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A NEW APPROXIMATE BLOCK FACTORIZATION
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Abstract. The one-fluid visco-resistive MHD model provides a description of the dynamics
of a charged fluid under the influence of an electromagnetic field. This model is strongly coupled,
highly nonlinear, and characterized by physical mechanisms that span a wide range of interacting
time scales. Solutions of this system can include very fast component time scales to slowly varying
dynamical time scales that are long relative to the normal modes of the model equations. Fully
implicit time stepping is attractive for simulating this type of wide-ranging physical phenomena.
However, it is essential that one has effective preconditioning strategies so that the overall fully
implicit methodology is both efficient and scalable. In this paper, we propose and explore the
performance of several candidate block preconditioners for this system. One of these preconditioners
is based on an operator-split approximation. This method reduces the 3 × 3 system (momentum,
continuity, and magnetics) into two 2 × 2 operators: a Navier–Stokes operator (momentum and
continuity) and a magnetics-velocity operator (momentum and magnetics) which takes into account
the critical Lorentz force coupling. Using previously developed preconditioners for Navier–Stokes,
and an initial Schur-complement approximation for the magnetics-velocity system, we show that the
split preconditioner is scalable and competitive with other preconditioners, including a fully coupled
algebraic multigrid method.
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1. Introduction. Our base MHD model is the one-fluid visco-resistive MHD
system [23]. This model provides a continuum description of charged fluids in the
presence of electromagnetic fields. While this model is generally applicable to both
compressible and incompressible flow applications, we focus on a primitive variable
formulation in the incompressible limit (∇·u = 0) for which approximate block factor-
ization (ABF) and physics-based preconditioners have not been developed. This limit
is useful in modeling of various applications such as low-Lundquist-number liquid-
metal MHD flows [40, 9], and high-Lundquist-number, large-guide-field fusion plas-
mas [55, 26, 14]. The B-field formulation of the strong form governing partial differ-
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ential equations (PDEs) written as residuals is

Ru = ρ
∂u

∂t
+ ρ(u · ∇u)−∇ · (T+TM),(1.1)

Rp = ρ∇ · u,(1.2)

RB =
∂B

∂t
−∇× (u×B) +∇×

(
η

μ0
∇×B

)
,(1.3)

where the viscous and magnetic stress tensors are

T = −pI+ μ[∇u+∇uT ],(1.4)

TM =
1

μ0
B⊗B− 1

2μ0
‖B‖2I.(1.5)

The dependent variables, velocity (u), hydrodynamic pressure (p), and the magnetic
field (B), satisfy the momentum equation (1.1), the continuity equation (1.2), and the
magnetics evolution equation (1.3) when Ru = RB = 0 and Rp = 0. The transport
properties, ρ, μ, η, μ0, are the density, dynamic viscosity, magnetic resistivity, and
the magnetic permeability of free space, respectively. Constitutive equations define
the Newtonian stress tensor T in (1.4). Ampere’s law, neglecting the displacement
current, provides the plasma current, J = 1/μ0∇×B, and the magnetic stress tensor
TM is obtained by representing the Lorentz force term (J ×B) as the divergence of
a tensor.

For the purposes of this study we focus on a two-dimensional (2D) geometry, as in
our previous work on scalable fully coupled algebraic multigrid (AMG) preconditioners
for primitive variable incompressible resistive MHD [50]. This choice enables the study
of the essential characteristics of the impact of the coupling of the momentum and
magnetic field equations and allows the analysis of efficient preconditioning methods
for this system. In 2D, the in-plane magnetic field can be expressed in terms of the
third component of the vector potential Az as B = ∇Az × z. The governing equation
for Az is then given by [6]:

(1.6) RA =
∂Az

∂t
+ u · ∇Az − η

μ0
∇2Az + E0

z .

Similarly, the magnetic stress can be rewritten in terms of Az as

TM =
3

2μ0

[
∂Az

∂y

]2
(êx ⊗ êx)− 1

μ0

[
∂Az

∂y

∂Az

∂x

]
(êx ⊗ êy)− 1

μ0

[
∂Az

∂y

∂Az

∂x

]
(êy ⊗ êx)

+
3

2μ0

[
∂Az

∂x

]2
(êy ⊗ êy).

Here the unit direction vectors êx, êy, êz and the tensor product identify the compo-
nents of the magnetic stress tensor. After this transformation, the dependent variables
u, p, and Az satisfy (1.1), (1.2), and (1.6) when Ru = 0 and Rp = RA = 0.

The governing balance equations are discretized in space using a stabilized fi-
nite element method that is reviewed below. The time discretization is based on a
method of lines approach and employs implicit time integration algorithms. Details
of these implementations can be found in [50]. Our approach is to solve the resulting
fully coupled system of nonlinear algebraic equations using a Newton–Krylov (NK)
method [11]. However, due to the the elliptic incompressibility constraint (1.2) and
the Alfvén wave, the sequence of discrete linear systems are typically ill-conditioned.
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We emphasize that this difficulty arises not from the specific aspects of the stabilized
finite element discretization, but instead is a result of the MHD physics itself. To
alleviate this difficulty, and achieve an efficient and scalable NK method, an effective
preconditioner for these linear operators is required.

One approach to preconditioning that has demonstrated significant success in
large-scale multiphysics applications [56, 53, 37, 38], including this MHD formula-
tion [50], uses a fully-coupled aggressive coarsening AMG algorithm. This method
relies on all the unknowns being represented at each of the finite element nodes1 and
constructs projections of the entire fully coupled system. Another approach to design-
ing preconditioners for multiphysics systems exploits a decomposition of the physics
into subsystems where multigrid provides an effective approximation of the action of
the inverse. A common technique to determine candidate decompositions is to carry
out an analysis of the strength of interactions of the component PDE mechanisms
to identify strong off-diagonal block coupling [31]. Related techniques also employ
and extend existing operator-split and semi-implicit time integration solution meth-
ods as preconditioners, since these often encode the strong-coupling mechanisms to
produce viable reduced-coupling solution methods [33]. These “physics-based” pre-
conditioners have been applied successfully to the shallow water equations [31, 41],
radiation-diffusion systems [42], fluid flow with phase change [34], and several MHD
formulations [6, 5, 3].

The approach pursued here is closely related to the physics-based approach in that
it decomposes the system into its physical components, each of which is amenable to
AMG. However, our approach differs in that we first consider an ABF of the discrete
Jacobian matrix that is typically motivated by forming an approximate block LU
or LDU factorization. This approach proceeds by approximating the needed block
inverses with AMG. Effective preconditioners must carefully consider the spectral
properties of the component block operators and the approximate Schur complement
operators which account for coupling between the physical components (for MHD this
is velocity, pressure, and the vector potential). Through this linear algebraic view of
preconditioning, a simplified system of block component equations is developed that
encodes a specific physics-based decomposition for many applications. Therefore,
these methods have a direct correspondence to the physics-based methods described
above. ABF preconditioners have been explored in considerable depth for Navier–
Stokes, and have been shown in prior studies to lead to scalable linear solvers [16, 17,
39, 18, 20, 8].

In this study, we propose three ABFs for our MHD formulation. The first factor-
ization preconditioner uses an upper diagonal approximation for the preconditioner
that includes a unidirectional coupling from magnetics to momentum, but leaves the
fluid solve fully coupled. The second preconditioner was briefly presented in [52] with-
out analysis or detailed study. This preconditioner uses an operator-split approach
where the Navier–Stokes coupling derived from the incompressibility condition is han-
dled separately from the coupling that supports the Alfvén wave. This preconditioner
is very similar to one recently developed, in a concurrent effort, for the Navier–Stokes
equations employing a dimensional splitting [1]. The final factorization uses a Neu-
mann series expansion to construct approximate Schur complement operators.

This work differs from previous work in physics-based preconditioning for resistive
MHD in that we are using a primal fluid-variable (velocity-pressure) incompressible
MHD formulation. The work in [5] explores preconditioning of an incompressible sys-

1For example, this is the case for equal-order stabilized finite element discretizations.
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tem using a current-vorticity-stream function formulation of MHD. This formulation
simplifies the structure of the linear system by implicitly satisfying the incompress-
ibility constraint. The primary distinction from this work is that we need to explicitly
handle the Navier–Stokes coupling derived from the incompressibility constraint. Ad-
ditionally, a compressible MHD formulation was considered in [3]. As we will see,
prior work in compressible MHD is not directly applicable here because incompress-
ible MHD lacks a density time derivative that can considerably simplify the Schur
complement approximation. This seemingly small difference allows block factoriza-
tions that are not possible for the incompressible case.

