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Abstract

Any method for minimization that can be shown to converge to a point
that satisfies the second-order necessary conditions must explicit or implicitly
compute a direction of negative curvature of an indefinite matrix. In this paper
we investigate computing such a direction using an iterative approach, or by
combining direct and iterative methods. While our interest here is motivated
by the use of such directions in linesearch methods for optimization the work
reported has relevance for other types of optimization methods.
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1 Introduction

Given a function F(z) € C%,z € IR", whose Hessian matrix V2F(z) is denoted by
H (or H(z) when the argument is relevant), a direction of negative curvature, say
d, has the property that

d"Hd < 0.

Any method for minimization such as a linesearch method [4], trust-region method
[4] or a gradient flow approach [5] for which convergence to second-order optimality
conditions can be shown must either explicitly or implicitly compute a direction of
negative curvature. It is easy to see why. Suppose the current estimate is a point
satisfying the first-order but not the second-order conditions. To proceed such
algorithms must determine a point in the neighborhood of the saddle point that
has a lower value than the current iterate. Such points must lie along a direction
of negative curvature. It is also our contention that the relevance of computing
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directions of negative curvature grows with the dimension of the problem. This
latter hypothesis is based on the probability that a direction of negative curvature
occuring by chance decreases significantly with increasing dimension. For example,
the probability of a random direction being a direction of negative curvature for a
matrix with 99 eigenvalues of 1 and one of -1 is less then 10 1°.

In this paper we discuss methods to compute directions of negative curvature
when n is large. We wish the effort to compute the direction to be similar to that
of computing the direction of descent.

An interesting property of directions of negative curvature that is not possessed
by directions of descent is we can define precisely what is meant by a good direc-
tion simply by comparing it with the best possible. The best possible is the one
that minimizes d’Hd/d"d and that is given by the eigenvector corresponding to the
smallest eigenvalue of H. Clearly the problem of computing a direction of nega-
tive curvature is similar to that of computing the eigenvector corresponding to the
smallest eigenvalue. It differs in two ways, first we do not need it to be accurate and
secondly we may have additional information as a result of computing a direction of
descent. Moreover, we shall be concerned with computing a sequence of directions
and the matrices that arise typically have very few negative eigenvalues.

A key property that is required to prove convergence to second-order KKT points
is that of a sufficient direction of negative curvature. Formally, a sequence of di-
rections, {dy}, is said to be sufficient if any nonzero dj is a non-ascent direction of
negative curvature i.e., g,{dk <0, dekdk < 0, where zj, is the kth iterate. Further-
more, the norm of d; has to be bounded and the curvature has to be sufficient in
the sense that

lim dfHydy, = lim inf Apin (Hy) > li =0, 1
k:lenél’dk e =0 = 1¥€n€gn/\ (Hg) >0 and klergdk 0 (1)

where S is any subsequence. In practice this has come to require that if dj, satisfies
dfdk =1 then
diHydg < BAmin, (2)

where 8 > 0 and A\, is the smallest eigenvalue of Hy. In other words relative to the
best possible direction of negative curvature dy is not arbitrarily poor. Computing
such a direction is not easy. For example, it has been shown (see [6]) that the method
for computing a direction of negative curvature described by Gill and Murray [3]
does not have this property. The Gill-Murray algorithm first forms the modified
Cholesky factorization of H, which satisfies

RTR=H+E,

where R is an upper-triangular matrix and E > 0 is a diagonal matrix. The effort
to form this factorization is essentially identical to that of the normal Cholesky
algorithm. Moreover, pivoting for numerical stability is not required. During the
course of the factorization an index s is identified such that d, where

Rd = e, (3)



is a direction of negative curvature. It can be shown that (2) is not always satisfied
by this direction. Methods do exist for determining a sufficient direction of negative
curvature (see [2] and [6]). However, these methods require numerical pivoting. Such
pivoting almost always leads to denser factors than R when H is ordered to generate
little fill. With pivoting we are also unable to take advantage of the sparsity pattern
of the factors being constant at every iteration.

