
SANDIA REPORT
SAND2015-1379
Unlimited Release
Printed February, 2015

Algorithms and Abstractions for
Assembly in PDE Codes: Workshop
Report

Eric C. Cyr, Eric Phipps, Michael A. Heroux, Jed Brown, Ethan T. Coon, Mark
Hoemmen, Robert C. Kirby, Tzanio V. Kolev, James C. Sutherland and Christian
R. Trott

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2015-1379
Unlimited Release

Printed February, 2015

Algorithms and Abstractions for Assembly in
PDE Codes: Workshop Report

Eric C. Cyr, Eric Phipps,
Michael A. Heroux, Mark Hoemmen,

Christian R. Trott
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-9999

Jed Brown
Argonne National Laboratory

9700 S Cass, Bldg 240
Lemont, IL 60439

Ethan T. Coon
Los Alamos National Laboratory

P.O. Box 1663
Los Alamos, NM 87545

Robert C. Kirby
Baylor University
One Bear Place

Waco, TX 76798-7328

Tzanio V. Kolev
Lawrence Livermore National Laboratory

7000 East Avenue
Livermore, CA 94550

James C. Sutherland
The University of Utah

3290 MEB
50 S Central Campus Dr
Salt Lake City, Ut 84112

Abstract

The emergence of high-concurrency architectures offering unprecedented performance
has brought many high-performance partial differential equation (PDE) discretization
codes to the precipice of a major refactor. To help address this challenge a workshop
titled “Algorithms and Abstractions for Assembly in PDE Codes” was held in the
Computer Science Research Institute at Sandia National Laboratories on May 12th-
14th, 2014. This document summarizes the goals of the workshop and the results of
the presentations and subsequent discussions.

3

4

Contents

Overview and Themes . 7
Goals of the Workshop . 7
Major Themes and Conclusions . 8

Topic Areas . 10
Assembly in PDE Solvers . 10
Directed Acyclic Graphs . 14
Node-Level Abstractions . 16
Linear Algebra Data Structures and Interfaces . 20
Algorithms and Discretizations for Next Generation Architectures 24
Application Needs and Capabilities . 28

Conclusions. 32

Appendix

A Workshop Program. 38

5

6

Overview and Themes

The workshop for “Algorithms and Abstractions for Assembly in PDE Codes” was held in
the Computer Science Research Institute at Sandia National Laboratories on May 12th-14th,
2014. There were 27 scheduled speakers (one of those scheduled canceled due to weather
interrupting travel). Three speakers, Martin Berzins (University of Utah), Michael Heroux
(Sandia National Laboratories), and Paul Fischer (Argonne National Laboratory), gave hour-
long “keynote” talks. The remaining speakers gave a brief 15-minute talk introducing a
poster that was presented during an extended poster session at the end of each day. For a
list of poster presenters, talk titles and abstracts see the program included in Appendix A.
The format for the workshop was chosen to facilitate in depth conversation and discussion.

This document summarizes the goals of the workshop and the results of the presenta-
tions and subsequent discussions. The content included is intended to represent what was
presented at the workshop. As such it should not be viewed as a comprehensive survey, but
a representative sampling of the state-of-the-art. The first section briefly describes the mo-
tivation and reasons for the workshop. The next section assimilates themes and conclusions
from the workshop while the remaining sections are dedicated to topic areas that were the
focus of workshop speakers. While an effort has been made to decompose the subjects into
independent areas, there is substantial overlap between them and this has been noted in the
text where relevant. References are included so an interested reader can follow up on topics.
Finally, a full list of workshop participants and the program is included in Appendix A.

Goals of the Workshop

The emergence of high-concurrency architectures offering unprecedented performance has
brought many high-performance partial differential equation (PDE) discretization codes to
the precipice of a major refactor. Yet uncertainty in the specifics of next-generation archi-
tectures and programming models makes any rewrite a high-risk, high-cost undertaking. A
gross oversimplification of many (implicit) PDE solvers segregates the code into two compute
intensive parts to be refactored:

1. Computation of matrix/vector coefficients and assembly into linear algebra data struc-
tures.

2. Numerical linear algebra including linear solvers.

For explicit solvers, the matrix assembly is not required, only assembly of the a right-hand-
side is necessary.

Much work has been, and continues to be, dedicated to the problem of numerical linear
algebra. This can be neatly abstracted within the PDE code. On the other hand, the first
part–defining the “assembly” algorithm for this workshop and report–encapsulates much of

7

the physics of the code. As a result, it is often application specific, and thus may require
substantial effort to refactor. Moreover, while the performance of the linear algebra is clearly
critical to the overall performance of the code, the performance of the assembly is often
dismissed as inconsequential compared to the expense of linear solves. However, a poorly
designed abstraction or a careless implementation can result in severe performance penalties,
especially in explicit and operator split codes where linear solves are not as costly. Even
for implicit codes, where assembly has not typically been a major cost when compared
to other phases, the inability of assembly to be thread-scalable is a critical concern on
new architectures. Furthermore, different algorithms offer different trade-offs in floating-
point performance and memory requirements between matrix assembly, evaluation and linear
solve. These trade-offs are worth re-examining on current and future hardware. A goal of
this workshop was to provide a forum to exchange ideas about successful abstractions and
approaches for assembly on heterogeneous multi-core architectures.

While the need to refactor PDE codes to run on a myriad of proposed next-generation
architectures is certainly the inciting event, this workshop took the opportunity to review
abstractions that address the broader needs of the assembly process. Topics included han-
dling of the complexity associated with multiphysics assembly, interfaces for linear algebra,
and PDE discretization approaches. A final desirable outcome of this workshop was to grow
and strengthen an interactive community surrounding the needs of assembly. While success
in this regard is a question best left to the future, the energy and interest from the lead up
to the meeting and throughout the workshop was clear.

Major Themes and Conclusions

Before diving into the techniques and ideas discussed by the workshop speakers, we first
provide a short synopsis of the major themes and conclusions arising from the workshop
presentations and discussions. First and foremost, the workshop highlighted substantial
challenges that must be overcome for achieving high performance of PDE assembly cal-
culations on emerging multicore and manycore architectures. Indeed, these architectures
are expected to present hierarchical parallel execution and memory spaces that must be
leveraged and managed for optimal execution efficiency. Thus PDE assembly codes must
expose multiple levels of parallelism operating on appropriately sized datasets that can be
mapped to architecture-specific execution and memory spaces. Uncertainty in the evolution
of these architectures, as well as the large space of potential parallelization strategies for
assembly, makes designing future PDE codes extremely challenging. Additionally, several
other conclusions arose from the workshop presentations and discussions:

1. Race conditions must be handled effectively for thread-scalable performance, and the
use of hardware atomic instructions is a compelling approach that preserves the sim-
plicity of traditional serial assembly procedures.

2. The use of directed-acyclic graphs, whether explicitly formed or implicitly used via
programming concepts such as futures or inherent data dependencies, is valuable as a

8

natural means for exposing multiple levels of parallelism, handling resiliency, and is an
intriguing way of managing complexity in multiscale and multiphysics simulations.

3. A wide variety of powerful compute node-level parallel programming models are already
available, which emphasize exposing fine-grained parallelism by the application that
is then mapped to hardware resources. However significant uncertainty as to how to
expose memory hierarchies remains.

4. Linear algebra interfaces for PDE assembly must expose fine-grained parallelism in
order to be adapted to a variety of parallel programming models and maintain thread
scalability. The count-allocate-fill-compute paradigm is a powerful means for designing
these interfaces.

5. There is significant uncertainty in how to best expose multiple levels of parallelism
in PDE assembly calculations and how to design discretization schemes that are more
amenable to fine-grained parallelism. In particular, the workshop discussed substantial
challenges in exploiting higher-order discretizations and block arithmetic approaches.

9

Topic Areas

This section provides an overview of the major topics included in the workshop.Where
appropriate the relevant presenters have been cited using the annotation [presenter name].

Assembly in PDE Solvers

The goal of assembly in PDE solvers is to construct an algebraic system that is satisfied
by a simple update (as in explicit methods) or requires the solution to possibly multiple lin-
ear systems (as in implicit or direct-to-steady state methods). There is a range of other time
discretization approaches, for instance semi-implicit and operator split; however, the funda-
mentals of assembly for these methods are shared with explicit and implicit time integration
methods.

The choice of spatial discretization also affects the structure of the assembly. For instance,
in finite difference approaches, loops are typically over the nodes of the mesh, in finite volumes
they may be over the nodes or faces/edges, and in finite elements, typically loops are over
mesh cells. The choice of loop iterate (nodes, edges, cells) may have a large impact on
the degree of parallelism in the assembly. For instance in a straightforward finite difference
code each row of the algebraic system can be assembled simultaneously. However, in finite
elements, as we will see, there is a race condition that must be resolved.

In finite element methods, the physical domain is tiled by cells defining the topology of the
mesh. On each cell a set of basis functions is associated with every field in the PDE solution.
The goal of finite element methods then is to determine the coefficients, called degrees of
freedom in this document, for each basis function. These degrees of freedom satisfy an
algebraic system of equations. For implicit time stepping schemes or direct to steady-state
methods, the solution to this system is computed by solving a single (for linear problems)
or a sequence of (for nonlinear problems) linear systems. Assembly of the linear systems
requires computing local integrals over each cell of a mesh. If the matrix is to be explicitly
formed, these contributions are summed into a global data structure (like compressed sparse
row). For matrix free operations these contributions may be saved; however, it may be more
efficient to compute them on the fly as needed to compute the action of the matrix.

These independent local integral calculations offer a prime opportunity for parallelism,
as they are embarrassingly parallel. However, when summing into global data structures,
degrees of freedom shared between adjacent cells, say associated to a vertex or face, create
the potential for a race condition. This is because threads associated with the different cells
may write to the same memory location. See Figure 1 for a pseudo-code description of this
style of assembly procedure.

10

Figure 1. Pseudo code finite element assembly loop.

Resolving the Race Condition

Several possibilities exist to resolve the race condition, and four received considerable
attention at the workshop. These are based on mesh coloring ([Turcksin] in Deal.II), a gather-
sum technique and atomic operations, both presented by [Edwards] and [Sunderland], and
a final technique based on the use of parallel sort and segmented scan presented by [Kirby].

Coloring works by creating a graph among the mesh cells such that two cells are adjacent
if they share a degree of freedom (As a brief comment, this graph depends not only on the
mesh connectivity but also on the particular finite element discretization since not all finite
element spaces have vertex or edge degrees of freedom.). Each cell is assigned a color so that
no two adjacent cells receive the same color. Then, provided that a suitable data structure
for the global matrix has been allocated, all elementwise contributions may be computed
and assembled concurrently. The graph coloring, performed as a pre-processing step, should
produce as few colors as possible, and have a relatively balanced number of cells per color to
ensure best concurrency. Finding the optimal coloring is an NP complete problem, therefore
a fast polynomial time algorithm is not known. Fortunately, having the optimal coloring is
not necessary to enable good shared-memory performance, thus fast approximate coloring
algorithms can be used.

[Edwards] and [Sunderland] presented another approach to resolving contention. Rather
than requiring the coloring analysis step, they use atomic operations to sum contributions
into the global structure. Atomic operations ensure that a memory operation (like writing)
must complete before another operation can occur at that same location in memory. This
guarantees the system is in some well determined state. This leaves the standard flow of code
unchanged (build a matrix, sum it) over a serial code, except for the addition of the atomics.
However, the extra synchronization incurs some amount of overhead. This overhead depends
on whether atomic operations exist in hardware or software. A possibly more insidious issue
is the loss of bitwise floating point repeatability because of variation in thread execution
order.

11

Figure 2. The performance of matrix fill using the gather-
sum and atomic approaches for different architectures. Here
Phi-60 refers to the Intel Xeon Phi accelerator using 60 cores
and one thread per core, Phi-240 refers to the same archi-
tecture using four threads per core, and Kepler refers to the
Nvidia K20X GPU.

12

To circumvent the overhead of atomics, [Edwards] and [Sunderland] also considered an
approach based on “gather-sum.” The typical local-to-global mapping assigns to each cell
a list of global degrees of freedom. This data structure can be transposed to find, for each
global degree of freedom, a list of all local contributions required to form it. Then, a first
computational phase forms the local matrices or vectors for each cell. A second phase,
parallel over global degrees of freedom, uses the transposed data structure to gather local
contributions. Since the gather phase requires access to all element matrices, this approach
uses a relatively large amount of local memory. This local storage could perhaps be reduced
by partitioning the domain into chunks still large enough to enable full concurrency but
small enough to limit temporary storage.

