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ABSTRACT

This article presents an introduction to multiscale and stabilized methods, which represent unified
approaches to modeling and numerical solution of fluid dynamic phenomena. Finite element
applications are emphasized but the ideas are general and apply to other numerical methods as well.
(They have been used in the development of finite difference, finite volume, and spectral methods,
in addition to finite element methods.) The analytical ideas are first illustrated for time-harmonic
wave-propagation problems in unbounded fluid domains governed by the Helmholtz equation. This
leads to the well-known Dirichlet-to-Neumann formulation. A general treatment of the variational
multiscale method in the context of an abstract Dirichlet problem is then presented which is applicable
to advective-diffusive processes and other processes of physical interest. It is shown how the exact
theory represents a paradigm for subgrid-scale models and a posteriori error estimation. Hierarchical
p-methods and bubble function methods are examined in order to understand and, ultimately,
approximate the “fine-scale Green’s function” which appears in the theory. Relationships among so-
called residual-free bubbles, element Green’s functions, and stabilized methods are exhibited. These
ideas are then generalized to a class of non-symmetric, linear evolution operators formulated in space-
time. The variational multiscale method also provides guidelines and inspiration for the development
of stabilized methods (e.g., SUPG, GLS, etc.) which have attracted considerable interest and have
been extensively utilized in engineering and the physical sciences. An overview of stabilized methods
for advective-diffusive equations is presented. A variational multiscale treatment of incompressible
viscous flows, including turbulence is also described. This represents an alternative formulation of
Large Eddy Simulation which provides a simplified theoretical framework of LES with potential for
improved modeling.

key words: Stabilized Methods, Multiscale Methods, Turbulence, Dirchlet-to-Neumann Formula-

tion, Variational Methods, Residual-free Bubbles, Space-time Formulations, Hierarchical p-refinement,

Subgrid-scale Models, Galerkin’s Method, Finite Elements, Advective-Diffusive Equations, Boundary-

value Problems, Incompressible Navier-Stokes Equations, Smagorinsky Model, Eddy Viscosity Models,

Exterior Problems.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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1. Introduction

Stabilized methods were originally developed about 25 years ago and reported on in a series
of conference papers and book chapters. The first archival journal article appeared in 1982
(Brooks and Hughes, 1982). This work summarized developments up to 1982 and brought to
prominence the SUPG formulation (i.e., Streamline Upwind Petrov-Galerkin). It was argued
that stability and accuracy were combined in this approach, and thus it represented an
improvement over classical upwind, artificial viscosity, central-difference, and Galerkin finite
element methods. Mathematical corroboration came shortly thereafter in the work of Johnson,
Nävert and Pitkäranta (1984). Subsequently, many works appeared dealing with fundamental
mathematical theory and diverse applications. A very large literature on stabilized methods
has accumulated in the process.

In 1995 it was shown by Hughes (1995) that stabilized methods could be derived from
a variational multiscale formulation. Subsequently, the multiscale foundations of stabilized
methods have become a focal point of research activities and have led to considerable
conceptual and practical progress. The view taken in this work is that the basis of residual-
based, or consistent, stabilized methods is a variational multiscale analysis of the partial
differential equations under consideration. This approach combines ideas of physical modeling
with numerical approximation in a unified way. To provide motivation for the developments
which follow a relevant physical example will be described first.

Considerations of environmental acoustics are very important in the design of high-speed
trains. In Japan, environmental laws limit the sound pressure levels 50 meters from the tracks.
The Shinkansen, or “bullet trains”, obtain electric power from pantographs in contact with

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 1. Shroud surrounding a pantograph.

overhead lines. In order to reduce aerodynamic loads on pantographs, “shrouds” have been
designed to deflect airflow. Photographs of pantographs and shrouds are shown in Figures 1 and
2. The shroud reduces structural loads on the pantograph and, concomitantly, reduces acoustic
radiation from the pantograph, but it also generates considerable noise in the audible range.
Research studies have been performed to determine the acoustic signatures of a shroud design
(see, e.g., Holmes et al., 1997). In Holmes et al. (1997) a Large Eddy Simulation is performed
to determine the turbulent fluid flow in the vicinity of a shroud. See Figure 3 for a schematic
illustration. There are several important length scales in such a calculation. Among them are
L, the characteristic length scale of the domain in which there are strong flow gradients and
turbulence; h, the characteristic length scale of the mesh used in the numerical analysis; and l,
the characteristic length of the smallest turbulent eddy. These scales are widely separated, that
is, L ≫ h ≫ l, emphasizing the importance of multiscale phenomena. The results of a fluid
dynamics calculation are presented in Figure 4. Note the smooth, braided vortical structure in
the boundary layer, and the turbulence inside and above the shroud. Eddies impinge on the
downwind face of the shroud and roof of the train and give rise to significant pressures, and
ultimately to considerable noise propagation. A Fourier transform, with respect to time, of the
pressure field on the surface of the shroud and roof is shown in Figure 5. Note the spots of
intense pressure. These locations fluctuate as functions of frequency. In order to determine the
radiated pressure in the far field, the Fourier transformed fluid flow is used to generate the so-
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Figure 2. Pantographs in withdrawn and deployed configurations.
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c© 2004 John Wiley & Sons, Ltd.



6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

TurbulenceTurbulence
ll

hh

LL

U∞U∞

Figure 3. Turbulent flow in a domain surrounding a pantograph shroud on the roof of a high-speed
train.

called Lighthill turbulence tensor (Lighthill, 1952,1954), from which sources can be determined.
These are used to drive the acoustic field, which is determined by solving the Helmholtz
equation (i.e., the time-harmonic wave equation). A boundary-value problem needs to be solved
for each frequency of interest in order to construct the sound pressure level spectrum. These
problems are classified as “exterior problems,” involving domains of infinite extent. In order
to use a domain-based numerical procedure, such as finite elements, an artificial boundary
is introduced which surrounds the region containing the acoustic sources. See Figure 6 for a
schematic illustration. The solution of the problem posed within the artificial boundary needs
to approximate the solution of original infinite-domain problem. This necessitates inclusion
of a special boundary condition on the artificial boundary, in order to transmit outgoing
waves without reflection. Various schemes have been proposed. The characteristic length-scale
induced by the artificial boundary, R, is of the order of L in the most effective approaches. The
distance to a point of interest in the far-field, D, is usually much larger than R. The solution at
D can be determined by the solution on the artificial boundary, which is determined from the
near-field numerical solution. The length scales, R ≪ D ≪ ∞, induce additional multiscale
considerations. A sound pressure level spectrum at a microphone location (i.e., D) is compared
with numerical results in Figure 7. For detailed description of procedures used for aeroacoustic
and hydroacoustic applications, see Oberai, Roknaldin and Hughes (2000,2002).

The multiscale aspects of the fluid flow and acoustic propagation will be discussed in
the sequel. The former problem is nonlinear and more complex. It will be described in the
last section. In the next section, a multiscale formulation of acoustic radiation is presented.
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Figure 4. Turbulent flow about a pantograph shroud.

The connections between multiscale formulations and stabilized methods are developed in the
intervening sections.

The terminology “multiscale” is used widely for many different things. Other concepts of
multiscale analysis are, for example, contained in E and Engquist (2003) and Wagner and Liu
(2003).

2. Dirichlet-to-Neumann Formulation

The exterior problem for the Helmholtz equation (i.e., the complex-valued, time-harmonic,
wave equation) is considered. The viewpoint adopted is that there are two sets of scales present,
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Figure 5.

one associated with the near field and one associated with the far field. The near-field scales
are viewed as those of the exact solution exterior to the body, but within an enclosing simple
surface, such as, for example, a sphere. The enclosing surface is not part of the specification of
the boundary-value problem, but rather it is specified by the analyst. The near-field scales are
viewed as numerically “resolvable” in this case. They may also be thought of as local or small
scales. The scales associated with the solution exterior to the sphere (far field) are the global or
large scales and are viewed as numerically “unresolvable” in the sense that the infinite domain
of the far field cannot be dealt with by conventional bounded-domain discretization methods.
The solution of the original problem is decomposed into non-overlapping near-field and far-field
components, and the far-field component is exactly solved for in terms of the exterior Green’s
function satisfying homogeneous Dirichlet boundary conditions on the sphere. (Shapes other
than a sphere are admissible, and useful in particular cases, but for each shape one must
be able to solve the exterior Green’s function problem in order to determine the far-field
solution.) The far-field component of the solution is then eliminated from the problem for the
near field. This results in a well-known variational formulation on a bounded domain which
exactly characterizes the near-field component of the original problem. It is referred to as the
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Figure 6. A numerical problem is solved within the artificial boundary at radius R. The point of
interest is located at D. The analytical problem involves a domain of infinite extent.

Figure 7. Sound pressure level spectrum.
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Figure 8. An exterior domain.

Dirichlet-to-Neumann (DtN) formulation because of the form of the boundary condition on
the sphere in the problem on the bounded domain (Givoli, 1992; Givoli and Keller, 1988,1989;
Harari and Hughes, 1992,1994). The so-called DtN boundary condition is nonlocal in the sense
that it involves an integral operator coupling all points on the sphere. Nonlocality is a typical
ingredient in formulations of multiscale phenomena.

2.1. Dirichlet-to-Neumann formulation for the Helmholtz operator

Consider the exterior problem for the Helmholtz operator. Let Ω ⊂ R
d be an exterior domain,

where d is the number of space dimensions (see Figure 8). The boundary of Ω is denoted by Γ
and admits the decomposition

Γ = Γg

⋃

Γh (1)

∅ = Γg

⋂

Γh (2)

where Γg and Γh are subsets of Γ. The unit outward vector to Γ is denoted by n. The boundary-
value problem consists of finding a function u : Ω → C, such that for given functions f : Ω → C,
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Figure 9. Decomposition of Ω into a bounded domain Ω and an exterior domain Ω′.

g : Γg → C and h : Γh → C, the following equations are satisfied:

Lu = f in Ω (3)

u = g on Γg (4)

u,n = ikh on Γh (5)

lim
r→∞

r
d−1

2 (u,r − iku) = 0 (Sommerfeld radiation condition) (6)

where

−L = ∆ + k2 (Helmholtz operator) (7)

and k ∈ C is the wave number, i =
√
−1, and ∆ is the Laplacian operator. The radial

coordinate is denoted by r and a comma denotes partial differentiation. The Sommerfeld
radiation condition enforces the condition that waves at infinity are outgoing.

Next, consider a decomposition of the domain Ω into a bounded domain Ω and an exterior
region Ω′. The boundary which separates Ω and Ω′ is denoted ΓR. It is assumed to have a
simple shape (e.g., spherical). See Figure 9. The decomposition of Ω, and a corresponding
decomposition of the solution of the boundary-value problem, are expressed analytically as
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follows:

Ω = Ω
⋃

Ω′ (8)

∅ = Ω
⋂

Ω′ (9)

u = u + u′ (sum decomposition) (10)

u |Ω′

u′ |Ω
=
=

0
0

}

(disjoint decomposition) (11)

u =

{

u on Ω
u′ on Ω′ (12)

Think of u as the near-field solution and u′ as the far-field solution.

2.2. Exterior Dirichlet problem for u′

Attention is now focused on the problem in the domain Ω′ exterior to ΓR. The unit outward
normal vector on ΓR (with respect to Ω′) is denoted n′ (see Fig. 10). Assume that f vanishes
in the far field, that is,

f = 0 on Ω′ (13)

The exterior Dirichlet problem consists of finding a function u′ : Ω → C such that

Lu′ = 0 in Ω′ (14)

u′ = u on ΓR (15)

lim
r→∞

r
d−1

2 (u′
,r − iku′) = 0 (16)

Note that the boundary condition (15) follows from the continuity of u across ΓR.

2.3. Green’s function for the exterior Dirichlet problem

The solution of the exterior Dirichlet problem can be expressed in terms of a Green’s function
g satisfying

Lg = δ in Ω′ (17)

g = 0 on ΓR (18)

lim
r→∞

r
d−1
2 (g,r − ikg) = 0 (19)

From Green’s identity,

u′(y) = −
∫

ΓR

g,n′
x
(x, y)u′(x)dΓx (20)

The so-called DtN map is obtained from (20) by differentiation with respect to n′,

u′
,n′(y) = −

∫

ΓR

g,n′
xn′

y
(x, y)u′(x)dΓx ⇔ u′

,n′(y) = Mu′ (21)
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Figure 10. Domain for the far-field problem.

The DtN map is used to develop a formulation for u on the bounded domain Ω. In this way
the far-field phenomena are incorporated in the problem for the near field. The Dirichlet-to-
Neumann formulation for u will be developed by way of a variational argument.

Let Π denote the potential energy for the original boundary-value problem, namely

Π(u) = Π(u + u′) (22)

=
1

2
a(u, u) +

1

2
a(u′, u′) − (u, f) − (u, ikh)Γ

where

a(w, u) =

∫

Ω

(∇w · ∇u − k2wu)dΩ (23)

(w, f) =

∫

Ω

wfdΩ (24)

(w, ikh)Γ =

∫

Γh

w ikh dΓ (25)

Consider a one-parameter family of variations of u, that is,

(u + u′) + ε(w + w′) (26)

subject to the following continuity constraints

u = u′ on ΓR (27)

w = w′ on ΓR (28)
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where ε ∈ R is a parameter. Taking the Fréchet derivative, the first variation of Π is calculated
as follows:

0 = DΠ(u + u′) · (w + w′)

= a(w, u) + a(w′, u′) − (w, f) − (w, ikh)Γ

= a(w, u) + (w′,Lu′) + (w′, u′
,n′)ΓR

− (w, f) − (w, ikh)Γ

= a(w, u) + 0 + (w, Mu)ΓR
− (w, f) − (w, ikh)Γ (29)

where

(w, Mu)ΓR
=

∫

ΓR

∫

ΓR

w(y)g,nxny
(x, y) u(x)dΓxdΓy (30)

In obtaining (29), (21) and the continuity conditions, (27) and (28), have been used. Note
that in (30) differentiation with respect to n = −n′ has been employed. Equation (29) can be
written concisely as

B(w, u; g) = L(w) (31)

where

B(w, u; g) = a(w, u) + (w, Mu)ΓR
(32)

L(w) = (w, f) + (w, ikh)Γ (33)

Remarks

1. (31) is an exact characterization of u.
2. The effect of u′ on the problem for u is nonlocal. The additional term, (30), is referred to

as the DtN boundary condition. It represents a perfect interface that transmits outgoing
waves without reflection.

3. (31) is the basis of numerical approximations, viz.

B(wh, uh; g) = L(wh) (34)

where wh and uh are finite-dimensional approximations of w and u, respectively.
4. In practice, M (or equivalently g) is also approximated by way of truncated series,

differential operators, etc. Thus, in practice, we work with

B(wh, uh; g̃) = L(wh) (35)

where
g̃ ≈ g (36)

2.4. Bounded domain problem for u

The Euler-Lagrange equations of the variational formulation give rise to the boundary-
value problem for u on the bounded domain Ω (see Fig. 11), that is,

Lu = f in Ω (37)

u = g on Γg (38)

u,n = ikh on Γh (39)

u,n = −Mu on ΓR (40)
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c© 2004 John Wiley & Sons, Ltd.



ΓΓ

ΓRΓR

ΩΩ

nn

nn

Figure 11. Bounded domain for the near-field problem.

