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Abstract

Inversion algorithms are used to calibrate demands of water distribu-
tion systems by minimizing the difference between observed and predicted
chemical concentration values. A systematic approach was implemented us-
ing a combination of numerical experimentation, parameter studies, global
methods, and local gradient based algorithms. An appropriate finite dif-
ference step was determined to calculate objective function gradients for
the inversion problem. The inversion of demands for a model calibration
using field tracer observations resulted in a 26% reduction of the objective
function. As a result of the inversion problem, an error in the numerical
model was identified that could be responsible for some of the remaining
mismatch. Future work includes improving the numerical model and devel-
oping more accurate history of concentration observations. Optimization
under uncertainty strategies are proposed to help characterize variability in
the model calibration problem.

1 Introduction

The ability to accurately predict pressures, velocities and chemical concentra-
tions in a water distribution network through numerical simulation is critical to
the management of field operations and to the planning of future expansions.
Unfortunately, water distribution models may not produce accurate predictions
as a result of 1) a lack of physics, 2) the omission of relevant detail, 3) insuf-
ficient fidelity, and 4) errors in the model inputs due to lack of knowledge or
inherent variability. To improve the predictive quality of the numerical model,
field experiments can be conducted in which a combination of pressures, flow
rates, and chemical concentrations are observed and then compared to simula-
tion predictions. Simulation parameters such as friction factors and demands are
most commonly perturbed until the mismatch is reduced. Manually manipulating
these parameters, however, is a time consuming procedure, and quickly becomes
intractable if the inversion space is large. For large number of inversion variables
an automated process utilizing optimization algorithms should be considered.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
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Model calibration has been known to improve the quality of numerical models, but
little research effort has been devoted to developing a detailed understanding of the
behavior of optimization algorithms on water distribution networks. Some work
has focused on reconciling pressure observations with simulated predictions to
determine more accurate friction factors and demands. Luvizotto et al [6] present
results for demand inversion using pressures and flows. Most investigations have
been conducted on small datasets and relatively simple flow patterns, allowing for
the use of global optimization methods. Walter et al [13] and deSchaetzen et al
[3] use genetic algorithms to invert for friction factors by measuring pressures and
flow rates.

Applying optimization algorithms to nonlinearly behaving dynamic systems is a
challenging task and is complicated by model uncertainties and field-measurement
inaccuracies. In addition to the simulator mathematics not perfectly capturing
field behavior, model parameters are often not exactly representative of field con-
ditions. Significant uncertainties are introduced during the data acquisition phase
(e.g measurement equipment drift, uncompensated environmental changes) and
also during the data post-processing phase (e.g such as reducing the volume of data
to a manageable size). To further complicate the optimization problem, inversion
formulations can be ill-posed with potentially non-unique solutions. Successfully
applying optimization algorithms to model calibration to achieve an exact match
can therefore be a complex process. This paper discusses the use of several op-
timization schemes to arrive at the final solution for both a prototype and real
dataset. The goal of this investigation is to take a systematic approach to model
calibration, consisting of numerical experimentation of both the prototype and
the actual tracer datasets, followed by a strategic use of parameter studies, global
and local optimization methods

In the case of the tracer dataset, not all uncertainties can be eliminated and
therefore optimization under uncertainty formulation should be considered so that
inversion problems can be solved with appropriate statistics.

2 Deterministic Optimization Formulation

We start with a mathematical description of the non-linear least squares prob-
lem which is used to minimize the difference between the calculated and target
concentrations. The inversion of demands, using chemical concentrations from
field experiments, requires minimizing an objective function subject to both the
hydraulic and chemical transport equations:
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Here the constraints are a set of differentiable algebraic equations, consisting of an
ordinary differentiable equation for chemical transport and algebraic equations for
nodal mixing rules and hydraulic behavior. Given the sensor measurements ĉ∗ at
times t, we need to determine the unknown demand terms Qe

j. The calculated pipe
concentrations, ĉi(t), are at the end position of a pipe. The last term in equation
(1) is a regularization parameter to address the non-uniqueness where R can be
defined as (Qe

j)
2 or (∇Qe

j)
2. The penalty variable, β, is set to an arbitrary low

value. N is the space of nodes or junctions, N ∗ the space of nodes with sensors,
B is the space of inversion parameters, and P is the space of pipe segments. The
external flow rates Qext and concentrations cext(t) are specified for reservoirs. Qj

and ui are flow rate and velocity in a pipe segment. The variable ui is bulk flow and
is related to the flow rate through pipe diameters. Pk is the set of all pipes flowing
into node i. The last two equations (4, 5) represent the dynamics of a network
system [10] consisting of continuity and energy conservation, where Qij represents
flow between node i and j. Hij is the head between node i and j and hf is the head-
loss term. The head loss is a nonlinear function of flow rates and friction factors.
Although the chemical transport and hydraulic equations are explicitly written
as constraints in this formulation a non-intrusive interface is used that eliminates
these equations at each optimization cycle [12] [11]. The primary reason for this
explicit format is for exposition of the underlying simulation mechanics.