[Kirby] presented a similar approach, based on standard parallel primitives, that resolves
write conflicts without atomics or coloring. The algorithm begins by forming a batch of local
matrices or vectors in parallel. Across this batch, the element value is paired with the global
index that it contributes to. This list of pairs is sorted (via a parallel radix sort) by the
global index. Entries contributing to the same global value are adjacent in the resulting list.
A segmented scan, where change in global index indicates a segment boundary, then gathers
element contributions together. When performed for matrices as opposed to vectors, this
produces a coordinate-format matrix that must then be converted into the matrix-format
required by the solver, for instance compressed sparse row (CSR). This approach shares with
the gather-sum technique a possibly large temporary storage requirement. A further caveat
is that not all shared memory environments allow for user-defined segmented scans.

Of the four presented approaches, the coloring and atomic approaches both maintain the
original serial assembly loop. This is achieved by avoiding the race condition in the coloring
case and resolving conflicts for atomics. The gather-sum and segmented scan approaches
avoid the race condition by changing the domain of parallelization (from mesh cells to matrix
entries, for instance). This requires additional data structures and a modification of the serial
code. The approach that performs the best depends on the hardware/language/software
environment. Results presented by [Edwards] shows the performance of the matrix fill using
the gather-sum and atomics approaches (see Figure 2). With the exception of the Kepler
GPU architecture the gather-sum and atomic cases are nearly equivalent.

Local Assembly Abstractions

Another important aspect of PDE assembly discussed in the workshop was the efficient
evaluation of derivative matrices needed for instance in Newton solvers, sensitivity analysis
methods, and optimization methods. Often the code required to evaluate these derivatives
is hand-coded based on symbolic differentiation of the PDE discretization. [Pawlowski] and
[Stogner] presented two similar but alternative approaches based on automatic differentia-
tion that allows these matrices to be efficiently evaluated using only code written for the
discrete PDE residual evaluation. The methodologies, using template-based generic pro-
gramming [24], involves templating the PDE assembly code on the scalar type and then
instantiating this code on derivative scalar types. After suitable initialization of the deriva-

13

tive scalars associated with PDE degrees-of-freedom, evaluation of the derivative matrix
occurs as a side-effect of the residual code evaluation. This approach can be extended to
non-derivative-based evaluations, such as the ensemble evaluations for forward uncertainty
propagation discussed later.

An alternative to template-based generic programming called Nebo was presented by
[Sutherland]. Nebo is a domain-specific language embedded in C++ that allows high-level
vectorized operations (MATLAB-style). Nebo provides a portable abstraction for compile-
time generation of binary code (through C++) targeting various architectures including serial
CPU, multicore CPU and GPU. As a simple example, evaluation of a diffusion operator,
− ∂

∂x
Γ ∂

∂x
φ− ∂

∂y
Γ ∂

∂y
φ− ∂

∂z
Γ ∂

∂z
φ can be written in Nebo using standard C++:

diffTerm <<= DivX(- InterpX(gamma) * GradX(phi))

+ DivY(- InterpY(gamma) * GradY(phi))

+ DivZ(- InterpZ(gamma) * GradZ(phi));

where the <<= operator triggers Nebo’s expression template engine. All fields and operators
in Nebo are strongly typed, providing compile-time robustness, and type traits on fields
and operators allow sophisticated type inference to enable highly generic programming that
works across a range of discretizations. Nebo deploys assignment operations on the device
where the destination field (diffTerm in the above example) is active, and fields can simulta-
neously have multiple field locations (CPU, GPU 1, GPU 2, . . .) available. Nebo internally
keeps track of which locations are valid, and provides APIs for explicitly managing memory
transfers (synchronous or asynchronous) between devices. Nebo also provides the notion of
a mask, where a subset of points in a field can be subject to an operation. This abstraction
is useful for application of boundary conditions. Note that both the template-based generic
programming and DSL approaches can be readily combined with the directed acyclic graph
approaches described below.

Directed Acyclic Graphs

The previous section assumed that the elementwise stiffness matrices and load vectors
were precomputed (the “evaluate local residual/Jacobian” steps in Figure 1). This simple
presentation hides much of what implements a particular PDE. This can in itself be quite
complex and offer new opportunities for parallelism. To address the complexity and simul-
taneously exploit new levels of parallelism software architectures based on directed acyclic
graphs (DAGs) have been developed exposing the structure of the calculation [16, 23, 26].
The basic abstraction involves a task that expresses its dependencies (requirements) and
the quantities that it produces/computes. This topic received considerable focus during the
workshop with the [Berzins] keynote dedicated to the topic, as well as posters by [Pawlowski],
[Sutherland], [Demeshko], [Bennett], [Andrs] and [Moulton].

The DAG approach provides a number of noteworthy opportunities to abstract much of
the tedious aspects of traditional programming approaches. Specifically,

14

• Task-level parallelization can be easily accomplished because the data dependencies
are explicitly known by the graph.

• Communication and computation can be naturally overlapped. This applies to intra-
node (e.g., host-device or device-device transfers) as well as inter-node (e.g. MPI)
transfers. Importantly for multiphysics applications, as complexity increases, there is
more opportunity for DAG schedulers to overlap communication and computation.

• Memory can be dynamically reclaimed or reused to minimize memory footprint. This
can be automated by the graph scheduling algorithm that can determine when a field
is no longer required and can be released.

• Complex dependencies that typically result in a difficult to follow “cascading if” can
be handled automatically. Moreover each task declares its dependencies and products
locally thus enhancing modularity.

• Lines of code written by domain experts who are implementing the discretizations are
simpler to write because task parallelism is primarily managed outside the scope of
execution of this code.

As we look toward emerging architectures, DAG-based approaches provide key flexibility
to overlap communication and computation as well as naturally expose task-level parallelism.
This can be directly exploited on existing multicore architectures as well as recent GPU
architectures. Additionally, data-level parallelism can be incorporated both within a task (via
multithreaded loops or CUDA-type kernel calls) or above tasks via domain decomposition.
Indeed, the DAG frameworks Uintah and Charm++ exploit coarse task-level parallelism as
well as data parallelism within a DAG representation.

Successful use of task-based parallelism requires over-decomposition. If each processor is
dedicated to a single task there will not be an opportunity to backfill those operations. The
granularity of each task is still an ongoing point of discussion. Some efforts focus on over-
decomposition in the extreme, while others take a more measured approach. The notion of
over-decomposition is limited, however; at the strong scaling extreme where the full degree
of parallelism is exposed and allocated, over-decomposition is of no use. In this context the
overhead of using a runtime task-based system may be prohibitively expensive.

Finally, an interesting aspect of DAG-centric designs is that they have a natural resilience
to faults. [Bennett] argued that a task-based approach characterized both by transaction
semantics and assumed resilient collectives can lead to a runtime that is robust to failures.
If a fault is detected, the DAG scheduler can determine what task(s) must be re-executed to
recover from the fault. This can be done at the task-granularity level rather than the level
of a time integrator, for example.

15

Basic Elements of a DAG Abstraction

A task-based software architecture implementation requires a number of components.
Two of particular interest are the scheduler and an abstraction for user introduced tasks. The
scheduler is fundamental to any successful DAG-based implementation. Schedulers analyze
the DAG structure to determine when communication, computation, memory (de)allocation,
etc. occur. They are key to providing efficient, scalable software [2].

DAG abstractions fundamentally rely on the description of a task, which support the
following:

• Provide a description of the quantities that it computes

• Provide a description of the quantities it requires

• Perform the calculation

Given the computes/requires information, together with a “root node” (e.g., the quan-
tity/quantities desired), a DAG can be automatically constructed by recursing through the
dependencies until terminal nodes (with no requirements) are encountered.

Hierarchical DAGs

The Wasatch component within the Uintah computational framework is a multiphysics
PDE solver that employs a hierarchical DAG. The Uintah framework is built on DAG tech-
nology to describe “coarse” tasks and handles MPI, I/O, etc. Each vertex in the Uintah-level
DAG is represented as a full DAG in Wasatch which can handle on-node computations and
memory management. This abstraction allows four levels of parallelism (two data parallel
and two task parallel levels) at different granularity.

Resources are typically managed by the coarsest level of parallelism and then “pushed
down” as necessary. For example, if the coarse level task and data parallelism is insufficient
to saturate the available resources, then resources can be pushed down to the fine-level
DAG scheduler that can use them there. In the context of CUDA, for example, each task
has a stream associated with it to allow both task- and data-parallel execution models
simultaneously on GPUs.

Node-Level Abstractions

With the proliferation of novel node-level architectures, developing programming models
and abstractions for exploiting the new features was an important aspect of the assembly
workshop. The keynote by [Heroux] discussed how fine-grain functionals can be used as
a mechanism for exposing parallelism. However, the talk also cautions that the ideal for

16

domain scientists to “write no parallel code” is ultimately unachievable. Thus, hiding archi-
tectural details from applications programmers presents an important challenge to developing
performant assembly code. With rapidly evolving architectures and device languages, it is
important to decrease the time it takes for applications developers to put algorithms on new
machines and also increase the shelf life of these implementations.

The two main requirements for parallelization interfaces identified at the workshop are
parallel dispatch and an abstraction layer to handle more complex memory systems. In par-
ticular it is necessary to be able to submit work to heavy CPU threads that use vectorization
as well as to lightweight GPU threads. A common technique across different models to facil-
itate this is to provide state-less loop bodies in separate functions or constructs. Constructs
include functors (C++ classes that behave like functions with state), lambdas (C++11
anonymous functions), or code provided as the argument to a C preprocessor macro. These
loop bodies are then handed to a mechanism that loops over the index range in a fashion
appropriate for the targeted device. These mechanisms have the side effect of requiring the
algorithm developer to identify the finest degree of parallelism available to achieve portable
performance.

Abstraction layers for the memory system can provide a number of key capabilities:

1. Handle multiple memory spaces (e.g., GPU memory, host memory, or nonvolatile stor-
age),

2. Provide data layout abstractions,

3. Give access to atomics,

4. Expose special hardware capabilities (e.g., texture fetches, nontemporal loads, or huge
pages).

The ability to manage multiple memory spaces is expected to be necessary for many future
HPC platforms. Similar to today’s GPU-based machines, future HPC platforms are expected
to have at least two memory spaces:

• A smaller but faster space, using stacked memory technologies such as High-Bandwidth
Memory (HBM) [12] or Micro’s Hybrid Memory Cube (HMC) [20]

• A larger but slower memory space, with much larger capacity

We expect multiple memory spaces, even if the hardware has only one execution space.
For example, systems based on the next-generation Intel Xeon Phi (codename KNL) can
be deployed as “self hosted,” meaning that the application runs on the Phi directly, not
treating it as an accelerator. Nevertheless, these systems will have access both to faster
stacked memory (16 GB [22]) and to slower but larger DDR memory. Further complicating
the situation, byte addressable non-volatile memory might be added to future machines,

17

which can serve to hold huge databases or allow fast check-pointing for resilience purposes.
While in theory this can be handled by a hardware caching mechanism, a cache mode could
have large performance and/or energy penalties.

Data layout abstractions can help with enabling optimal data access patterns on different
devices. For example, consecutive threads in a GPU prefer contiguously stored array entries
for coalesced loads, while threads in a CPU want to work on far away parts of an array in
order not to share cache lines.

Atomics are important to handle write conflicts in massively threaded algorithms. An
abstraction layer needs to map generic atomics to the available hardware capabilities. For
example some architectures provide only certain integer type atomics, while others have
selected atomics for floating point types. Other architectures may have transactional memory
(e.g. IBM BG/Q and Intel Haswell) available. Data types that cannot be handled natively
(e.g. complex numbers, automatic differentiation types, etc.) must be addressed in software.

Special hardware capabilities can provide significant performance improvements when
used appropriately. Texture fetches on GPUs give up to 6 times higher bandwidth for
localized random access, while using huge pages for certain allocations on Xeon Phi can
reduce the number of extremely costly page faults significantly [27]. Some hardware also
exposes special load paths for non temporal access such as streaming loads and stores. An
abstraction layer needs to provide a generic method to map certain type of accesses to those
capabilities. While it might be feasible for future compilers to automatically insert such
special memory access operations and allocators, it is unlikely that it would work in complex
situations.