The preceding developments may be summarized in the following statements:

1. u = u + u′ (disjoint sum decomposition).
2. u′ is determined analytically.
3. u′ is eliminated, resulting in a formulation for u which is the basis of numerical

approximations.
4. The effect of u′ is nonlocal in the problem for u.
5. Interpreted as a multiscale problem, u′ represents the large scales of the far field,

whereas u represents the small scales of the near field.

3. Variational Multiscale Method

The variational multiscale method is a procedure for deriving models and numerical methods
capable of dealing with multiscale phenomena ubiquitous in science and engineering. It is
motivated by the simple fact that straightforward application of Galerkin’s method employing
standard bases, such as Fourier series and finite elements, is not a robust approach in the
presence of multiscale phenomena. The variational multiscale method seeks to rectify this
situation. The anatomy of the method is simple: sum decompositions of the solution,
u = ū+u′, are considered where ū is solved for numerically . An attempt is made to determine
u′ analytically , eliminating it from the problem for ū. ū and u′ may overlap or be disjoint ,
and u′ may be globally or locally defined. The effect of u′ on the problem for ū will always
be nonlocal . In the previous section, the variational multiscale method was used to derive

15
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the Dirichlet-to-Neumann formulation of the Helmholtz equation in an unbounded domain. In
this section, attention is confined to cases on bounded domains in which ū represents “coarse
scales” and u′ “fine scales”.

An attempt is made to present the big picture in the context of an abstract Dirichlet
problem involving a second-order differential operator which is assumed nonsymmetric and/or
indefinite. This allows consideration of equations of practical interest, such as the advection-
diffusion equation, a model for fluid mechanics phenomena, and the Helmholtz equation, of
importance in acoustics and electromagnetics. After introducing the variational formulation of
the Dirichlet problem, its multiscale version is described.

First the “smooth case” is considered, in which it is assumed that all functions are sufficiently
smooth so that distributional effects (e.g., Dirac layers) may be ignored. This enables a simple
derivation of the exact equation governing the coarse scales. It is helpful to think of this case as
pertaining to the situation in which both the coarse and fine scales are represented by Fourier
series.

Next, a case of greater practical interest is considered in which standard finite elements are
employed to represent the coarse scales. Due to lack of continuity of derivatives at element
interfaces, it is necessary to explicitly account for the distributional effects omitted in the
smooth case. This is referred to as the “rough case”. Again, an exact equation is derived
governing the behavior of coarse scales. It is this equation that is proposed as a paradigm
for developing subgrid-scale models. Two distinguishing features characterize this result. The
first is that the method may be viewed as the classical Galerkin method plus an additional
term driven by the distributional residual of the coarse scales. This involves residuals of the
partial differential equation under consideration on element interiors (this is the smooth part
of the residual), and jump terms involving the boundary operator on element interfaces (this
is the rough part deriving from Dirac layers in the distributional form of the operator). The
appearance of element residuals and jump terms are suggestive of the relationship between
the multiscale formulation and various stabilized methods proposed previously. The second
distinguishing feature is the appearance of the fine-scale Green’s function. In general, this
is not the classical Green’s function, but one that emanates from the fine-scale subspace.
It is important to note that the fine-scale subspace, V ′, is infinite-dimensional, but a proper
subspace of the space, V , in which it is attempted to solve the problem. The direct sum
relationship V = V̄ ⊕ V ′ where V̄ is the coarse-scale, finite element subspace is satisfied.
A problem that arises in developing practical approximations is that the fine-scale Green’s
function is nonlocal .

Before addressing this issue, the relationship between the fine-scale solution and a posteriori
error estimation is discussed. It is noted first that by virtue of the formulation being exact,
the fine-scale solution is precisely the error in the coarse-scale solution. Consequently, the
representation obtained of the fine-scale solution in terms of the distributional coarse-scale
residual and the fine-scale Green’s function is a paradigm for a posteriori error estimation. It
is then noted that it is typical in a posteriori error estimation procedures to involve the element
residuals and/or interface jump terms as driving mechanisms. The mode of distributing these
sources of error may thus be inferred to be approximations of the fine-scale Green’s function. As
a result, it is clear that in a posteriori error estimation, the proper distribution of residual errors
strongly depends on the operator under consideration. In other words, there is no universally
appropriate scheme independent of the operator. (A similar observation may be made for
subgrid-scale models by virtue of the form of the coarse-scale equation.) The implications of
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Figure 12. The variational multiscale method is a framework for the construction of subgrid-
scale models and effective numerical methods for partial differential equations exhibiting multiscale
phenomena. It provides a physical context for understanding methods based on residual-free bubbles

and stabilized methods.

the formula for the fine-scale solution with respect to a posteriori error estimation for finite
element approximations of the advection-diffusion and Helmholtz equations are discussed.

Next, hierarchical p-refinement and bubbles are examined in an effort to better understand
the nature of the fine-scale Green’s function and to deduce appropriate forms. V̄ is identified
with standard, low-order finite elements, and V ′ with the hierarchical basis. An explicit
formula for the fine-scale Green’s function in terms of the hierarchical basis is derived. It is
concluded that, despite the nonlocal character of the fine-scale Green’s function, it can always
be represented in terms of a finite basis of functions possessing local support. In one-dimension,
this basis consists solely of bubbles, in two dimensions, bubbles and edge functions; etc. This
reduces the problem of approximating the Green’s function to one of obtaining a good-quality,
finite-dimensional fine-scale basis. This becomes a fundamental problem in the construction
of practical methods. Once solved, a subgrid-scale model governing the coarse-scales, and an
approximate representation of the fine-scale solution which does double duty as an a posteriori
error estimator for the coarse-scale solution, are obtained.

What constitutes a good-quality, but practical, fine-scale basis is described by reviewing the
concept of residual-free bubbles (see Baiocchi, Brezzi and Franca, 1993). The use of fine-scale
Green’s functions supported by individual elements is then reviewed. Residual-free bubbles
and element Green’s functions are intimately related as shown in Brezzi et al. (1997). These
concepts may be used to derive stabilized methods and identify optimal parameters which
appear in their definition. The ideas are illustrated with one-dimensional examples.
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ΩΓ

Figure 13. Domain and boundary for the abstract Dirichlet problem.

This section is concluded with a summary of results and identification of some outstanding
issues. The overall flow of the main relationships is presented in Figure 12.

An alternative approach for constructing a fine-scale basis can be found in the literature
describing the Discontinuous Enrichment Method (DEM) with Lagrange multipliers, Farhat,
Harari and Franca (2001), Farhat, Harari and Hetmaniuk (2003a, 2003b), and Harari, Farhat
and Hetmaniuk (2003). In this hybrid variational multiscale approach, the fine-scales are
based on the free-space solutions of the homogeneous differential equation to be solved. For
example, for the Helmholtz equation, these scales are represented analytically by plane waves.
This approach leads to fine-scales that, unlike bubbles, do not vanish but are discontinuous
on the element boundaries. This allows circumventing both the difficulty in attempting to
approximate the global fine-scale Green’s function, and the loss of some global effects due to
the restriction of residual-free bubbles to a vanishing trace on the element boundaries. However,
the DEM approach for constructing a fine-scale basis introduces additional unknowns at the
element interfaces in the form of Lagrange multipliers to enforce a weak continuity of the
solution.

3.1. Abstract Dirichlet problem

Let Ω ⊂ Rd, where d ≥ 1 is the number of space dimensions, be an open bounded domain
with smooth boundary Γ (see Fig. 13). Consider the following boundary-value problem: find
u : Ω → R such that

Lu = f in Ω (41)

u = g on Γ (42)

where f : Ω → R and g : Γ → R are given functions. Think of L as a second-order and, in
general, nonsymmetric differential operator.

3.1.1. Variational formulation Let S ⊂ H1(Ω) denote the trial solution space and
V ⊂ H1(Ω) denote the weighting function space, where H1(Ω) is the Sobolev space of
square-integrable functions with square-integrable derivatives. Assume that S and V possess
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Figure 14. Coarse and fine scale components.

the following properties:

u = g on Γ ∀u ∈ S (43)

w = 0 on Γ ∀w ∈ V (44)

The variational counterpart of the boundary-value problem (41)–(42) is given as follows: find
u ∈ S such that ∀w ∈ V

a(w, u) = (w, f) (45)

where (·, ·) is the L2(Ω) inner product, and a(·, ·) is a bilinear form satisfying

a(w, u) = (w,Lu) (46)

for all sufficiently smooth w ∈ V and u ∈ S.

3.2. Variational multiscale method

Let

u = ū + u′ (overlapping sum decomposition) (47)

where ū represents coarse scales and u′ represents fine scales (see Fig. 14). Likewise, let

w = w̄ + w′. (48)

Let S = S̄ ⊕ S′ and V = V̄ ⊕ V ′ where S̄ (resp., S′) is the trial solution space for coarse
(resp., fine) scales and V̄ (resp., V ′) is the weighting function space for coarse (resp., fine)
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scales. Assume

ū = g on Γ ∀ū ∈ S̄ (49)

u′ = 0 on Γ ∀u′ ∈ S′ (50)

w̄ = 0 on Γ ∀w̄ ∈ V̄ (51)

w′ = 0 on Γ ∀w′ ∈ V ′ (52)

We assume S′ = V ′. The objective is to derive an equation governing ū.

Remarks

1. It is helpful to think of S̄ and V̄ as finite-dimensional, whereas S′ and V ′ are necessarily
infinite-dimensional.

2. In order to make the notion of the direct sums precise, one needs to introduce projectors
ΠS : S → S̄ and ΠV : V → V̄ , such that u = ΠSu, w = ΠVw, Π′

S = id − ΠS ,
Π′

V = id − ΠV , and, in particular, Π′
S = Π′

V := Π′.

3.2.1. Smooth case The developments are begun by considering the case in which all functions
are smooth. The idea for u = ū + u′ is illustrated in Figure 15. The situation for w = w̄ + w′

is similar. Assume the following integration-by-parts formulas hold:

a(w̄, u′) = (L∗w̄, u′) ∀w̄ ∈ V̄ , u′ ∈ S′ (53)

a(w′, ū) = (w′,Lū) ∀w′ ∈ V ′, ū ∈ S̄ (54)

a(w′, u′) = (w′,Lu′) ∀w′ ∈ V ′, u′ ∈ S′ (55)

Exact variational equation for ū (smooth case) Substitute (47) and (48) into (45):

a(w̄ + w′, ū + u′) = (w̄ + w′, f) ∀w̄ ∈ V̄ , ∀w′ ∈ V ′ (56)

By virtue of the linear independence of w̄ and w′, (56) splits into two problems:

Problem (1) a(w̄, ū) + a(w̄, u′) = (w̄, f) ∀w̄ ∈ V̄ (57)

a(w̄, ū) + (L∗w̄, u′) = (w̄, f) (58)

Problem (2) a(w′, ū) + a(w′, u′) = (w′, f) ∀w′ ∈ V ′ (59)

(w′,Lū) + (w′,Lu′) = (w′, f) (60)

In arriving at (58) and (60), the integration-by-parts formulas (53)–(55) have been employed.
Rewrite (60) as

(Π′)∗Lu′ = −(Π′)∗ (Lū − f) in Ω (61)

u′ = 0 on Γ (62)

where (Π′)∗ denotes projection onto (V ′)∗, the dual space of V ′. Endeavor to solve this problem
for u′ and eliminate u′ from the equation for ū, namely (58). This can be accomplished with
the aid of a Green’s function.
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u = ū + u′

ū

u′

Figure 15. The case in which ū and u′ are smooth.

Green’s function for the “dual problem” Consider the following Green’s function
problem for the adjoint operator:

(Π′)∗L∗Π′g(x, y) = (Π′)∗δ(x − y) ∀x ∈ Ω (63)

g(x, y) = 0 ∀x ∈ Γ (64)

we seek a g ⊥ ker( (Π′)∗L∗Π′ ). Let g′ = Π′g(Π′)∗. In terms of the solution of this problem, u′

can be expressed as follows:

u′(y) = −
∫

Ω

g′(x, y) (Lū − f) (x) dΩx (65)

Equivalently, (65) can be written in terms of an integral operator M ′ as

u′ = M ′ (Lū − f) (66)

Remarks

1. Lū − f is the residual of the coarse scales.
2. The fine scales, u′, are driven by the residual of the coarse scales.
3. It is very important to observe that g′ is not the usual Green’s function associated

with the corresponding strong form of (63). Rather, g′ is defined entirely in terms of
the space of fine scales, namely V ′. Later on, an explicit formula for g′ will be derived
in terms of a basis for V ′.
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c© 2004 John Wiley & Sons, Ltd.



22 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Substituting (66) into (58) yields

a(w̄, ū) + (L∗w̄, M ′ (Lū − f)) = (w̄, f) ∀w̄ ∈ V ′ (67)

where, from (65),

(L∗w̄, M ′ (Lū − f)) = −
∫

Ω

∫

Ω

(L∗w̄)(y)g′(x, y)(Lū − f)(x) dΩx dΩy (68)

Remarks

1. This is an exact equation for the coarse scales.
2. The effect of the fine scales on the coarse scales is nonlocal .
3. By virtue of the smoothness assumptions, this result is appropriate for spectral methods,

or methods based on Fourier series, but it is not sufficiently general as a basis for finite
element methods. In what follows, the smoothness assumption is relaxed and the form
of the coarse-scale equation appropriate for finite elements is considered.

3.2.2. Rough case (FEM) Consider a discretization of Ω into finite elements. The domain
and boundary of element e, where e ∈ {1, 2, · · · , nel}, in which nel is the number of elements,
are denoted Ωe and Γe, respectively (see Fig. 16). The union of element interiors is denoted Ω′

and the union of element boundaries modulo Γ (also referred to as the element interfaces
or skeleton) is denoted Γ′, viz.

Ω′ =

nel
⋃

e=1

Ωe (69)

Γ′ =

(

nel
⋃

e=1

Γe

)

\ Γ (70)

Ω̄ = closure(Ω′) (71)

Let S̄, V̄ ⊂ C0(Ω̄) ∩ H1(Ω) be classical finite element spaces. Note that S′ = V ′ ⊂ H1(Ω),
but is otherwise arbitrary. In this case ū and w̄ are smooth on element interiors but have slope
discontinuities across element boundaries (see, e.g., Fig. 17).

It is necessary to introduce some terminology used in the developments which follow. Let
(·, ·)ω be the L2(ω) inner product where ω = Ω, Ωe, Γe, Ω′, Γ′, etc. Recall, (·, ·) = (·, ·)Ω. Let [[·]]
denote the jump operator , viz., if v is a vector field experiencing a discontinuity across an
element boundary (e.g., v = ∇w̄, w̄ ∈ V̄), then

[[n · v]] = n+ · v+ + n− · v−

= n+ · v+ − n+ · v−

= n · (v+ − v−), (72)

where

n = n+ = −n− (73)
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Ω Ωe

Γe

Figure 16. Discretization of Ω into element subdomains.

u = ū + u′

ū

u′

Figure 17. ū is the piecewise linear interpolate of u.

is a unit normal vector on the element boundary and the ± designations are defined
as illustrated in Figure 18. Note that (72) is invariant with respect to interchange of ±
designations.