3 Deterministic Optimization Numerical Results

Numerical experiments were conducted by executing a forward simulation, ex-
tracting concentration values at sparsely-selected locations and using these sen-
sor values in a nonlinear least squares formulation to solve an inverse problem.
Numerical experiments were conducted on two datasets. The first dataset was
developed to provide relatively simple flow behavior so that certain aspects of
the inversion algorithms could be conveniently tested. Figure 1(a) shows a 10x10
grid consisting of 100 nodes used in the prototype network. A reservoir supplies
the necessary flow rate to meet the total demand of the network. Without the
variability associated with real data, the flow patterns and the chemical transport
can be easily verified by inspection and thereby allowing some qualitative valida-
tion of the simulation and inversion algorithms. Complexities were systematically
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incorporated to evaluate the quality of the inversion. For instance, increasing the
number of demands and decreasing the number of sensor points provided verifica-
tion that in concept the inversion algorithm could successfully handle the demand
and sensor ratio of the tracer dataset.

Figure 1: (a) Prototype network 10x10 (b) Tracer study network

The hydraulic behavior and chemical transport in both the prototype and tracer
networks were simulated using EPANET [9]. EPANET first solves the hydraulic
system for a time sequence given some boundary conditions and a time period,
followed by the solution of the chemical transport within the hydraulic time period
using a Langrangian approach. The prototype and tracer studies were simulated
for 6 and 24 one hour hydraulics time steps respectively, and both datasets were
simulated with 3 minute chemical time steps within each hydraulic time step. Pa-
rameter and optimization studies were performed using the DAKOTA framework
[5], which is a general toolkit capable of uncertainty quantification, sensitivity
analysis, design of experiments and other iterative studies for high performance
computers.

3.1 Prototype Network Results

As a standard procedure for most optimization problems the design space is inves-
tigated by inspecting the general behavior and sensitivity of the specified objective
function with respect to the design variables. If the general behavior is differen-
tiable, efficient gradient-based methods can be used to find the optimum. On
the other hand, if the response function is non-differentiable or multiple minima
are suspected, then non-gradient based methods may be preferred. Figure 2(a)
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Figure 2: Parameter study for (a) prototype network (b) tracer network

shows a smoothly behaving objective function for the prototype network using a
relatively large perturbation step.

Sensitivity analyses were conducted to investigate the performance of the inversion
algorithm. One of the important parameters investigated was the finite difference
step which is used to calculate the gradient of the objective function. A standard
guideline is usually applied by estimating how many reliable digits are available
in the objective function F (x) and then only relying on half the digits in the
perturbed objective function F (x + hej), where h and ej are the step size and
the unit vector, respectively [4]. There is an underlying assumption however that
the entire simulation operates with sufficient precision in every component and
consistently propagates the appropriate precision to the final output values. This
is difficult to inspect but easily tested by trying different finite difference steps
on the subject dataset. For the prototype network, a finite difference step of
approximately 0.01 % resulted in the best inversion solution. This required the
precision of EPANET’s output values to be increased to a maximum number of
digits.

The inversion of demands was initially tested on the prototype network. The goal
of this experiment was to determine the minimum number of sensor points for
achieving a successful inversion. For a 100 node prototype network simulated for
six one hour hydraulic time steps, the inversion resulted in a near perfect match
with only 25% of the total sensors. Less than 25% of total sensors resulted in a
lower quality solution.

An important issue for this inversion problem is how the quality of the inversion
is affected by the character of the demand variables. A simple procedure was
implemented through which one randomly placed demand variable was added to
the inversion problem and the quality of the inversion was measured. For the 100
node network, the maximum number of demands that could recover the original
demands was approximately ten. More than ten parameters required a close
starting point including the use of nearly all the observation points to perform a

5



successfully inversion.

If demands at every node are assigned a random value but within a relatively tight
range for the forward problem, then the target demands are not recovered in the
inverse problem even if all the nodes are used as observation points. The main rea-
son is that the finite difference based objective function calculation cannot resolve
sufficient detail to distinguish between neighboring nodes producing very small
concentration differences. Theoretically, this can be corrected if exact sensitivity
information exists (machine precision derivatives). Previous work demonstrated
the same phenomenon [7] and accordingly it can be concluded that the inversion
can be significantly improved from accurate first order information.

Three different gradient based optimization algorithms were applied to the in-
version problem. The first algorithm was a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) sequential quadratic programming (SQP) method with an augmented-
Lagrangian line search. The second algorithm was also a BFGS-based SQP
method but with an L1 line search method. Finally, a Gauss Newton meth-
ods was evaluated which theoretically should be the most efficient algorithm for a
nonlinear least squares problem since no Hessian calculations are required. How-
ever, it appears that the Hessian updates are not expensive and the BFGS-SQP
methods are faster. The BFGS SQP L1 line search method was the most efficient
because no gradient calculations are required (within the line search), whereas
the augmented-Lagrangian line search requires a finite difference calculation for
each line search iteration. If more precise sensitivity information was available,
the augmented Lagrangian method may be more efficient.