It should be noted that the strictures placed on the direction of negative curva-
ture by the need to prove convergence in a linesearch method while important are
not overriding. The likelihood of the modified Cholesky algorithm failing to obtain
a direction of sufficient negative curvature is small (since 8 may be small). Our
interest is in obtaining good directions of negative curvature, if this can be done rou-
tinely. It is our belief that this will enhance the efficiency of minimization algorithm
that use such directions.

2 An Iterative Approach

As has been noted the problem we face is similar to that of determining the eigen-
vector corresponding to the smallest eigenvalue. A natural step is to examine the
methodology to determine such a direction. It has long been folk lore in numeri-
cal analysis circles that the Lanzcos and similar algorithms quickly determine the
eigenvectors corresponding to extreme eigenvalues. Quite how quickly is often om-
mitted. Calculating only a few extreme eigenvalues and eigenvectors is usually quick
compared to determining all the eigenvectors, but it can typically take about 2y/n
iterations [7, p.259]. While that is low compared to n it is more work than we wish
to expend.

There are many approaches to determining eigenvectors and we have investigated
many of them plus others that are more akin to minimizations algorithms applied
to d'Hd/d'd or d"Hd, subject to d'd = 1. Here we report on the use of Lanczos,
Chebyshev and the two—step Lanczos algorithms with and without the utilization of
knowledge of a direction of negative curvature obtained from the modified Cholesky
factorization.

The (s+1)-step Lanczos method can be shown to be closely related to the s—
step conjugate gradient algorithm applied to d’Hd/d"d [1, Ch.7]. As a special case,
we have that the 2—step Lanczos method is essentially the steepest descent method
applied to the Rayleigh quotient. In a talk presented at the 1993 PWACM workshop
in Caracas, Murray reported that even one or two iterations of the steepest descent
algorithm could dramatically improve a poor direction of negative curvature when
a good one exists.

The idea behind our Chebyshev method is as follows. Given an initial vector dj,
we form the iterates d; = P;j(H)dy where P; is a polynomial of degree j. We want a
polynomial that is small on [0, Amax(A)], but grows rapidly to the left of the origin.
The natural choice for P; is the Chebyshev polynomial of degree j on [0, p], where p
is an upper bound on Ayax(A). We used p = ||H||; since the 1-norm is inexpensive
to compute, but one might consider spending more effort getting a tighter bound,
which should give faster convergence.



3 Numerical results

We tested the methods on a variety of randomly generated indefinite matrices.
Within an optimization method it is essential to obtain a relatively good direc-
tion of negative curvature whenever a good direction exists. When the smallest
eigenvalue is close to zero it is often the case that a direction of negative curvature
need not be computed. Nonetheless we have included this case since it represents
a potentially hard case for the algorithms. Since many iterative methods work ex-
tremely well on matrices whose eigenvalues are clustered, such distributions of the
eigenvalues were avoided. We expect the hard case for iterative methods to be when
the negative eigenvalues are small in magnitude and there are also some small but
positive eigenvalues.

We tested a set of n X n random symmetric indefinite matrices with specified
spectra. Each test matrix was of the form H = QAQ” with Q a random orthogonal
matrix and A a diagonal matrix with ¢ negative elements. We used the following
distributions for the eigenvalues:

A\ = { —aift, 1=1,....1 (the semi-uniform distribution)

(t—t)/(n—1), i=t+1,...,n
where 0 < a < 1 is a constant,

i1 -
Ai = { ? ﬁi_’l’ 2 ; 711’_ t’—fl_, .t. o (the semi-geometric distribution)
where 0 < 8 < 1 is a constant. Similar distributions were used in [2].

For each distribution we generated 10 different random matrices corresponding
tot=1,...,10. A new () was generated for each H. We used the matrix dimension
n = 100 for most tests. This is not very large, but our matrices are dense since a
random orthogonal matrix is dense. Setting up the problems actually took longer
time than solving them. We ran a few examples with n = 400. For larger n one
should generate sparse orthogonal matrices and use a sparse modified Cholesky code.