In the present case there is smoothness only on element interiors. Consequently, integration-
by-parts gives rise to nonvanishing element boundary terms. For example, if w̄ ∈ V̄ and u′ ∈ S′,
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Ω+

Ω−

n+

n−

Figure 18. Definition of unit normals on an element boundary.

linear element

quadratic element
w̄

w̄,x

w̄,xx

o

o

o x

x

x

Figure 19. Generalized derivatives of piecewise linear and quadratic finite elements.
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the following integration-by-parts formula holds

a(w̄, u′) =

nel
∑

e=1

((L∗w̄, u′)Ωe + (b∗w̄, u′)Γe)

= (L∗w̄, u′)Ω′ + ([[b∗w̄]], u′)Γ′

= (L∗w̄, u′)Ω (74)

where b∗ is the boundary operator corresponding to L∗ (e.g., if L∗ = L = −∆, then
b∗ = b = n · ∇ = ∂/∂n). Note, from (74), there are three different ways to express the
integration-by-parts formula. The first line of (74) amounts to performing integration-by-parts
on an element-by-element basis. In the second line, the sum over element interiors has been
represented by integration over Ω′ and the element boundary terms have been combined in
pairs, the result being a jump term integrated over element interfaces. Finally, in the third
line, L∗w̄ is viewed as a Dirac distribution defined on the entire domain Ω. To understand
this interpretation, consider the following example:

Let

L∗w̄ = w̄,xx (75)

and assume w̄ consists of piecewise linear, or quadratic, finite elements in one dimension. The
set-up is illustrated in Figure 19. Note that w̄,xx consists of Dirac delta functions at element
boundaries and smooth functions on element interiors. This amounts to the distributional
interpretation of L∗w̄ in the general case. It is smooth on element interiors but contains Dirac
layers on the element interfaces, which give rise to the jump terms in the second line of (74).

Likewise, there are additional integration-by-parts formulas: ∀w′ ∈ V ′, ū ∈ S̄ and u′ ∈ S′,

a(w′, ū) =

nel
∑

e=1

((w′,Lū)Ωe + (w′, bū)Γe)

= (w′,Lū)Ω′ + (w′, [[bū]])Γ′

= (w′,Lū)Ω (76)

a(w′, u′) =

nel
∑

e=1

((w′,Lu′)Ωe + (w′, bu′)Γe)

= (w′,Lu′)Ω′ + (w′, [[bu′]])Γ′

= (w′,Lu′)Ω (77)

where, again, Lū and Lu′ are Dirac distributions on Ω.

Exact variational equation for ū (rough case) The distributional interpretation of Lū,
Lu′ and L∗w̄ allows one to follow the developments of the smooth case (see Section 3.2.1).
Thus, the formula for u′ can be expressed in three alternative forms analogous to those of the
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integration-by-parts formulas, viz.,

u′(y) = −
∫

Ω

g′(x, y)(Lū − f)(x) dΩx

= −
∫

Ω′

g′(x, y)(Lū − f)(x) dΩx −
∫

Γ′

g′(x, y)[[bū]](x) dΓx

= −
nel
∑

e=1

(
∫

Ωe

g′(x, y) (Lū − f) (x) dΩx +

∫

Γe

g′(x, y)(bū)(x) dΓx

)

(78)

which again may be written as u′ = M ′(Lū − f). Note, this is an exact formula for u′.

Remarks

1. When a mesh-based method, such as finite elements, is employed, the coarse scales,
ū, are referred to as the resolved scales, and the fine scales, u′, are referred to as
the subgrid scales. The coarse-scale equation is often referred to as a subgrid-scale
model .

2. Lū− f is the residual of the resolved scales. It consists of a smooth part on element
interiors (i.e., Ω′) and a jump term [[bū]] across element interfaces (i.e., Γ′).

3. The subgrid scales u′ are driven by the residual of the resolved scales.

Upon substituting (78) into the equation for the coarse scales, (67) is arrived at, where

(L∗w̄, M ′(Lū − f)) = −
∫

Ω

∫

Ω

(L∗w̄)(y)g′(x, y)(Lū − f)(x) dΩx dΩy

= −
∫

Ω′

∫

Ω′

(L∗w̄)(y)g′(x, y)(Lū − f)(x) dΩx dΩy

−
∫

Ω′

∫

Γ′

(L∗w̄)(y)g′(x, y)[[bū]](x) dΓx dΩy

−
∫

Γ′

∫

Ω′

[[b∗w̄]](y)g′(x, y)(Lū − f)(x) dΩx dΓy

−
∫

Γ′

∫

Γ′

[[b∗w̄]](y)g′(x, y)[[bū]](x) dΓx dΓy

= −
nel
∑

e=1

nel
∑

l=1

(
∫

Ωe

∫

Ωl

(L∗w̄)(y)g′(x, y)(Lū − f)(x) dΩx dΩy

−
∫

Ωe

∫

Γl

(L∗w̄)(y)g′(x, y)(bū)(x) dΓx dΩy

−
∫

Γe

∫

Ωl

(b∗w̄)(y)g′(x, y)(Lū − f)(x) dΩx dΓy

−
∫

Γe

∫

Γl

(b∗w̄)(y)g′(x, y)(bū)(x) dΓx dΓy

)

(79)
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Note, once again, there are three alternative forms due to the distributional nature of L∗w̄
and Lū.

Remarks

1. Equation (67) along with (79) is an exact equation for the resolved scales. It can serve
as a paradigm for finite element methods when unresolved scales are present.

2. The effect of the unresolved scales on the resolved scales is nonlocal .
3. The necessity of including jump operator terms to attain stable discretizations for

certain problems has been observed previously (see Douglas Jr. and Wang, 1989;
Franca, Hughes and Stenberg, 1993; Hughes and Franca, 1987; Hughes and Hulbert,
1988; Hulbert and Hughes, 1990; Silvester and Kechkar, 1990). The present result
demonstrates that the jump operator terms may be derived directly from the governing
equations.

4. Equation (79) illustrates that the distributional part of L∗w̄ and Lū needs to be included
in a consistent stabilized method. Classically, these terms have been omitted, which has
led to some problems. Jansen et al. (1999) first observed the need to include the effect
of the distributional term. In their approach, rather than explicitly including the jump
terms, a variational reconstruction of second-derivative terms is employed. Jansen et al.
(1999) showed that significant increases in accuracy are attained thereby. The method
presented by Jansen et al. (1999) is similar to one presented by Bochev and Gunzburger
(2005), who refer to procedures of this kind as weakly consistent.

Equation (67) can be concisely written as

B(w̄, ū; g′) = L(w̄; g′) ∀w̄ ∈ V̄ (80)

where

B(w̄, ū; g′) = a(w̄, ū) + (L∗w̄, M ′(Lū)) (81)

L(w̄; g′) = (w̄, f) + (L∗w̄, M ′f) (82)

Note that B(·, ·; ·) is bilinear with respect to the first two arguments and affine with respect to
the third argument; L(·; ·) is linear with respect to the first argument and affine with respect
to the second. Equations (80)–(82) are valid in both the smooth and rough cases, with the
distributional interpretation appropriate in the latter case.

Numerical method An approximation , g̃′ ≈ g′, is the key ingredient in developing a
practical numerical method. It necessarily entails some form of localization . The numerical
method is written as follows:

B(w̄h, ūh; g̃′) = L(w̄h; g̃′) ∀w̄ ∈ V̄ (83)
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u′ and a posteriori error estimation Note that u′ = u − ū is the error in the coarse
scales. The formula u′ = M ′(Lūh − f) is a paradigm for a posteriori error estimation. Thus,
it is plausible that

u′ ≈ M̃ ′(Lūh − f) (84)

where M̃ ′ ≈ M ′, is an a posteriori error estimator, which can be used to estimate coarse-scale
error in any suitable norm, for example, the W s

p -norm, 0 ≤ p ≤ ∞, 0 ≤ s < ∞. (Keep in
mind, Lū is a Dirac distribution.) An approximation of the fine-scale Green’s function, g̃′ ≈ g′,
induces an approximation M̃ ′ ≈ M ′; see (78). Conversely, an a posteriori error estimator of
the form (84) may be used to infer an approximation of the Green’s function and to develop
a numerical method of the form (83).

A particularly insightful form of the estimator is given by

u′(y) ≈ −
∫

Ω′

g̃′(x, y)(Lūh − f)(x) dΩx −
∫

Γ′

g̃′(x, y)[[būh]](x) dΓx (85)

Note that the residuals of the computed coarse-scale solution, that is Lūh − f and [[būh]], are
the sources of error, and the fine-scale Green’s function acts as the distributor of error.

There seems to be agreement in the literature on a posteriori estimators that either one, or
both, the residuals are the sources of error. Where there seems to be considerable disagreement
is in how these sources are distributed. From (85), we see that there is no universal solution to
the question of what constitutes an appropriate distribution scheme. It is strongly dependent
on the particular operator L through the fine-scale Green’s function. This result may serve as
a context for understanding differences of opinion which have occurred over procedures of a
posteriori error estimation.

Remark
An advantage of the variational multiscale method is that it comes equipped with a fine-scale
solution which may be viewed as an a posteriori estimate of the coarse-scale solution error.

Discussion
It is interesting to examine the behavior of the exact counterpart of (85) for different operators
of interest. Assume that uh is piecewise linear in all cases, and that f = 0.

First consider the Laplace operator, L = −∆, b = ∂/∂n. In this case, Lūh = 0, and the
interface residual, [[būh]], is the entire source of error. Keeping in mind the highly local nature
of the Green’s function for the Laplacian, a local distribution of [[būh]] would seem to be a
reasonable approximation. The same could be said for linear elasticity, assuming there are no
constraints, such as, for example, incompressibility, or unidirectional inextensibility.

Next consider the advection-diffusion operator, L = a ·∇−κ∆, [[būh]] = [[κ∂ūh/∂n]]∗, where
a is a given solenoidal velocity field, and κ > 0, the diffusivity, is a positive constant. In the
case of diffusion domination (i.e., advective effects are negligible), L ≈ −κ∆, and the situation
is the same as for the Laplacian. On the other hand, when advection dominates, Lūh ≈ a·∇ūh,

∗This follows from the continuity of advective flux.
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and [[būh]] = [[κ∂ūh/∂n]] may be ignored. This time, the element residual, Lūh, is the primary
source of error. A local distribution scheme would seem less than optimal because the Green’s
function propagates information along the integral curves of −a (keep in mind that the Green’s
function is for the adjoint operator, L∗), with little amplitude decay. This means that there is
an approximately constant trajectory of error corresponding to the residual error Lūh, in the
element in question.

Finally, consider the Helmholtz operator, L = −∆ − k2, b = ∂/∂n, where k is the wave
number . If k is real, we have propagating waves, whereas if k is imaginary, we have
evanescent (decaying) waves. In the latter case, the Green’s function is highly localized;
as |k| → 0 the Green’s function approaches that for the Laplacian, as |k| → ∞ the Green’s
function approaches −k−2δ, a delta function. In the case of propagating waves, the Green’s
function is oscillatory. In general, for |k| large, the dominant source of error is the element
residual, Lūh = −k2ūh. As |k| → 0, the interface residual, [[būh]] = [[∂ūh/∂n]], dominates.

3.3. Hierarchical p-refinement and bubbles

Hierarchical p-refinement plays an important role in clarifying the nature of the fine-scale
Green’s function, g′, and provides a framework for its approximation. Some notations are
required. Let

ūh =

n̄nodes
∑

A=1

N̄AūA (likewise w̄h) (86)

where N̄A is a finite element shape function associated with the primary nodes, A =
1, 2, · · · , n̄nodes, and ūA is the corresponding nodal value; and let

u′ =

n′

nodes
∑

A=1

N ′
Au′

A (likewise w′) (87)

where N ′
A is a hierarchical finite element shape function associated with the additional nodes,

A = 1, 2, · · · , n′
nodes, and u′

A are the corresponding hierarchical degrees of freedom. For
example, let ūh be expanded in piecewise linear basis functions and u′ in hierarchical cubics
(see Fig. 20). Note, bubble functions are zero on element boundaries. An illustration in one
dimension is presented in Figure 21.

Substituting (86) and (87) into (57)–(60), and eliminating u′
A by static condensation

results in

B(w̄h, ūh; g̃′) = L(w̄h; g̃′) ∀w̄h ∈ V̄ (88)

where

B(w̄h, ūh; g̃′) = a(w̄h, ūh) + (L∗w̄h, M̃ ′(Lūh)) (89)

L(w̄h; g̃′) = (w̄h, f) + (L∗w̄h, M̃ ′f) (90)

and

(L∗w̄h, M̃ ′(Lūh)) = −
∫

Ω

∫

Ω

(L∗w̄h)(y)g̃′(x, y)(Lūh)(x) dΩx dΩy (91)
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typical linear

typical cubic

typical cubic

edge function

function

bubble function

ūh = standard linears (•)

u′ = hierarchical cubics (◦)

Figure 20. Hierarchical cubics in two dimensions.
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etc.

standard linear

shape functions

quadratic bubbles

cubic bubbles

Figure 21. Finite element shape functions and polynomial “bubbles”.

g̃′(x, y) =

n′

nodes
∑

A,B=1

N ′
A(y)

[

(K
′′

)−1
]

AB
N ′

B(x) (92)

where

K
′′

= [K
′′

AB] (93)

K
′′

AB = a(N ′
A, N ′

B) (94)

Remarks

1. Recall, Lūh and L∗w̄h are Dirac distributions in the finite element case (cf. (91) and
(79)).

2. Hierarchical p-refinement generates an approximate fine-scale Green’s function, g̃′ ≈
g′.
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3. For implementational purposes, it is more convenient to rewrite (89)–(91) in forms
avoiding Dirac distributions. This can be accomplished by using the integration-by-parts
formulas, viz.,

(L∗w̄h, M̃ ′(Lūh − f)) = −
n′

nodes
∑

A,B=1

a(w̄h, N ′
A)
[

(K
′′

)−1
]

AB
(a(N ′

B, ūh) − (N ′
B, f)) (95)

which amounts to the usual static condensation algorithm.
4. A posteriori error estimation for the coarse-scale solution, ūh, is provided by the fine-

scale solution (see (78) and (84)):

u′(y) = −
∫

Ω

g̃(x, y)(Lūh − f)(x) dΩx

= −
∫

Ω′

g̃′(x, y)(Lūh − f)(x) dΩx

−
∫

Γ′

g̃′(x, y)[[būh]](x) dΓx

= −
nel
∑

e=1

(
∫

Ωe

g̃′(x, y)(Lūh − f)(x) dΩx

+

∫

Γe

g̃′(x, y)(būh)(x) dΓx

)

(96)

or, in analogy with (95), by

u′(y) = −
n′

nodes
∑

A,B=1

N ′
A(y)

[

(K
′′

)−1
]

AB

(

a(N ′
B, ūh) − (N ′

B, f)
)

(97)

The quality of this estimator depends on the ability of {N ′
A}

n′

nodes

A=1 to approximate the
fine scales, or equivalently, the quality of the approximation g̃′ ≈ g′.

5. Note that the fine-scale Green’s function only depends on the hierarchical basis (see
(92)–(94)). The exact fine-scale Green’s function corresponds to the limit p → ∞.

6. The fine-scale Green’s function is nonlocal , but it is computed from a basis of functions
having compact support . For example, in the two-dimensional case, the basis consists
of bubbles, supported by individual elements, and edge functions, supported by pairs
of elements sharing an edge. The three-dimensional case is similar, but somewhat more
complicated; the basis consists of bubbles, face and edge functions. In three dimensions,
pairs of elements support face functions whereas the number of elements supporting
edge functions depends on the topology of the mesh.

7. In two dimensions, by virtue of the convergence of hierarchical p-refinement, the exact
fine-scale solution may be decomposed into a finite number of limit functions – one
bubble for each element and one edge function for each pair of elements sharing an
edge. In one dimension the situation is simpler in that only bubbles are required. The
three-dimensional case is more complex in that bubbles, face and edge functions are
required.
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8. Polynomial bubbles are typically ineffective, but so-called residual-free bubbles
(Brezzi et al. (1997)) are equivalent to exactly calculating element Green’s functions.
This approximation works exceptionally well in some important cases and will be
discussed in more detail later on.

