
Program for “Algorithms and Abstractions for Assembly in

PDE Codes” Workshop at Sandia National Laboratories∗

May 12-14, 2014

FORMAT: All talks will be in CSRI/90. There will be three one hour long (with ten minutes
for questions) keynote talks, and 24 “poster blitz” talks. Each blitz speaker is given 15 minutes to
summarize the main points of their poster that will be presented. The idea is to stimulate deeper
conversation on these topics. The poster may only be displayed during the allocated poster session
following the poster blitz at the end of the day. Presenters are responsible for making sure their
own poster is displayed.

SCHEDULE:

Monday - May 12, 2014

Start Time Speaker and Title
9:00a-9:15 Opening Remarks
9:15a-10:15 Keynote: Martin Berzins - University of Utah

Software Abstractions for Extreme-Scale Scalability of Computational Frameworks
10:15a-10:30 Break
10:30a-12:00 Poster Blitz

Andreas Kloeckner - University of Illinois
Operator transformation and code generation for FEM
Roy Stogner - University of Texas
C++14 Generic Programming as a Domain-Specific Language for PDEs
Irina Demeshko - Sandia National Laboratories
A performance-portable implementation of the Finite Element Assembly: prelim-
inary results of using Kokkos in the Albany code
James Sutherland - University of Utah
Flexible, Efficient Abstractions for High Performance Computation on Current
and Emerging Architectures
Roger Pawlowski - Sandia National Laboratories
Template-based Generic Programming Techniques for Finite Element Assembly
Janine Bennett - Sandia National Laboratories
Fault-tolerant programming at the extreme-scale

12:00-1:30p Lunch
1:30p-2:30 Poster Blitz

David Andrs - Idaho National Laboratory
Massive Hybrid Parallelism for Fully Implicit Multiphysics
David Moulton - Los Alamos National Laboratory
Amanzi and the Arctic Terrestrial Simulator: Flexible Multiphysics Simulators
for Environment and Ecosystem Applications
Ken Franko - Sandia National Laboratories
MiniAero
Eric Phipps - Sandia National Laboratories
Improving PDE Assembly Performance Through Embedded Uncertainty Quantifi-
cation

2:30p-5:00 Poster Session

∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

1



Tuesday - May 13, 2014

Time Speaker and Title
9:00a-10:00 Keynote: Mike Heroux - Sandia National Laboratories

Challenges and Opportunities for Scalable Finite Element Assembly
10:00a-10:30 Break
10:30a-12:00 Poster Blitz

Rob Kirby - Baylor University
Fine-grained finite element parallelism
Shawn Pautz - Sandia National Laboratories
Matrix Assembly Tasks in the Sceptre Deterministic Radiation Transport Code
Tim Warburton - Rice University
OCCA: A Unified Approach to Multi-Threading Languages
Tzanio Kolev - Lawrence Livermore National Laboratory
Scalable high-order finite elements with MFEM, hypre and BLAST
Onkar Sahni - RPI
Abstractions and algorithms for adaptive methods on boundary layer meshes
Rich Drake - Sandia National Laboratories
The ALEGRA Production Application: Strategy, Challenges and Progress Toward
Next Generation Platforms

12:00-1:30p Lunch
1:30p-2:30 Poster Blitz

Dan Sunderland - Sandia National Laboratories
Thread Scalable CRS Graph Construction
Ulrike Yang - Lawrence Livermore National Laboratory
Matrix and Vector Assembly in hypres Conceptual Interfaces
Mark Hoemmen - Sandia National Laboratories
Tpetra interface changes to support thread-parallel fill
Bruno Turcksin - Texas A&M
Multithreaded matrix assembly for finite elements

2:30p-5:00 Poster Session

Wednesday - May 14, 2014

Start Time Speaker and Title
9:00a-10:00 Keynote: Paul Fischer - Argonne National Laboratory

Scaling PDE solvers beyond a million cores
10:00a-10:15 Break
10:15a-11:30 Poster Blitz