The remainder of this paper is organized as follows. In section 2, we describe
the stabilized finite element method that is used to discretize the MHD equations. In
addition, the component block form of the Jacobian operator from which the block
preconditioners are derived is presented. Section 3 presents three new ABF precon-
ditioners for MHD. For one of these preconditioners, the split ABF method, we show
that the error in the split approximation is in some sense small. A subsequent analysis
of the spectrum of the preconditioned operator indicates that this preconditioner may
lead to good convergence in the context of Krylov solvers. Results demonstrating
the scalability of the split preconditioner are presented in section 4, with a com-
parison against the other ABF preconditioners and existing fully coupled algebraic
preconditioners including algebraic multigrid. Finally, some conclusions are drawn in
section 5.

2. Stabilized finite element formulation. Equations (1.1), (1.2), and (1.6)
present the governing equations in convected form, for momentum, total mass, and
vector potential in residual notation, respectively. We approximate this continuous
PDE problem using an equal-order stabilized finite element formulation. This sta-
bilized finite element method avoids stability and algorithmic limitations of mixed
Galerkin finite element formulations. In particular mixed Galerkin finite element for-
mulations of the momentum-continuity equations of the Navier–Stokes part of the
MHD system must satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) stability con-
dition (see, e.g., [24]). This condition prevents the use of equal-order finite element
spaces defined with respect to the same finite element mesh. A final difficulty is that
for highly convected flows, solved with coarse to moderate resolution discretizations,
an oscillatory instability can be generated with Galerkin methods.

Consistently stabilized finite element methods for Navier–Stokes address the is-
sues described above by using a combination of properly weighted residuals of the
governing balance equations. These methods simultaneously relax the incompressibil-
ity constraint, and add streamline diffusion to the weak equations to limit oscillations
in highly convected flows [13]. The specific stabilized finite element formulations
employed in this study are shown in Table 2.1. The intrinsic-time-scale stability pa-
rameters (τ̂m and τ̂Az ) are based on the formulations of Hughes and Mallet [29] and
Shakib [54] for Navier–Stokes, with an adaptation of the stabilized formulation of
Codina and Hernandez-Silva [7] for resistive MHD. Details of this formulation can be
found in the appendix. More details on the particular stabilized formulation for MHD
can be found in [50]. It should be noted however that the ABF preconditioners that
are presented in this paper are generally applicable to both Galerkin and stabilized
discretizations of the resistive MHD system we consider.

The nonlinear weak formulation in Table 2.1 is solved with an inexact Newton
method [15] that has has been demonstrated to be robust for CFD and MHD systems
[53, 50]. The discrete form of the matrix equations that results from the Newton
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Table 2.1

Stabilized finite element formulation of transport/reaction PDEs, where the residual equations
Ri are presented in (1.1), (1.2), and (1.6). Here Φ is a global weighting function used to formally
define the weak form. The sum

∑
e indicates the integrals are taken only over element interiors Ωe

and integration by parts is not performed.

Momentum Fu,i =

∫
Ω
ΦRu,idΩ +

∑
e

∫
Ωe

ρτ̂m(u · ∇Φ)Ru,idΩ

Total mass FP =

∫
Ω
ΦRP dΩ +

∑
e

∫
Ωe

ρτ̂m∇Φ ·RudΩ

Z-vector potential FAz =

∫
Ω
ΦRAzdΩ +

∑
e

∫
Ωe

τ̂Az (u · ∇Φ)RAzdΩ

linearized stabilized finite element discretization of the governing balance PDEs is

(2.1)

⎡
⎣F BT Z
B C 0
Y 0 D

⎤
⎦
⎡
⎣ Δu

Δp
ΔAz

⎤
⎦ =

⎡
⎣ −ru
−rp
−rAz

⎤
⎦ .

In this representation, the vectors, Δu,Δp,ΔAz , contain the Newton updates to
the nodal velocities, pressures, and vector potential respectively. The block matrix
F corresponds to the combined discrete transient, convection, diffusion, and stress
terms acting on the unknowns Δu; BT corresponds to the discrete gradient operator;
Z is the Lorentz force operator; B is the divergence operator; C corresponds to the
discrete “pressure Laplacian” type operator that is generated by the pressure stabiliza-
tion [13]; Y is a vector mass-matrix-type operator scaled by the gradient components
of Az; and D is a combined discrete transient, convection, diffusion operator acting on
ΔAz . The vectors ru, rP , and rAz contain the right-hand side residuals for Newton’s
method. The existence of the weak form Laplacian matrix, C, in the stabilized finite
element discretization is in contrast to Galerkin methods using mixed interpolation
that produce a zero block on the diagonal of the total mass equation. The existence
of the block matrix C helps to enable the fully coupled solution of the linear systems
with a number of algebraic and domain decomposition type preconditioners that rely
on nonpivoting ILU type factorization, or in some cases methods such as Jacobi or
Gauss–Seidel as subdomain solvers [51, 50].

3. Block preconditioners. Preconditioners can often be constructed using block
factorization ideas; see [17] and the references therein. In this paper, we focus on the
following block LU decomposition:

J =

⎡
⎣F BT Z
B C 0
Y 0 D

⎤
⎦ =

⎡
⎣ I
BF−1 I
Y F−1 −Y F−1BTS−1 I

⎤
⎦
⎡
⎣F BT Z

S −BF−1Z
P

⎤
⎦ ,(3.1)

where S is the fluid Schur complement for Navier–Stokes given by

(3.2) S = C −BF−1BT

and

P = D − Y F−1(I +BTS−1BF−1)Z(3.3)

is a Schur complement coupling velocity, pressure, and magnetics. Those familiar with
block factorization techniques for incompressible Navier–Stokes will notice that (3.1)
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is significantly more complex than corresponding factorizations for 2×2 block systems.
In particular, the definition of P includes the operator S−1. This nesting of Schur
complements makes the efficient approximation of P quite challenging, not to mention
an approximation for P−1 which is typically required within a factorization-based pre-
conditioner. It should be noted that alternative equation orderings are possible and
these lead to different factorizations and forms of the Schur complement. For exam-
ple, a [p,Az , u] ordering is considered in [3] for compressible MHD. In this case, C is
a transient convection-diffusion operator for density (which for small Δt can be effec-
tively approximated by a scaled mass matrix) and because of the arrowhead structure
the Jacobian is essentially 2×2 and therefore the Schur complement is not nested. For
incompressible MHD, this ordering is not useful as the stabilization operator, C, is not
necessarily invertible. Other orderings, such as [u,Az, p], are also possible. However,
these lead to nested Schur complements that are also difficult to approximate. The
ordering used here was chosen because it leaves the fluid Schur complement intact
and will permit application of existing Navier–Stokes preconditioning technology to
approximate S−1.

One straightforward preconditioner is based on ignoring the contribution of Y ,
which leads to the upper triangular matrix

(3.4) MBlkUp =

⎡
⎣F BT Z
B C

D

⎤
⎦ .

The justification for dropping Y is based on observing that Y is primarily a vector
mass-matrix operator. Thus, its application to a vector u does not correspond to dif-
ferentiation of u. As Y contains no derivative terms it might then seem less important
than the other terms (e.g., Z). To approximate the action ofMBlkUp, a Navier–Stokes
preconditioner can be applied to the upper 2× 2 block, and a simple multigrid solver
can be applied to approximate D−1. This preconditioner successfully handles the
elliptic incompressibility constraint. However, it ignores the stiffness generated by
the coupling of the momentum and magnetics equation. As will be demonstrated,
capturing the stiffness associated with the Alfvén wave (represented by the P Schur
complement) is critical to developing an effective MHD preconditioner over a broad
range of problems, including those with strong and weak coupling of the fluid flow
and electromagnetic effects.

Given the difficulty of approximating the nested Schur complement P , we consider
an alternate ABF preconditioner. The basic idea is motivated from operator-splitting
solution methods for the coupled system (see [33, 46] for other physics-based ap-
proaches). In particular, we treat the fluid flow and magnetics-velocity systems as
independent 2×2 operators by considering an approximation to the Jacobian, J , and
its corresponding factorization:
(3.5)

MSplit =

⎡
⎣F BT Z
B C

Y Y F−1BT D

⎤
⎦ =

⎡
⎣F Z

I
Y D

⎤
⎦
⎡
⎣F

−1

I
I

⎤
⎦
⎡
⎣F BT

B C
I

⎤
⎦ .