9. If only bubble functions are considered in the refinement, coupling between different
elements and all jump terms is eliminated . In this case,

(L∗w̄h, M̃ ′(Lūh)) = −
∫

Ω′

∫

Ω′

(L∗w̄h)(y)g̃′(x, y)(Lūh)(x) dΩx dΩy (98)

where Ω′ has replaced Ω, and now the effect of u′ is nonlocal only within each element.
The approximate Green’s function g̃′, is defined element-wise and takes on zero values
on element boundaries.

10. It may be observed that the fine-Green’s function formula has an interpretation
analogous to projection methods in linear algebraic systems, such as, for example,
multigrid methods. To explicate this analogy, the notation of Saad (1995), Chapter 5, is
adopted. Let K be an m-dimensional subspace of Rn, and let A be an n×n real matrix.
The objective is to solve Ax = b for x ∈ Rn, where b ∈ Rn is a given vector. Assume an
initial guess, x0 ∈ Rn, and determine an approximate solution x̃ ∈ x0 +K, such that the
residual r̃ = b−Ax̃ ⊥ K. If x̃ is written as x̃ = x0+δ, where δ ∈ K, and r0 = b−Ax0, then
b − A(x0 + δ) ⊥ K, or equivalently, r0 − Aδ ⊥ K. In terms of a basis {v1, v2, . . . , vm}
of K, the approximate solution becomes x̃ = x0 + V y, where V = [v1, v2, . . . , vm],
an n × m matrix. The orthogonality condition becomes V T AV y = V T r0, and thus
δ = x̃−x0 = V (V T AV )−1V T r0, assuming nonsingularity of V T AV . Note the similarity
of this result to that of (92) and (97): δ ∼ u′, x̃ ∼ u, x0 ∼ uh, V ∼ [N ′

1, N
′
2, . . . , N

′
n′

nodes

],

V T AV ∼ K′′, V T r0 ∼ [a(N ′
1, u

h) − (N ′
1, f), . . . , a(N ′

n′

nodes

, uh) − (N ′
n′

nodes

, f)]T , and

V (V T AV )−1V T ∼ g̃′. In multilevel solution strategies, the fine-scale space here may
be analogized to the “coarse grid”, and δ is obtained by restriction to the coarse-grid
subspace (i.e., V T r0), a coarse-grid correction (i.e., V T AV y = V T r0), and prolongation,
or interpolation (i.e., V y).

11. Defect-correction techniques have become popular in the multigrid community to
obtain stable second-order accurate solutions of the convection-diffusion equation.
These methods use upwind schemes for relaxation (stability) and central difference
schemes for residual evaluation (accuracy). A standard reference is Hemker (1981);
see also Trottenberg, Oosterlee and Schüller (2001). More generally, defect-correction
is a powerful abstraction for various iterative methods, including Newton, multigrid,
and domain decomposition. It can also be extended to multiscale problems. See Lai
(1981) for an example of how defect-correction is used in the treatment of small-scale
fluctuations in aeroacoustics.

3.4. Residual-free bubbles

The concept of residual-free bubbles has been developed and explored in Baiocchi, Brezzi
and Franca (1993), Brezzi et al. (1997), Brezzi and Russo (1994), Franca and Russo (1996),
Russo (1996a,1996b). The basic idea is to solve the fine-scale equation on individual elements
with zero Dirichlet boundary conditions. For example, the objective is to find u′ ∈ V ′, such
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that ∀ū ∈ V̄ ,

(Π′)∗Lu′ = −(Π′)∗(Lū − f) on Ωe

u′ = 0 on Γe

}

e = 1, 2, · · · , nel (99)

Noting that ū can be expressed in terms of the coarse-scale basis having support in the element
in question, a fine-scale basis of residual-free bubbles can be constructed for each element, i.e.

(Π′)∗LN ′
a = −(Π′)∗(LN̄a − f) on Ωe

N ′
a = 0 on Γe

}

e = 1, 2, · · · , nel (100)

where a = 1, 2, · · · , nen is the local numbering of the primary nodes of element e. Thus, to
each coarse-scale basis function N̄a, solve (100) for a corresponding residual-free bubble N ′

a.
Consequently, the maximal dimension of the space of residual-free bubbles for element e is
nen. It is typical, however, that the dimension is less than nen.

Brezzi and Russo (1994) have constructed residual-free bubbles for the homogeneous
advection-diffusion equation assuming the coarse-scale basis consists of continuous, piecewise
linears on triangles. For this case nen = 3, but the dimension of the space of residual-free
bubbles is only one. Let Be denote the residual-free bubble basis solution of the following
problem:

LBe = 1 on Ωe

Be = 0 on Γe

}

(101)

Note that, due to the fact the coarse-scale space consist only of piecewise linears, combined with
the fact that the fine-scale space satisfies zero Dirichlet boundary conditions, the projection
operator, Π′, present in the general case, namely (100), can be omitted and (101) can be solved
in the strong sense. However, in order to avoid potential linear dependencies, in general, (100)
needs to be respected.

In principle, the computation of the residual-free bubble should involve the solution of
one or more partial differential equations in each element. This, however, can be done in an
approximate way, using a suitable subgrid in each element, as in Brezzi, Marini and Russo
(1998) and Franca, Nesliturk and Stynes (1998). This leads to the idea of the stabilizing
subgrid: if one does not eliminate the discrete bubbles, one can think of solving the Galerkin
method on the enriched subgrid, having the beneficial effects of the bubble stabilization. See
Brezzi and Marini (2002), Brezzi et al. (2003), and Brezzi, Marini and Russo (2005) for further
development of this idea.

3.5. Element Green’s functions

The idea of employing an element Green’s function was proposed in the initial work on
the variational multiscale method (Hughes (1995)). In place of (63)–(64), the Green’s function
problem for each element is solved:

(Π′)∗L∗g′e(x, y) = (Π′)∗δ(x − y) ∀x ∈ Ωe

g′e(x, y) = 0 ∀x ∈ Γe

}

e = 1, 2, · · · , nel (102)

Use of element Green’s functions in place of the global Green’s function amounts to a local
approximation ,

g̃′(x, y) = g′e(x, y) ∀x, y ∈ Ωe, e = 1, 2, · · · , nel (103)
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The upshot is that the subgrid scales vanish on element boundaries, i.e.,

u′ = 0 on Γe, e = 1, 2, · · · , nel (104)

This means the subgrid scales are completely confined within element interiors.
There is an intimate link between element Green’s functions and residual-free bubbles. This

idea was first explored in Brezzi et al. (1997), in which it was shown that, for the case governed
by (101),

Be(y) =

∫

Ωe

g′e(x, y) dΩx (105)

This result can be easily derived as follows:
∫

Ωe

g′e(x, y) dΩx = (g′e, 1)Ωe
x

= (g′e,LBe)Ωe
x

= a(g′e, Be)Ωe
x

= (L∗g′e, Be)Ωe
x

= (δ, Be)Ωe
x

= Be(y) (106)

Another way to derive (105) is to appeal to the general formula for the Green’s function in
terms of a fine-scale basis, namely (92). Specialized to the present case, (92) becomes

g̃′e(x, y) = Be(x) (a(Be, Be)Ωe)
−1

Be(y) (107)

Note that

a(Be, Be)Ωe = (Be,LBe)Ωe

= (Be, 1)Ωe

=

∫

Ωe

Be dΩ (108)

The result follows by integrating (107) and using (108),
∫

Ωe

g̃′e(x, y) dΩx =

∫

Ωe

Be(x) dΩx (a(Be, Be)Ωe)
−1

Be(y)

= Be(y) (109)

Remarks

1. In general, the relationship between a fine-scale basis and a Green’s function is given
by (92). The result (105) is special to a residual-free bubble governed by (101).

2. In general, the coarse-scale residual will not be constant within an element. For example,
suppose the residual is a linear polynomial in x. Then there are two residual-free bubbles,

one corresponding to 1 and one corresponding to x, say B
(0)
e and B

(1)
e , respectively. B

(0)
e
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is the same as Be, and is given by (105). B
(1)
e may be determined in the same way as

(106):
∫

Ωe

g′e(x, y)xdΩx = (g′e, x)Ωe
x

= (g′e,LB(1)
e )Ωe

x

= a(g′e, B
(1)
e )Ωe

x

= (L∗g′e, B
(1)
e )Ωe

x

= (δ, B(1)
e )Ωe

x

= B(1)
e (y) (110)

As may be seen, B
(1)
e is the first moment of g′e. This is the general case: If the coarse-

scale residual is expanded in terms of a basis of functions, then the residual-free bubbles
are the moments of g′e with respect to the elements of that basis.

3.6. Stabilized methods

Classical stabilized methods are generalized Galerkin methods of the form

a(w̄h, ūh) + (Lw̄h, τ(Lūh − f))Ω′ = (w̄h, f) (111)

where L is typically a differential operator , such as

L = +L Galerkin/least-squares (GLS) (112)

L = +Ladv SUPG (113)

L = −L∗ Multiscale (114)

and τ is typically an algebraic operator . SUPG is a method defined for advective-diffusive
operators, that is, ones decomposable into advective (Ladv) and diffusive (Ldiff) parts. A
stabilized method of the form (114) is referred to as a “multiscale” stabilized method for
reasons that will become apparent shortly.

3.6.1. Relationship of stabilized methods with subgrid-scale models It was shown in Hughes
(1995) that a stabilized method of multiscale type is an approximate subgrid-scale model
in which the algebraic operator τ approximates the integral operator M ′ based on element
Green’s functions,

τ = −M̃ ′ ≈ −M ′ (115)

Equivalently,

τ · δ(y − x) = g̃′e(x, y) ≈ g′(x, y) (116)

The result follows from the calculation
∫

Ω′

∫

Ω′

(−L∗w̄h)(y)g̃′e(x, y)(Lūh − f)(x) dΩx dΩy

=

∫

Ω′

∫

Ω′

(−L∗w̄h)(y)τ · δ(y − x)(Lūh − f)(x) dΩx dΩy

=

∫

Ω′

(−L∗w̄h)(x)τ · (Lūh − f)(x) dΩx (117)
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3.6.2. Formula for τ based on the element Green’s function The approximation

τ · δ(y − x) ≈ g̃′e(x, y) (118)

suggests defining τ by
∫

Ωe

∫

Ωe

τ · δ(y − x) dΩx dΩy =

∫

Ωe

∫

Ωe

g′e(x, u) dΩx dΩy (119)

τ =
1

meas(Ωe)

∫

Ωe

∫

Ωe

g′e(x, y) dΩx dΩy (120)

Remarks

1. The element mean value of the Green’s function provides the simplest definition of τ .
2. This formula is adequate for low-order methods (h-adaptivity). For higher-order

methods (p-adaptivity), accounting for variation of τ over an element may be required.
In this case, it may be assumed, for example, that τ = τ(x, y) is a polynomial of
sufficiently high degree. Given an element Green’s function g′e, an equivalent function τ
can, in principle, always be calculated. Consequently, there is a generalized stabilized
method , that is, a method of the form,

a(w̄h, ūh) −
∑

e

∫

Ωe

∫

Ωe

L∗w̄h(y)τ(x, y)(Lūh − f)(x) dΩx dΩy = (w̄h, f) (121)

equivalent to the element Green’s function method. The generalized stabilized method
involves determining τ such that the following equivalence condition is satisfied

∫

Ωe

∫

Ωe

L∗w̄h(y)τ(x, y)(Lūh − f)(x) dΩx dΩy

=

∫

Ωe

∫

Ωe

L∗w̄h(y)g′e(x, y)(Lūh − f)(x) dΩx dΩy ∀w̄h, ūh ∈ V̄ (122)

Thus a full equivalence exists as indicated in Figure 22. Examples of the calculation of
τ by way of this procedure will be presented subsequently.

Examples
Two one-dimensional examples are considered, the advection-diffusion equation and the

Helmholtz equation. In both cases it is assumed that standard piecewise linears are used for
the coarse-scale basis. Consequently, determination of the element Green’s function may be
performed using the strong-form counterpart of (102), namely

L∗g′e(x, y) = δ(x − y) ∀x ∈ Ωe

g′e(x, y) = 0 ∀x ∈ Γe

}

e = 1, 2, · · · , nel (123)

Remark
In one dimension , use of the element Green’s function g′e results in u = ū + u′ being
pointwise exact for any

ū =

n̄nodes
∑

A=1

N̄AūA (124)

and ū being an end-node interpolant of u. This result holds for all problems.
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residual free bubbles element Green’s functions

stabilized methods

Figure 22. Stabilized methods can be constructed which are equivalent to methods based on element
Green’s functions, which in turn are equivalent to methods developed from the residual-free bubbles
concept. Historically, stabilized methods preceded the residual-free bubbles and element Green’s
function approaches, and there are certain stabilized methods (e.g., SUPG and GLS) which have been
established for some time that are not, strictly speaking, equivalent to these concepts. Nevertheless,
they have been justified independently by mathematical analysis and numerical testing, and, in the

case of SUPG, may be viewed as a simplified variational multiscale method.

(a) α = 0.1 (b) α = 1 (c) α = 2

(d) α = 5 (e) α = 10 (f) α = 100

Figure 23. Element Green’s function for the one-dimensional advection-diffusion equation as a function
of element Péclet number (α).

Advection-diffusion equation Let

L = Ladv + Ldiff (125)

where

Ladv = a
d

dx
(126)

Ldiff = −κ
d2

dx2
(127)
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g′e(·, y)

y

α → ∞

α > 1
advection dominated

α < 1
diffusion dominated

α → 0

Figure 24. Schematic behavior of the element Green’s function for the advection-diffusion operator,
for y fixed.

and a and κ are assumed to be positive constants. Consider the homogeneous Dirichlet
problem

Lu = f in Ω = [0, L] (128)

u = 0 on Γ = {0, L} (129)

Note that

L∗ = L∗
adv + L∗

diff (130)

= −Ladv + Ldiff (131)

The solution of (123) is given by

g′e(x, y) =

{

C1(y)(1 − e−2α x
h ) x ≤ y

C2(y)(e−2α x
h − e−2α) x ≥ y

(132)

where

C1(y) =
1 − e−2α(1− y

h )

a (1 − e−2α)
(133)

C2(y) =
e2α y

h − 1

a (1 − e−2α)
(134)

α =
ah

2κ
(element Péclet number) (135)
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and h = meas(Ωe) is the element length. This element Green’s function is shown in Figure 23
for various element Péclet numbers. For fixed y it behaves as shown in Figure 24.

By virtue of the fact that the coarse scales are piecewise linear and Lūh and L∗w̄h are
therefore constants on each element, the simple formula (120) suffices to define a constant τ
satisfying (122), that is, one equivalent to use of the element Green’s function, viz.,

τ =
1

meas(Ωe)

∫

Ωe

∫

Ωe

g′e(x, y) dΩx dΩy

=
h

2a

(

cothα − 1

α

)

(136)

Remarks

1. This is a well known formula from the theory of stabilized methods. It was originally
derived using Fourier methods on regular meshes and assuming constant coefficients.

2. This τ results in a nodally exact stabilized method for piecewise linear N̄A’s and
element-wise constant a, κ and f . Remarkably, element lengths need not be uniform.