At the workshop a number of language-level tools were presented including:

• Kokkos (see [7], [Edwards], [Sunderland], [Trott]): C++ interface/library abstracted
over the shared-memory parallel programming model. One programmer provides an
architectures specific backend, and templates allow users to program in terms of par-
allel recipes over this. Kokkos also provides an extensive data and memory system
abstraction layer.

• RAJA: C++ interface/library which provides an C++11 (Lambda) based interface for
writing parallel kernels. RAJA uses execution policies to map different loop structures
optimally to underlying hardware parallelism such as threads and vectors.

• PyOpenCL/Loopy: Tied to a particular, but portable, device language, wraps into
a higher-level environment. Loopy exposes transformations intended to streamline
device-specific operations.

• OCCA (see [19], [Warburton]): a lightweight abstraction of common features of dif-
ferent devices/languages, allows users to write loop nests and transforms these into
device code by means of C macros.

• SpatialOps/Nebo (see [25], [Sutherland]): a domain-specific language embedded in

18

C++ that supports vectorized operations on fields including stencil operations. This
supports deployment on single- and multi-core CPU as well as GPU (via CUDA).

All discussed abstraction layers are able to map work to shared memory parallel ar-
chitectures through parallel-for/reduce/scan type algorithms. Kokkos, Occa and Loopy in
particular are able to target both GPUs and CPUs. RAJA’s reliance on C++11 means
that it currently cannot run on any GPU platforms. We expect C++11 support to start
appearing on GPUs within the next year or so. Furthermore Kokkos, Occa and Loopy al-
low and require some kind of explicit memory space management. RAJA’s strategy is to
rely completely on hardware caching mechanisms. An atomic access abstraction is provided
by Kokkos and PyOpenCL/Loopy. Further data abstraction concepts recognizing hardware
memory hierarchies are only included in Kokkos at this time. The following illustrates a
simple nested parallelism use cases for Kokkos, RAJA and OCCA:

Plain C:

void matrix_add (int n, int m, double* C, double a,

double* A, double b, double* B) {

for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {

C[i*m + j] = a * A[i*m + j] + b * B[i*m + j] ;

}

}

}

RAJA:

void matrix_add (int n, int m, Real_ptr C, double a,

Real_ptr A, double b, Real_ptr B) {

forall< exec_policy >(n,m, [&] (Index_type k) {

C[k.i*m + k.j] = a * A[k.i*m + k.j] + b * B[k.i*m + k.j] ;

});

}

Kokkos:

void matrix_add (View<double**> C, double a,

View<double**> A, double b, View<double**> B) {

parallel_for(TeamPolicy<>(C.dimension_0(),4),

[=] (TeamPolicy<>::member_type team_member) {

const int i = team_member.league_rank();

team_member.team_par_for(C.dimension_1(), [&] (const int& j)

{ C(i,j) = a * A(i,j) + b * B(i,j) ; }

);

});

}

19

OCCA:

occaKernel void matrix_add(occaKernelInfoArg, occaPointer double* C,

double a, occaPointer double* A, double b,

occaPointer double* B) {

occaOuterFor0 {

occaInnerFor0 {

const int i = occaGlobalId0;

const int j = occaLocalId0;

C[i*m + j] = a * A[i*m + j] + b * B[i*m + j] ;

}

}

}

RAJA and Kokkos use C++11 capabilities for this example, while OCCA requires a special
preprocessor. RAJA’s “Real ptr” is used to encapsulate attributes such as restrict.
The Kokkos example uses default execution and memory spaces which also imply a default
data layout which could be different for different hardware architectures (i.e. row major vs.
column major storage). Note that in order to run on GPUs the Kokkos example would need
to be implemented using a functor which replaces the Lambda. This will change starting
with CUDA 6.5 where the use of C++11 lambdas is allowed for nested parallelism. The
OCCA example requires a special preprocessor, which would replace the occaOuterFor0

and occaInnerFor0 with the respective parallel dispatch using information encapsulated in
occaKernelInfoArg.

Linear Algebra Data Structures and Interfaces

This section discusses the data structures and interfaces required for assembly of the
linear system (both matrices and vectors) into a globally distributed data structure. The
applications of interest to most workshop participants use two kinds of matrices: large and
sparse, and small and dense. In this context large means “large enough that that a sparse
representation should be used,” which includes a size range anywhere from “fits in a big
cache” to “requires 64-bit integers to express the dimensions.” Small and dense matrices
tend to express local discretizations of partial differential equations, like finite elements.
Small here means“fits in registers or in the smallest, fastest cache.” Block sparse matrices
combine both size ranges: they are large and sparse, but with small dense entries.

Small dense matrices

Small dense matrices occur often in discretizations of partial differential equations. They
even show up in discretizations that never assemble into a large sparse matrix. This is either
because they work with the unassembled representation, as in an unassembled multigrid
or multifrontal factorization, or because they do not need to solve linear systems, as in

20

explicit codes (see [Franko]). Furthermore, reworking algorithms to exploit small dense
structure promises increased locality, by increasing computational work per data movement,
as well as better exploitation of fine-grained parallel hardware, like short vector units. This
motivation is clearly represented in block sparse matrix formats, like block compressed sparse
row (“block CSR”). These approaches exploit the topological regularity of a discretization
with co-located degrees of freedom at each mesh node (for instance). Assuming there are n
degrees of freedom per node, then a block CSR matrix will contain dense matrices of size
n×n. If this size block fits into cache, then the locality will improve performance. However,
there may be an “unfortunate middle range” of block sizes that are too small for thread
parallelization within a single block, but large enough that vectorizing across blocks takes
too much local memory. This may call for explicit vectorization within a single block, for
example by using compiler directives or intrinsics.

Performant block entry code is challenging to write. [Pierson] gave a poster on this theme.
Standard libraries like the BLAS have too much overhead and are not optimized for the small
matrix case. Even specialized libraries, like NVIDIA’s cuBLAS, do not expose efficient dense
operations on very small matrices. There is still a lot of uncertainty about optimal imple-
mentation decisions for small dense matrix operations. Furthermore, the workshop showed
no knowledge transfer from BLAS implementation lessons learned, even though the basic
building blocks of an efficient large dense matrix-matrix multiply are small block operations.
This uncertainty and lack of a standard implementation contrasts the conventional wisdom
that more blocks will improve performance.

Large sparse matrices

PDE discretizations on unstructured grids naturally produce large sparse graphs and
matrices. These data structures show up in many other applications as well. Users create
sparse graphs and matrices, modify their sparsity structure or values, and apply compu-
tational kernels, like a sparse matrix-vector multiply or triangular solve. Operations that
modify a sparse graph or matrix are referred to as fill, in contrast to computational kernels
that tend to be part of a linear system solve.

A popular data structure that has been used for unstructured assembly is the compressed
sparse row (CSR) storage scheme. However, changes in computer architecture have make the
scalability of this data structure (and of matrix assembly in general) a point of discussion (see
[Brown]). [Yang] presented a linear algebra interface from the HYPRE [1, 8, 15] package
that had multiple interfaces that specialized in both structured and unstructured matrix
storage. Storage of structured data (generated from a Cartesian grid for instance) may offer
substantial performance improvements based on the regularity of the data access.

21

Coarse- and fine-grained operations

User operations on sparse graphs or matrices can be separated into two categories based
on the amount of work that a single operation does. Coarse-grained operations do enough
work inside that it pays for them to exploit all available levels of parallelism that make
sense. Examples include sparse matrix-vector multiply over the whole matrix, global data
redistribution, making a deep copy of a sparse data structure, or assembling a very large
collection of element stiffness matrices into a sparse matrix. Users call coarse-grained oper-
ations sequentially or with the semantics of MPI collectives and expect them to be parallel
inside. Fine-grained operations do very little work inside with the expectation that users
will call them in a parallel way to achieve scalability. For example, reading or writing a few
entries of a sparse matrix is a fine-grained operation.

The talk by [Hoemmen] explained how the interface differences between fine- and coarse-
grained operations impose different performance requirements. Fine-grained operations have
much tighter performance requirements than coarse-grained operations, since they have less
opportunity to amortize overheads over large collections of data. This also constrains how
they access shared data structures. For example, fine-grained operations cannot just be
thread-safe; they must also be thread-scalable. This is not so hard for modifying a single
entry in a sparse matrix. However, solving this for dynamic data structures like hash tables
and sparse graphs requires a concerted effort to construct lock-free thread-scalable data
structures. An additional advantage of fine-grained interfaces is they may help porting codes
from current single-thread software architectures to future multiple-thread architectures. A
fine-grained thread-safe/scalable interface would fit naturally within the OpenMP threading
paradigm for instance.

A software interface could support coarse grained matrix fill operations by requiring users
to “batch” updates together and submit them as a single collection. Many finite-element
codes do a sequential analog of this already, by breaking up assembly into subsets of elements,
called worksets. This increases locality and saves memory. The batched fill approach natu-
rally fits into a task-parallel programming model. For example, each workset might map to
a task. Parallelizing within a workset would still require fine-grained operations. The sparse
matrix itself would also need to do fine-grained operations inside of its coarse-grained fill
interface.

Compatible with task-based parallelism, but not tied to it

A recurrent theme of this workshop was the use of task parallelism. Construction of
sparse linear systems should be compatible with the task-parallel programming model. At a
minimum this implies linear algebra interfaces should not impose thread safety or scalability
issues. The pertinent question is does the linear algebra interface need to reflect the task-
parallel programming model explicitly? For instance, some scientific codes today represent
sparse fill with a blocking interface: functions that modify a graph or matrix block until they
complete their work. An alternative would be a nonblocking interface instead. This interface

22

might follow a dataflow model compatible with a task-parallel framework. Methods might
return requests, comparable to those returned by MPI’s nonblocking two-sided communica-
tion, or they might require a fence to ensure completion. Current codes do not generally
express fill interfaces in this way, because our physical models have locality that lends itself
to avoiding remote accesses. Models with less locality, and computer architectures that favor
fine-grained latency hiding, might perform better with a nonblocking fill interface. However,
it’s not clear that we need to complicate our fill interfaces in this way. If fill is thread-safe
and thread-scalable, and fill operations have transactional semantics (they either succeed, or
fail with no externally visible side effects), then parallel tasks could safely and performantly
execute fill operations.

Task parallelism still has value in a linear algebra library, though. Operations internal
to a linear algebra library, like message buffer packing and unpacking for sparse matrix-
vector multiply and data redistribution, could benefit from task parallelism. Breaking up
large messages into modestly sized ones and overlapping communication with packing or
unpacking operations would be a natural way to exploit the higher message injection rates
of modern network hardware.

For users of the linear algebra library, it could be natural to interact with nonblocking
coarse-grained operations as tasks with dependencies. Nonblocking collectives (such as those
available in MPI 3) have enabled the development of new iterative linear solvers, like the
pipelined versions of GMRES [11] and CG [10], which can overlap global inner products
or norms with sparse matrix-vector multiplies or preconditioner applications. Nonblocking
communication can help reduce the effects of dynamic load imbalance and system noise [13].
The latter may arise due to local recovery from hardware faults. Expressing nonblocking
operations as tasks with dependencies can avoid common user errors, like giving the result
of a sparse matrix-vector multiply to an inner product before it is ready. It could even
discover optimizations like overlap or kernel fusion automatically, even in existing solver
algorithms [14].

“Count, allocate, fill, compute”

In MPI-only, codes dynamic memory allocation is permitted as long as load was balanced
evenly over MPI processes. However, with thread parallelism, operations like allocation of
memory shared between threads may require expensive synchronization. Some programming
models, like NVIDIA’s CUDA, forbid or discourage dynamic allocation. Others just make the
synchronization implicit (and costly). High-performance allocators like TCMalloc [9, 17] may
eliminate much of this cost, at least for entirely thread-local memory. However, the problem
is algorithmic. If threads want to share access to memory, they must synchronize. We prefer
instead to treat shared memory allocation as a “thread collective,” like MPI Allreduce or
MPI Barrier.