Notice that the leftmost and rightmost operator in the factorization have one row
and column containing only the identity on the diagonal; thus the inverse simplifies
to approximating the inverse of a block 2× 2 operator. To emphasize this simplifica-
tion, we refer to these two operators as reduced 2 × 2. The rightmost reduced 2× 2
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matrix ignores magnetics terms and thus reduces this subsolve to an incompressible
fluid flow problem. Several possible Navier–Stokes preconditioners can now be con-
sidered to approximate its inverse [16, 17, 39, 18, 20, 8, 1]. The leftmost reduced
2× 2 matrix ignores the incompressibility constraint and corresponds to a magnetics-
velocity system. This magnetics-velocity system, to our knowledge, has not been
considered before. We consider several approximations to its inverse as discussed in
section 3.2.2 that are based on Navier–Stokes ideas and compressible MHD precondi-
tioners [5, 4]. We will see that (3.5) avoids the difficulties of nested Schur complements
while properly addressing the stiffness from both the incompressibility constraint and
the Alfvén wave if appropriate approximations are made for these reduced 2 × 2 in-
verses. The boxed term in the unfactored expression for MSplit highlights the error
made in approximating J with MSplit. Ultimately, it is the nature of this term that
determines whether or not MSplit is an appropriate preconditioner for J . Interest-
ingly, this error is a structurally small perturbation of the original operator, though
this does not imply that the total effect of this error is small.

A similar preconditioner motivated by the results of Murphy, Golub, and Wa-
then [43] for Stokes flow systems is developed using only the upper triangular factor
of an LU factorization of the magnetics-velocity operator in (3.5). This gives rise to

(3.6) MSplit−r =

⎡
⎣I Z

I

P̂

⎤
⎦
⎡
⎣F BT

B C
I

⎤
⎦ ,

where

(3.7) P̂ = D − Y F−1Z

is the Schur complement derived from the magnetics-velocity 2 × 2 operator. The
action of a preconditioner based on (3.6) requires one less application of F−1 and
is often less expensive than preconditioners associated with (3.5); hence we refer to
MSplit−r as reduced.

3.1. Analysis of the spectrum. The convergence of a GMRES solver is strongly
influenced by the spectrum of the operator. For a right preconditioned version of the
split preconditioner, it is easy to show that
(3.8)

JMSplit
−1 =

⎡
⎣ I 0 0

0 I 0

Ku − (D −KuZ)P−1Y F−1 Kp (I − Y F−1BTS−1BF−1ZP̂−1)

⎤
⎦ ,

where

(3.9)
[
Ku Kp

]
=

[
Y 0

] [F BT

B C

]−1

= Y F−1
[
I +BTS−1BF−1 −BTS−1

]
.

The operator on the lower right diagonal is a (not necessarily small) perturbation of
the identity

I − Y F−1BTS−1BF−1ZP̂−1(3.10)

=
(
P̂ − Y F−1BTS−1BF−1Z

)
P̂−1(3.11)

=
(
D − Y F−1

(
I +BTS−1BF−1

)
Z
)
P̂−1(3.12)

= PP̂−1,(3.13)
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where P is the nested Schur complement defined in (3.3) and P̂ is defined in (3.7).
Thus, the spectrum of the preconditioned operator is

(3.14) λ(JMSplit
−1) ⊆ λ(PP̂−1) ∪ {1},

where PP̂−1 is equivalent to preconditioning the nested Schur complement with a
Schur complement derived from the 2× 2 magnetics-velocity system. Analogously, it
is possible to show that a right preconditioned system based on (3.6) is

(3.15) JM−1
Split−r =

⎡
⎣ I 0 0

0 I 0

Ku Kp PP̂−1

⎤
⎦ .

Thus, we expect the convergence behavior of MSplit and MSplit−r to be similar as
the spectrums of the two preconditioned operators are equivalent.

Some further analysis of PP̂−1 is possible when C = 0 (as is common with a
mixed Galerkin finite element formulation). In particular, the operator

Π = I +BTS−1BF−1

is an idempotent projection. Thus, it annihilates vectors in the range of BT , i.e.,
ΠBT = 0 while it does not alter vectors y = Fs if s lies in the null space of B. As BT

represents a gradient operator, Π generally annihilates gradients of scalar functions.
Similarly, B represents a divergence operator and so ΠFs ≈ Fs when s is a curl of a
vector field. This follows from the vector identity ∇ · (∇×A) = 0.

Returning to PP̂−1, we see that its eigenvalues are equivalent to those of

(3.16) T̃ = P̂−1
(
D − Y F−1ΠZ

)
which is obtained by applying a similarity transformation to PP̂−1. Thus, we now
investigate the eigenvalues of T̃ . Given the above idempotent discussion, it follows
that if a vector v exists such that v is an eigenvector of T̃ and Zv is an eigenvector of Π,
then the corresponding eigenvalue of T̃ is either unity (when Zv is associated with an
eigenvalue of unity for Π) or identical to an eigenvalue of P̂−1D (when Zv is associated
with a zero eigenvalue of Π). In general, the eigenvectors of T̃ do not give rise to Zv
which lie totally in the null space of Π or its complement and so the above argument
is certainly oversimplified. The remainder of this subsection, however, illustrates that
on a model problem the eigenvalues of T̃ roughly lie somewhere between those of
P̂−1D and one.

As a complete analysis of PP̂−1 for the stabilized finite element formulation of the
general PDE model is difficult, we instead pursue a Fourier analysis for a simplified
discretization and PDE model that preserves the essential coupling of the vector
potential MHD system. To this end we consider a model PDE (constant velocity
flow) with a marker-and-cell discretization, where the pressure and vector potential
are located at cell centers and velocities are defined on cell faces [25]. The boundary
conditions are periodic and the mesh is an N × N uniform grid such that Fourier
analysis can be applied. All operators are given by constant coefficient stencils, and
the linearization is chosen so that stiff modes, the elliptic incompressibility constraint,
and the Alfvén wave are represented. In particular, we consider

F ∼ ρΔt−1 + ρu · ∇ − μ∇ · ∇, Z ∼ 1/μ0∇Az∇ · ∇,(3.17)

Y ∼ ∇Az · D ∼ Δt−1 + u · ∇ − η/μ0∇ · ∇,(3.18)
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where u = [0; 1], ∇Az = [c1; c2], and Δt is the implicit Euler time step. The operators
B and BT correspond to the usual divergence and gradient, and C for this stable
discretization is zero. This precise choice of both the PDE and the discretization
allows the operator PP̂−1 to be diagonalized by the Fourier transform. That is,
define

Wkj =
e2πij1k1/N e2πij2k2/N

βj
,

where

k1 = 0, . . . , N, k2 = 0, . . . , N, j1 = 0, . . . , N, j2 = 0, . . . , N,

k = k2N + k1 + 1, j = j2N + j1 + 1,

and βj is chosen so that ||W.,j ||2 = 1. Then, WTPP̂−1W = Λ and Λ is a diagonal

matrix with the eigenvalues of PP̂−1 as entries. Additionally, W diagonalizes P ,
D, and P̂ . It should be noted that there is a corresponding 2 × 2 block diagonal
matrix with W for each block diagonal entry, denoted by W̄ , which diagonalizes F .
Additionally, W̄TZW , W̄TBTW , and W̄TY TW are essentially all bidiagonal matrices
with two nonzeros per column. Analytic expressions for the eigenvalues of PP̂−1,
DP̂−1, and PD−1 have been developed involving trigonometric functions. As these
are relatively complicated, we omit them and instead consider a visual representation
of the eigenvalue spectrum.