Jed Brown - Argonne National Laboratory
High-performance matrix-free operator application and preconditioning
Carter Edwards - Sandia National Laboratories
MiniFENL: Fully Hybrid Parallel and Performance Portable Nonlinear Finite
Element Miniapp using MPI+Kokkos
Christian Trott - Sandia National Laboratories
A migration strategy for utilizing the Kokkos many-core programming model
Kendall Pierson - Sandia National Laboratories
Efficient Block Sparse Assembly with SIMD
Eric C. Cyr - Sandia National Laboratories
Global Unknown Numbering for Fully-Coupled Mixed Finite Element Methods

11:30p-12:30 Poster Session

2



ABSTRACTS: Speakers in bold

David Andrs, Derek Gaston, Cody Permann, John Peterson, Andrew Slaughter, Richard Mar-
tineau
Title: Massive Hybrid Parallelism for Fully Implicit Multiphysics
Abstract: As hardware advances continue to modify the supercomputing landscape, traditional sci-
entific software development practices will become more outdated, ineffective, and inefficient. The
process of rewriting/retooling existing software for new architectures is a Sisyphean task, and re-
sults in substantial hours of development time, effort, and money. Software libraries which provide
an abstraction of the resources provided by such architectures are therefore essential if the compu-
tational engineering and science communities are to continue to flourish in this modern computing
environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework
enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain
specialists, while also allowing them to both take advantage of current HPC architectures, and
efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory
and distributed-memory parallel model and provides a complete and consistent interface for cre-
ating multiphysics analysis tools. A brief discussion of the mathematical algorithms underlying
the framework and the internal object-oriented hybrid parallel design are given. Representative
massively parallel results from several applications and a brief discussion of future areas of research
for the framework will be presented.

Janine Bennett, John Floren, Hemanth Kolla, Nicole Slattengren, Keita Teranishi, Jeremiah
Wilke
Title: Fault-tolerant programming at the extreme-scale
Abstract: It is widely acknowledged that performant software at exasacle will require significant
increases in fine-grained parallelism and resiliency. Asynchronous, many-task programming models
are acknowledged to provide the desired levels task- and data-level parallelism and, furthermore,
show promise at sustaining performance despite node degradation and failures. Asynchronous task
models introduce a challenging distributed consistency problem both within and amongst several
interacting components (e.g. scheduler, global address server, transport layer), which demands a
large set of programming model and runtime tools to address process failures. Existing many-task
solutions often have nascent resilience support, addressing a subset of the resilience problem. In
this poster we outline a holistic resilience approach based on a deferred consistency model. As much
as possible, we isolate the resilience problem to a distributed hash table and library of resilient col-
lective communications, transforming the massive challenge of resilient many-task scheduling and
execution into related, but better understood resilience problems.

Martin Berzins
Title: Software Abstractions for Extreme-Scale Scalability of Computational Frameworks
Abstract: Abstractions play a key role in the development of both computer and computational
science. Often the choice of the abstraction is of key importance in enabling performance at the
required level. At the same time the choice of abstraction alone may not be enough to guarantee
that performance. A key abstraction in the move to extreme-scale computing is sometime stated
to be that of basing execution around the concept of multiple directed acyclic graphs of tasks. We
will show that using such an approach within the Utah Uintah makes it possible to separate the
user specification and the runtime that executes the resulting tasks. This separation then makes it
possible to scale the same (unchanged) applications code from 700 to 700K cores. The mechanism
for making such an abstraction work is the constant re-engineering of the runtime system, based
on a careful analysis of its performance. The techniques that make it possible for the Uintah
software framework to run complex engineering applications at such scales will be described and
their use illustrated in the context of problems such as modeling energetic materials, clean-coal
turbulent combustion and multiscale materials by design. Finally the challenge of extending such
an abstraction to present and future heterogeneous machines will be considered.