We compared the three iterative methods described in Section 2: Lanczos, 2-
step Lanczos and Chebyshev iteration. All the algorithms were implemented in
MATTLAB. The Lanczos method was a simple version with no reorthogonalization.

In the figures we show the ratio of the Rayleigh quotient d} Hdy, /d} dj to Amin(H)
as a function of the number of iterations j. This ratio should go to 1 as 7 — oo. For
each method, we plotted the minimum and maximum ratio over the ten trials. If
the ratio was negative then the curvature was positive and these data points are not
shown in the graphs. The dashed lines are Lanczos, the whole lines are two-step
Lanczos, and the dotted lines are Chebyshev.

In Figure 1 we show the semi-uniform distribution with o = 1 and o = 1073
starting with a random initial vector. We observe that in the harder case, only
Lanczos produces a good direction of negative curvature in a small number of itera-
tions. Figure 2 shows the same examples starting with the direction from modified
Cholesky. In this case, all three methods do well.
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Figure 1: Semi-uniform distribution, a = 1 (left) and o = 1073 (right).
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Figure 2: Semi-uniform distribution, o = 1 (left) and @ = 1072 (right).

In Figure 3 we used the semi-geometric distribution with § = 0.95 and 8 = 0.9.
This last example is an extremely hard case for any algorithm since the negative
eigenvalues are very close to zero. For even smaller values of 8 the matrix becomes
numerically positive semidefinite in double precision floating-point arithmetic, and
eventually modified Cholesky fails to give a direction of negative curvature and our
iterative methods also fail.

In Figure 4 we increased the problem size to n = 400. Modified Cholesky followed
by any of the iterative methods still works well. The number of iterations needed to
get good curvature does not change much with increasing size n. We observe that
when o = 1 we achieve at least 0.4 of optimal curvature after only two iterations
of any of the methods tested. But for @ = 1073 the ratio is slightly above 0.1 after
two iterations and we gain little per iteration after that.

From these experiments we conclude that when starting with a poor initial vector
(e.g. a random vector), our problem is very similar to the symmetric eigenvalue
problem and we prefer the Lanczos method. But if we already have a direction
of negative curvature, any of the iterative methods will give much better negative
curvature in a few iterations. We prefer the 2—step Lanczos method to Lanczos since
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Figure 3: Semi-geometric distribution, § = 0.95 (left) and 8 = 0.9 (right).
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Figure 4: Semi-uniform distribution with n = 400, o = 1 (left) and o = 103
(right).

it requires less memory. (An alternative to storing all the Lanczos vectors is to store
only the two most recent vectors, but then one must either repeat the whole Lanczos
process or do inverse iteration in order to recover the eigenvector.) The Chebyshev
iteration is similar in cost to 2—step Lanczos but the Rayleigh quotient is in general
not monotonically decreasing, a desirable property, which holds for both the other
methods. Consequently, the 2—step Lanczos algorithm looks most attractive as a
refinement step in a hybrid direct-iterative algorithm of the methods considered
here, while the full Lanczos method may be needed when starting from a random
vector.

4 Concluding remarks
We have shown that a dramatic improvement in the quality of a direction of neg-

ative curvature obtained from a direct method can be achieved using an iterative
procedure. The direct factorization we use is usually available at no extra cost since



it is also needed to find a descent direction. No attempt was made to precondition
the iterative procedures using the available Cholesky factorization of H + E. For
problems with few negative eigenvalues it is typically the case that F is of very low
rank, which suggests the Cholesky factorization will be an excellent preconditioner
within a method such as the Jacobi-Davidson method [8]. For problems of the size
studied here the use of a preconditioner is hardly merited except for pathological
examples, but for larger problems that may not be the case. For very large prob-
lems, any explicit factorization will require too much storage so a purely iterative
method must be used. In this case, an iterative method has normally already been
invoked to compute a descent direction and it may be possible to use information
from this iterative process when computing a direction of negative curvature.
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