Figure 3.1 presents a series of nine images depicting the eigenvalues of DP̂−1 ,
PP̂−1, and DP−1 = (PD−1)−1 for different time steps and for different scalings of
the components in Y and Z (i.e., different c1 and c2). The physical parameters are
equivalent to those used for the island coalescence problem discussed in section 4.3. In
this problem regime, the Alfvén wave plays an important role in the solution. Notice
that we plot the inverse of PD−1. As the condition number of a matrix and its inverse
are equal, the plot of the inverse matrix is equally relevant for comparing condition
numbers, and in this case it is easier to compare with the other plotted values. The
time step increases from the top row of plots to the bottom. The direction of the mag-
netic field, defined by B = ∇× [0; 0;Az], varies left to right across the plots. Overall,
one can see that for the largest time steps, the spread of eigenvalues is much greater
for DP−1 and so we would expect this to be a significantly poorer preconditioner
than the split preconditioner PP̂−1. Further, some eigenvalues of DP−1 extend into
the left half-plane which can be problematic for iterative solvers. Generally, however,
the difference between the eigenvalues for PP̂−1 and DP−1 diminishes noticeably for
small time steps. Thus, one would expect comparable convergence rates for small
time steps. This basic behavior and sensitivity to the time step will be confirmed by
numerical experiments in the results section.

Finally, one can observe that the eigenvalues of PP̂−1 appear to lie somewhere in
between those of DP̂−1 and one. This is most evident for the leftmost figures where
one can clearly see that the blue pattern mirrors a version of the red pattern that is
pulled toward the value one. A similar relationship is apparent in the other images
when one zooms in and examines them closely (though this is not shown here). This
provides some support to the notion that eigenvalues of T̃ lie between DP̂−1 and one.
Intuitively, it follows that the Schur complement approximation obtained from the
split preconditioner should be superior to using D to approximate P . In particular,
the eigenvalue spectrum associated with the split preconditioner is somewhat better
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Fig. 3.1. Eigenvalue spectrums for different preconditioned operators corresponding to idealized
MHD operators.

than that of DP̂−1 as it is pulled toward the value one. At the same time, we expect
(as illustrated) that the eigenvalue spectrum of DP̂−1 is better than the spectrum of
DP−1 due to the fact that P̂ is a standard Schur complement directly involving D
while P is a nested Schur complement which also includes incompressibility that is
not accounted for by the operator D.

3.2. MHD split algorithm. The preconditioner given by (3.5) can be imple-
mented by the following two step algorithm:
x̂ = SplitPrec(J , b):

1) x∗ =

⎡
⎣F Z

I
Y D

⎤
⎦
−1

b, 2) x̂ = x∗ +

⎡
⎣F BT

B C
I

⎤
⎦
−1

(b− J x∗).

This equivalent form is based on the observation that⎡
⎣F I

I

⎤
⎦ = M1 +M2 − J ,

where M1 is the Navier–Stokes term (rightmost matrix in (3.5)) and M2 is the
magnetics-velocity term (leftmost matrix in (3.5)). Equivalence follows by recognizing
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that SplitPrec(J , b) computes

(M−1
1 +M−1

2 −M−1
1 JM−1

2 )b ≡ (M−1
1 (M1 +M2 − J )M−1

2 )b.

Overall, the algorithm solves the 2 × 2 magnetics-velocity system followed by a cor-
rection corresponding to a Navier–Stokes solve with the residual from the previous
step as the right-hand side. A practical algorithm is obtained by replacing matrix
inverses in SplitPrec(J , b) by approximations. Before discussing these, we note that
it might be natural to consider reversing the roles of M−1

1 and M−1
2 . That is, solve

the Navier–Stokes system and then correct with a magnetics-velocity solve. However,
we prefer the ordering in SplitPrec(J , b) as the velocity component of x̂ satisfies the
elliptic incompressibility constraint if the second block component of b is identically
zero.

3.2.1. Navier–Stokes equations. A wide number of Navier–Stokes solvers can
be considered to approximate M−1

1 . We briefly review some block preconditioners for
the Navier–Stokes equations which have demonstrated rapid convergence and good
parallel scalability [19, 16, 17, 8]. Several of these are based on the LU factorization

(3.19)

[
F BT

B C

]
=

[
I

BF−1 I

] [
F BT

S

]
,

where again S = C −BF−1BT . The application of (3.19) requires two matrix solves
associated with F . A few multigrid iterations or a few preconditioned Krylov itera-
tions are used to approximate the action of each F−1. When used as a preconditioner
for the Navier–Stokes equations (without MHD) one of these F−1’s can be completely
avoided by instead using only the upper triangular factor as a preconditioner [43].

An effective preconditioner requires a relatively inexpensive approximation to S−1

(denoted here by S̃−1) yielding the nonreduced version

(3.20)

[
F BT

B C

]
≈

[
I

BF−1 I

] [
F BT

S̃

]
,

where [18, 17, 8] discuss several possibilities for S̃−1. Here, we employ the pressure
convection-diffusion (PCD) or SIMPLEC approximations which also require a few
multigrid iterations to approximate an embedded Poisson-like solve. The Dirichlet
boundary conditions for the pressure convection and diffusion operators used in PCD
are chosen to match the Dirichlet boundary conditions set on the pressure variable.
Note that this is different from what is done in [18] and [20], and could certainly have
impact on the preconditioner. However, to keep this study bounded we have chosen
not to explore this issue further.

3.2.2. Magnetics-velocity solve. An approximate inverse of the magnetics-
velocity 2× 2 operator required by (3.5) can also be defined with the help of a block
LU factorization [

F Z
Y D

]
=

[
I

Y F−1 I

] [
F Z

P̂

]
,(3.21)

where again P̂ = D − Y F−1Z. To approximate P̂−1, we expand on ideas used
in preconditioning the Navier–Stokes equations and also the work of Chacón and
coworkers on parabolization of the MHD equations [31, 5].
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A first P̂ approximation is motivated by the PCD preconditioner for Navier–
Stokes. Begin by assuming the following commuting expression holds:

(
∂

∂t
+w · ∇ − η

μ0
∇2

)
∇Az · ≈ ∇Az ·

(
∂

∂t
+w · ∇ − μ/ρ∇2

)
.(3.22)

Equation (3.22) is exact if μ/ρ = η/μ0 and ∇Az does not vary spatially, e.g., Az is a
linear function of the coordinates (a constant B field). While generally not true, the
exactness of commuting has not been a difficulty in the context of Navier–Stokes [8].
The continuous commuting argument motivates a discrete commuting condition

(3.23) DQ−1
a Y ≈ Y Q−1

u F.

The matrices Qu and Qa are discrete mass operators for the velocity and magnetics
spaces whose inverse takes functionals and maps them to functions. They are neces-
sary because an operator discretized by finite elements maps functions to functionals.
Substituting the discrete commuting condition into P̂ yields

P̂ = D − Y F−1Z ≈ D − (QaD
−1Y Q−1

u )Z

= QaD
−1

(
DQ−1

a D − Y Q−1
u Z

)(3.24)

corresponding to the following inverse approximation:

(3.25) P̂−1
Comm =

(
DQ−1

a D − Y Q−1
u Z

)−1
DQ−1

a

(here the subscript Comm stands for “commuting”). The matrix DQ−1
a D−Y Q−1

u Z is
formed explicitly (using lumped mass approximations for Qa and Qu) and its inverse
is approximated by AMG. This approach is attractive because beyond the Jacobian
operator it only requires the mass matrix. However, the matrix-matrix multiplication
does lead to a matrix with many nonzeros per row. These wide stencil matrices
are somewhat nonstandard for AMG and may pose problems. Another potential
issue revolves around stabilization where difficulties have been observed with forming
effective discrete preconditioners based on operators modified for stabilization with
Navier–Stokes [8].

A similar approximation for P̂ can be formulated by starting with the continuous
PDE operators and developing Schur complement approximations. To do this, we
consider a simplified set of strong form equations representing the magnetics-velocity
coupling so as to derive a continuous analog of the DQ−1

a D−Y Q−1
u Z operator. After

derivation of this form, a PCD-like argument will be used to motivate a discrete
approximation of this continuous operator. The equations

(3.26)

∂u

∂t
+ u · ∇u− μ

ρ
∇ · ∇u− 1

ρμ0
(∇×B)×B = 0,

∂B

∂t
−∇× (u×B) +∇× η

μ0
∇×B = 0,

correspond to the discrete magnetics-velocity system. Using a linear perturbation
analysis and applying parabolization ideas [31, 5], we produce a wave propagation
system that contains the significant coupling for the magnetics and velocity systems.
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For this, the velocity and magnetic fields are written as small perturbations about
known spatially invariant and stationary background functions denoted u0 and B0:

u = u0 + u1,(3.27)

B = B0 +B1.(3.28)

In this analysis, we make the common assumption of a perturbation to a stationary
plasma (i.e., u0 = 0) and a constant background magnetic field (i.e., B0 = const)
[23, 3]. Finally the development considers the hyperbolic limit and for this reason
the dynamic viscosity and magnetic resistivity are zero (removing the second-order
dissipative terms) [23, 3]. Linearizing around u0 and B0 and dropping quadratic and
higher-order perturbations gives the linearized set of coupled PDEs:

(3.29)

∂u1

∂t
− 1

ρμ0
(∇×B1)×B0 = 0,

∂B1

∂t
−∇× (u1 ×B0) = 0.