3



This work is joint with Alan Humphrey, Qingyu Meng and John Schmidt from the runtime
system and Jacqueline Beckvermit, Todd Harman and Jeremy Thornock from the applications side.

Jed Brown, Dave May, Matt Knepley
Title: High-performance matrix-free operator application and preconditioning
Abstract: Assembled sparse matrices lead to algorithms with extremely low arithmetic intensity,
thus using hardware inefficiently. The same linear systems can often be represented using less mem-
ory by storing information at quadrature points or flux points. In this form, operator application
looks more like residual assembly. Preconditioning techniques need to be adapted to these repre-
sentations. Techniques will be compared on the basis of generality and performance (up to 30% of
FPU peak for some variants).

Eric C. Cyr, Ben Seefeldt, Roger Pawlowski
Title: Global Unknown Numbering for Fully-Coupled Mixed Finite Element Methods
Abstract: TBD

Irina Demeshko, H. Carter Edwards, Michael A. Heroux, Eric T. Phipps, Andrew G. Salinger
Title: A performance-portable implementation of the Finite Element Assembly: preliminary results
of using Kokkos in the Albany code
Abstract: The diversity of modern HPC architectures and programming models introduces a per-
formance portability issue: parallel code needs to be executed correctly and performant despite
variation in the architecture, operating system and software libraries. In this poster we present
our progress towards a performance portable implementation of Finite Element Assembly in the
Albany code, based on using the Kokkos programming model from Trilinos.

Rich Drake
Title: The ALEGRA Production Application: Strategy, Challenges and Progress Toward Next Gen-
eration Platforms
Abstract: ALEGRA is a large, highly capable, option rich, production application solving coupled
multi-physics PDEs modeling magnetohydrodynamics, electromechanics, stochastic damage mod-
eling and detailed interface mechanics in high strain rate regimes on unstructured meshes in an
ALE framework. Nearly all the algorithms must accept dynamic, mixed-material elements, which
are modified by remeshing, interface reconstruction, and advection components. Recent trends in
computing hardware have forced application developers to think about how to address and improve
performance on traditional CPUs and to look forward to next generation platforms. Core to the
ALEGRA performance strategy is to improve and rewrite loop bodies to be conformant with the
requirements of high performance kernels, such as accessing data in array form, no pointer derefer-
encing, no function calls, and thread safety. Necessary to achieve this, however, are changes to the
underlying infrastructure. We report on recent progress in the infrastructure to support array-based
data access and on iteration of mesh objects. The effects on performance on traditional platforms
will be shown. We also discuss the practical realities and cost estimates for attempting to move
an existing full featured production application like ALEGRA toward running effectively on future
platforms and being maintainable at the same time.

H. Carter Edwards
Title: MiniFENL: Fully Hybrid Parallel and Performance Portable Nonlinear Finite Element Miniapp
using MPI+Kokkos
Abstract: MiniFENL is a miniapplication which solves a nonlinear system of equations generated
from a finite element discretization. MiniFENL is implemented with MPI+Kokkos for performance-
portability to heterogeneous platforms with manycore CPUs and accelerators such as Intel Xeon
Phi and Nvidia GPUs. Every phase of miniFENL is hybrid parallel: internal generation of the finite
element mesh, construction of the sparse linear system graph from the finite element mesh connec-
tivity, computation of per-element nonlinear residuals and Jacobians, assembly of these per-element

4



contributions into the global sparse linear system, and two level Newton / conjugate gradient iter-
ative solution of the nonlinear problem. We use miniFENL to explore hybrid parallel algorithms
and performance tradeoffs across the entire solution process. For example, we recently demon-
strated that a global linear system assembly scatter-add approach has better performance than
a gather-sum approach on both Xeon Phi and Nvidia Kepler accelerators. The scatter-add ap-
proach uses atomic-fetch-and-add operations for thread safety whereas the gather-sum approach
saves per-element contributions into a temporary array and then mines this array for a thread-safe
one-thread-per-row assembly.