3. By virtue of (105) and (135), the same optimal τ is obtained from the residual-free
bubble, namely,

τ =
1

meas(Ωe)

∫

Ωe

Be(x) dΩ

=
h

2a
(cothα − 1

α
) (137)

4. If the fine-scales are modeled by a single quadratic polynomial bubble in each element,
the approximate element Green’s function is given by

g̃′e(x, y) =
N ′(x)N ′(y)

a(N ′, N ′)
(138)

Employing (120) results in

τ̃ =
h2

12κ
=

h

2a

α

3
(139)

Comparing (139) with (137) reveals that τ̃ is much larger than τ in advection dominated
cases. See Figure 25. This results in a method for the coarse scales which is overly
diffusive.
Although the addition of the quadratic polynomial bubble produces an overly diffuse
method, it is a curious fact that in conjunction with the addition of an appropriately
defined artificial diffusivity in the fine-scale equation, the modified method is capable
of generating the optimal value of τ given by (137). This may be seen as follows: in the
fine-scale equation, (59), replace the term a(w′, u′) by a(w′, u′) + a′(w′, u′) where

a′(w′, u′) = (∇w′, κ′∇u′) (140)

in which κ′ is the fine-scale artificial diffusivity . In the present, one-dimensional
case, this term is simply (dw′

dx , κ′ du′

dx ) and reduces to element integrals of the derivatives
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Figure 25. Behavior τ̃ and τ as α → ∞.

of the quadratic polynomial bubbles. From the previous development it is clear that
this will produce a τ of the same form as (139) but with κ replaced by κ + κ′, namely

τ ′ =
h2

12(κ + κ′)
(141)

Equating τ ′ with τ leads to the following definition for κ′:

κ′ = κ

(

α

3

1

coth α − 1
α

− 1

)

=
ah

6

1

coth α − 1
α

− κ (142)

The “effective diffusivity” in the fine scales is

κ + κ′ =
ah

6

1

coth α − 1
α

= O(h) (143)

This method is identical to the one produced by the exact element Green’s function and
thus is superconvergent with respect to the nodal values (i.e., it is exact at the nodes),
and attains optimal coarse-scale convergence rates in the L2 and H1 norms (i.e., O(h2)
and O(h), resp.). It is a somewhat remarkable fact that adding artificial diffusivity to the
fine-scale equation actually reduces the diffusive effect in the coarse-scale equation. If
an O(h) effective diffusivity of the form (143) was added to all scales (i.e., to (56)), then
the method would amount to the classical artificial diffusivity method which is overly
diffusive and limited to O(h) in L2 and O(h1/2) in H1, independent of the polynomial
order of the elements employed. It may be concluded that fine-scale artificial diffusivity
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is a viable modeling tool in multiscale analysis and one that is very different than,
and superior to, classical artificial diffusivity in all scales. Of course, to obtain (142),
the optimal value of τ , given by (137), needed to be known. (The idea of a fine-scale
artificial diffusivity is due to Guermond (2001), and has been further analysed in Brezzi
et al. (2000).)

5. The approximate fine-scale solution is given by

u′(y) ≈ −
∫

Ω′

g̃′(x, y)(Lūh − f)(x) dΩx −
∫

Γ′

g̃′(x, y)[[būh]](x) dΓx (144)

where g̃′ is an approximation to the fine-scale Green’s function, g′. For the
multidimensional advection-dominated case, the jump term can be neglected and the
approximation Lūh ≈ a · ∇ūh can be used. Furthermore, employing the approximation
(116) results in

u′ ≈ −τ(a · ∇ūh − f) (145)

Assuming τ has the form h/(2|a|) in the advection-dominated case, (145) becomes

u′ ≈ − h

2|a| (a · ∇ūh − f) (146)

This may be used as a simple, local, error estimator for the advection-dominated case.

Helmholtz equation The set-up is identical to the previous example. Consider the
Dirichlet problem, (128)–(129), for the Helmholtz equation in which

L = − d2

dx2
− k2 (147)

is the Helmholtz operator and k is the wave number . Assume k ∈ R, corresponding to the
case of propagating waves. Note L∗ = L. The Green’s function for an element of length h
is given by

g′e(ξ, η) =















sin(kh(1 + ξ)/2) sin(kh(1 − η)/2)

k sin(kh)
, ξ < η

sin(kh(1 − ξ)/2) sin(kh(1 + η)/2)

k sin(kh)
, ξ ≥ η

(148)

where ξ and η are normalized, bi-unit coordinates,

−1 ≤ ξ, η ≤ +1 (149)

The element Green’s function is depicted in Figure 26 for various element wave numbers.
This time Lūh and L∗w̄h vary linearly over each element and satisfaction of the equivalence

condition, (122), entails a non-constant τ , as follows:

τ(ξ, η) = τ00 + τ11ξη ≈ g′e(ξ, η) (150)

where

τij =

∫ +1

−1

∫ +1

−1

ξiηjg′e(ξ, η) dξ dη

∫ +1

−1

∫ +1

−1

ξ2iη2j dξ dη

(151)

Remarks
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η
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(a) kh = 2π/10

η
ξ

(b) kh = π

η
ξ

(c) kh = 2π

η
ξ

(d) kh = 4π

Figure 26. Element Green’s function (kg′

e) for the one-dimensional Helmholtz equation as a function
of wave number (kh).

1. Oberai and Pinsky (1998) have also derived an element Green’s function in two
dimensions for a bilinear rectangle and an equivalent τ . Similar results for three
dimensions are also easily derived.

2. As in the previous example, this τ results in a nodally exact stabilized method for
piecewise linear N̄A’s and element-wise constant k and f , for an arbitrary nonuniform
mesh.

3. Hughes and Sangalli (2005) have explicitly determined the advection-diffusion fine-scale
Green’s function for higher-order elements in one-dimension. The approach uses the
projector induced by minimizing u′ with respect to the H1-seminorm. It is shown that
introducing an auxiliary condition, such as minimizing the H1-seminorm, is necessary to
make the problem for u′ well-posed. It is also shown that the structure of the fine-scale
Green’s function is strongly influenced by the particular projector utilized. For example,
in one-dimension, the H1-projector leads to a fine-scale Green’s function which is local
to individual elements, whereas the L2-projector leads to a globally supported fine-scale
Green’s function. Hughes and Sangalli (2005) also elucidate the relationship between
H1-optimality and SUPG.

4. A multiscale discontinuous Galerkin (DG) method was proposed in Hughes et al. (2006),
in which element-wise problems are used to eliminate the discontinuous part of the
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solution in favor of the continuous part. This significantly reduces the size of the linear
algebraic problem to be solved, and successfully mitigates the proliferation of degrees-
of-freedom problem which has plagued DG methods. Results for the multiscale DG
method have the same quality as the donor DG method, and are in some cases superior.
See also Bochev, Hughes and Scovazzi (2006), for an alternative interpretation and
generalizations. A mathematical analysis of the method is presented in Buffa, Hughes
and Sangalli (2005).

3.7. Summary

In this section, the variational multiscale formulation for an abstract Dirichlet problem was
described. The case in which finite elements are used to represent the coarse scales was
considered and an exact equation governing the coarse scales was derived. This equation
amounts to the Galerkin formulation plus an additional term which depends on the
distributional form of the residual (i.e., element interior and interface jump terms) and a
fine-scale Green’s function. A representation was also derived for the fine-scale solution, which
amounts to the error in the coarse scales. The results serve as paradigms for subgrid-scale
models and a posteriori error estimators.

To understand the nature of the fine-scale Green’s function, hierarchical p-refinement and
bubbles were considered. An explicit formula for the fine-scale Green’s function was obtained
in terms of the hierarchical (i.e., fine-scale) basis. This formula suggests that the fine-scale
Green’s function can be represented in terms of a basis of functions having local support.
Subsequent discussion dealt with developing practical approximations.

The concepts of residual-free bubbles, element Green’s functions, and stabilized methods
were reviewed, and relationships among them were summarized.

4. Space-time Formulations

In Sections 2 and 3, a methodology was described to address problems in which scales are
present that are viewed as numerically unresolvable, and accurate computation of the resolvable
scales necessitates incorporating the effects of the unresolvable scales. The analysis of Section
3 was restricted to steady phenomena. In this section the study of the variational multiscale
method is continued, generalizing the development of the subgrid-scale models to the time-
dependent case. A first-order in time, second-order in space, non-symmetric, linear partial
differential equation is considered. Creation of the subgrid-scale model of the initial/boundary-
value problem requires solution of an element problem for the unresolved scales which is
overspecified. This theoretical impediment is overcome by way of an elliptic regularization
procedure, giving rise to an element Green’s function problem. In the limiting case of the
regularization parameter, the desired causal Green’s function of the adjoint operator is derived.
This enables the subgrid scales to be determined analytically and represented in terms of the
residual of the resolved scales.

The variational setting for the developments is space-time. That is, a fully-discrete method
is developed entirely from finite element concepts. It is believed this provides the most
theoretically coherent framework for the derivations.
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As in Section 3, the subgrid-scale model, when numerically approximated by Galerkin’s
method, provides, on the one hand, a paradigm for bubble function finite element methods,
and, on the other hand, an exposé of the theoretical foundations of stabilized methods. Both
bubbles and stabilized methods are thus identified as approximate subgrid-scale models. In
the case of stabilized methods, this identification leads to formulas enabling the calculation of
τ , the parameter present in stabilized methods.

To illustrate the use of the theory in calculating τ , the simple case of an ordinary differential
equation in time is considered. The known optimal value is arrived at, complementing the
analogous calculation for the advection-diffusion operator in space, presented in Section 3.

4.1. Finite elements in space-time

Consider a discretization of the space-time domain in question into time slabs which are in
turn discretized into space-time elements. A schematic illustration is presented in Figure 27.

Slab Qn is the space-time domain bounded by spatial hypersurfaces at times tn and tn+1.
The lateral boundary of Qn is denoted by Pn. A decomposition of this type is a suitable
starting point for the variational formulation of equations of evolution. A discrete problem
is solved on each slab sequentially, starting with the first. This gives rise to a fully-discrete
time-stepping algorithm. For appropriately formulated finite element methods, the space-time
approach is amenable to a priori and a posteriori error estimation, adaptive strategies, and
relatively simple moving domain procedures (see, e.g., Aliabadi and Tezduyar (1993), Hughes,
Franca and Hulbert (1989), Hughes and Hulbert (1988), Johnson (1986,1987,1992), Johnson
and Hansbo (1992), Johnson, Nävert and Pitkäranta (1984), Mittal and Tezduyar (1994),
Tezduyar, Behr and Liou (1992), Tezduyar et al. (1992)).

4.2. Subgrid-scale modeling

To simplify subsequent writing, let Q denote a generic space-time slab bounded at t = 0 by
Ω0 and at t = T by ΩT . Thus Q may represent any slab or the entire space-time domain. The
following definitions are important for subsequent developments:

Q′ =

nel
⋃

e=1

Qe (element interiors) (152)

P ′ =

nel
⋃

e=1

P e (element boundaries) (153)

Q = Q = closure(Q′) (154)

P = ∂Q \ (Ω0 ∪ ΩT ) (155)

nel is the number of elements in slab Q. Consider an overlapping sum decomposition in which
ū represents the resolvable scales and u′ represents the unresolvable, or subgrid, scales.
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QnQn
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tn+1tn+1

tntn

tntn

tn−1tn−1

t0t0

Qe
nQe
n

Qe
n−1Qe
n−1

Ω0Ω0

Γ0Γ0

x2x2

x1x1

PnPn

Figure 27. Finite element discretization in space-time.

4.3. Initial/boundary-value problem

Consider the following initial/boundary-value problem: Given f : Q → R, g : P → R, and
u(0−) : Ω0 → R, find u : Q → R, such that

Lu = f in Q (156)

u = g on P (157)

u(0+) = u(0−) on Ω0 (158)
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where, for definiteness, L is taken to be time-dependent, advection-diffusion operator,
that is,

L =
∂

∂t
+ a · ∇ − κ∆ (159)

in which κ > 0 is a given constant and a is a given solenoidal vector field, viz.

∇ · a = 0 (160)

Remark

The results to follow are applicable to a wider class of problems than the one considered
here. However, focusing on it simplifies the presentation.

4.4. Variational multiscale formulation

Let

a(w, u)Q = −
(

∂w

∂t
+ a · ∇w, u

)

Q

− (∇w, κ∇u)Q (161)

where (u, v)Q =

∫

Q

uv dQ. Then

a(w, u)Q = (w,Lu)Q = (L∗w, u)Q (162)

for all sufficiently smooth w, u such that

u = w = 0 on P ′ (163)

where

L∗ = − ∂

∂t
− a · ∇ − κ∆ (164)

Let

u = ū + u′ (165)

w = w̄ + w′ (166)

where we assume

u′ = w′ = 0 on P ′ (167)

The variational equation corresponding to the initial/boundary-value problem is

(w(T−), u(T−))ΩT
+ a(w, u)Q = (w, f)Q + (w(0+), u(0−))Ω0

(168)

In (168), (·, ·)ΩT
and (·, ·)Ω0

denote L2 inner products on ΩT and Ω0, respectively. The
Euler-Lagrange equations corresponding to (168) are (156) and (157). The Dirichlet boundary
condition, (157), is assumed satisfied ab initio by the trial solution ū. Likewise, w̄ is assumed to
satisfy a homogeneous Dirichlet boundary condition. Substituting (165) and (166) into (168)
leads to

(w̄(T−), ū(T−))ΩT
+ a(w̄ + w′, ū + u′)Q = (w̄ + w′, f)Q + (w̄(0+), ū(0−))Ω0

(169)
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Note that the integrals over ΩT and Ω0 are unaffected by u′ and w′ because of assumption
(167). Assuming w̄ and w′ are linearly independent, gives rise to two subproblems:

(w̄(T−), ū(T−))ΩT
+ a(w̄, ū)Q + a(w̄, u′)Q = (w̄, f)Q + (w̄(0+), ū(0−))Ω0

(170)

(w̄(T−), ū(T−))ΩT
+ a(w̄, ū)Q + (L∗w̄, u′)Q = (w̄, f)Q + (w̄(0+), ū(0−))Ω0

(171)

a(w′, ū)Q + a(w′, u′)Q = (w′, f)Q (172)

(w′,Lū)Q + (w′,Lu′)Q = (w′, f)Q (173)

In deriving (171) and (173) we used (162).
Equation (173) is equivalent to the following system of element-wise problems for u′:

Lu′ = −(Lū − f) in Qe

u′ = 0 on P e

}

e = 1, 2, . . . , nel (174)

Unfortunately, these problems are ill-posed in the sense that they are overspecified. The
space-time Dirchlet condition u′ = 0 on P e cannot be satisfied due to the causal evolutionary
structure of L. To circumvent this difficulty, consider an elliptic regularization of (174):

Lεu
′
ε = −(Lū − f) in Qe

u′
ε = 0 on P e

}

e = 1, 2, . . . , nel (175)

where

Lε =
∂

∂t
+ a · ∇ − κ∆ − ε

∂2

∂t2
(176)

These problems are well-posed for all ε > 0.
The solution of (175) can be obtained with the aid of the corresponding Green’s function

problems
L∗

εg
′
ε = δ in Qe

g′ε = 0 on P e

}

e = 1, 2, . . . , nel (177)

Thus

u′
ε(r0) = −

∫

Q′

g′ε(r, r0)(Lū − f)(r)dQr (178)

u′
ε = M ′

ε(Lū − f) (179)

where

r = {x, t} ∈ Q, r0 = {x0, t0} ∈ Q (180)

Remarks

1. Lū − f is the residual of the resolved scales.
2. The subgrid scales are driven by the residual of the resolved scales.