The velocity is now eliminated in favor of the magnetic field (this is the continuous
analog of a discrete Schur complement). Taking the time derivative of the magnetics
equation and substituting the expression for the time derivative of velocity yields

(3.30)
∂

∂t

(
∂B1

∂t
−∇× (u1 ×B0)

)
=

∂2B1

∂t2
− 1

ρμ0
∇×([(∇×B1)×B0]×B0) = 0.

The formulation of interest here is the 2D vector potential, so one further step is
required to derive the continuous analog of DQ−1

a D − Y Q−1
u Z. Substituting the

expression for the vector potential B1 = ∇×A1 into (3.30) yields after manipulation

(3.31)
∂2Az1

∂t2
− ‖B0‖2

ρμ0
∇ · ∇Az1 = 0.

This expression is an isotropic wave equation propagating with wave speed
√‖B0‖2/ρμ0

which matches the Alfvén wave speed. The result of an isotropic wave equation was
the direct consequence of the desire to develop the continuous Schur complement for
the reduced magnetics-velocity 2×2 subsystem, that does not include the enforcement
of the incompressibility constraint, in our split preconditioner. However, it needs to
be pointed out that this dynamics for the 2× 2 magnetics-velocity subsystem precon-
ditioner does not affect the true anisotropic Alfvén wave physics that is enforced by
the convergence of the Newton–Krylov method to the solution of the incompressible
resistive MHD equations (1.1)–(1.3).

The continuous isotropic wave equation derived above, corresponds directly to
DQ−1

a D−Y Q−1
u Z. The DQ−1

a D term is a second-order time derivative, and Y Q−1
u Z

maps to the continuous operator ‖B0‖2

ρμ0
∇·∇. This leads to a second Schur complement

approximation

(3.32) P̂−1
CSC =

(
DQ−1

a D − ‖B0‖2
ρμ0

∇ · ∇
)−1

DQ−1
a ,

where the second-order spatial derivative will be discretized via finite elements using
piecewise bilinear basis functions (here the subscript CSC stands for “continuous
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Schur complement”). The Dirichlet boundary conditions for this operator are the
same as those applied to the vector potential equation; the remaining boundaries

are treated naturally. Similarly to P̂−1
Comm, the operator DQ−1

a D − ‖B0‖2

ρμ0
∇ · ∇ is

formed explicitly and AMG is used to approximate its inverse. This P̂ approximation
is similar to the previous one, but it does avoid the matrix-matrix multiplication
associated with Y Q−1

u Z which can lead to a nonstandard matrix for AMG.
A final P̂ approximation is obtained by assuming that the time derivative term

dominates the velocity convection diffusion operator. More precisely, the following
assumption

(3.33) F ≈ 1

Δt
Qu

gives rise to

(3.34) P̂Diag = D −ΔtY Q−1
u Z

(here the subscript Diag stands for a “diagonal approximation of F−1”). This ap-
proximation is similar to those employed by the SIMPLE family of methods for in-
compressible Navier–Stokes. P̂Diag is formed explicitly using a lumped version of Qu

and then approximately inverted via AMG.

3.3. MHD Neumann series preconditioner. The previous section focused
on avoiding nested Schur complements. Here, we develop an alternative which forms
a simplified nested Schur complement approximation giving rise to a preconditioner
based directly on (3.3). In particular, let

FNeu = AbsRowSum(F ),(3.35)

SNeu = C −BF−1
NeuB

T ,(3.36)

PNeu = D − Y F−1
Neu AbsRowSum(I +BTAbsRowSum(SNeu)

−1BF−1
Neu)Z.(3.37)

The notation AbsRowSum(H) denotes a diagonal approximation of an n×n matrix
H where the (i, i)th entry of this diagonal matrix is given by

∑
j=1,...,n |Hij |. These

drastic approximations rely on a Neumann series expansion for each of the inverse
operators. The end result is a preconditioner based on

MSIMPLEC =

⎡
⎣F BT Z

SNeu −BF−1Z
PNeu

⎤
⎦ ,(3.38)

where any algebraic preconditioner can be used to approximate the required inverses
of F, SNeu, and PNeu. The lower triangular factor of (3.1) is dropped. Again, this
follows Murphy, Golub, and Wathen [43], where it is shown that the lower triangular
factor has little effect on convergence.

4. Results. In this initial study, a number of the ABF preconditioners described
above are evaluated and compared to standard domain decomposition and an aggres-
sive coarsening AMG preconditioner described in section 4.1. The evaluation considers
two different computational MHD problems that are representative of flow-dominated
and magnetics-dominated regimes. A study providing a more thorough algorithmic
description and an initial comparison of the domain decomposition and aggressive
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coarsening methods can be found in [50]. The first problem presents a hydromagnetic
Kelvin–Helmholtz (HMKH) problem used to model the effects of a sheared magnetic
field interacting with an unstable velocity shear layer. The parameters of the sim-
ulation are chosen so that the magnetics plays a substantive but not dominant role
in this problem, so that the magnetic field modifies the vortex dynamics but does
not stabilize the shear layer. In the second problem, simulating the coalescence of
magnetic islands, the fluid motion is driven by the magnetic field. Here, because the
dominant physics is the magnetics, correctly accounting for coupling between the fluid
and the magnetic field is critical.

To emphasize the performance of the preconditioners on large-scale problems, we
have chosen to do weak scaling studies. In the context of weak scaling, we consider
two common approaches for accounting for the scaling between the mesh size and the
time step size for fully implicit approaches. For each of these studies, the number
of unknowns per processor is fixed and the total number of unknowns grows pro-
portionally to the number of processors used in the problem. The first weak scaling
study considers a sequence of increasing total mesh resolutions for which both the
flow-velocity and Alfvén-velocity Courant–Friedrichs–Lewy (CFL) numbers are fixed.
These parameters are given by

(4.1) CFLV = V0
Δt

h
, CFLB = VA

Δt

h
,

where V0 is a characteristic flow velocity and VA = B0/
√
ρμ0 is the Alfvén wave speed.

To avoid confusion, we will refer to each of these specifically, or if neither is specified
then the ratio Δt/h is used. The second type of weak scaling study uses a fixed time
step. In this case, as the mesh is refined the CFL also increases.

The simulations that form this study were run on the Red Sky computer at Sandia
National Laboratories. This capacity type machine has 2318 dual socket quad core
nodes with a total of 12 GB of RAM per node resulting in 8 cores per node with 1.5
GB of memory per core. Each core is a 2.93 GHz Nehalem processor, and the inter-
connect is a three-dimensional torus InfiniBand. Because of this, the computational
performance to communication speed is not as well balanced above 512 cores as on
leadership class capability machines. This has a nonnegligible effect on the CPU time
scaling but of course does not affect the algorithmic scaling of the methods, which is
the main focus of this initial study (see [36] for a more detailed discussion of these
scaling differences).

4.1. Algebraic preconditioners. To serve as a benchmark against which to
measure the performance of the block preconditioners, we briefly describe two fully
algebraic preconditioners: a common parallel domain decomposition method and a
fully coupled AMG preconditioner. The implementation for both of these methods
comes from the Trilinos framework [28], and the studies use a GMRES Krylov solver
from AztecOO [27]. The preconditioners are primarily from the IFPACK package for
domain decomposition and the ML package [57, 21] for AMG.