Paul Fischer
Title: Scaling PDE solvers beyond a million cores
Abstract: We discuss design and performance of communication kernels in the context of PDE
based simulation at petascale and beyond. In the first part of the talk, we present a gather-scatter
(GS) framework that has a particularly simple interface and has demonstrated scaling to beyond
6 million MPI ranks. The interface requires a “setup” phase in which each participating rank
supplies a vector of 64-bit integers that map local degrees of freedom to their global index. In
subsequent “execute” phases, ranks supply a vector, an operand type (32- or 64-bit real/int), and
an associative/commutative operator (+,*,min,max) that is applied across sets of scalar or vector
operands sharing the same global index. Depending on the density of the underlying graph, GS will
choose one of three exchange strategies: pairwise, crystal-router (CR), or all-reduce. The latter two
nominally have log P complexity, save for all-reduce on BG/L-P-Q, where all-reduce is essentially
P-independent out to a million ranks. The CR is a scalable generalized all-to-many that is also used
in GS-setup. We discuss the performance of these kernels in the context of billion-point simulations
on over 100,000 cores.

In the second half of the presentation we examine fundamental issues that will be critical for
strong scaling at exascale given current trends in compute/communication ratios. We propose
hardware supported reduce-scan stategies for essential kernels (e.g., algebraic multigrid) that could
mitigate the internode latency that ultimately limits strong scalability and, thus, utility of exascale
platforms.

Michael A. Heroux
Title: Challenges and Opportunities for Scalable Finite Element Assembly
Abstract: Emerging computer architectures are forcing the finite element community to consider
disruptive algorithmic and software changes in order to exploit new commodity performance curves,
and address expected resilience issues at extreme scales.

In this presentation we characterize the architectural trends that pose the most significant al-
gorithmic challenges and opportunities for the design and implementation of the next generation
of finite element computations. In particular, we discuss strategies for exploiting new performance
trends, issues of latency and bandwidth, and abstract models for resilient algorithm development.
Finally we discuss practical consideration for developing the next generation of library software in
this area, including reproducibility, data structures and mixed threading model concerns.

Mark Hoemmen
Title: Tpetra interface changes to support thread-parallel fill
Abstract: Tpetra is Trilinos’ next-generation sparse linear algebra package. It provides sparse
graphs and matrices and dense vectors, and has a parallel data redistribution facility which appli-
cations can use. Tpetra lets users choose the type of values in its matrices and vectors, has been
demonstrated to solve problems with well over two billion unknowns, and supports “hybrid” MPI
+ X parallelism for several different shared-memory parallel programming models X. This poster
will show our work in progress to improve Tpetra’s support for thread-parallel fill. By “fill,” we
mean constructing and modifying Tpetra data structures, like sparse matrices and dense vectors,
as for example in finite element assembly. This work builds on the new Kokkos thread-parallel
programming model, but does not require that applications use Kokkos. Our interface changes

5



will help applications gradually adopt threads, and guide application developers with performant
idioms that support different data structure fill patterns.

Ken Franko
Title: MiniAero
Abstract: Kokkos was used to develop a mini-application for gas dynamics applications, miniAero.
miniAero is an explicit cell-centered finite-volume code that is MPI enabled and uses Kokkos for
thread and GPU execution of kernels. Performance numbers for MPI+X for a variety of platforms
will be presented along with lessons learned.

Rob Kirby
Title: Fine-grained finite element parallelism
Abstract: This poster will demonstrate available concurrency in elementwise finite element kernels,
as well as using expressing certain global operations in terms of shared-memory primitives. Pre-
liminary numerical results will be given using PyOpenCL.