3.2 Tracer Test Results

A second network represents a small section of an industrial park and consists
of approximately 200 nodes (figure 1-b). A simple tracer test was performed on
this network in which CaCl was injected in one location and conductivity was
monitored at eight different locations (indicated in the figure by the S labels).
Although some demands were accurately measured during the test, eight nodes
were unknown. Some historical data provided a guide for the initial guesses for
these unknown nodal demands.

Unlike the smooth behavior of the prototype model, the objective function of the
tracer test dataset showed non-smooth behavior at small scales that could cause
difficulties with the finite difference calculation of the objective function gradient.
Figure 2(b) shows the objective function behavior versus perturbations in demand.
The possibility of multiple minima can also be detected for the tracer dataset. To
address the multiple minima and non-smooth behavior of the network, a global
optimizer, specifically a genetic algorithm (GA), was applied for a reduced set of
parameters by assuming that the eight demands are constant during the 24 hours
simulation period. The GA was able to find a significant improvement from the
initial guess, reducing the objective function by approximately 21%.
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Figure 3: Comparison of concentrations and prediction for sensors no. 1-4; red
curves represent observations and black curve represent simulated values

An additional 24 inversion parameters were added to the formulation in an at-
tempt to capture temporal consumption behavior for each demand variable over
the 24 hour period. Starting from the previous solution obtained by the global
optimizer a gradient based method was able to reduce the objective function an
incremental 5% with the temporal-based demand variables. Because of the non-
smooth observations of the parameter study, the additional progress toward a
better match was not anticipated, but apparently the behavior within the neigh-
borhood of the last solution point was smooth enough for the gradient based
algorithm. The final match of the sensor points are shown in figure 3 and 4.

During the initial phases of the study a simple gradient based inversion identified
one sensor location as an outlier. The reason for the erroneous result is still
inconclusive but is most likely caused by a misrepresentation of field conditions in
the numerical model. Some of the error associated with the final match can most
likely be attributed to this inaccuracy in the numerical model.

.

4 Optimization Under Uncertainty

Very little work has been done on calibration of water distribution systems under
uncertainty. Lansey et al [8] and Xu et al [2] use uncertainty as a constraint in
their optimization problem, and Bayan et al [1] discuss the need to incorporate
uncertainty associated with demand to perform long term design analysis. Some
work has been done on reliability analysis for water distribution networks but
are applied to long term hydraulic planning design problems and not model cal-
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Figure 4: Comparison of concentrations and prediction for sensors no. 5-7

ibration. Xu et al [2] present a comprehensive review of previous efforts in this
area and they present a reliability-based optimization approach that uses a first
order reliability method (FORM) and is focused on failure to meet demands at a
minimum pressure.

To characterize variability in the model and field data, optimization under un-
certainty algorithms can be implemented. However, a variety of formulations are
possible and are dependent on the problem description. The following strategies
can be considered for future application to the model calibration problem:

min
Qe

∑

i

(µ − c̄)2 i ∈ L (6)

min
Qe

∑

i

β2 (7)

min
Qe

∑

i

γ (8)

where µ is the mean of a distribution associated with the simulation predictions,
c̄ are the least squares terms, and L is the space of nonlinear least squares terms.
The mean values for the simulation predictions are generated by the uncertainty
quantification process. Equation 7 incorporates more statistic, where β is defined

as (µ−c̄)2

σ
. The standard deviation σ enters in the objective function. The function
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γ is some mathematical expression that relates standard deviation and mean of
both the simulation and the field measurements. The exact form for γ is the
subject of future research. Equation 6 and 7 have been implemented for the model
calibration problem. Equation 6 has been executed on the prototype network for
a basic validation test. Although it is not anticipated that these formulations
will improve the deterministic match, these formulations can help characterize
the variability of the model and field measurements.

5 Conclusions and Future Work

Global and local optimization techniques were applied to a model calibration
problem which successfully inverted for eight demands by using time histories of
concentration measurements. The prototype model used gradient based methods
to invert for 10 demands in a 100 node network using as little as 25 sensors whereas
a combination of global methods and local gradient based methods were applied
to the tracer test dataset to realize a reduction in the objective function of 26%.
The calibration process determined that a portion of the network was not being
modeled properly (i.e. bad pipe diameters, missing valves, etc).

During the initial evaluation stage of the investigation, a parameter study showed
smooth general behavior in the prototype but some small scale non-smoothness
in the actual tracer test simulation. Accordingly, a global method was selected to
perform the initial inversion on a reduced set of inversion variables. Additional
improvement of the inversion was realized by using a local gradient methods start-
ing from the last global method solution and using time dependent inversion pa-
rameters. Various parameters were evaluated during the parameter study phase
including finite difference step, grid resolution, regularization, initial conditions,
and solvers.

Inversion under uncertainty formulations are proposed to help characterize vari-
ability in the model and field measurements. The exact formulation and applica-
tion to the tracer test remains for future work.
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