4.1.1. Schwarz domain decomposition preconditioners. The basic idea of
additive Schwarz domain decomposition preconditioners is to decompose the compu-
tational domain Ω into overlapping subdomains Ωi and then assign each subdomain
to a different processor [45]. One application of the algorithm consists of solving on
subdomains and then combining these local solutions to construct a global approxima-
tion throughout Ω. The ith subdomain problem is defined by enforcing homogeneous
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Dirichlet boundary conditions on the subdomain boundary, ∂Ωi. An incomplete fac-
torization, ILU(k), is employed to approximate the solution of the local Dirichlet
problems and avoid the large cost of direct factorization [48]. In the minimal overlap
case, the algebraic Schwarz method corresponds to block Jacobi, where each block
contains all degrees of freedom residing within a given subdomain. Convergence is
typically improved by increasing the amount of overlap between subdomains or by
increasing the amount of fill in the ILU(k) solver. Both options can lead to increased
computational cost per application. For the results presented below, the domain de-
composition preconditioners have an overlap of 2 and use ILU(2) as a subdomain
solver.

4.1.2. AMG preconditioners. In this paper, only algebraic multigrid methods
are considered. These are significantly easier to implement and integrate with complex
unstructured mesh simulation software than geometric multigrid methods [57, 51, 53].
Most AMG preconditioners associate a graph with the matrix system being solved.
Graph vertices correspond to matrix rows for scalar PDEs, while for PDE systems it
is natural to associate one vertex with each nodal block of unknowns (e.g., velocities,
pressure, and vector potential at a particular grid point). A graph edge exists between
vertex i and j if there is a nonzero in the block matrix which couples i’s rows with
j’s columns or j’s rows with i’s columns. In some situations, it may be advantageous
to omit edges if all entries within the coupling block are small [47].

For this investigation, two different coarsening strategies are used to retain the
parallel efficacy through the multigrid hierarchy. Aggressive coarsening (AggC in the
figures) is the first of these methods, and is used to precondition the fully coupled
MHD system. This preconditioner uses the graph partitioning packages METIS and
ParMETIS [30] to subdivide the matrix graph so that each partition is based on a user
defined number of graph nodes per aggregate. For the fully coupled system, the nodes
per aggregate are chosen so that the graph partitioning algorithm generates somewhat
larger aggregates than those typically used. This aggressive coarsening significantly
reduces the number of unknowns between consecutive levels, which we find better
suited for parallel computations [49, 21]. To compensate for the aggressive coarsening,
a somewhat heavyweight Schwarz/ILU(k) smoother (compared to Gauss–Seidel) is
used, and, on the coarsest grid, the sparse direct solver KLU [10] is employed.

A second AMG coarsening strategy is employed when developing inverse approxi-
mations to the block subsystems of the split preconditioner. This method is a parallel
greedy graph aggregation technique which attempts to make an aggregate by taking
an unaggregated point and grouping it with all of its neighbors. Thus, it tends to
coarsen by a factor of three in each coordinate direction when applied to a standard
discretization matrix obtained by a compact stencil on a regular mesh. In addition,
a dynamic load-balancing package, Zoltan [12], is used to repartition coarsened op-
erators across processors. This generally improves parallel performance and gives
better aggregates on the next coarser level which is obtained by again applying the
parallel aggregation technique. A complete discussion of this strategy can be found
in [35]. For reference, the AMG parameters used in this study for both the aggressive
coarsening and for the blocks systems can be found in Table 4.2.

4.2. Kelvin–Helmholtz instability. The HMKH problem consists of a veloc-
ity shear-layer flow that has a sufficient velocity difference to be Kelvin–Helmholtz
unstable [22]. This velocity shear layer is subjected to a sheared magnetic field (i.e.,
a Harris sheet) in the x-direction. With no magnetic field, the shear layer is unstable
and produces a vortex that rolls up as the simulation progresses. For large enough
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Fig. 4.1. For this simulation Re = 103, S = 104 and the Alfvén Mach number is 1.5 such
that the shear layer is still Kelvin–Helmholtz unstable and the resulting vortex significantly distorts
(rolls up) the sheared magnetic field. The two top images are of the initial condition with the sheared
magnetic field vectors with color contour background of the magnitude of Bx and the vorticity on the
left and right. The remaining images visualize the Kelvin–Helmholtz instability producing a central
vortex and bending the magnetic field.

magnetic field strengths, the magnetic stress stabilizes the flow and no vortex is pro-
duced. Linear theory indicates that, when the Alfvén Mach number MA = V/VA > 1,
the magnetic field is not strong enough to suppress the KH instability and perturba-
tions on the sheared surface grow. In the example considered here, MA > 1 and the
KH instability will distort (roll up) the sheared magnetic field as the vortex forms
at the shear surface. Figure 4.1 shows the interaction of a sheared velocity field and
magnetic field as a vortex forms.

The HMKH test problem is discretized on the rectangular domain (x, y) ∈ [0, 2]×
[0, 1] subdivided into uniform quadrilaterals with edge lengths of 1/100N , where N is
an integer between 1 and 6 (inclusive). Piecewise bilinear basis functions are used for
all fields (the Q1 basis). The initial conditions specify a streamwise shear-layer veloc-
ity, Vx, of +1.5 and −1.5 in the upper and lower half of the rectangular domain. The
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Fig. 4.2. Weak parallel scaling with fixed CFL of the average iteration count per Newton step
of a single Newton solve for the transient HMKH problem with Reynolds number of 103.

boundary conditions on velocity enforce an inflow velocity of (+1.5, 0) and (−1.5, 0)
on the upper half of left (x = 0) and lower half of right (x = 2) boundaries, respec-
tively. On the lower half of left and upper half of right boundaries, respectively, we
employ a zero normal-stress boundary condition with Vy = 0. On the upper (y = 1)
and lower (y = 0) boundaries there is no penetration (i.e., Vy = 0) and zero tangential
stress (i.e. slip conditions). The Alfvén velocity in the upper and lower regions has a
magnitude of, VA = 1. The density ρ = 1, and the reference length scale is taken as
the y-direction length L = 1, and the values of the Reynolds number Re = ρVxL/μ
and the Lundquist number S = VAL/η are given below. The Harris sheet is produced
by the vector potential function (δ = 0.07957747154595)

(4.2) Az(x, y, t = 0+) = δ ln
[
cosh

(y
δ

)]

that is applied on the horizontal boundaries with a natural boundary condition applied
at the vertical boundaries of the rectangular domain.

To assess the relative performance of the new block preconditioners against exist-
ing algebraic preconditioners as described in section 4.1, we performed weak scaling
studies for both fixed CFL and fixed time steps. The simulation was run with a
Reynolds number of 103 and a Lundquist number of 103. All the results are aver-
aged over 35 time steps starting near t = 0.6 s, with a required relative tolerance for
the nonlinear solver of 10−4. The linear solver was iterated until a relative tolerance
of 10−3 was achieved. In general for these tolerances the average number of New-
ton steps to achieve convergence, regardless of the preconditioner, ranged between 1
and 2.7 for fixed CFL,2 and 1 and 2.25 for fixed time step. This problem was run
on 1, 4, 16, 64, 256, and 1024 processor cores with uniform grids of size 200 × 100,
400× 200, 800× 400, 1600× 800, 3200× 1600, 6400× 3200, respectively. Given that
there are four unknowns per mesh node, the total number of unknowns per core is
approximately 80, 000.

Figures 4.2 and 4.3 show the iteration count and run time as a function of the
number of unknowns for a weak scaling study run on the HMKH problem for two val-
ues of the CFL (Δt/h = 3.2, 6.4). For a CFL proportional to 3.2, the time steps are

2It should be noted that larger nonlinear iteration counts of up to 4 occurred on the coarsest
mesh resolutions where the solution is underresolved.
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Fig. 4.3. Weak parallel scaling with fixed CFL of the average run time of a single Newton solve
for the transient HMKH problem with Reynolds number of 103.

Fig. 4.4. Weak parallel scaling with fixed time step of the average iteration count per Newton
step of a single Newton solve for the transient HMKH problem with Reynolds number of 103.

[0.032, 0.016, 0.008, 0.004, 0.002, 0.001], and for a CFL proportional to 6.4 the time
steps are [0.064, 0.032, 0.016, 0.008, 0.004, 0.002]. Figures 4.4 and 4.5 show the it-
eration count and run time as a function of the number of unknowns for a weak
scaling study run on the HMKH problem for three different fixed time steps (Δt =
0.005, 0.0025, 0.00125). For the fixed time step scaling study, the fluid CFL increases
from left to right with a maximum CFL of 16, 8, and 4 for Δt = 0.005, 0.0025, 0.00125,
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Fig. 4.5. Weak parallel scaling with fixed time step of the average run time of a single Newton
solve for the transient HMKH problem with Reynolds number of 103.

respectively. For both sets of figures, the legend combined with Tables 4.1 and 4.2
provides the details of each preconditioner. In this case, DD (domain decomposi-
tion) and AggC (aggressive coarsening) correspond to the algebraic preconditioners
discussed in section 4.1. Crosses on a data point indicate that the simulation made
some progress but did not complete for that problem size and processor count. If a
data point is missing, then the preconditioner was wholly ineffective and the linear
solver failed on the first time step.