The desired variational equation is obtained by taking the limit ε → 0. Let

g′ = lim
ε→0

g′ε (181)

M ′ = lim
ε→0

M ′
ε (182)
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Note that g′ is the causal Green’s function (see, e.g., Stakgold (1979)) for the adjoint
operator L∗.

Substituting u′
ε into (171) for u′ and taking the limit ε → 0 yields

(w̄(T−), ū(T−))ΩT
+ a(w̄, ū)Q + (L∗w̄, M ′(Lū − f))Q′ = (w̄, f)Q + (w̄(0+), ū(0−))Ω0

(183)
where

(L∗w̄, M ′(Lū − f))Q′ = −
∫

Q′

∫

Q′

L∗w̄(r0)g
′(r, r0)(Lū − f)(r)dQrdQr0

(184)

and
∫

Q′

=

nel
∑

e=1

∫

Qe

(185)

Remarks

1. Note that this integration is over element interiors Q′

2. The effect of the unresolved scales on the resolved scales is exactly accounted for, up to
the assumption u′ = 0 on P ′.

3. The nonlocal effect of the unresolved scales on the resolved scales is confined within
individual elements.

The variational equation (183) can be written succinctly as

B(w̄, ū; g′) = L(w̄; g′) (186)

where:

B(w̄, ū; g) = (w̄(T−), ū(T−))ΩT
+ a(w̄, ū)Q + (L∗w̄, M(Lū))Q′ (187)

L(w̄; g) = (w̄, f)Q + (w̄(0+), ū(0−))Ω0
+ (L∗w̄, Mf)Q′ (188)

The numerical version of (186) can be developed by selecting finite element approximations of
the trial solution and weighting functions, ūh ≈ ū and w̄h ≈ w̄, respectively, and approximating
the element Green’s function, g̃′ ≈ g′, viz.

B(w̄h, ūh; g̃′) = L(w̄h; g̃′) (189)

This amounts to applying Galerkin’s method to the subgrid-scale model obtained from
the variational multiscale procedure.
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4.5. Bubbles in space-time

Now consider typical finite element shape function expansions plus bubbles (see, e.g. Baiocchi,
Brezzi and Franca (1993), Brezzi et al. (1992), Franca and Farhat (1994a,1994b,1995), Franca
and Frey (1992)). The set-up is as follows:

ūh =

nnodes
∑

A=1

NAūA (likewise w̄h) (190)

NA = standard finite element shape functions (191)

ūA = nodal values (192)

u′ =

nbubbles
∑

A=1

N ′
Au′

A (likewise w′) (193)

N ′
A = bubble functions (194)

u′
A = generalized coordinates (195)

The situation for linear finite element shape functions plus typical bubbles is illustrated in
Figure 21.

Substituting these functions into (171) and (173), and eliminating u′
A by static

condensation yields:

B(w̄h, ūh; g̃′) = L(w̄h; g̃′) (196)

where

B(w̄h, ūh; g̃′) = (w̄h(T−), ūh(T−))ΩT
+ a(w̄h, ūh)Q + (L∗w̄h, M̃ ′(Lūh))Q′ (197)

L(w̄h; g̃′) = (w̄h, f)Q + (w̄(0+), ū(0−))Ω0
+ (L∗w̄h, M̃ ′f)Q′ (198)

and

(L∗w̄h, M̃ ′(Lūh − f))Q′ = −
∫

Q′

∫

Q′

(L∗w̄h)(r0)g̃
′(r, r0)(Lūh)(r)dQrdQr0

(199)

g̃′(r, r0) =

nbubbles
∑

A,B=1

N ′
A(r)[a(N ′

B , N ′
A)]−1N ′

B(r0) (200)

This is an approximate subgrid scale model. Bubbles, according to (200), generate an
approximate element Green’s function, g̃′ ≈ g′. In practice, the quality of the approximation
may be poor, because standard polynomial bubbles do not adequately represent the fine-scale
structures which characterize u′.

4.6. Stabilized methods

Stabilized methods in the present case are generalized Galerkin methods of the form

(w̄h(T−), ūh(T−))ΩT
+a(w̄h, ūh)Q+(Lw̄h, τ(Lūh−f))Q′ = (w̄h, f)Q+(w̄(0+), ū(0−))Ω0

(201)
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where, typically, L is a differential operator and τ is an algebraic operator. Examples of
L are

L = +L Galerkin/least-squares (GLS)
L = +Ladv = ∂

∂t + a · ∇ SUPG
L = −L∗ Multiscale

(202)

By comparing (200) with (189), a stabilized method of multiscale type is seen to be an
approximate subgrid scale model in which the algebraic operator τ approximates the exact
integral operator M , i.e.,

τ = −M̃ ′ ≈ −M ′ (203)

Equivalently,
τ · δ(r0 − r) = g̃′(r, r0) ≈ g′(r, r0) (204)

This assertion is established by the following calculation:

∫

Q′

∫

Q′

(−L∗w̄h)(r0)g̃
′(r, r0)(Lūh − f)(r)dQrdQr0

=

∫

Q′

∫

Q′

(−L∗w̄h)(r0)τδ(r0 − r)(Lūh − f)(r)dQrdQr0

=

∫

Q′

(−L∗w̄h)(r)τ(Lūh − f)(r)dQr (205)

4.6.1. Formulas for τ Formulas for τ may be derived from (204). For example, assume it is
sufficient to approximate τ as a constant over each element. Then

∫

Qe

∫

Qe

τδ(r0 − r)dQrdQr0
=

∫

Qe

∫

Qe

g̃′(r, r0)dQrdQr0

≈
∫

Qe

∫

Qe

g′(r, r0)dQrdQr0
(206)

τ =
1

meas(Qe)

∫

Qe

∫

Qe

g′(r, r0)dQrdQr0
(207)

4.6.2. Example: First-order ordinary differential equation in time To demonstrate the use of
formula (207), consider the simple example of a first-order ordinary differential equation in
time. (In Section 3 the exact value of τ for the steady advection-diffusion operator in space
was determined.) Let

L =
d

dt
(208)

Lε = L − ε
d2

dt2
(209)

The initial-value problem is: Given f : Q → R, u(0−) ∈ R, find u : Q → R such that

Lu = f in Q = [0, T ] (210)

u(0+) = u(0−) (211)
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g′e(·, y)

y

α → ∞

α > 1

α < 1

α → 0

Figure 28. Green’s function for L
∗

ε . The limit α → ∞ is the causal Green’s function for L
∗.

The element Green’s function problems for the regularized equation are

L∗
εg

′
ε = δ in Qe

g′ε = 0 on ∂Qe

}

e = 1, 2, . . . , nel (212)

where

L∗
ε =

(

d

dt
− ε

d2

dt2

)∗

= − d

dt
− ε

d2

dt2
(213)

The element Green’s function is sketched in Figure 28 as a function of α = ∆t/(2ε), where
∆t = meas(Qe) = element “length”. Note that the limit α → ∞ (equivalently ε → 0), gives
rise to the causal Green’s function for L∗.

Let

τα =
1

meas(Qe)

∫

Qe

∫

Qe

g(t, t0)dQtdQt0 =
∆t

2

(

coth α − 1

α

)

(214)

Then

τ = lim
α→∞

τα =
∆t

2
(215)

Remark
This expression for τ is known to be the correct one for the case at hand from the

mathematical theory of stabilized methods. It is clear that this value of τ is as good as using
the exact Green’s function representation as long as the trial functions are piecewise constant
with respect to time on element subdomains.
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4.7. Summary

The development of a class of subgrid scale models for time-dependent problems was presented.
The corresponding steady case was described previously in Section 3. It was shown that bubble
functions give rise to approximate element Green’s functions in the subgrid-scale models, albeit
typically not good approximations. Likewise, stabilized methods were identified as approximate
subgrid-scale models. Formulas for τ emerged from this identification and this opens the way
to improved representations of τ in stabilized methods for equations of evolution. Stabilized
methods have been shown to be ‘good’ numerical methods for problems in which the classical
Galerkin finite element method fails (see e.g. Barbosa and Hughes, 1992; Codina, 1998, 2000;
Franca and Do Carmo, 1989; Franca and Farhat, 1995; Franca and Frey, 1992; Franca, Frey
and Hughes, 1992; Franca and Hughes, 1988, 1993; Franca et al., 1988; Franca, Hughes and
Stenberg, 1993; Franca and Valentin, 2000; Hughes and Brezzi, 1989; Hughes and Franca,
1987; Hughes, Franca and Balestra, 1986; Hughes, Franca and Hulbert, 1989; Hughes, Hauke
and Jansen, 1994 in which error estimates, stability results, and verification problems are
presented). The results described in this and the previous section provide an alternative
perspective of stabilized methods.

Starting with partial differential equations plus boundary and initial conditions, application
of the variational multiscale method, then Galerkin’s method, results in a numerical method
that has the form of a stabilized method. In addition, it provides detailed expressions that
enable one to derive more accurate stabilized methods.

5. Stabilized Methods for Advective-Diffusive Equations

Stabilized methods for steady and unsteady advective-diffusive systems are described. Fairly
general boundary conditions, leading to well-posed variational problems, are considered. The
boundary-value problems are specialized to the hyperbolic case for completeness. Galerkin,
SUPG, Galerkin/least-squares, and multiscale stabilized finite element methods are contrasted.
An a priori error analysis of Galerkin least-squares is presented. The developments for the
steady case are generalized to the unsteady case by way of space-time formulations employing
the discontinuous Galerkin method with respect to time. Symmetric advective-diffusive systems
are also considered. The set-up so closely follows the scalar case that completely analogous
results are obtained. In order to fully comprehend these developments, the reader is urged to
first carefully study the scalar case, as the system case is presented in virtually equation-for-
equation form with little amplification.

5.1. Scalar steady advection-diffusion equation

5.1.1. Preliminaries Let Ω be an open, bounded region in Rd, where d is the number of space
dimensions. The boundary of Ω is denoted by Γ and is assumed smooth. The unit outward
normal vector to Γ is denoted by n = (n1, n2, . . . , nd). Let a denote the given flow velocity,
assumed solenoidal, that is, ∇ · a = 0. The following notations prove useful:

an = n · a (216)

a+
n = (an + |an|)/2 (217)

a−
n = (an − |an|)/2 (218)
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Γ−Γ−

Γ+Γ+

ΓhΓh

ΓgΓg

Γ−
hΓ−
h Γ+

hΓ+
h

Γ+
gΓ+
gΓ−

gΓ−
g

Figure 29. Illustration of boundary partitions.

Let {Γ−, Γ+} and {Γg, Γh} be partitions of Γ, where

Γ− = {x ∈ Γ | an(x) < 0} (inflow boundary) (219)

Γ+ = Γ − Γ− (outflow boundary) (220)

The following subsets are also needed (see Figure 29):

Γ±
g = Γg

⋂

Γ± (221)

Γ±
h = Γh

⋂

Γ± (222)

Let κ = const. > 0 denote the diffusivity. Various fluxes are employed in the sequel:

σa(u) = −au (advective flux) (223)

σd(u) = κ∇u (diffusive flux) (224)

σ = σa + σd (total flux) (225)

σa
n = n · σa (226)

σd
n = n · σd (227)

σn = n · σ (228)

Let D denote a domain (e.g., Ω, Γ, etc.). The L2(D) inner product and norm are denoted
by (·, ·)D and ‖ · ‖D, respectively.

5.1.2. Problem statement The problem consists of finding u = u(x) ∀x ∈ Ω, such that

Lu ≡ −∇ · σ(u) = f in Ω (229)

u = g on Γg (230)

−a−
n u + σd

n(u) = h on Γh (231)
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where f : Ω → R, g : Γg → R, and h : Γh → R are prescribed data. (229) is an elliptic
equation. The boundary condition (231) can be better understood by letting

h =

{

h− on Γ−
h

h+ on Γ+
h

(232)

Thus, (231) may be written in the equivalent form:

σn(u) = h− on Γ−
h (total flux b.c.) (233)

σd
n(u) = h+ on Γ+

h (diffusive flux b.c.) (234)

5.1.3. Variational formulation The variational form of the boundary-value problem is stated
in terms of the following function spaces:

S = {u ∈ H1(Ω) | u = g on Γg} (235)

V = {w ∈ H1(Ω) | w = 0 on Γg} (236)

The objective is to find u ∈ S such that ∀w ∈ V

B(w, u) = L(w) (237)

where

B(w, u) ≡ (∇w, σ(u))Ω + (w, a+
n u)Γh

(238)

L(w) ≡ (w, f)Ω + (w, h)Γh
(239)

The formal consistency of (237) with the strong form of the boundary-value problem, that
is, (229)–(231), may be verified as follows:

0 = B(w, u) − L(w)

= −(w,∇ · σ(u))Ω + (w, σn(u))Γh
+ (w, a+

n u)Γh
− (w, f)Ω − (w, h)Γh

= −(w,∇ · σ(u) + f)Ω + (w,−a−
n u + σd

n(u) − h)Γh
(240)

Stability , or coercivity , is established as follows

B(w, w) = (∇w,−aw + κ∇w)Ω + (w, a+
n w)Γh

= −1

2
(w, anw)Γh

+ κ‖∇w‖2
Ω + (w, a+

n w)Γh

= κ‖∇w‖2
Ω +

1

2

∥

∥

∥
|an|

1
2 w
∥

∥

∥

2

Γh

, ∀w ∈ V (241)

For future reference, define:
|||w|||2 = B(w, w) (242)

Finally, the global conservation of flux is investigated. Consider the case in which Γg = ∅.
Set w ≡ 1 in (237):

0 = B(1, u) − L(1)

=

∫

Γ+

a+
n udΓ −

∫

Ω

fdΩ −
∫

Γ

hdΓ, (243)
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which may be written equivalently as

0 =

∫

Γ−

h−dΓ +

∫

Ω

fdΩ +

∫

Γ+

(

−anu + h+
)

dΓ, (244)

This confirms the conservation property for the case assumed. If Γg 6= ∅, ‘consistent’ fluxes
on Γg may be defined via a mixed variational formulation that automatically attains global
conservation. See Hughes (1987, p. 107) and Hughes et al. (2000, 1987) for background.

5.1.4. Hyperbolic case In the absence of diffusion, a boundary condition on the outflow
boundary cannot be specified. The equations of the boundary-value problem are

Lu ≡ −∇ · σa(u) = f in Ω (245)

u = g on Γ−
g (246)

σa
n(u) = h− on Γ−

h (247)

The variational operators are defined as

B(w, u) ≡ (∇w, σa(u))Ω + (w, a+
n u)Γ (248)

L(w) ≡ (w, f)Ω + (w, h−)Γ−

h
(249)

Consistency, stability and conservation are established as follows:

Consistency

0 = B(w, u) − L(w)

= −(w,∇ · σa(u))Ω + (w,−anu)Γ + (w, a+
n u)Γ − (w, f)Ω − (w, h−)Γ−

h

= −(w,∇ · σa(u) + f)Ω + (w,−a−
n u − h−)Γ−

h
(250)

Stability

B(w, w) = (∇w,−aw)Ω + (w, a+
n w)Γ

= −1

2
(w, anw)Γ + (w, a+

n w)Γ

=
1

2

∥

∥

∥
|an|

1
2 w
∥

∥

∥

2

Γ
, ∀w ∈ V (251)

Conservation (Γ−
g = ∅)

0 = B(1, u) − L(1)

=

∫

Γ

a+
n dΓ −

∫

Ω

f dΩ −
∫

Γ−

h

h dΓ (252)

Equivalently,

0 =

∫

Γ

h− dΓ +

∫

Ω

f dΩ +

∫

Γ+

−anu dΓ (253)
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c© 2004 John Wiley & Sons, Ltd.