This suggests that users should structure their codes to treat dynamic allocation of shared
state as an expensive collective operation. We propose the following model:

23

1. Count (or estimate) the required allocation size, in parallel

2. Allocate space, as a thread-collective operation

3. Fill that space with data, computed in parallel

4. Compute with the filled data structure

[Edwards] and [Sunderland] presented an example of this pattern, namely determining
the structure of a sparse matrix resulting from an unstructured mesh PDE assembly1.

1. In parallel, for each row of the sparse matrix, count or estimate the number of entries
in the row.

2. Allocate space for the graph.

3. Fill the graph with entries, in parallel.

4. Use the graph for finite-element assembly and iterative linear solves.

In this application, it’s possible to get an accurate count of the required number of entries.
This is not always true, but often one can estimate in advance. In that case, fill may fail
by running out of space, but users may try again with a better estimate. For example, each
fine-grained fill operation may return the number of successfully inserted entries. If users
treat fill as a thread-parallel sum-reduction over those return values, then the reduction
result will give them the right amount of space to allocate. Even if fill succeeded, that result
tightens the original estimate.

A similar approach is used in the Linear-Algebraic System Interface (IJ) of the HYPRE
library [1, 8, 15]. The use of assumed partition algorithms for determining the global dis-
tribution in O(1) storage and O(logP) computations, has been essential for the parallel
scalability of HYPRE’s user interfaces (see [Yang]). In general, avoiding fine-grained dy-
namic allocation is not new. However, historical trends in memory growth and ease of use in
popular programming languages have made the practice less expensive. It is expected that
in next-generation architectures this will no longer be the case.

Algorithms and Discretizations for Next Generation Architectures

This report has previously focused on issues associated with the current practices and dis-
cretizations in computational simulation. However, the change in architectures may change
the types of algorithms and discretizations that run efficiently. For instance [Brown] and
[Kolev] both discussed the use of high-order discretizations in a matrix-free context to try to

1There are different ways to do this in parallel, and they compare to the different assembly approaches
(scatter-atomic-add, gather-sum, and parallel prefix sum) discussed previously.

24

take advantage of the larger FLOP-to-byte ratio. [Phipps] presented an approach where the
assembly was performed over an ensemble of sample points to accelerate collocation based
forward uncertainty propagation. The choice of discretization and algorithm for accelerating
assembly must be balanced with the need to use conservative and physics compatible dis-
cretizations, and to choose methods that have good parallel scalability at a range of scales.
The section discusses these approaches and explores the complex tradeoff space associated
with these choices.

High-order methods

For smooth problems and those that must limit numerical diffusion and dispersion near
the grid scale, high order methods can significantly reduce the number of degrees of freedom
needed to reach a desired accuracy. High-order methods tend to achieve higher utilization
of floating-point hardware than low-order methods, as evidenced by higher floating-point
throughput. This is epitomized by numerous Gordon Bell awards to spectral element pack-
ages such as Nek5000, SPECFEM, and HOMME. This high intensity comes with increased
pressure on caches since the working set may no longer fit within L1 cache. [Brown]’s pre-
sentation discussed vectorization strategies and cache/threading issues impacting achievable
performance for moderate-order FEM. To better reuse registers and the fastest levels of
cache, it becomes necessary to have many threads operate on the same element (or other
smallest natural unit of computation). This results in more complicated code generation
(usually at least partially manual) and more inter-thread communication. For the case that
the cost of each element lies near the cost of the lightest weight thread synchronization prim-
itives, coordinating hardware threads to work together on an element may not pay off. The
challenges related to effective reuse of registers and cache across multiple hardware threads
may compromise the efficiency of such methods through repeated spills and/or synchroniza-
tion overhead. In other words, if vendors continue to raise the number of hardware threads
per core without commensurate improvements in caches and low-latency synchronization,
floating point hardware will be underutilized, ultimately leading to applications running at
ever-decreasing fractions of peak.

A second issue associated with high-order methods is that assembling matrices is much
less desirable than for low-order methods because the number of nonzeros per row typically
grows as the cube of the order of the method (in 3D). Indeed, assembly of matrices is not
intrinsically necessary for solving PDEs; it is an artifact of algebraic preconditioners, like
domain-decomposition with incomplete factorization, requiring an explicit representation of
the matrix entries. Assembled sparse matrices can suffer from memory bandwidth bottle-
necks on modern architectures, possibly limiting performance to a few percent of arithmetic
peak. This is especially true for high-order methods, where the sparsity of the matrix de-
creases with the order. Additionally, coordinating threads for matrix assembly is generally
considered to be more challenging than for residual assembly. It is thus worth reconsidering
the solver algorithms and interfaces to determine what is necessary to assemble. The poten-
tial performance of these methods must be weighed against the convenience and flexibility
of reusing more standard components based on assembled matrices.

25

Some of the trade-offs between the various levels of assembly (ranging from full to matrix-
free) were examined by [Kolev] in the context of high-order finite elements for shock hydrody-
namic applications (the BLAST [4, 6] code and MFEM [21] finite element library at LLNL).
With full or element-level assembly, the memory access per degree of freedom for a matrix-
vector product grows with the element order, while it remains bounded in the matrix-free
and quadrature-point based storage approaches. Furthermore, the latter approaches are
also more efficient with respect to the number of computations per degree of freedom if the
polynomial degree is high enough, e.g. at least 3 in 2D and 2 in 3D. The overall effect
of reduced-storage assembly in shock hydrodynamic simulations with the BLAST code are
increased strong parallel scalability and orders of magnitude reduction in the runtime for
4th and higher-order elements in 2D.

[Brown]’s presentation demonstrated integer-factor speedups and memory reduction for
a lithospheric dynamics package (pTatin) using Q2-P1 Stokes elements in 3D. For the het-
erogeneous viscoplastic Stokes solves, a combination of matrix-free geometric multigrid on
the finest levels paired with algebraic multigrid on coarser levels was found to be especially
effective [18].

Solution methods

When considering any new discretization approach, be-it high-order matrix-free or low-
order assembled, its important to consider the efficiency of the solve phase. While this
workshop was primarily about assembly, choosing a discretization approach that is difficult
in the solve phase but easy to assemble may not be beneficial.

For instance, [Brown] discussed how the size of vertex separators can have a large effect on
the solution methods used and required amount of communication. Direct solves for multi-
dimensional problems result in fill that scales superlinearly with problem size. For large
problems, this fill becomes the leading memory cost and factorization of the large associated
(dense) supernodes becomes the leading time cost. The size of the largest supernode is equal
to the minimal “vertex separator”, the set of vertices in the matrix graph that split the
graph into two separate parts. Vertex separators scale as n

1
2 and n

2
3 for isotropic domains

in 2D and 3D respectively, but they also depend on the discretization. High-order finite-
difference methods result in a separator proportional to the “stencil width.” Since memory
use is quadratic in separator size and factorization time is cubic, a small increase in stencil
width results in ballooning factorization cost. Some methods, such as standard p-version
FEM, have small vertex separators independent of approximation order. Other methods
such as high-order FD, FV, and Discontinuous Galerkin have vertex separators that grow
with approximation order. Some of those have lower rank coupling in a transformed space
and can be reformulated to expose that compactness (e.g., hybridizable DG). In addition to
direct solvers, small vertex separators are important to control costs for nonlinear Dirichlet
domain decomposition, algebraic multigrid, and other methods.

High-order methods are also more difficult to use with multigrid because poor h-ellipticity

26

requires more powerful smoothers or the use of more sophisticated techniques such as dual-
order defect correction schemes. Multilevel domain decomposition can in some cases do a
better job of controlling complexity, but often requires direct subdomain solves, which in
turn require assembled matrices and generally high cost. There is some reprieve, however,
because discretizations such as p-FEM possess small vertex separators, resulting in no more
fill than a low-order method with the same number of degrees of freedom.

Multigrid and related techniques are an essential ingredient for solving stiff and steady-
state PDEs. As discretizations are changed to improve performance and alternative repre-
sentations are used to represent sparse matrices, we must evaluate the efficiency, robustness,
and implementation cost of suitable multigrid methods. First, increasing the approximation
order degrades h-ellipticity (a necessary and sufficient measure for applicability of a point-
wise smoother), thus requiring more expensive smoothers. For separable PDEs on near-affine
meshes, the technique of “sum factorization” that is used by Nek5000 (see [Fischer]) and
other SEM packages is an inexpensive element-wise near-exact solve that is sufficient for
rapid p-coarsening to a low-order discretization that is amenable to standard AMG. Sum
factorization is not available for general operators, often leading to much higher smoothing
costs. A popular and effective technique is to use a defect correction based on a low order
discretization embedded in the high order discretization. This technique is more generally
applicable and is effective for a broad range of problems, but is less efficient when sum
factorization is applicable.

If one eschews assembled matrices, it may also be attractive to avoid global lineariza-
tion in favor of nonlinear multigrid methods (usually FAS). Discretizations like FEM have
high overhead for pointwise residual or Jacobian evaluation relative to global evaluations;
for example, an element must be visited once for each adjacent vertex in a pointwise mul-
tiplicative smoother, but only once for a global residual. It is desirable to either find dis-
cretizations that can evaluate pointwise residuals efficiently or to find smoothers such as
multi-stage/polynomial that require only global residual evaluation. Such smoothers are
typically easier to parallelize and vectorize than multiplicative smoothers, but suffer from
inferior robustness.

Reuse across other dimensions

Many problem of interest involve not just spatial dimensions, but also temporal and
stochastic/uncertain dimensions. In some cases, spatial discretizations and associated data
structures may be reused to reduce memory motion and improve efficiency. This is obvious
for a linear problem where the reuse appears as multiple right hand sides or a Kronecker
product system, but nonlinear problems may also be amenable to local linearizations that
enable reuse. For example, implicit Runge-Kutta systems are often solved by modified
Newton (a shared linearization) and a decomposition of the resulting Kronecker product
system [3, 5, 28].

Often forward uncertainty propagation for problems with uncertain input data involve

27

Figure 3. Kronecker-product matrix generated by
sampling-based uncertainty quantification methods.

samples of the PDE solution evaluated at numerous realizations of that uncertain data. This
too can be formulated as a block-diagonal Kronecker product system such as the one shown
in Figure 3, where the diagonal blocks represent FEM matrices for each sample. For many
problems, significant reuse of data accessed and generated through the PDE assembly and
solution processes is possible from realization to realization. Furthermore, [Phipps] pre-
sented a sampling-based uncertainty propagation method where samples are grouped into
ensembles of some fixed size determined by the architecture’s native vector width and the
Kronecker product system above was formed for each ensemble. The Kronecker system
was commuted to a block spatial system where each block is a diagonal matrix given by
the ensemble size such as the one shown in Figure 4, and then applied to PDE assembly
of low-order discretizations on unstructured meshes. The template-based generic program-
ming approach presented by [Pawlowski] was used to effect this reordering without requiring
explicit management of the ensemble dimension in the assembly code. It was found that
this approach enabled not only reuse of the unstructured mesh between samples within the
ensemble (and therefore amortized the latency costs of those data structures), but also map-
ping of fine-grained SIMD/SIMT parallelism across the ensemble resulting in significantly
improved performance. Thus we see that when the system is organized suitably, other dimen-
sions of the full problem discretization can be exploited for better memory access patterns
and fine-grained parallelism, potentially mitigating the need for the spatial discretization to
achieve these goals.

Application Needs and Capabilities

Applications require a diverse set of capabilities from both discretizations and assembly,
which historically have resulted in limited adoption of abstraction, especially compared to
the success of abstractions in linear and nonlinear solvers. This diversity is ever growing,
especially as applications shift toward higher order and application specific discretizations.

28

Figure 4. Commuted Kronecker-product matrix generated
by sampling-based uncertainty quantification methods.

Physics-motivated strategies at the nexus of physics and algorithms, such as upwinding non-
linear coefficients, discrete outflow boundary conditions, or variational crimes, further make
abstractions difficult to adopt. Historically, most applications have chosen to implement
their own discretizations and assembly.

However, extreme-scale machines have provided new energy and motivation for the adop-
tion of libraries, frameworks, DSLs, and other tools. As applications see their existing codes
run slower on newer machines, and uncertainty in discretization selection, data layout, and
best practices for emerging architectures increases, application software developers are in-
creasingly interested in software for managing abstractions in both discretization and as-
sembly. Successes in abstractions for solvers such as PETSc and Trilinos have resulted in
new generations of application software authors willing to adopt libraries that require the
application to cede some control.