The plots in Figure 4.2 show that the domain decomposition method does not
scale. The number of linear iterations increases as the processor and unknown count
increases. In spite of this, its overall run time performance (see Figure 4.2) seems
reasonable; however, it will decay further for large problems run with more unknowns
as is clearly evident from the iteration count scaling. The SIMPLEC method does
not fare much better, with performance seeming to be highly dependent on mesh
resolution for the CFL = 3.2 problem, and total failure for CFL = 6.4. The aggressive
coarsening preconditioner (AggC-ILU60) is algorithmically scalable, meaning iteration
count is nearly flat with increasing mesh resolution. The run times nearly follow
this same trend, with the only blemish occurring for the largest problem size and
processor count resulting in a mild run time increase. This is a result of an imbalance
in the processor to communication speed on this capacity-type machine. The BlkUp
preconditioner performs well for the largest problem sizes (and smallest time steps
in this fixed CFL study) with the number iterations decaying with the time step
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Table 4.1

ML parameters for the different block preconditioners used. The parameters for the AMG solver
for each solve type, velocity, pressure, or magnetics, are specified in Table 4.2.

Schur complement AMG solver

Label Preconditioner Fluids Magnetics u p Az

SIMPLEC Eq. (3.38) N/A N/A NSA-ILU22 SA-GS NSA-ILU22

BlkUp Eq. (3.4) PCD D NSA-ILU22 SA-GS NSA-ILU22

Split Comm SplitPrec-NS PCD P̂Comm (see (3.25)) NSA-ILU22 SA-GS NSA-ILU22

Split CSC SplitPrec-NS PCD P̂CSC (see (3.32)) NSA-ILU62 SA-GS NSA-ILU22

Split Diag SplitPrec-NS PCD P̂Diag (see (3.34)) NSA-ILU22 SA-GS NSA-ILU22

Table 4.2

ML parameters for the different AMG solvers used. All AMG solvers use only one application
of the V- or W-cycle. The acronyms NSA and SA stand for nonsmooth aggregation and smooth
aggregation, respectively, and “ov” stands for “overlap.”

Label Type Cycle-type Smoother Coarse size nodes/Agg levels

AggC-ILUN NSA MGW ILU(2,2)2 500 N 3

SA-GS SA(ω=4/3) MGV GS2 25000 − −
NSA-ILUab NSA MGV ILU(fill=a,ov=b) 25000 − −

size. However, for the range of the smaller problems with a bigger time step, the
number of required linear iterations is large, with the method even exhibiting failure
for the smallest problem sizes. Finally, the three operator split block preconditioners
(Split-Comm, Split-CSC, and Split-Diag) all perform very well exhibiting a decay in
the number of linear iterations required per time step. This is not reflected in the
run time plots, however. We believe this is a result of the relatively high cost of
construction versus application of these preconditioners. Furthermore, the Split-B
method takes on the order of 6–8 s longer per nonlinear step, versus Split-Comm and
Split-Diag. This is because of the need to construct auxiliary operators in forming
the Schur complement. Note, however, that our code is not optimized when building
these auxiliary operators and we expect from timing studies that 5 s of the time can
be made up with more efficient construction.

For the fixed time step studies (shown in Figures 4.4 and 4.5), the domain de-
composition preconditioner again scales poorly. The SIMPLEC method also does
poorly as the problem size increases. We attribute this to the poor performance of
the Neumann-series-based Schur complement approximations for fluid flow with large
CFLs (see [8]). The aggressive coarsening preconditioner, despite performing well on
smaller problems, performs poorly for the largest time step and problem sizes. Sim-
ilarly the Split-Comm block preconditioner does poorly for the largest problem sizes
(with the exception of the smallest time step). Further investigation into the reason
for this failure for the Split-Comm preconditioner showed that the Schur complement
approximation was the issue. Essentially, the AMG preconditioner used to approx-
imately invert the DQ−1

a D − Y Q−1
u Z operator was diverging. The remaining block

preconditioners (BlkUp, Split-CSC, and Split-Diag) all scale well with only a modest
increase in the iteration count over the range of unknown and processor counts. For
all time step sizes, all methods have a slight increase in the number of linear iter-
ations with the number of unknowns, with the BlkUp preconditioner suffering the
greatest increase. This is consistent with the spectral analysis presented earlier. In
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Fig. 4.6. These cropped images contain contour plots for the island coalescence driven magnetic
reconnection at times t = 0.0 on the left and 10.0 on the right. The images show isolines of the
magnetic potential Az and filled contours of the current Jz. The formation of the x-point and the
thin current sheet is clearly evident.

general, we see that BlkUp, Split-Comm, Split-CSC, and Split-C are all essentially
scalable (with nearly flat linear iterations and run time), with the one exception of a
robustness issue for Split-Comm on the largest problem size. The scalability of the
splitting-type preconditioners indicates that the split preconditioning methodology is
a reasonable approach in this case, despite the variation in robustness over different
Schur complement approximations. While the scalability of the BlkUp preconditioner
appears promising, we will see that, in other problem regimes, the seemingly modest
sensitivity with respect to Δt is much more significant.

4.3. Island coalescence. The island coalescence problem consists of a per-
turbed Harris sheet magnetic field configuration [2, 32, 50] that introduces two mag-
netic islands in the plasma as initial conditions. The structure of this perturbation
can be seen in the initial condition plot at time t = 0 of Figure 4.6 (left) with isolines
of Az. The centers of the two islands are referred to as o-points, and the point between
them where a thin current sheet is formed is referred to as the x-point. The com-
bined magnetic field produced by the two magnetic islands produces Lorentz forces
that pull the islands together. For larger resistivities, the x- and o-points steadily
approach each other. For low resistivities, magnetic pressure builds up as the islands
approach, and a sloshing or bouncing of the o-point position is encountered that leads
to lower reconnection rates (for more details on the physics, see [2, 44]). The right
image in Figure 4.6 shows an isoline plot of Az and filled color contours of the plasma
current Jz during the reconnection event at time t = 10.0. Clearly evident is the
formation of the x-point between the islands, the development of a thin current sheet
at the x-point location. The movement of the center of the islands (o-points) towards
the x-point is apparent [2, 32].

The initial conditions, A0
z , and the resulting balancing plasma fluid pressure, P 0,

are given by

A0
z(x, y, 0) = δ ln

[
cosh

(y
δ

)
+ ε cos

(x
δ

)]
,(4.3)

P 0(x, y, 0) = P0 +
[1− ε2]

2
[
cosh

(
y
δ

)
+ ε cos

(
x
δ

)]2 ,(4.4)

where δ = 1/(2π) and P0 = 1.0 (see [50] for more details).
For the island coalescence problem, we exploit its physical symmetry and simulate

only the right half of the domain (note that the images in Figure 4.6 are of the full
domain and have been cropped to emphasize the magnetic islands and the current
sheet). We discretize the rectangular domain, defined on (x, y) ∈ [0, 1]× [−1, 1], using
uniform quadrilaterals with edge lengths of 2−N , where N is an integer between 6
and 11 (inclusive). Piecewise bilinear basis functions are used for all fields (the Q1
basis). The boundary conditions are u · n = 0 on all boundaries with zero stress in
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Fig. 4.7. Weak parallel scaling of the average number of linear iterations for the transient
island coalescence problem with Lundquist number of 104. The plots have fixed Δt/h ∝ CFL ratio.

the tangential component on each surface. Both the vector potential and pressure
Dirichlet condition are set on the y = ±1 boundaries using the definitions of A0

z and
P 0, respectively. For this problem we set the viscosity and resistivity to 10−4, and set
density and magnetic permeability to unity. The characteristic length scale is taken
as the distance between o-points, which is the x-dimension length of L = 1.0 for the
computation of the Lundquist number.