Andreas Kloeckner
Title: Operator transformation and code generation for FEM
Abstract: The present talk and poster discuss three software components designed to ease and au-
tomate tasks encountered in FEM assembly. The first, named ‘pymbolic’, is an expression tree with
extensive traversal and rewriting capabilities. Both its mathematical vocabulary and its traversal
operations are easily extended. This functionality is demonstrated in action in the context of oper-
ator description and transformation for discontinuous Galerkin (dG) FEM and high-order integral
equation codes, with special attention paid to the transformation pipeline implemented and the
design constraints imposed by each environment. A brief mention is made of ‘PyOpenCL’ that,
in addition to providing a friendly interface to heterogeneous, shared-memory parallel computing
hardware, incorporates an array container and implementations of a variety of parallel primitives,
including scan, sort, and reduction. Making use of these foundations, a generic code generator is
shown. ‘Loo.py’ targets shared-memory, massively parallel machines, and based upon a mathe-
matical description of a computation along with a sequence of transformations, generates efficient,
low-level code. Its use is shown in the context of FEM assembly and dG operator evaluation. All
tools are hosted in the Python programming language, which, by its design, enables and encour-
ages reuse, abstraction, and modularization. The tools are available under the MIT license and
straightforwardly incorporated into user code.

Tzanio Kolev, Veselin Dobrev, Michael Kumbera, Robert Rieben
Title: Scalable high-order finite elements with MFEM, hypre and BLAST
Abstract: The finite element method (FEM) is a powerful discretization technique that can utilize
general unstructured grids to approximate the solutions of many PDEs. High-order finite elements,
in particular, are ideally suited to take advantage of the changing computational landscape, because
their order can be used to tune the performance, by increasing the FLOPs/bytes ratio, or to adjust
the algorithm for different hardware. In this poster we present our work on scalable high-order
finite element software that combines the modular finite element library MFEM [1], the hypre li-
brary of scalable linear solvers [2], and the high-order shock hydrodynamics research code BLAST
[3]. We will first discuss the finite element abstractions provided by MFEM, which include arbi-
trary high-order H1-conforming, discontinuous (L2), H(div)-conforming, H(curl)-conforming and
NURBS elements, defined on general high-order meshes. We will then explain how the MPI-based
version of MFEM uses data structures and kernels from the hypre library to enable scalable finite
element assembly in parallel. Finally, we will describe the efficient implementation of high-order
force matrices in the MFEM-based BLAST application, where we will also demonstrate the benefits
of our approach with respect to strong scaling and GPU acceleration.
[1] https://mfem.googlecode.com
[2] https://www.llnl.gov/casc/hypre

6



[3] https://www.llnl.gov/casc/blast This work performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344,
LLNL-ABS-652336.