However, such abstractions must work closely with applications, and may require dif-
fering concepts for differing fields. However, several common themes were identified in this
workshop, and potential abstraction designers should be aware of these themes.

The first theme is the ubiquity of block systems. Few applications assemble and solve a
single operator. Block systems arise in applications in several ways. Mixed finite element
methods such as Raviart-Thomas and higher-order discretizations such as mimetic finite
differences or higher order finite elements naturally introduce a block system for entities in
different spaces or on different mesh entities. Tightly coupled physical equations, such as cou-
pled energy and fluid flow equations, result in block systems. And multi-domain simulations
often result in constraints that are expressed as a block system with the equations for the
primal variable. However, block systems provide unique difficulties to abstractions for assem-
bly. This concern arose in several applications including coupled thermal-hydrological flows
in the subsurface (Coon), ice sheet evolution ([Demeshko]), Navier-Stokes/Stokes equations
([Fischer], [Cyr]), and shock hydrodynamics and MHD ([Drake]), amongst others. Nonlinear

29

coefficients and boundary conditions have always been important to the application com-
munity, and are only becoming more common. Abstractions must be aware of difficulties
presented by these nonlinearities. For instance, even simple applications may require nonlin-
ear Robin boundary conditions, and multi-domain simulations may use boundary conditions
or constraints on boundary unknowns to couple domains. Boundary conditions such as out-
flow boundaries where a normal component is fixed while a tangential component is not
may result in systems where the discrete system is well-posed while the continuous one is
not. Inflexibility in ways of allowing physics-specific coefficients and boundary conditions is
a frequent reason for applications to implement their own assembly process.

Much as DAGs provide opportunities for assembly, they also are a powerful idea within
multiphysics applications. By enabling and enforcing modularity, they enable testing, au-
tomate model evaluation within complex codes, and partially automate the often buggy
process of assembling Jacobians. DAGs have been adopted extensively in several applica-
tion code efforts presented, including Amanzi and the Arctic Terrestrial Simulator via Arcos
(Coon and [Moulton]), Uintah ([Berzins]), Moose and its family of codes ([Andrs]), and Al-
bany through Phalanx ([Demeshko], [Pawlowski]). While DAG abstractions may be very
application specific, the underlying data structures storing the graph and task schedulers
can be very general. Increasing adoption of the DAG concept within application codes pro-
vides opportunities for abstraction for both discretization and assembly. DAGs should be
viewed as a very promising tool for exposing concurrency and providing a way for physics
to communicate problem structure to algorithms.

Another commonality of the applications codes represented was the role of coupling in
dictating assembly and operator layout. For instance, in the Arctic Terrestrial Simulator,
which models phase change in ice-rich tundra, tightly coupled energy and hydrology equa-
tions have been viewed in two ways - as a single block operator with interleaved unknowns
(equation is fastest varying, followed by mesh entity), and as two, independent operators
in a block system (mesh entity is fastest varying, followed by equation). Each view of the
system of equations has its advantages: preconditioners for the coupled system are more
diagonally dominant and best suited to, for instance, multigrid solvers, if organized using
the former data layout, while code modularity encourages the adoption of the latter layout.
Additionally, block preconditioning strategies such as Schur complements for Stokes prob-
lems may make it less clear as to which strategy is best for which application. [Cyr] explored
how simple mappings can be used to map between these layouts, providing extremely useful
functionality for enabling modular physics code. However, this dichotomy of two views of
the same operators provides unique challenges to assembly abstractions; ideally both are
available and neither is assembled until it is actually required.

And finally, several applications demonstrated the need for care in assembly as it relates
to other computational components, including the mesh framework, discretization, and solver
strategy. Several presenters discussed how changes in mesh implementations resulted in per-
formance changes in assembly, including [Drake], with respect to remeshing, remapping, and
iteration over mesh objects, and [Sahni], with respect to unstructured meshes near boundary
layers. High order discretization methods are becoming increasingly common in application

30

codes due to their improved efficiency, as discussed above. These can be leveraged using
libraries such as MFEM and Blast, as demonstrated by [Kolev], placing new requirements
on assembly. Differing solution methodologies on different physical approximations may lead
to different approaches for when to assemble and when not to. [Pautz] showed an example
of this on two forms of the Boltzmann equations within SCEPTRE.

31

Conclusions

In principle, PDE discretization and assembly are some of the simplest computations to
design and implement for efficient execution on any modern computing system. For any
specific discretization scheme, application code and computer system, an optimal implemen-
tation is possible and fairly straightforward to implement. The challenge is that we do not
want to, nor can afford to, provide such a custom implementation for each important case.
There are too many. Instead we need to define meaningful abstractions that enable per-
formance, reusability and expressibility for broad collections of discretizations. This is the
overarching goal of our efforts.

This report described a number of challenges and approaches to achieving high perfor-
mance assembly abstractions and implementations on next generation multicore and many
core architectures. Principle among these issues was how to expose and exploit the par-
allelism available in assembly required by the current generation of codes. A number of
approaches for resolving race conditions in assembly were proposed. Additionally, new par-
allel programming models based on a highly threaded SIMD architecture were also discussed.
To expose further parallelism novel software architectures based on directed acyclic graphs
were considered. The intriguing possibility of achieving high performance by combining those
approaches was alluded to but not considered in detail. Critical to any assembly algorithm
is the interface between high density computation and scatter and gather to and from sparse
linear algebra data structures. This report considered both fine and coarse grained interfaces
for this activity. In addition, interfaces and data structures that supported exposure of ad-
ditional structure where possible within a calculation were considered. Finally, the notion of
the “count, allocate, fill, compute” process proved to be a useful abstraction when forming
matrices. While the focus of the report was on assembly, the possibility of new discretizations
and mathematical approaches that may lead to algorithms that better map to new hardware
was also discussed. One approach is to consider higher-order discretizations that, in a sim-
plistic explanation, increase the FLOP rate to memory access ratio. Additional approaches
focusing on taking advantage of structure in time integration and uncertainty quantification
were also proposed. Finally, the use of these techniques as abstractions within a PDE appli-
cation was explored. In particular, the growing importance of abstraction in those codes and
the need for a software design cycle between the application and the component abstraction
developers was emphasized.

This report has laid out a number of innovative approaches for improving assembly, both
in performance but also in flexibility. However, it has also exposed a number of areas for
future improvement and study. A few that are particularly critical:

• the effectivity of task parallelism for implicit solution methods and assembly, and the
importance of computationally expensive equations of state to achieve good scalability,

• the utility, need for, and abstraction of the memory hierarchy,

• the evolution of static and dynamic linear algebra data structures for assembly and

32

solve,

• the use of advanced discretization and the connected effect on the solver stack,

• exploiting more parallelism in beyond forward simulation techniques like optimization
and uncertainty quantification when mapping onto advanced architectures, and

• new software abstractions meeting the needs of applications beyond the mathematical
abstraction.

Finally, improvement in the area of assembly performance and utilization of next generation
hardware will require a substantial community-wide commitment to abstraction. These
issues are often derisively viewed as “software” problems in the computational sciences. The
question is, can this attitude be overcome so that a vibrant research community is sustained?

33

References

[1] Allison H. Baker et al. “Scaling Hypre’s Multigrid Solvers to 100,000 Cores”.
In: High-Performance Scientific Computing. Springer London, 2012, pp. 261–
279.

[2] M. Berzins et al. “Past, present and future scalability of the Uintah software”.
In: Proceedings of the Extreme Scaling Workshop. University of Illinois at
Urbana-Champaign. 2012, p. 6.

[3] T. A. Bickart. “An efficient solution process for implicit Runge-Kutta meth-
ods”. In: SIAM Journal on Numerical Analysis 14.6 (1977), pp. 1022–1027.

[4] BLAST: High-Order Curvilinear Finite Elements for Shock Hydrodynamics.
http://www.llnl.gov/CASC/blast.

[5] J. C. Butcher. “On the implementation of implicit Runge-Kutta methods”.
In: BIT Numerical Mathematics 16.3 (1976), pp. 237–240.

[6] V. Dobrev, Tz. Kolev, and R. Rieben. “High-Order Curvilinear Finite Ele-
ment Methods for Lagrangian Hydrodynamics”. In: SIAM J. Sci. Comp. 34.5
(2012), pp. 606–641.

[7] H. C. Edwards, C. R. Trott, and D. Sunderland. “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns”. In:
Journal of Parallel and Distributed Computing (2014).

[8] R. D. Falgout, J. E. Jones, and U. M. Yang. “Pursuing Scalability for hypre’s
Conceptual Interfaces”. In: ACM Trans. Math. Softw. 31.3 (2005), pp. 326–
350.

[9] S. Ghemawat and P. Menage. “Tcmalloc: Thread-caching malloc”. In: goog-
perftools. sourceforge. net/doc/tcmalloc. html (2009).

[10] P. Ghysels and W. Vanroose. “Hiding global synchronization latency in the
preconditioned Conjugate Gradient algorithm”. In: Parallel Computing (2013).

[11] P. Ghysels et al. “Hiding global communication latency in the GMRES algo-
rithm on massively parallel machines”. In: SIAM Journal on Scientific Com-
puting 35.1 (2013), pp. C48–C71.

[12] HIGH BANDWIDTH MEMORY (HBM) DRAM. http://www.jedec.org/
standards-documents/docs/jesd235. [Accessed: Sept. 15, 2014].

[13] T. Hoefler, T. Schneider, and A. Lumsdaine. “Characterizing the influence of
system noise on large-scale applications by simulation”. In: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society. 2010, pp. 1–11.

[14] M. Hoemmen and K. Nusbaum. Asynchronous, performance-portable Krylov
methods on accelerators. Tech. rep. Sandia National Laboratories, 2012.

[15] hypre: High Performance Preconditioners. http://www.llnl.gov/CASC/
hypre.

34

http://www.llnl.gov/CASC/blast
http://www.jedec.org/standards-documents/docs/jesd235
http://www.jedec.org/standards-documents/docs/jesd235
http://www.llnl.gov/CASC/hypre
http://www.llnl.gov/CASC/hypre

[16] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented
system based on C++. ACM, 1993.

[17] S. Lee, T. Johnson, and E. Raman. “Feedback directed optimization of TC-
Malloc”. In: Proceedings of the workshop on Memory Systems Performance
and Correctness. ACM. 2014, p. 3.

[18] D. A. May, J. Brown, and L. Le Pourhiet. “pTatin3D: High-performance
Methods for Long-term Lithospheric Dynamics”. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’14. New Orleans, Louisana: IEEE Press, 2014, pp. 274–284.
isbn: 978-1-4799-5500-8. doi: 10.1109/SC.2014.28. url: http://dx.doi.
org/10.1109/SC.2014.28.

[19] D. S. Medina, A. St-Cyr, and T. Warburton. “OCCA: A unified approach to
multi-threading languages”. In: arXiv preprint arXiv:1403.0968 (2014).

[20] C. Mellor. Micron: Our STACKED SILICON BEAUTY solves the DRAM
problem. The Register. 27 Nov. 2013. http://www.theregister.co.uk/
2013/11/27/micron_engaged_in_consenting_dram_stackery/. [Accessed
Sept. 15, 2014].

[21] MFEM: Modular parallel finite element methods library. http : / / mfem .

googlecode.com.

[22] Micron HMC Memory Technology to Enhance Knights Landing. http://

insidehpc.com/2014/06/micron- hmc- memory- technology- enhance-

knights-landing/. [Accessed Sept. 21, 2014].

[23] P. K. Notz, R. P. Pawlowski, and J. C. Sutherland. “Graph-based software
design for managing complexity and enabling concurrency in multiphysics
PDE software”. In: ACM Transactions on Mathematical Software (TOMS)
39.1 (2012), p. 1.

[24] R. P. Pawlowski, E. T. Phipps, and A. G. Salinger. “Automating embed-
ded analysis capabilities and managing software complexity in multiphysics
simulation, Part I: Template-based generic programming”. In: Scientific Pro-
gramming 20.2 (2012), pp. 197–219.

[25] SpatialOps: Main Page. http://minimac.crsim.utah.edu:8080/job/

SpatialOps/doxygen. [Accessed Nov. 28, 2014].