To assess the relative performance of the new block preconditioners against exist-
ing algebraic preconditioners as described in section 4.1, we performed weak scaling
studies for both fixed time step and fixed CFL simulations. As with the HMKH
problems, the details of each preconditioner in the legend can be found in Tables 4.1
and 4.2. Crosses on a data point indicate that the simulation did not complete (i.e.,
failure of the linear solver caused at least one failure of the nonlinear solver and time
step) for that problem size and processor count. All island coalescence results are av-
eraged over 45 time steps starting around t = 5.75 s with a required relative tolerance
for the nonlinear solver of 10−4. The linear solver used a relative tolerance of 10−3.
For these tolerances, the average number of Newton steps to achieve convergence
regardless of preconditioner ranged between 1.5 and 2.25. This problem was run on
1, 4, 16, 64, 256, and 1024 processor cores with uniform grids of size 64×128, 128×256,
256×512, 512×1024, 1024×2048, and 2048×4096, respectively. Given that there are
four unknowns per node, the number of unknowns per core is approximately 33,000.

The set of plots in Figures 4.7 and 4.8 for average linear iterations and time
per Newton step show the scaling of the preconditioners with a fixed CFL. In this
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Fig. 4.8. Weak parallel scaling of the average run time per nonlinear step for the transient
island coalescence problem with Lundquist number of 104. The plots have a fixed Δt/h ∝ CFL
ratio.

case we have an Alfvén wave speed of VA = B0/
√
μ0ρ = 1 and therefore CFLA =

Δt/h = 3.2, 6.4, 12.8. From these plots, we see that the BlkUp and the three split
block preconditioners exhibit a decay in the total number of linear iterations as a
function of the number of unknowns. This is consistent with the results shown for the
HMKH problem. Again, as expected, the aggressive coarsening AMG preconditioner
maintains flat iteration counts regardless of CFL.

To demonstrate the algorithmic scalability of the various preconditioners for a
fixed time step, weak scaling study of the island coalescence problem, we plot the av-
erage linear iterations required as a function of problem size in Figure 4.9. In this weak
scaling study the time steps that were considered were Δt = 0.00625, 0.0125, 0.025, 0.05.
This sequence results in an increasing CFL with increased mesh resolution (smaller
Δx) and a maximum CFLA = 102.4. From the sequence of plots, we see that only
the aggressive coarsening algorithm iteration count is relatively independent of the
time step parameter. Further, the aggressive coarsening preconditioner is essentially
scalable for all time steps. Bear in mind however, this algorithm is heavily reliant on
the equal-order approximation used in the stabilized simulation, and is not applica-
ble to mixed discretizations. The domain decomposition and SIMPLEC algorithms
do not scale well, even for the smallest time step. Furthermore, the applicability of
the Neumann series approximation used in SIMPLEC is strained with increased CFL
regardless of time step. Compared to the split methods, the average number of linear
iterations required for the BlkUp block preconditioner is highly dependent on the time
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Fig. 4.9. Weak parallel scaling of the average number of linear iterations for the transient
island coalescence problem with Lundquist number of 104. The time steps are fixed for each plot.

step, with the BlkUp preconditioner failing to converge for the largest problem sizes
using Δt = 0.05. In contrast, the split methods have reasonably good algorithmic
scalability, with all three approximations scaling well over all problem sizes. However,
here the importance of accurate approximation and solving the magnetics-velocity
Schur complement is clear. There appears to be roughly a 1.5–2 times variation in
the linear iteration counts between these methods for the largest time steps, a rel-
atively modest increase considering the problem sizes have increased by 1024 times.
The most consistent of these for this problem, Split-Comm, uses an algebraic com-
muting argument. However, as we saw in the HMKH problem, Split-Comm can suffer
from lack of robustness.

The run time per linear iteration corresponding to the weak scaling study de-
scribed above can be found in Figure 4.10. Here again, as with the HMKH problem,
there is a strong positive correlation between algorithmic scalability and the scala-
bility of the run time for each method. One thing of note is that despite a roughly
3–4 times increase in the linear iteration count for increasing time step, the run times
of the block preconditioners, especially Split-Comm, remains roughly twice that of
the aggressive coarsening method. Furthermore, all algorithmically scalable methods
suffer a modest increase in run time with weak scaling. This is due to the imbalance
of communication and computation on this capacity machine. Again, we point out
that our block code is not fully optimized for the block preconditioners, and there is
likely further time savings for these methods that could be achieved.
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Fig. 4.10. Weak parallel scaling of the average run time of a single Newton solve for the
transient island coalescence problem with Lundquist number of 104. The time steps are fixed for
each plot.

5. Conclusions. We have presented three new ABF preconditioners for a stabi-
lized vector potential incompressible resistive MHD formulation. Over the problems
considered, the most effective of these is based on an operator-split approximation
which decomposes the 3× 3 linear operator into two 2× 2 operators. One of the two
operators represents the fluid components only coupling the velocity and pressure
fields. The inverse of this operator can be easily approximated with existing block
preconditioners for Navier–Stokes. The second operator explicitly couples the mag-
netics and velocity systems. For this operator, we proposed several approximations
to its inverse using block factorizations. These differ primarily in how the Schur com-
plement is approximated. A block upper triangular preconditioner that ignores the
effects of the velocity-magnetics coupling was also developed. The final block precon-
ditioner is based on a full block LU factorization of the Jacobian operator utilizing
relatively simple Neumann series expressions (with robustness concerns) to construct
approximations of the nested Schur complements.

The parallel performance of the ABF preconditioners was compared to a domain
decomposition method and a fully coupled AMG preconditioner for two challenging
transient problems. These weak scaling studies demonstrate that the operator-split
preconditioner is algorithmically scalable for both fixed CFL and fixed time step
studies. Throughout these studies, the run time performance, while not optimized,
is within 2–3 times of the fully coupled multigrid algorithm. We believe that the
advantage of the operator-split method is that it is procedurally applicable to any
discretization that shares the same structure as the one considered here. Most no-
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tably this includes mixed discretizations where the fully coupled multigrid solver is
not appropriate. Exploration of the performance of these preconditioners to vari-
ous mixed discretizations is the subject of future work. The block upper triangular
block factorization method also proved to be effective for some parameter choices (i.e.,
weakly coupled momentum and magnetics). However, for other less favorable param-
eter choices (i.e., strongly coupled momentum and magnetics), this method shows a
severe dependence on time step size which results in poor performance. The block
factorization method that uses drastic Neumann series approximations for the Schur
complement also suffers from a strong time step dependence. It suffers serious perfor-
mance degradation for increasing CFL numbers, though for large scale problems with
small CFL numbers this preconditioner can be effective.

6. Appendix.

6.1. Stabilization parameters. The specific definitions of the stability pa-
rameters are provided in Table 6.1 for momentum and the vector potential. The
specific form of the τ ’s are an adaptation of the quadratic form by Shakib [54] for the
Navier–Stokes equations and the Lorentz form stabilization operator from Codina and
Hernandez-Silva [7] for a resistive MHD system. Additional forms for the stability pa-
rameters are discussed in [13] and the references contained therein for Navier–Stokes.
The contribution to the τ̂m operator for the Lorentz force term uses the same form as
in [7] with C2 = 10. It should be pointed out that the multidimensional effect of con-
vection is incorporated into the stability parameters by the use of the contravariant
metric tensor, Gc (6.1), of the transformation from local element coordinates {ζα} to
physical coordinates {xi}:

(6.1) [Gc]ij =
∂ζα
∂xi

∂ζα
∂xj

.

Shakib [54] considers the one-dimensional limiting case of this multidimensional defi-
nition for the advection-diffusion equation and presents a comparison with the original
SUPG technique. A more detailed description of the resistive MHD stabilized formu-
lation and the stability parameters used in our initial study can be found in [50].3

Table 6.1

Definition of stabilization parameters used in stabilized equations, which use the contravarient
metric tensor Gc (6.1) to define an appropriate element-level length scale. In this study C1 = 1 and
C2 = 10.

Momentum τ̂m =

[(
2ρ

Δt

)2

+ ρ2vGcv + C2
1μ

2‖Gc‖2 + C2
2

ρ

μ0
‖B‖2‖Gc‖

]− 1
2

Z-component vector
potential

τ̂Az =

[(
2

Δt

)2

+ vGcv+ C2
1η

2‖Gc‖2
]− 1

2

3It should be noted that in [50] there were typographical errors that incorrectly represented the
element length scale contributions for the diffusion and Lorentz force term and also the order of
contribution of ‖B‖ in the Lorentz force term. The definition above has the correct scaling.
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