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Introduction

• Protein Folding

– Sequence of amino acids → three-dimensional structure

– Minimum potential energy assumed for native structure

• Difficult Goal

– Find structure with minimum potential energy

– Computationally intractable for large proteins

• Simple Model

– Chain of charged particles in a two dimensional space

– Simple energy model

– Find structure with minimum potential energy



Formulation of the Problem

Chain of m charged particles with charges qi (2D space)
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Optimization Problem

min E(φ)

s.t. 0 ≤ φi ≤ 2π, (i = 1, . . . ,m− 2)



Solving the Optimization Problem

• Difficulty

– Many local minima

– Number of minima increases exponentially

• Classic Approach

– Gradient methods (e.g., steepest descent)

– Good starting approximation needed

– Converges to local minimizer

• New Approach

– Homotopy method

– Good starting approximation not needed

– Improve likelihood of finding global minimizer



Potential Energy Homotopy

Goal:
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find φ∗

s.t. ∇E∗(φ∗) = 0

∇2E∗(φ∗) > 0

0 ≤ φ∗ ≤ 2π

Homotopy:
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Tracing H(φ, λ) = 0

Algorithm:

φ0 = global minimizer of E0(φ)

λ0 = 0

k = 0

repeat until λk = 1

k = k + 1

λk = λk−1 + (∆λ)k

φk ←







solve H(φ, λk) = 0

using φk−1 as initial guess

end

φ∗ = φk
[

H(φk, 1) = ∇E∗(φk) ≈ 0
]



Pairwise Energy for Charged Particles

(Carbon-like in atomic/van der Waal radius, monovalent in charge)
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Example 1 – Negligible Difference

m = 20

q ∈ {−1,+1}

E0(φ) = −22.9708

6 changes in q
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E∗(φ) = −22.4510 E∗(φ) = −22.4511



Example 2 – No Difference

m = 20

q ∈ {−1,+1}

E0(φ) = −22.9708

10 changes in q
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E∗(φ) = −20.0044 E∗(φ) = −20.0044



Example 3 - Qualitative Difference

m = 20

q ∈ {−1,+1}

E0(φ) = −22.9708

16 changes in q
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E∗(φ) = −18.8808 E∗(φ) = −19.4268



Conclusions and Future Work

• Results Using Homotopy–Simple Model(2D)

– Rivals gradient methods (GM) in accuracy

– Outperforms GM when many charges change

– More function evaluations than GM

• Goal Using Homotopy–Simple Model (3D)

– Produce results similar to 2D model

– Validate against existing examples from community

• Goal Using Homotopy–Protein Folding

– Predict tertiary structure of proteins

– Utilize Protein Data Bank (PDB)

¦ Homologues as starting points

– Utilize Amber

¦ Potential energy computation