[26] J. Davison de St Germain et al. “Uintah: A massively parallel problem solving
environment”. In: High-Performance Distributed Computing, 2000. Proceed-
ings. The Ninth International Symposium on. IEEE. 2000, pp. 33–41.

[27] S. Valat, M. Pérache, and W. Jalby. “Introducing kernel-level page reuse
for high performance computing”. In: Proceedings of the ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness. ACM. 2013,
p. 3.

[28] G. Wanner and E. Hairer. Solving ordinary differential equations II: Stiff and
Differential-Algebraic Problems. Berlin: Springer-Verlag, 1991.

35

http://dx.doi.org/10.1109/SC.2014.28
http://dx.doi.org/10.1109/SC.2014.28
http://dx.doi.org/10.1109/SC.2014.28
http://www.theregister.co.uk/2013/11/27/micron_engaged_in_consenting_dram_stackery/
http://www.theregister.co.uk/2013/11/27/micron_engaged_in_consenting_dram_stackery/
http://mfem.googlecode.com
http://mfem.googlecode.com
http://insidehpc.com/2014/06/micron-hmc-memory-technology-enhance-knights-landing/
http://insidehpc.com/2014/06/micron-hmc-memory-technology-enhance-knights-landing/
http://insidehpc.com/2014/06/micron-hmc-memory-technology-enhance-knights-landing/
http://minimac.crsim.utah.edu:8080/job/SpatialOps/doxygen
http://minimac.crsim.utah.edu:8080/job/SpatialOps/doxygen

Presentations

[Andrs] D. Andrs. “Massive Hybrid Parallelism for Fully Implicit Multiphysics”. In: Pre-
sented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Bennett] J. Bennett. “Fault-tolerant programming at the extreme-scale”. In: Presented at
“Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Berzins] M. Berzins. “Software Abstractions for Extreme-Scale Scalability of Computa-
tional Frameworks”. In: Presented at “Algorithms and Abstractions for Assembly in PDE
Codes”, 2014.

[Brown] J. Brown. “High-performance matrix-free operator application and precondition-
ing”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Cyr] E. C. Cyr, B. Seefeldt, and R. P. Pawlowski. “Global Unknown Numbering for Fully-
Coupled Mixed Finite Element Methods”. In: Presented at “Algorithms and Abstractions
for Assembly in PDE Codes”, 2014.

[Demeshko] I. Demeshko. “A performance-portable implementation of the Finite Element
Assembly: preliminary results of using Kokkos in the Albany code”. In: Presented at
“Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Drake] R. Drake. “The ALEGRA Production Application: Strategy, Challenges and Progress
Toward Next Generation Platforms”. In: Presented at “Algorithms and Abstractions for
Assembly in PDE Codes”, 2014.

[Edwards] H. C. Edwards. “MiniFENL: Fully Hybrid Parallel and Performance Portable
Nonlinear Finite Element Miniapp using MPI+Kokkos”. In: Presented at “Algorithms and
Abstractions for Assembly in PDE Codes”, 2014.

[Fischer] P. Fischer. “Scaling PDE solvers beyond a million cores”. In: Presented at “Al-
gorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Franko] K. Franko. “MiniAero”. In: Presented at “Algorithms and Abstractions for As-
sembly in PDE Codes”, 2014.

[Heroux] M. Heroux. “Challenges and Opportunities for Scalable Finite Element Assem-
bly”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Hoemmen] M. Hoemmen. “Tpetra interface changes to support thread-parallel fill”. In:
Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Kirby] R. Kirby. “Fine-grained finite element parallelism”. In: Presented at “Algorithms
and Abstractions for Assembly in PDE Codes”, 2014.

[Kolev] T. Kolev. “Scalable high-order finite elements with MFEM, hypre and BLAST”.
In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Moulton] D. Moulton. “Amanzi and the Arctic Terrestrial Simulator: Flexible Multiphysics
Simulators for Environment and Ecosystem Applications”. In: Presented at “Algorithms
and Abstractions for Assembly in PDE Codes”, 2014.

36

[Pautz] S. Pautz. “Matrix Assembly Tasks in the Sceptre Deterministic Radiation Trans-
port Code”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”,
2014.

[Pawlowski] R. P. Pawlowski. “Template-based Generic Programming Techniques for Finite
Element Assembly”. In: Presented at “Algorithms and Abstractions for Assembly in PDE
Codes”, 2014.

[Phipps] E. Phipps. “Improving PDE Assembly Performance Through Embedded Uncer-
tainty Quantification”. In: Presented at “Algorithms and Abstractions for Assembly in
PDE Codes”, 2014.

[Pierson] K. Pierson. “Efficient Block Sparse Assembly with SIMD”. In: Presented at “Al-
gorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Sahni] O. Sahni. “Abstractions and algorithms for adaptive methods on boundary layer
meshes”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”,
2014.

[Stogner] R. Stogner. “C++14 Generic Programming as a Domain-Specific Language for
PDEs”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”,
2014.

[Sunderland] D. Sunderland. “Thread Scalable CRS Graph Construction”. In: Presented
at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Sutherland] J. Sutherland. “Flexible, Efficient Abstractions for High Performance Com-
putation on Current and Emerging Architectures”. In: Presented at “Algorithms and Ab-
stractions for Assembly in PDE Codes”, 2014.

[Trott] C. Trott. “A migration strategy for utilizing the Kokkos many-core programming
model”. In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”,
2014.

[Turcksin] B. Turcksin. “Multithreaded matrix assembly for finite elements”. In: Presented
at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Warburton] T. Warburton. “OCCA: A Unified Approach to Multi-Threading Languages”.
In: Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

[Yang] Ulrike Yang. “Matrix and Vector Assembly in hypres Conceptual Interfaces”. In:
Presented at “Algorithms and Abstractions for Assembly in PDE Codes”, 2014.

37

A Workshop Program

38

Program for “Algorithms and Abstractions for Assembly in

PDE Codes” Workshop at Sandia National Laboratories∗

May 12-14, 2014

FORMAT: All talks will be in CSRI/90. There will be three one hour long (with ten minutes
for questions) keynote talks, and 24 “poster blitz” talks. Each blitz speaker is given 15 minutes to
summarize the main points of their poster that will be presented. The idea is to stimulate deeper
conversation on these topics. The poster may only be displayed during the allocated poster session
following the poster blitz at the end of the day. Presenters are responsible for making sure their
own poster is displayed.

SCHEDULE:

Monday - May 12, 2014

Start Time Speaker and Title
9:00a-9:15 Opening Remarks
9:15a-10:15 Keynote: Martin Berzins - University of Utah

Software Abstractions for Extreme-Scale Scalability of Computational Frameworks
10:15a-10:30 Break
10:30a-12:00 Poster Blitz

Andreas Kloeckner - University of Illinois
Operator transformation and code generation for FEM
Roy Stogner - University of Texas
C++14 Generic Programming as a Domain-Specific Language for PDEs
Irina Demeshko - Sandia National Laboratories
A performance-portable implementation of the Finite Element Assembly: prelim-
inary results of using Kokkos in the Albany code
James Sutherland - University of Utah
Flexible, Efficient Abstractions for High Performance Computation on Current
and Emerging Architectures
Roger Pawlowski - Sandia National Laboratories
Template-based Generic Programming Techniques for Finite Element Assembly
Janine Bennett - Sandia National Laboratories
Fault-tolerant programming at the extreme-scale

12:00-1:30p Lunch
1:30p-2:30 Poster Blitz

David Andrs - Idaho National Laboratory
Massive Hybrid Parallelism for Fully Implicit Multiphysics
David Moulton - Los Alamos National Laboratory
Amanzi and the Arctic Terrestrial Simulator: Flexible Multiphysics Simulators
for Environment and Ecosystem Applications
Ken Franko - Sandia National Laboratories
MiniAero
Eric Phipps - Sandia National Laboratories
Improving PDE Assembly Performance Through Embedded Uncertainty Quantifi-
cation

2:30p-5:00 Poster Session

∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

1

Tuesday - May 13, 2014

Time Speaker and Title
9:00a-10:00 Keynote: Mike Heroux - Sandia National Laboratories

Challenges and Opportunities for Scalable Finite Element Assembly
10:00a-10:30 Break
10:30a-12:00 Poster Blitz

Rob Kirby - Baylor University
Fine-grained finite element parallelism
Shawn Pautz - Sandia National Laboratories
Matrix Assembly Tasks in the Sceptre Deterministic Radiation Transport Code
Tim Warburton - Rice University
OCCA: A Unified Approach to Multi-Threading Languages
Tzanio Kolev - Lawrence Livermore National Laboratory
Scalable high-order finite elements with MFEM, hypre and BLAST
Onkar Sahni - RPI
Abstractions and algorithms for adaptive methods on boundary layer meshes
Rich Drake - Sandia National Laboratories
The ALEGRA Production Application: Strategy, Challenges and Progress Toward
Next Generation Platforms

12:00-1:30p Lunch
1:30p-2:30 Poster Blitz

Dan Sunderland - Sandia National Laboratories
Thread Scalable CRS Graph Construction
Ulrike Yang - Lawrence Livermore National Laboratory
Matrix and Vector Assembly in hypres Conceptual Interfaces
Mark Hoemmen - Sandia National Laboratories
Tpetra interface changes to support thread-parallel fill
Bruno Turcksin - Texas A&M
Multithreaded matrix assembly for finite elements

2:30p-5:00 Poster Session

Wednesday - May 14, 2014

Start Time Speaker and Title
9:00a-10:00 Keynote: Paul Fischer - Argonne National Laboratory

Scaling PDE solvers beyond a million cores
10:00a-10:15 Break
10:15a-11:30 Poster Blitz

Jed Brown - Argonne National Laboratory
High-performance matrix-free operator application and preconditioning
Carter Edwards - Sandia National Laboratories
MiniFENL: Fully Hybrid Parallel and Performance Portable Nonlinear Finite
Element Miniapp using MPI+Kokkos
Christian Trott - Sandia National Laboratories
A migration strategy for utilizing the Kokkos many-core programming model
Kendall Pierson - Sandia National Laboratories
Efficient Block Sparse Assembly with SIMD
Eric C. Cyr - Sandia National Laboratories
Global Unknown Numbering for Fully-Coupled Mixed Finite Element Methods

11:30p-12:30 Poster Session

2

ABSTRACTS: Speakers in bold

David Andrs, Derek Gaston, Cody Permann, John Peterson, Andrew Slaughter, Richard Mar-
tineau
Title: Massive Hybrid Parallelism for Fully Implicit Multiphysics
Abstract: As hardware advances continue to modify the supercomputing landscape, traditional sci-
entific software development practices will become more outdated, ineffective, and inefficient. The
process of rewriting/retooling existing software for new architectures is a Sisyphean task, and re-
sults in substantial hours of development time, effort, and money. Software libraries which provide
an abstraction of the resources provided by such architectures are therefore essential if the compu-
tational engineering and science communities are to continue to flourish in this modern computing
environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework
enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain
specialists, while also allowing them to both take advantage of current HPC architectures, and
efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory
and distributed-memory parallel model and provides a complete and consistent interface for cre-
ating multiphysics analysis tools. A brief discussion of the mathematical algorithms underlying
the framework and the internal object-oriented hybrid parallel design are given. Representative
massively parallel results from several applications and a brief discussion of future areas of research
for the framework will be presented.

Janine Bennett, John Floren, Hemanth Kolla, Nicole Slattengren, Keita Teranishi, Jeremiah
Wilke
Title: Fault-tolerant programming at the extreme-scale
Abstract: It is widely acknowledged that performant software at exasacle will require significant
increases in fine-grained parallelism and resiliency. Asynchronous, many-task programming models
are acknowledged to provide the desired levels task- and data-level parallelism and, furthermore,
show promise at sustaining performance despite node degradation and failures. Asynchronous task
models introduce a challenging distributed consistency problem both within and amongst several
interacting components (e.g. scheduler, global address server, transport layer), which demands a
large set of programming model and runtime tools to address process failures. Existing many-task
solutions often have nascent resilience support, addressing a subset of the resilience problem. In
this poster we outline a holistic resilience approach based on a deferred consistency model. As much
as possible, we isolate the resilience problem to a distributed hash table and library of resilient col-
lective communications, transforming the massive challenge of resilient many-task scheduling and
execution into related, but better understood resilience problems.