57

5.1.5. Finite element formulations Consider a partition of Ω into finite elements. Let Ωe be
the interior of the eth element, let Γe be its boundary, and

Ω′ =
⋃

e

Ωe (element interiors) (254)

Γ′ =
⋃

e

Γe \ Γ (element interfaces) (255)

Let Sh ⊂ S, Vh ⊂ V be finite element spaces consisting of continuous piecewise polynomials
of order k. As a point of departure, consider the classical Galerkin method :

Find uh ∈ Sh such that ∀wh ∈ Vh

B(wh, uh) = L(wh) (256)

Remark
The element Peclet number is defined by α = h|a|/(2κ). The entire range of α, that is,

0 < α < ∞, is important. The advection dominated case (i.e., α large) is viewed as “hard”.
The Galerkin method possesses poor stability properties for this case. Spurious oscillations are
generated by unresolved internal and boundary layers. The reason B(w, u) is not capable of
suppressing the spurious oscillations can also be easily inferred from its stability bound (251).
This bound indicates that the bilinear form of the Galerkin method does not exercise any
control over the first derivatives of the solution. As a result, the norm of the gradient of the
solution can grow.

Methods with improved stability properties are given below:

SUPG

BSUPG(wh, uh) = LSUPG(wh) (257)

BSUPG(wh, uh) ≡ B(wh, uh) + (τa · ∇wh,Luh)Ω′ (258)

LSUPG(wh) ≡ L(wh) + (τa · ∇wh, f)Ω′ (259)

Galerkin/least-squares

BGLS(wh, uh) = LGLS(wh) (260)

BGLS(wh, uh) ≡ B(wh, uh) + (τLwh,Luh)Ω′ (261)

LGLS(wh) ≡ L(wh) + (τLwh, f)Ω′ (262)

Multiscale

BMS(wh, uh) = LMS(wh) (263)

BMS(wh, uh) ≡ B(wh, uh) − (τL∗wh,Luh)Ω′ (264)

LMS(wh) ≡ L(wh) − (τL∗wh, f)Ω′ (265)

L∗(wh) ≡ −a · ∇wh − κ∆wh (∆ is the Laplace operator) (266)

Remarks

1. In the hyperbolic case, or for piecewise linear elements in the general case, SUPG,
Galerkin/least-squares, and multiscale become identical.

2. SUPG, Galerkin/least-squares, and multiscale stabilized methods are residual
methods. That is, (257), (260), and (263) are satisfied if uh is replaced by u, the
exact solution of the boundary-value problem.
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Figure 30. Definition of ζ(α).

5.1.6. Error analysis The SUPG method was originally analyzed in Johnson, Nävert
and Pitkäranta (1984) and Nävert (1982). In this section an a priori error analysis of
Galerkin/least-squares is performed. The multiscale method may be analyzed using similar
techniques.

Let e = uh − u denote the error in the finite element solution. By Remark 2, above,

BGLS(wh, e) = 0, ∀wh ∈ Vh (267)

This is referred to as the consistency condition for Galerkin/least-squares.
Let

∣

∣

∣

∣

∣

∣wh
∣

∣

∣

∣

∣

∣

2

GLS
=
∣

∣

∣

∣

∣

∣wh
∣

∣

∣

∣

∣

∣

2
+
∥

∥

∥
τ

1
2Lwh

∥

∥

∥

2

ω̃
(268)

By (261) and (268),

BGLS(wh, wh) =
∣

∣

∣

∣

∣

∣wh
∣

∣

∣

∣

∣

∣

2

GLS
, ∀wh ∈ Vh (269)

This is the stability condition for Galerkin/least-squares.

Remarks

1. Stability is less straightforward for SUPG and multiscale. One needs to invoke an
“inverse estimate” and specific properties of τ . These assumptions are seen to be
unnecessary for establishing the stability of Galerkin/least-squares. However, they
resurface in the convergence analysis.
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2. A term of the form ‖wh‖2
Ω can be added to (268) by employing a change of variables.

See Johnson, Nävert and Pitkäranta (1984) and Nävert (1982) for further discussion.
3. For the related residual-free bubble approach (that coincides with SUPG, with a specific

choice of τ for linear elements, but is slightly different for quadratic and higher-order
elements) error estimates were proved in Brezzi et al. (1999) and Brezzi, Marini and Süli
(2000). Additional results, including local error bounds were proved in Sangalli (2000).
See also Asensio, Russo, and Sangalli (2004) for additional comments on residual-free
bubbles for quadratic elements.

4. The quasi-optimality of SUPG methods with respect to the suitable problem-dependent
“ideal” norms was analyzed in depth by Sangalli (2003).

5. SUPG and the related residual-free bubble methods were also analyzed from the point
of view of a posteriori error estimates in Russo (1996b), Verfürth (1998), Papastavrou
and Verfürth (2000), Sangalli (2001), and references therein.

Let ũh ∈ Vh denote an interpolant of u. The interpolation error is denoted by η = ũh − u.
Thus, e = eh + η, where eh ∈ Vh.

It is assumed that τ possesses the following properties:

τ = O

(

h

|a|

)

, α large (270)

τ = O

(

h2

κ

)

, α small (271)

A specific choice of τ satisfying these properties is given by

τ =
1

2

h

|a|ζ(α) (272)

where ζ(α) is illustrated in Figure 30. (See Hughes, Mallet and Mizukami (1986), Appendix I,
for some other possibilities.)

For sufficiently smooth u, standard interpolation theory (see, e.g., Ciarlet (1978)) and the
above asymptotic properties of τ lead to the following interpolation estimate:

2
∥

∥

∥
τ− 1

2 η
∥

∥

∥

2

Ω
+ κ ‖∇η‖2

Ω +
∥

∥

∥
|an|

1
2 η
∥

∥

∥

2

Γh
+
∥

∥

∥
τ

1
2Lη

∥

∥

∥

2

Ω′

≤ cuh2l (273)

2l =

{

2k + 1, α large
2k, α small

(274)

where cu is a function of u. The notation cu is used subsequently, it being understood that in
each instance its value may change by a multiplicative constant.

An inverse estimate also needs to be introduced. The appropriate form in the present
circumstances is

∥

∥∆wh
∥

∥

Ω′
≤ ch−1

∥

∥∇wh
∥

∥

Ω
∀wh ∈ Vh (275)

where c is a nondimensional constant. (See Ciarlet (1978), pp. 140–146, for results of this
kind.)
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Theorem 5.1. Assume the consistency condition (267), stability condition (269), and
interpolation estimate (273) hold. Assume the slope m in the definition of ζ(α) satisfies
m ≤ 4/c2, where c is the constant in the inverse estimate (275). Then the error for the
Galerkin/least-squares method is

|||e|||2GLS ≤ cuh2l (276)

PROOF.
First, estimate eh:

∣

∣

∣

∣

∣

∣eh
∣

∣

∣

∣

∣

∣

2

GLS
= BGLS(eh, eh) (stability)

= BGLS(eh, e − η)

= −BGLS(eh, η) (consistency)

≤
∣

∣BGLS(eh, η)
∣

∣

=
∣

∣−(a · ∇eh, η)Ω + κ(∇eh,∇η)Ω

+(eh, a+
n η)Γh

+ (τLeh,Lη)Ω′

∣

∣ (definition of BGLS(·, ·))
=

∣

∣−(Leh, η)Ω′ − κ(∆eh, η)Ω′

+κ(∇eh,∇η)Ω + (eh, a+
n η)Γh

+ (τLeh,Lη)Ω′

∣

∣

≤ 1

4

∥

∥

∥
τ

1
2Leh

∥

∥

∥

2

Ω′

+
∥

∥

∥
τ− 1

2 η
∥

∥

∥

2

Ω

+
κ2

4

∥

∥

∥
τ

1
2 ∆eh

∥

∥

∥

2

Ω′

+
∥

∥

∥
τ− 1

2 η
∥

∥

∥

2

Ω

+
κ

4

∥

∥∇eh
∥

∥

2

Ω
+ κ ‖∇η‖2

Ω

+
1

4

∥

∥

∥
|an|

1
2 eh
∥

∥

∥

2

Γh

+
∥

∥

∥
|an|

1
2 η
∥

∥

∥

2

Γh

+
1

4

∥

∥

∥
τ

1
2Leh

∥

∥

∥

2

Ω′

+
∥

∥

∥
τ

1
2Lη

∥

∥

∥

2

Ω′

(277)

To proceed further, invoke the bound on m;

κτ =
κh

2|a|ζ(α)

=
h2

4α
ζ(α)

≤ h2

c2
(278)

Combining (278) with the inverse estimate yields

κ2
∥

∥

∥
τ

1
2 ∆eh

∥

∥

∥

2

Ω′

≤ κ
∥

∥∇eh
∥

∥

2

Ω
(279)

Employing the result in (277) leads to

1

2

∣

∣

∣

∣

∣

∣eh
∣

∣

∣

∣

∣

∣

2

GLS
≤ 2

∥

∥

∥
τ− 1

2 η
∥

∥

∥

2

Ω
+ κ ‖∇η‖2

Ω +
∥

∥

∥
|an|

1
2 η
∥

∥

∥

2

Γh
+
∥

∥

∥
τ

1
2Lη

∥

∥

∥

2

Ω′

(280)
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Therefore, by the interpolation estimate,

∣

∣

∣

∣

∣

∣eh
∣

∣

∣

∣

∣

∣

2

GLS
≤ cuh2l (281)

Likewise,
|||η|||2GLS ≤ cuh2l, (282)

and so, by the triangle inequality,

|||e|||2GLS ≤ cuh2l (283)

This completes the proof of the theorem. 2

Remark
The same rates of convergence can be proved for SUPG and multiscale stabilized methods.

5.2. Scalar unsteady advection-diffusion equation: Space-time formulation

The initial/boundary-value problem consists of finding u(x, t), ∀x ∈ Ω, ∀t ∈ [0, T ], such that

Ltu ≡ u̇ + Lu = f in Ω×]0, T [ (284)

u(x, 0) = u0(x) ∀x ∈ Ω (285)

u = g on Γg×]0, T [ (286)

−a−
n u + σd

n(u) = h on Γh×]0, T [ (287)

where u̇ = ∂u/∂t, and u0 : Ω → R, f : Ω×]0, T [→ R, g : Γg×]0, T [→ R, and h : Γh×]0, T [→ R

are prescribed data.
The procedures to be described are based upon the discontinuous Galerkin method

in time. (See Johnson (1987), and references therein, for a description of the discontinuous
Galerkin method.) Space-time (i.e. Ω×]0, T [) is divided into time slabs Ω×]tn, tn+1[, where
0 = t0 < t1 < . . . < tN = T . Each time slab is discretized by space-time finite elements. The
finite element spaces consist of piecewise polynomials of order k in x and t, continuous within
each slab, but discontinuous across time slabs. Again, as a point of departure, the Galerkin
method will be presented first:

B(wh, uh)n = L(wh)n , n = 0, 1, . . . , N − 1 (288)

B(wh, uh)n ≡
∫ tn+1

tn

(

−ẇh, uh)Ω + B(wh, uh)
)

dt + (wh(t−n+1), u
h(t−n+1))Ω (289)

L(wh)n ≡
∫ tn+1

tn

L(wh)dt + (wh(t+n ), uh(t−n ))Ω (290)

(291)

where

uh(t±n ) = uh(x, t±n ) (292)

uh(t−0 ) ≡ u0(x) (293)

Remark
Continuity of the solution across time slabs is seen to be weakly enforced.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Generalization of SUPG, Galerkin/least-squares and multiscale proceeds analogously to the
steady case:

SUPG

BSUPG(wh, uh)n = LSUPG(wh)n , n = 0, 1, . . . , N − 1 (294)

BSUPG(wh, uh)n ≡ B(wh, uh)n +

∫ tn+1

tn

(

τ
(

ẇh + a · ∇wh
)

,Ltu
h
)

Ω′
dt (295)

LSUPG(wh)n ≡ L(wh)n +

∫ tn+1

tn

(

τ
(

ẇh + a · ∇wh
)

, f
)

Ω′
dt (296)

Galerkin/least-squares

BGLS(wh, uh)n = LGLS(wh)n , n = 0, 1, . . . , N − 1 (297)

BGLS(wh, uh)n ≡ B(wh, uh)n +

∫ tn+1

tn

(

τLtw
h,Ltu

h
)

Ω′
dt (298)

LGLS(wh)n ≡ L(wh)n +

∫ tn+1

tn

(

τLtw
h, f
)

Ω′
dt (299)

Multiscale

BMS(wh, uh)n = LMS(wh)n , n = 0, 1, . . . , N − 1 (300)

BMS(wh, uh)n ≡ B(wh, uh)n −
∫ tn+1

tn

(

τL∗
t w

h,Ltu
h
)

Ω′
dt (301)

LMS(wh)n ≡ L(wh)n −
∫ tn+1

tn

(

τL∗
t w

h, f
)

Ω′
dt (302)

L∗
t = −ẇh + L∗wh (303)

Remarks

1. In the unsteady case, h represents a space-time mesh parameter.
2. The issue of the time integration method is obviated by the choice of space-time

interpolation. Unconditional stability (i.e., stability for all time steps, ∆t = tn+1− tn >
0) is achieved in all cases. On each time slab a system of linear algebraic equations
needs to be solved.

Let








wh








2 ≡ 1

2

N−1
∑

n=1

∥

∥[[wh(tn)]]
∥

∥

2

Ω
+

1

2

(

∥

∥wh(T−)
∥

∥

2

Ω
+
∥

∥wh(0+)
∥

∥

2

Ω

)

+

∫ T

0

∣

∣

∣

∣

∣

∣wh
∣

∣

∣

∣

∣

∣

2
dt (304)

where [[wh(tn)]] = wh(t+n ) − wh(t−n ). It is a simple exercise to show that

N−1
∑

n=0

B(wh, wh)n −
N−1
∑

n=1

(wh(t+n ), wh(t−n ))Ω =







wh








2
(305)
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where the constraint wh(t−0 ) = wh(0−) = 0 has been used.
Likewise,

N−1
∑

n=0

BGLS(wh, wh)n −
N−1
∑

n=1

(wh(t+n ), wh(t−n ))Ω =







wh








2

GLS
(306)

where








wh








2

GLS
≡








wh








2
+

N−1
∑

n=0

∫ tn+1

tn

∥

∥

∥
τ

1
2Ltw

h
∥

∥

∥

2

Ω̃
dt (307)

The following error estimate, analogous to the steady case, can be established for the space-
time Galerkin/least-squares method:











e










2

GLS
≤ cuh2l (308)

Remark

The hypotheses necessary to prove (308) are virtually identical to those for the steady case.

5.3. Symmetric advective-diffusive systems

The previous developments for the scalar advection-diffusion equation may be generalized to
symmetric advective-diffusive systems. The equations are (see also Hughes, Franca and Mallet
(1987), Hughes and Mallet (1986)):

LtV ≡ A0V ,t + LV = F (309)

LV ≡ Ã · ∇V −∇ · K̃∇V (310)

V = (V1, V2, . . . , Vn)T (311)

Ã
T

=
[

Ã1, Ã2, . . . , Ãd

]

(312)

K̃ =







K̃11 . . . K̃1d

...
. . .

...