David Moulton, Ethan Coon, Markus Berndt, Rao Garimella
Title: Amanzi and the Arctic Terrestrial Simulator: Flexible Multiphysics Simulators for Environ-
ment and Ecosystem Applications.
Abstract: Climate and environmental simulations present a rich set of challenges for multiphysics
and multiscale tools. The Advanced Simulation Capability for Environmental Management (AS-
CEM) program is tasked with addressing these challenges for the effective and defensible cleanup
and closure of legacy nuclear waste sites. ASCEM initiated development of a flexible and extensible
multiprocess simulator, dubbed Amanzi, as part of its open-source suite of tools. This simulator
provides a flow and reactive transport capability on general unstructured polyhedral meshes using
Mimetic Finite Difference (MFD) discretizations, services from Trilinos, and multigrid solvers from
HYPRE. Its capabilities include variably saturated flow and reactive transport, including a wide
range of chemical reactions. Recently, it’s modular and flexible design was leveraged and extended
in a project to model the climate impacts of a warming arctic through changes in microtopogra-
phy and its coupling to the hydrology. This extension, the Arctic Terrestrial Simulator (ATS),
is significant because the sheer number of processes that are coupled (potentially tightly coupled)
defies hand coding and manual testing. Current capabilities include coupled surface and subsur-
face thermally dependent flows, along with a surface energy balance model including snow. In this
poster we highlight the design and implementation approach we used to represent this complex
system. Specifically, we refer to the mathematical description of a process as a process model, and
its discrete representation as a process kernel (PK). We use a hierarchical representation of the
complete system as a graph of PKs with a hierarchy of couplers (the Multi-Process couplers or
MPCs). This PK/MPC graph provides a natural structure for the system, and hence we create
a discrete distributed vector, a tree vector, that mimics this structure for use by solvers and time
integrators. We developed a dynamic data manager, represented as a directed acyclic graph (DAG),
to create complex models at runtime and manage the dependencies of their variables. To support an
accurate representation of the physical model including polygonal ground, troughs, pinch outs, and
ice wedges, we use the MFD method with polyhedral meshes using the MSTK mesh infrastructure.
The challenge created by MFD methods is the need for scalar degrees of freedom on the faces of
mesh elements. This leads to a block system of cell-based and face-based unknowns, even in scalar
models such as thermal energy. To mimic this structure we create composite vectors, which are used
naturally as leaves of the tree vector. These abstractions and structures provide flexible building
blocks, and are collected in a package named Arcos. We are now beginning to explore performance
and optimization. This includes investigating both the local assembly of element matrices as well as
the assembly of the complete global system in more general matrices. The lack of a block interface
to the HYPRE AMG solver leads to the explicit creation of Schur complements or the copying of
block matrices into a unblocked form. Moreover, we have been focused on MPI based parallelism
to this point and are now beginning to investigate threading options as well. Here we will demon-
strate existing capabilities of Arcos and its use in Amanzi and ATS, and highlight the challenges
and potential for future development of these codes.

Shawn Pautz, Clif Drumm, Wesley Fann, Bill Bohnhoff
Title: Matrix Assembly Tasks in the Sceptre Deterministic Radiation Transport Code
Abstract: The Sceptre radiation transport code implements discretizations of two different forms of
the linear Boltzmann transport equation. Solvers for these discretizations are divided into two dif-
ferent classes. In one class of solvers the full matrix is formed, which is then solved with either CG
or GMRES. In the other class we use a wavefront sweep algorithm to solve a block-lower triangular
system, which allows assembly of numerous small on-node systems when needed. We describe the
various operations that we perform in order to create either type of linear system.

7



Roger P. Pawlowski, Eric C. Cyr, Eric T. Phipps, and Andrew G. Salinger
Title: Template-based Generic Programming Techniques for Finite Element Assembly
Abstract: Modeling and simulation are used to understand, analyze, predict, and design increas-
ingly complex physical, biological, and engineered systems. Because of this complexity, significant
investments must be made, both in terms of manpower and programming environments, to develop
simulation capabilities capable of accurately representing the system at hand. At the same time,
modern analysis approaches such as stability analysis, sensitivity analysis, optimization, and un-
certainty quantification require increasingly sophisticated capabilities of those complex simulation
tools. Often simulation frameworks are not designed with these kinds of analysis requirements in
mind, which limits the efficiency, robustness, and accuracy of the resulting analysis.

In this work, we describe an approach for building simulation code capabilities that natively sup-
port the requirements of many types of analysis algorithms. This approach leverages compile-time
polymorphism and generic programming through C++ templates to insulate the code developer
from the need to worry about the requirements of advanced analysis, yet provides hooks within
the simulation code so that these analysis techniques can be added later. The ideas presented here
build on operator overloading-based automatic differentiation techniques to transform a simulation
code into one that is capable of providing analytic derivatives. However we extend these ideas
to compute quantities that aren’t derivatives such as polynomial chaos expansions, floating point
counts, and extended precision calculations. The capabilities in this work have been released in the
open-source Trilinos packages Sacado, Stokhos and Phalanx.