Martin Berzins
Title: Software Abstractions for Extreme-Scale Scalability of Computational Frameworks
Abstract: Abstractions play a key role in the development of both computer and computational
science. Often the choice of the abstraction is of key importance in enabling performance at the
required level. At the same time the choice of abstraction alone may not be enough to guarantee
that performance. A key abstraction in the move to extreme-scale computing is sometime stated
to be that of basing execution around the concept of multiple directed acyclic graphs of tasks. We
will show that using such an approach within the Utah Uintah makes it possible to separate the
user specification and the runtime that executes the resulting tasks. This separation then makes it
possible to scale the same (unchanged) applications code from 700 to 700K cores. The mechanism
for making such an abstraction work is the constant re-engineering of the runtime system, based
on a careful analysis of its performance. The techniques that make it possible for the Uintah
software framework to run complex engineering applications at such scales will be described and
their use illustrated in the context of problems such as modeling energetic materials, clean-coal
turbulent combustion and multiscale materials by design. Finally the challenge of extending such
an abstraction to present and future heterogeneous machines will be considered.

3

This work is joint with Alan Humphrey, Qingyu Meng and John Schmidt from the runtime
system and Jacqueline Beckvermit, Todd Harman and Jeremy Thornock from the applications side.

Jed Brown, Dave May, Matt Knepley
Title: High-performance matrix-free operator application and preconditioning
Abstract: Assembled sparse matrices lead to algorithms with extremely low arithmetic intensity,
thus using hardware inefficiently. The same linear systems can often be represented using less mem-
ory by storing information at quadrature points or flux points. In this form, operator application
looks more like residual assembly. Preconditioning techniques need to be adapted to these repre-
sentations. Techniques will be compared on the basis of generality and performance (up to 30% of
FPU peak for some variants).

Eric C. Cyr, Ben Seefeldt, Roger Pawlowski
Title: Global Unknown Numbering for Fully-Coupled Mixed Finite Element Methods
Abstract: TBD

Irina Demeshko, H. Carter Edwards, Michael A. Heroux, Eric T. Phipps, Andrew G. Salinger
Title: A performance-portable implementation of the Finite Element Assembly: preliminary results
of using Kokkos in the Albany code
Abstract: The diversity of modern HPC architectures and programming models introduces a per-
formance portability issue: parallel code needs to be executed correctly and performant despite
variation in the architecture, operating system and software libraries. In this poster we present
our progress towards a performance portable implementation of Finite Element Assembly in the
Albany code, based on using the Kokkos programming model from Trilinos.

Rich Drake
Title: The ALEGRA Production Application: Strategy, Challenges and Progress Toward Next Gen-
eration Platforms
Abstract: ALEGRA is a large, highly capable, option rich, production application solving coupled
multi-physics PDEs modeling magnetohydrodynamics, electromechanics, stochastic damage mod-
eling and detailed interface mechanics in high strain rate regimes on unstructured meshes in an
ALE framework. Nearly all the algorithms must accept dynamic, mixed-material elements, which
are modified by remeshing, interface reconstruction, and advection components. Recent trends in
computing hardware have forced application developers to think about how to address and improve
performance on traditional CPUs and to look forward to next generation platforms. Core to the
ALEGRA performance strategy is to improve and rewrite loop bodies to be conformant with the
requirements of high performance kernels, such as accessing data in array form, no pointer derefer-
encing, no function calls, and thread safety. Necessary to achieve this, however, are changes to the
underlying infrastructure. We report on recent progress in the infrastructure to support array-based
data access and on iteration of mesh objects. The effects on performance on traditional platforms
will be shown. We also discuss the practical realities and cost estimates for attempting to move
an existing full featured production application like ALEGRA toward running effectively on future
platforms and being maintainable at the same time.

H. Carter Edwards
Title: MiniFENL: Fully Hybrid Parallel and Performance Portable Nonlinear Finite Element Miniapp
using MPI+Kokkos
Abstract: MiniFENL is a miniapplication which solves a nonlinear system of equations generated
from a finite element discretization. MiniFENL is implemented with MPI+Kokkos for performance-
portability to heterogeneous platforms with manycore CPUs and accelerators such as Intel Xeon
Phi and Nvidia GPUs. Every phase of miniFENL is hybrid parallel: internal generation of the finite
element mesh, construction of the sparse linear system graph from the finite element mesh connec-
tivity, computation of per-element nonlinear residuals and Jacobians, assembly of these per-element

4

contributions into the global sparse linear system, and two level Newton / conjugate gradient iter-
ative solution of the nonlinear problem. We use miniFENL to explore hybrid parallel algorithms
and performance tradeoffs across the entire solution process. For example, we recently demon-
strated that a global linear system assembly scatter-add approach has better performance than
a gather-sum approach on both Xeon Phi and Nvidia Kepler accelerators. The scatter-add ap-
proach uses atomic-fetch-and-add operations for thread safety whereas the gather-sum approach
saves per-element contributions into a temporary array and then mines this array for a thread-safe
one-thread-per-row assembly.

Paul Fischer
Title: Scaling PDE solvers beyond a million cores
Abstract: We discuss design and performance of communication kernels in the context of PDE
based simulation at petascale and beyond. In the first part of the talk, we present a gather-scatter
(GS) framework that has a particularly simple interface and has demonstrated scaling to beyond
6 million MPI ranks. The interface requires a “setup” phase in which each participating rank
supplies a vector of 64-bit integers that map local degrees of freedom to their global index. In
subsequent “execute” phases, ranks supply a vector, an operand type (32- or 64-bit real/int), and
an associative/commutative operator (+,*,min,max) that is applied across sets of scalar or vector
operands sharing the same global index. Depending on the density of the underlying graph, GS will
choose one of three exchange strategies: pairwise, crystal-router (CR), or all-reduce. The latter two
nominally have log P complexity, save for all-reduce on BG/L-P-Q, where all-reduce is essentially
P-independent out to a million ranks. The CR is a scalable generalized all-to-many that is also used
in GS-setup. We discuss the performance of these kernels in the context of billion-point simulations
on over 100,000 cores.

In the second half of the presentation we examine fundamental issues that will be critical for
strong scaling at exascale given current trends in compute/communication ratios. We propose
hardware supported reduce-scan stategies for essential kernels (e.g., algebraic multigrid) that could
mitigate the internode latency that ultimately limits strong scalability and, thus, utility of exascale
platforms.

Michael A. Heroux
Title: Challenges and Opportunities for Scalable Finite Element Assembly
Abstract: Emerging computer architectures are forcing the finite element community to consider
disruptive algorithmic and software changes in order to exploit new commodity performance curves,
and address expected resilience issues at extreme scales.

In this presentation we characterize the architectural trends that pose the most significant al-
gorithmic challenges and opportunities for the design and implementation of the next generation
of finite element computations. In particular, we discuss strategies for exploiting new performance
trends, issues of latency and bandwidth, and abstract models for resilient algorithm development.
Finally we discuss practical consideration for developing the next generation of library software in
this area, including reproducibility, data structures and mixed threading model concerns.

Mark Hoemmen
Title: Tpetra interface changes to support thread-parallel fill
Abstract: Tpetra is Trilinos’ next-generation sparse linear algebra package. It provides sparse
graphs and matrices and dense vectors, and has a parallel data redistribution facility which appli-
cations can use. Tpetra lets users choose the type of values in its matrices and vectors, has been
demonstrated to solve problems with well over two billion unknowns, and supports “hybrid” MPI
+ X parallelism for several different shared-memory parallel programming models X. This poster
will show our work in progress to improve Tpetra’s support for thread-parallel fill. By “fill,” we
mean constructing and modifying Tpetra data structures, like sparse matrices and dense vectors,
as for example in finite element assembly. This work builds on the new Kokkos thread-parallel
programming model, but does not require that applications use Kokkos. Our interface changes

5

will help applications gradually adopt threads, and guide application developers with performant
idioms that support different data structure fill patterns.

Ken Franko
Title: MiniAero
Abstract: Kokkos was used to develop a mini-application for gas dynamics applications, miniAero.
miniAero is an explicit cell-centered finite-volume code that is MPI enabled and uses Kokkos for
thread and GPU execution of kernels. Performance numbers for MPI+X for a variety of platforms
will be presented along with lessons learned.

Rob Kirby
Title: Fine-grained finite element parallelism
Abstract: This poster will demonstrate available concurrency in elementwise finite element kernels,
as well as using expressing certain global operations in terms of shared-memory primitives. Pre-
liminary numerical results will be given using PyOpenCL.

Andreas Kloeckner
Title: Operator transformation and code generation for FEM
Abstract: The present talk and poster discuss three software components designed to ease and au-
tomate tasks encountered in FEM assembly. The first, named ‘pymbolic’, is an expression tree with
extensive traversal and rewriting capabilities. Both its mathematical vocabulary and its traversal
operations are easily extended. This functionality is demonstrated in action in the context of oper-
ator description and transformation for discontinuous Galerkin (dG) FEM and high-order integral
equation codes, with special attention paid to the transformation pipeline implemented and the
design constraints imposed by each environment. A brief mention is made of ‘PyOpenCL’ that,
in addition to providing a friendly interface to heterogeneous, shared-memory parallel computing
hardware, incorporates an array container and implementations of a variety of parallel primitives,
including scan, sort, and reduction. Making use of these foundations, a generic code generator is
shown. ‘Loo.py’ targets shared-memory, massively parallel machines, and based upon a mathe-
matical description of a computation along with a sequence of transformations, generates efficient,
low-level code. Its use is shown in the context of FEM assembly and dG operator evaluation. All
tools are hosted in the Python programming language, which, by its design, enables and encour-
ages reuse, abstraction, and modularization. The tools are available under the MIT license and
straightforwardly incorporated into user code.

Tzanio Kolev, Veselin Dobrev, Michael Kumbera, Robert Rieben
Title: Scalable high-order finite elements with MFEM, hypre and BLAST
Abstract: The finite element method (FEM) is a powerful discretization technique that can utilize
general unstructured grids to approximate the solutions of many PDEs. High-order finite elements,
in particular, are ideally suited to take advantage of the changing computational landscape, because
their order can be used to tune the performance, by increasing the FLOPs/bytes ratio, or to adjust
the algorithm for different hardware. In this poster we present our work on scalable high-order
finite element software that combines the modular finite element library MFEM [1], the hypre li-
brary of scalable linear solvers [2], and the high-order shock hydrodynamics research code BLAST
[3]. We will first discuss the finite element abstractions provided by MFEM, which include arbi-
trary high-order H1-conforming, discontinuous (L2), H(div)-conforming, H(curl)-conforming and
NURBS elements, defined on general high-order meshes. We will then explain how the MPI-based
version of MFEM uses data structures and kernels from the hypre library to enable scalable finite
element assembly in parallel. Finally, we will describe the efficient implementation of high-order
force matrices in the MFEM-based BLAST application, where we will also demonstrate the benefits
of our approach with respect to strong scaling and GPU acceleration.
[1] https://mfem.googlecode.com
[2] https://www.llnl.gov/casc/hypre

6

[3] https://www.llnl.gov/casc/blast This work performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344,
LLNL-ABS-652336.

