over two successive
doublings of mesh resolution. The largest problem exhibits a factor of 4.6 reduction in CG
iterations relative to the unpreconditioned case (5 vs. 23). This improvement in algorithmic
efficiency helps keep the overall efficiency high.
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5. Conclusions. We have presented a methodology for solving terascale dynamic data-
driven inverse problems of determining unknown initial condition data from sparse observa-
tions in a model-consistent manner. The methodology has been instantiated in the context
of inverse convection-diffusion transport problems. The main difficulty is that the optimality
system is a boundary value problem in 4D space-time, even though the forward simulation
problem is an initial value parabolic-hyperbolic problem. We have presented special-purpose
parallel multigrid algorithms that exploit the spectral structure of the inverse operator. Exper-
iments on problems of localizing airborne contaminant release from sparse observations in a
regional atmospheric transport model demonstrate that:

• 17-million-parameter inversion can be effected at a cost of just 18 forward simula-
tions;

• wall-clock time on 1024 Alphaserver EV68 processors for the 17-million parameter
inversion case is just 29 minutes;

• the multigrid preconditioner reduces the number of iterations by as much as a factor
of 4.6; and

• inverse problems with 135 million initial condition parameters and 139 billion total
space-time unknowns are solved in less than 5 hours on 1024 processors at 86%
overall (parallel + algorithmic) efficiency.

These results suggest that ultra-high resolution data-driven inversion can be carried out
sufficiently rapidly for linear transport problems to enable simulation-based “real-time” haz-
ard assessment. The next step is to test the scalability of the algorithm on complex wind fields.
Our long-term goal is to integrate the current framework with more sophisticated transport
models that include, for example, deposition, regional weather models, and more accurate
terrain information.
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