Eric Phipps, H. Carter Edwards
Title: Improving PDE Assembly Performance Through Embedded Uncertainty Quantification
Abstract: Achieving high performance for PDE assembly on emerging multicore architectures (such
as GPUs, multi-core CPUs, and many-core accelerators) is often difficult due to memory access and
code design patterns that are not commensurate with architectural capabilities. These architectures
require accesses of wide regions of contiguous memory to achieve good performance, which is of-
ten challenging for PDE assembly on unstructured meshes. Furthermore, Intel-based architectures
require consistent vectorization to achieve good performance, which is difficult for complex PDE
codes. To address these issues, we explore opportunities for improving memory access patterns
and vectorization by simultaneously propagating ensembles of PDE samples relevant to uncertainty
quantification. Here we leverage the fact that memory access patterns and instructions are often
very similar for PDE evaluations across samples in an uncertainty quantification calculation. We
use template-based generic programming techniques to replace each scalar in the PDE assembly
with a small array tuned to the natural vector length of the architecture, and organize data struc-
ture layouts so that data corresponding to each sample instance are stored contiguously in memory.
The performance and scalability of this approach will be investigated on a variety of contemporary
multicore architectures.

Kendall Pierson, Micah Howard, Michael Tupek
Title: Efficient Block Sparse Assembly with SIMD
Abstract: High Mach fluid regimes are critical environments to simulate, understand, and predict
for the NW mission. Conchas is our high Mach application code built upon the Sierra toolkit, a
custom block compressed sparse row data structure and a native point-implicit solver. This work
describes the transformation of the data structures to take advantage of SIMD instructions to
improve current performance through vectorization which is a necessary step towards multi-core,
GPU, and next-generation platforms.

Onkar Sahni
Title: Abstractions and algorithms for adaptive methods on boundary layer meshes
Abstract: A set of tools and techniques are presented for general unstructured meshes with a focus
on adaptive methods for boundary layer meshes. Such meshes are useful, for example, in wall-
bounded turbulent flows that require tightly controlled mesh spacing and structure near the walls.

8



An adaptive approach for such meshes must maintain highly anisotropic, graded, and layered el-
ements near the walls while error estimators or indicators must incorporate the structure of the
flow boundary layer and associated physics. Similarly, parallel procedures must account for mixed
element types, i.e., in mesh modifications and dynamic load balancing. We present abstractions
and algorithms that address these needs. We also present high-order discretization techniques for
boundary layer meshes including use of higher interelement continuity in the wall-normal direction.

Roy Stogner
Title: C++14 Generic Programming as a Domain-Specific Language for PDEs
Abstract: Abstractions and techniques are shown for employing expression template class hier-
archies in C++ to provide users with a natural way to express physics kernels and solve Initial
Boundary Value Problems. Basic compile-time metaprogramming is used to construct an API
which recasts PDE expressions in a syntax which is valid C++ yet also natural to write. Topics
include the use of expression templates to generate GPGPU code and automatically differenti-
ated Jacobian matrices, the use of C++14 return type deduction to enable kernel fusion within a
modular code, and the use of generic programming to maintain flexibility of design and ease of de-
bugging. Challenges relating to optimization, hybrid meshes, and mesh adaptivity will be discussed.

Daniel Sunderland, H. Carter Edwards
Title: Thread Scalable CRS Graph Construction
Abstract: Our portable thread scalable pattern for CRS graph construction consists of four simple
steps: 1) parallel counting the non-zeros, 2) allocating storage, 3) parallel filling, and 4) parallel
post-procssing each row. Counting the non-zeros can be one of the more difficult algorithms to
correctly implement in a scalable way. We demonstrate a simple solution for parallel counting
which uses a Kokkos UnorderedMap to achieve good scalability. We also show how the Kokkos
UnorderedMap implements a portable, scalable, and lock-free insert.