David Moulton, Ethan Coon, Markus Berndt, Rao Garimella
Title: Amanzi and the Arctic Terrestrial Simulator: Flexible Multiphysics Simulators for Environ-
ment and Ecosystem Applications.
Abstract: Climate and environmental simulations present a rich set of challenges for multiphysics
and multiscale tools. The Advanced Simulation Capability for Environmental Management (AS-
CEM) program is tasked with addressing these challenges for the effective and defensible cleanup
and closure of legacy nuclear waste sites. ASCEM initiated development of a flexible and extensible
multiprocess simulator, dubbed Amanzi, as part of its open-source suite of tools. This simulator
provides a flow and reactive transport capability on general unstructured polyhedral meshes using
Mimetic Finite Difference (MFD) discretizations, services from Trilinos, and multigrid solvers from
HYPRE. Its capabilities include variably saturated flow and reactive transport, including a wide
range of chemical reactions. Recently, it’s modular and flexible design was leveraged and extended
in a project to model the climate impacts of a warming arctic through changes in microtopogra-
phy and its coupling to the hydrology. This extension, the Arctic Terrestrial Simulator (ATS),
is significant because the sheer number of processes that are coupled (potentially tightly coupled)
defies hand coding and manual testing. Current capabilities include coupled surface and subsur-
face thermally dependent flows, along with a surface energy balance model including snow. In this
poster we highlight the design and implementation approach we used to represent this complex
system. Specifically, we refer to the mathematical description of a process as a process model, and
its discrete representation as a process kernel (PK). We use a hierarchical representation of the
complete system as a graph of PKs with a hierarchy of couplers (the Multi-Process couplers or
MPCs). This PK/MPC graph provides a natural structure for the system, and hence we create
a discrete distributed vector, a tree vector, that mimics this structure for use by solvers and time
integrators. We developed a dynamic data manager, represented as a directed acyclic graph (DAG),
to create complex models at runtime and manage the dependencies of their variables. To support an
accurate representation of the physical model including polygonal ground, troughs, pinch outs, and
ice wedges, we use the MFD method with polyhedral meshes using the MSTK mesh infrastructure.
The challenge created by MFD methods is the need for scalar degrees of freedom on the faces of
mesh elements. This leads to a block system of cell-based and face-based unknowns, even in scalar
models such as thermal energy. To mimic this structure we create composite vectors, which are used
naturally as leaves of the tree vector. These abstractions and structures provide flexible building
blocks, and are collected in a package named Arcos. We are now beginning to explore performance
and optimization. This includes investigating both the local assembly of element matrices as well as
the assembly of the complete global system in more general matrices. The lack of a block interface
to the HYPRE AMG solver leads to the explicit creation of Schur complements or the copying of
block matrices into a unblocked form. Moreover, we have been focused on MPI based parallelism
to this point and are now beginning to investigate threading options as well. Here we will demon-
strate existing capabilities of Arcos and its use in Amanzi and ATS, and highlight the challenges
and potential for future development of these codes.

Shawn Pautz, Clif Drumm, Wesley Fann, Bill Bohnhoff
Title: Matrix Assembly Tasks in the Sceptre Deterministic Radiation Transport Code
Abstract: The Sceptre radiation transport code implements discretizations of two different forms of
the linear Boltzmann transport equation. Solvers for these discretizations are divided into two dif-
ferent classes. In one class of solvers the full matrix is formed, which is then solved with either CG
or GMRES. In the other class we use a wavefront sweep algorithm to solve a block-lower triangular
system, which allows assembly of numerous small on-node systems when needed. We describe the
various operations that we perform in order to create either type of linear system.

7

Roger P. Pawlowski, Eric C. Cyr, Eric T. Phipps, and Andrew G. Salinger
Title: Template-based Generic Programming Techniques for Finite Element Assembly
Abstract: Modeling and simulation are used to understand, analyze, predict, and design increas-
ingly complex physical, biological, and engineered systems. Because of this complexity, significant
investments must be made, both in terms of manpower and programming environments, to develop
simulation capabilities capable of accurately representing the system at hand. At the same time,
modern analysis approaches such as stability analysis, sensitivity analysis, optimization, and un-
certainty quantification require increasingly sophisticated capabilities of those complex simulation
tools. Often simulation frameworks are not designed with these kinds of analysis requirements in
mind, which limits the efficiency, robustness, and accuracy of the resulting analysis.

In this work, we describe an approach for building simulation code capabilities that natively sup-
port the requirements of many types of analysis algorithms. This approach leverages compile-time
polymorphism and generic programming through C++ templates to insulate the code developer
from the need to worry about the requirements of advanced analysis, yet provides hooks within
the simulation code so that these analysis techniques can be added later. The ideas presented here
build on operator overloading-based automatic differentiation techniques to transform a simulation
code into one that is capable of providing analytic derivatives. However we extend these ideas
to compute quantities that aren’t derivatives such as polynomial chaos expansions, floating point
counts, and extended precision calculations. The capabilities in this work have been released in the
open-source Trilinos packages Sacado, Stokhos and Phalanx.

Eric Phipps, H. Carter Edwards
Title: Improving PDE Assembly Performance Through Embedded Uncertainty Quantification
Abstract: Achieving high performance for PDE assembly on emerging multicore architectures (such
as GPUs, multi-core CPUs, and many-core accelerators) is often difficult due to memory access and
code design patterns that are not commensurate with architectural capabilities. These architectures
require accesses of wide regions of contiguous memory to achieve good performance, which is of-
ten challenging for PDE assembly on unstructured meshes. Furthermore, Intel-based architectures
require consistent vectorization to achieve good performance, which is difficult for complex PDE
codes. To address these issues, we explore opportunities for improving memory access patterns
and vectorization by simultaneously propagating ensembles of PDE samples relevant to uncertainty
quantification. Here we leverage the fact that memory access patterns and instructions are often
very similar for PDE evaluations across samples in an uncertainty quantification calculation. We
use template-based generic programming techniques to replace each scalar in the PDE assembly
with a small array tuned to the natural vector length of the architecture, and organize data struc-
ture layouts so that data corresponding to each sample instance are stored contiguously in memory.
The performance and scalability of this approach will be investigated on a variety of contemporary
multicore architectures.

Kendall Pierson, Micah Howard, Michael Tupek
Title: Efficient Block Sparse Assembly with SIMD
Abstract: High Mach fluid regimes are critical environments to simulate, understand, and predict
for the NW mission. Conchas is our high Mach application code built upon the Sierra toolkit, a
custom block compressed sparse row data structure and a native point-implicit solver. This work
describes the transformation of the data structures to take advantage of SIMD instructions to
improve current performance through vectorization which is a necessary step towards multi-core,
GPU, and next-generation platforms.

Onkar Sahni
Title: Abstractions and algorithms for adaptive methods on boundary layer meshes
Abstract: A set of tools and techniques are presented for general unstructured meshes with a focus
on adaptive methods for boundary layer meshes. Such meshes are useful, for example, in wall-
bounded turbulent flows that require tightly controlled mesh spacing and structure near the walls.

8

An adaptive approach for such meshes must maintain highly anisotropic, graded, and layered el-
ements near the walls while error estimators or indicators must incorporate the structure of the
flow boundary layer and associated physics. Similarly, parallel procedures must account for mixed
element types, i.e., in mesh modifications and dynamic load balancing. We present abstractions
and algorithms that address these needs. We also present high-order discretization techniques for
boundary layer meshes including use of higher interelement continuity in the wall-normal direction.

Roy Stogner
Title: C++14 Generic Programming as a Domain-Specific Language for PDEs
Abstract: Abstractions and techniques are shown for employing expression template class hier-
archies in C++ to provide users with a natural way to express physics kernels and solve Initial
Boundary Value Problems. Basic compile-time metaprogramming is used to construct an API
which recasts PDE expressions in a syntax which is valid C++ yet also natural to write. Topics
include the use of expression templates to generate GPGPU code and automatically differenti-
ated Jacobian matrices, the use of C++14 return type deduction to enable kernel fusion within a
modular code, and the use of generic programming to maintain flexibility of design and ease of de-
bugging. Challenges relating to optimization, hybrid meshes, and mesh adaptivity will be discussed.

Daniel Sunderland, H. Carter Edwards
Title: Thread Scalable CRS Graph Construction
Abstract: Our portable thread scalable pattern for CRS graph construction consists of four simple
steps: 1) parallel counting the non-zeros, 2) allocating storage, 3) parallel filling, and 4) parallel
post-procssing each row. Counting the non-zeros can be one of the more difficult algorithms to
correctly implement in a scalable way. We demonstrate a simple solution for parallel counting
which uses a Kokkos UnorderedMap to achieve good scalability. We also show how the Kokkos
UnorderedMap implements a portable, scalable, and lock-free insert.

James Sutherland, Matthew Might, Tony Saad, Christopher Earl, Abhishek Bagusetty
Title: Flexible, Efficient Abstractions for High Performance Computation on Current and Emerging
Architectures
Abstract: Complexity for large-scale simulation software stems from two primary sources: the
physics being simulated and the language abstractions for various hardware targets. Multiplicity
of physical modeling options, each of which may introduce unique nonlinear coupling and depen-
dencies, can create rigid, fragile software that isn’t easily maintained or modified. Changes in
hardware (e.g., multicore or GPU architectures) can require different computational kernels to be
maintained for each hardware target. Handling these two general challenges together to produce
efficient, scalable software can be a daunting challenge. This poster discusses two abstractions that
work in tandem to address the aforementioned challenges. First, the software is written to represent
nodes that can be self-assembled into a directed, acyclic graph (DAG) which exposes the structure
of the calculation. This facilitates automated scheduling of nodes in the DAG, and reasoning about
efficient management of CPU and GPU. Second, a domain-specific language, embedded in C++, is
under development to allow the application programmer to specify high-level intent while allowing
highly efficient back-ends targeting various hardware (CPU, GPU) to be generated at compile time.
These two abstractions combine to create a powerful environment where application developers can
increase productivity and deploy complex software across a variety of hardware environments.

Christian Trott
Title: A migration strategy for utilizing the Kokkos many-core programming model
Abstract: In order to support many-core architectures in Trilinos many packages have started to
explore the utilization of Kokkos. Here a migration strategy will be presented for an incremental
transition to using Kokkos, starting with simple thread-parallelism, continuing with GPU support
and finishing with two and three-level parallelism employing thread teams and vectorization. A
particular focus is put on software which already uses Tpetra, Trilinos’ next-generation sparse linear

9

algebra package.

Bruno Turcksin, Martin Kronbichler, Wolfgang Bangerth
Title: Multithreaded matrix assembly for finite elements
Abstract: We present a design pattern that can be applied to any operation requiring to be done
independently on every cell and which is followed by a reduction of the local result into a global
data structure. This design pattern can be directly applied to multithreaded matrix assembly and
implemented using the parallel pipeline design pattern. When assembling a global matrix for finite
elements, a local matrix is assembled on each cell; this step is embarrassingly parallel. However,
when the local matrices are incorporated into the global matrix, it is necessary to ensure that two
processors do not attempt to write simultaneously in the same global matrix element. To prevent
this, a colorization algorithm is used before the reduction operation; all the elements of a given
color can be simultaneously written into. It is important for the colorization algorithm to produce
few colors, but it is more so that the size of these colors are similar; small colors would degrade the
scalability of the algorithm. This design pattern was implemented in the deal.II library and was
shown to significantly speed up matrix assembly

Tim Warburton, David Medina, Amik St-Cyr
Title: OCCA: A Unified Approach to Multi-Threading Languages
Abstract: Currently there are a number of relatively popular APIs for multi-threading program-
ming including but not limited to CUDA, OpenCL, OpenACC, and OpenMP. Initially it might
appear that many-core programming forces programmers to lock into a specific API. Additionally
simulation codes, frameworks, and libraries have lifetimes measured in decades that might outlive
a specific API. To address these issues we developed the lightweight OCCA API in a way that
allows a programmer to write single source kernel implementations that are portable and can be
dynamically compiled and executed at run-time as CUDA, OpenCL, or OpenMP. Example perfor-
mance results from our OCCA based finite difference, discontinuous Galerkin, and spectral element
method based PDE solvers will show that it is possible to develop efficient and portable many-core
code for CPUs and GPUs.

Ulrike Yang, Rob Falgout, Tzanio Kolev, Jacob Schroder
Title: Matrix and Vector Assembly in hypres Conceptual Interfaces
Abstract: The hypre software library provides high performance preconditioners and solvers for
the solution of large sparse linear systems on massively parallel computers. One of its attractive
features is the provision of conceptual interfaces, which include a structured, a semi-structured, and
a traditional linear-algebra based interface. These interfaces give application users a more natural
means for describing their linear systems, and provide access to methods such as structured multi-
grid solvers, which require additional information beyond just the matrix. We discuss the assembly
of matrices and vectors within the various interfaces in hypre as well as current efforts to increase
the use of OpenMP threads in the interfaces.

10

v1.40

49

50

	Overview and Themes
	Goals of the Workshop
	Major Themes and Conclusions

	Topic Areas
	Assembly in PDE Solvers
	Directed Acyclic Graphs
	Node-Level Abstractions
	Linear Algebra Data Structures and Interfaces
	Algorithms and Discretizations for Next Generation Architectures
	Application Needs and Capabilities

	Conclusions
	Workshop Program