James Sutherland, Matthew Might, Tony Saad, Christopher Earl, Abhishek Bagusetty
Title: Flexible, Efficient Abstractions for High Performance Computation on Current and Emerging
Architectures
Abstract: Complexity for large-scale simulation software stems from two primary sources: the
physics being simulated and the language abstractions for various hardware targets. Multiplicity
of physical modeling options, each of which may introduce unique nonlinear coupling and depen-
dencies, can create rigid, fragile software that isn’t easily maintained or modified. Changes in
hardware (e.g., multicore or GPU architectures) can require different computational kernels to be
maintained for each hardware target. Handling these two general challenges together to produce
efficient, scalable software can be a daunting challenge. This poster discusses two abstractions that
work in tandem to address the aforementioned challenges. First, the software is written to represent
nodes that can be self-assembled into a directed, acyclic graph (DAG) which exposes the structure
of the calculation. This facilitates automated scheduling of nodes in the DAG, and reasoning about
efficient management of CPU and GPU. Second, a domain-specific language, embedded in C++, is
under development to allow the application programmer to specify high-level intent while allowing
highly efficient back-ends targeting various hardware (CPU, GPU) to be generated at compile time.
These two abstractions combine to create a powerful environment where application developers can
increase productivity and deploy complex software across a variety of hardware environments.

Christian Trott
Title: A migration strategy for utilizing the Kokkos many-core programming model
Abstract: In order to support many-core architectures in Trilinos many packages have started to
explore the utilization of Kokkos. Here a migration strategy will be presented for an incremental
transition to using Kokkos, starting with simple thread-parallelism, continuing with GPU support
and finishing with two and three-level parallelism employing thread teams and vectorization. A
particular focus is put on software which already uses Tpetra, Trilinos’ next-generation sparse linear

9



algebra package.

Bruno Turcksin, Martin Kronbichler, Wolfgang Bangerth
Title: Multithreaded matrix assembly for finite elements
Abstract: We present a design pattern that can be applied to any operation requiring to be done
independently on every cell and which is followed by a reduction of the local result into a global
data structure. This design pattern can be directly applied to multithreaded matrix assembly and
implemented using the parallel pipeline design pattern. When assembling a global matrix for finite
elements, a local matrix is assembled on each cell; this step is embarrassingly parallel. However,
when the local matrices are incorporated into the global matrix, it is necessary to ensure that two
processors do not attempt to write simultaneously in the same global matrix element. To prevent
this, a colorization algorithm is used before the reduction operation; all the elements of a given
color can be simultaneously written into. It is important for the colorization algorithm to produce
few colors, but it is more so that the size of these colors are similar; small colors would degrade the
scalability of the algorithm. This design pattern was implemented in the deal.II library and was
shown to significantly speed up matrix assembly

Tim Warburton, David Medina, Amik St-Cyr
Title: OCCA: A Unified Approach to Multi-Threading Languages
Abstract: Currently there are a number of relatively popular APIs for multi-threading program-
ming including but not limited to CUDA, OpenCL, OpenACC, and OpenMP. Initially it might
appear that many-core programming forces programmers to lock into a specific API. Additionally
simulation codes, frameworks, and libraries have lifetimes measured in decades that might outlive
a specific API. To address these issues we developed the lightweight OCCA API in a way that
allows a programmer to write single source kernel implementations that are portable and can be
dynamically compiled and executed at run-time as CUDA, OpenCL, or OpenMP. Example perfor-
mance results from our OCCA based finite difference, discontinuous Galerkin, and spectral element
method based PDE solvers will show that it is possible to develop efficient and portable many-core
code for CPUs and GPUs.

Ulrike Yang, Rob Falgout, Tzanio Kolev, Jacob Schroder
Title: Matrix and Vector Assembly in hypres Conceptual Interfaces
Abstract: The hypre software library provides high performance preconditioners and solvers for
the solution of large sparse linear systems on massively parallel computers. One of its attractive
features is the provision of conceptual interfaces, which include a structured, a semi-structured, and
a traditional linear-algebra based interface. These interfaces give application users a more natural
means for describing their linear systems, and provide access to methods such as structured multi-
grid solvers, which require additional information beyond just the matrix. We discuss the assembly
of matrices and vectors within the various interfaces in hypre as well as current efforts to increase
the use of OpenMP threads in the interfaces.

10