K̃d1 . . . K̃dd






(313)

Ã · ∇V = Ã
T∇V = Ãi∇V ,i = Ã1

∂Ṽ

∂x1
+ . . . + Ãd

∂Ṽ

∂xd
(314)

in which A0 is an m × m symmetric, positive-definite matrix; Ãi is an m × m symmetric,
matrix, 1 ≤ i ≤ d, Ã is a solenoidal matrix, that is, Ãi,i = 0; and K̃ is an (m · d) × (m · d)

constant, symmetric, positive-definite matrix. (The case in which K̃ is positive-semidefinite is
more important in practice, but complicates the specification of boundary conditions.)
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Corresponding to the developments for the scalar case, the following results are obtained:

Ãn = niÃi (315)

Ã
+

n =
1

2

(

Ãn +
∣

∣

∣
Ãn

∣

∣

∣

)

(316)

Ã
−

n =
1

2

(

Ãn −
∣

∣

∣
Ãn

∣

∣

∣

)

(317)

U(V ) = A0V (temporal flux) (318)

F a
i (V ) = −ÃiV (advective flux) (319)

F d
i (V ) = −K̃ijV ,j (diffusive flux) (320)

F i = F a
i (V ) + F d

i (V ) (total flux) (321)

F a
n = niF

a
i (322)

F d
n = niF

d
i (323)

F n = niF i (324)

For simplicity, assume that for x ∈ Γ, Ãn(x) is either positive- or negative-definite. This will
allow a concise statement of boundary conditions analogous to the scalar case. For situations
in which Ãn is indefinite, boundary condition specification is more complex, necessitating
component by component specification. Let

Γ− =
{

x ∈ Γ
∣

∣

∣
Ãn(x) < 0

}

(325)

Γ+ = Γ − Γ− (326)

Γ±
G = ΓG

⋂

Γ± (327)

Γ±
H = ΓH

⋂

Γ± (328)

5.3.1. Boundary-value problem

LV = −∇ · F = −F i,i = F on Ω (329)

V = G on ΓG (330)

−Ã
−

n V + F d
n(V ) = H on ΓH (331)

(331) is equivalent to

F n(V ) = H− on Γ−
H (total flux b.c.) (332)

F d
n(V ) = H+ on Γ+

H (diffusive flux b.c.) (333)

variational formulation

S =
{

V ∈ H1(Ω)m |V = G on ΓG

}

(334)

V =
{

W ∈ H1(Ω)m |W = 0 on ΓH

}

(335)

B(W , V ) ≡ (∇W , F (V ))Ω + (W , Ã
+

n V )ΓH
(336)

L(W ) ≡ (W ,F)Ω + (W ,H)ΓH
(337)
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0 = B(W , V ) − L(W )

= −(W ,∇ · F (V ) + F)Ω + (W ,−Ã
−

n V + F d
n(V ) −H)ΓH

(formal consistency) (338)

B(W , W ) =

∥

∥

∥

∥

∣

∣

∣
K̃

∣

∣

∣

1
2 ∇W

∥

∥

∥

∥

2

Ω

+
1

2

∥

∥

∥

∥

∣

∣

∣
Ãn

∣

∣

∣

1
2

W

∥

∥

∥

∥

2

ΓH

∀W ∈ V

(stability) (339)

‖|W |‖2 ≡ B(W , W ) (340)

0 = B(1, V ) − L(1)

= −
(
∫

Γ−

H−dΓ +

∫

Ω

FdΩ +

∫

Γ+

(−ÃnV + H+) dΓ

)

(conservation for ΓG = ∅) (341)

hyperbolic case

−∇ · F a(V ) = F on Ω (342)

V = G− on ΓG− (343)

F a
n(V ) = H− on ΓH− (344)

B(W , V ) ≡ (∇W , F a(V ))Ω + (W , Ã
+

n V )Γ+ (345)

L(W ) ≡ (W ,F)Ω + (W ,H−)Γ
H−

(346)

0 = B(W , V ) − L(W )

= −(W ,∇ · F a(V ) + F)Ω + (W ,−Ã
−

n V −H−)Γ
H−

(formal consistency) (347)

B(W , W ) =
1

2

∥

∥

∥

∥

∣

∣

∣
Ãn

∣

∣

∣

1
2

W

∥

∥

∥

∥

2

ΓH

∀W ∈ V

(stability) (348)

0 =

∫

Γ−

H−dΓ +

∫

Ω

FdΩ +

∫

Γ+

−ÃnV dΓ

(conservation for ΓG− = ∅) (349)
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finite element formulations

BSUPG(W h, V h) = LSUPG(W h) (350)

BSUPG(W h, V h) ≡ B(W h, V h) +
(

τÃ · ∇W h,LV h
)

Ω′

(351)

LSUPG(W h) ≡ L(W h) +
(

τÃ · ∇W h,F
)

Ω′

(352)

BGLS(W h, V h) = LGLS(W h) (353)

BGLS(W h, V h) ≡ B(W h, V h) +
(

τLW h,LV h
)

Ω′

(354)

LGLS(W h) ≡ L(W h) +
(

τLW h,F
)

Ω′

(355)

BMS(W h, V h) = LMS(W h) (356)

BMS(W h, V h) ≡ B(W h, V h) −
(

τL∗W h,LV h
)

Ω′

(357)

LMS(W h) ≡ L(W h) −
(

τL∗W h,F
)

Ω′

(358)

L∗W h = −ÃiW
h
,i − K̃ijW

h
,ij (359)

GLS-norm and error estimate

∣

∣

∣

∣

∣

∣

∣

∣

∣
W h

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

GLS
≡ BGLS(W h, W h)

=
∣

∣

∣

∣

∣

∣

∣

∣

∣
W h

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+
∥

∥

∥
τ

1
2LW h

∥

∥

∥

2

Ω′

(360)

|||E|||2GLS ≤ CV h2l (361)

5.3.2. Initial/boundary-value problem

LtV ≡ U̇(V ) + LV = F in Ω×]0, T [ (362)

U(V (x, 0)) = U(V 0(x)) ∀x ∈ Ω (363)

V = G on ΓG×]0, T [ (364)

−Ã
−

n V + F d
n(V ) = H on ΓH (365)

finite element formulations

B(W h, V h)n ≡
∫ tn+1

tn

((

−Ẇ
h
, U(V h)

)

Ω
+ B(W h, V h)

)

dt

+
(

W h(t−n+1), U(V h(t−n+1)
)

Ω
(366)

L(W h)n ≡
∫ tn+1

tn

L(W h)dt +
(

W h(t+n ), U(V h(t−n )
)

Ω
(367)
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W h










2 ≡
N−1
∑

n=0

B(W h, W h)n −
N−1
∑

n=1

B(W h(t+n ), U(V h(t−n ))Ω

=
1

2

N−1
∑

n=1

∥

∥

∥
A

1
2

0 [[W h(tn)]]
∥

∥

∥

2

Ω

+
1

2

(

∥

∥

∥
A

1
2

0 W h(T−)
∥

∥

∥

2

Ω
+
∥

∥

∥
A

1
2

0 W (0+)
∥

∥

∥

2

Ω

)

+

∫ T

0

∣

∣

∣

∣

∣

∣

∣

∣

∣
W h

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

dt (368)

BSUPG(W h, V h)n = LSUPG(W h)n , n = 0, 1, . . . , N − 1 (369)

BSUPG(W h, V h)n ≡ B(W h, V h)n +

∫ tn+1

tn

(

τ
(

A0Ẇ
h

+ Ã · ∇W h
)

,LtV
h
)

Ω′

dt(370)

LSUPG(W h)n ≡ L(W h)n +

∫ tn+1

tn

(

τ
(

A0Ẇ
h

+ Ã · ∇W h
)

,F
)

Ω′

dt (371)

BGLS(W h, V h)n = LGLS(W h)n , n = 0, 1, . . . , N − 1 (372)

BGLS(W h, V h)n ≡ B(W h, V h)n +

∫ tn+1

tn

(

τLtW
h,LtV

h
)

Ω′

dt (373)

LGLS(W h)n ≡ L(W h)n +

∫ tn+1

tn

(

τLtW
h,F

)

Ω′

dt (374)

BMS(W h, V h)n = LMS(W h)n , n = 0, 1, . . . , N − 1 (375)

BMS(W h, V h)n ≡ B(W h, V h)n −
∫ tn+1

tn

(

τL∗
t W

h,LtV
h
)

Ω′

dt (376)

LMS(W h)n ≡ L(W h)n −
∫ tn+1

tn

(

τL∗
t W

h,F
)

Ω′

dt (377)

GLS-norm and error estimate
Likewise,











W h










2

GLS
≡

N−1
∑

n=0

BGLS(W h, W h)n −
N−1
∑

n=1

B(W h(t+n ), U(W h(t−n )))Ω

=










W h










2
+

N−1
∑

n=0

∫ tn+1

tn

∥

∥

∥
τ

1
2LtW

h
∥

∥

∥

2

Ω′

dt (378)





E






2
GLS ≤ CV h2l (379)

Remarks

1. Stabilized methods have been used widely in engineering applications. There is a very
large literature on mathematical and practical aspects. Experience has indicated that
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the SUPG and multiscale variants are superior to Galerkin/least-squares in practical
applications (see, e.g., Bochev and Gunzburger (2005)). A recent evaluation of SUPG,
and comparison with finite volume and discontinuous Galerkin methods, is presented
in Venkatakrishnan et al. (2003).

2. There are interesting examples of non-residual based stabilized methods. See, for
example, Codina and Blasco (2000a, 2000b), and Bochev and Dohrman (2004).

6. Turbulence

In Sections 2–5, the variational multiscale method was described, and its connection with
stabilized finite element methods was established. The idea of a variational framework for
subgrid-scale modeling was also discussed. In this Section, the application of the multiscale
method to the incompressible, Navier-Stokes equations is considered. The objective is a
satisfactory interpretation/generalization of the Large Eddy Simulation (LES) concept within a
variational formulation of the Navier-Stokes equations. This requires dealing with nonlinearities
as well as issues of turbulence modeling.

The classical LES formulation of the incompressible Navier-Stokes equations is reviewed
first. As points of reference, filtering, the subgrid-scale stress and the Smagorinsky model
are discussed. The estimation of Smagorinsky parameters by way of the approach due to
Lilly (1966,1967,1988) is also recalled. The shortcomings of the classical approach, noted
previously in the literature are summarized. A fundamental problem of the classical approach
is scale separation. The way this problem has been addressed in the literature is by way of
dynamic modeling, which provides for adaptive selection of the so-called Smagorinsky constant
(see, e.g., Germano et al., 1991; Moin et al., 1991; Piomelli, 1998).

In the variational multiscale approach, scale separation is invoked ab initio. A space-time
formulation of the incompressible Navier-Stokes equations is employed. From the discrete
point of view, this leads to the time-discontinuous Galerkin method on space-time slabs. This
procedure proves convenient and obviates the need to consider specific time discretization (i.e.,
ODE) algorithms. However, it is a straightforward matter to develop traditional semi-discrete
approaches with similar properties to the ones described here. The appendix to this section
illustrates this fact.

Two simple generalizations of the Smagorinsky eddy viscosity model which act only
on small scales are considered. One is completely desensitized to large-scale behavior, the
other, partially desensitized. Parameters are again estimated by way of the approach due to
Lilly (1966,1967,1988). Because scale separation has been invoked from the outset, a constant-
coefficient model in the present approach is speculated to have validity for a greater variety of
flows than the classical constant-coefficient Smagorinsky model. The approach is summarized
by contrasting it with the work of the Temam group (see, e.g., Dubois, Jauberteau and Temam,
1993,1998). How the present approach addresses criticisms of the classical LES/Smagorinsky
method and the identification of some other useful properties are described.

6.1. Incompressible Navier-Stokes equations

Let Ω be an open, connected, bounded subset of Rd, d = 2 or 3, with piecewise smooth
boundary Γ = ∂Ω; Ω represents the fixed spatial domain of our problem. The time interval of
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interest is denoted ]0, T [, T > 0, and thus the space-time domain is Q = Ω × ]0, T [; its lateral
boundary is denoted P = Γ × ]0, T [. The setup is illustrated in Figure 31.

Ω

0

T

Q
P

Γ

Figure 31. Space-time domain for the initial/boundary-value problem.

The initial/boundary-value problem consists of solving the following equations for u : Q →
Rd, the velocity, and p : Q → R, the pressure (divided by density),

∂u

∂t
+ ∇ · (u ⊗ u) + ∇p = ν∆u + f in Q (380)

∇ · u = 0 in Q (381)

u = 0 on P (382)

u(0+) = u(0−) on Ω (383)

where f : Q → Rd is the given body force (per unit volume); ν is the kinematic viscosity,
assumed positive and constant; u(0−) : Ω → Rd is the given initial velocity; and ⊗ denotes
the tensor product (e.g., in component notation [u ⊗ v]ij = uivj). Equations (380)-(383)
are, respectively, the linear momentum balance, the incompressibility constraint, the no-slip
boundary condition and the initial condition.

The setup for a space-time formulation is recalled once again. When a function is written
with only one argument, it is assumed to refer to time. For example, u(t) = u(·, t), where the
spatial argument x ∈ Ω is suppressed for simplicity. Furthermore,

u
(

t±
)

= lim
ε↓0

u (t ± ε) ∀t ∈ [0, T ] . (384)

This notation allows us to distinguish between u(0+) and u(0−), the solution and its given
initial value, respectively. In the variational formulation of the initial/boundary-value problem
(see Section 6.4), (383) will only be satisfied in a weak sense. The notation of (383) and (384)
is also conducive to the generalization of the formulation to the discrete case in which the
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numerical problem is posed in terms of a sequence of “space-time slabs,” where the solution
may be discontinuous across the slab interfaces.

For mathematical results of existence, uniqueness and regularity, see Temam (1984),
Quarteroni and Valli (1994), and references therein.

Solutions of (380)-(383), for the case in which ν is very small, typically give rise
to turbulence, an inherently chaotic and unpredictable phenomenon. Nevertheless, some
statistical quantities, such as particular spatial and temporal averages, are deterministic and,
in principle, computable.

6.2. Large Eddy Simulation (LES)

The unpredictability of turbulence suggests reformulating the initial/boundary-value problem
in terms of averaged quantities. In Large Eddy Simulation (LES) a spatial averaging procedure
is employed. For example, let

u(x, t) =

∫

D∆(x)

g(x, y)u(y, t) dy (385)

in which

g(x, y) = g(x − y) (homogeneity) (386)

and

1 =

∫

D∆(x)

g(x, y) dy (387)

where u is the filtered velocity and g is the filter having support in D∆(x) ⊂ Ω, a neighborhood
of x ∈ Ω. (See Fig. 32 for a schematic of a candidate filter.)

x y

∆

g

Figure 32. Typical filter function for LES.

The size of D∆(x) is characterized by ∆, the filter width. There are various possibilities for
D∆(x). For example, a possible difinition is

D∆(x) =
{

y ∈ R
d | ρ(x, y) < ∆/2

}

. (388)
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u

u

u′

Figure 33. The effect of filtering.

The distance function, ρ, may be defined in terms of the Euclidean norm, in which case D∆(x)
is an open ball of radius ∆/2 centered at x.

The effect of filtering is schematically illustrated in Figure 33.

The filtered field, u, is commonly referred to as the large, coarse, or resolvable scales. It is
assumed adequate to represent the larger structures of the flow. The difference between u and
u, that is,

u′ = u − u (389)

is the rapidly fluctuating part of u; u′ is commonly referred to as the small, fine, or unresolvable
scales. Although primary interest is in computing u, due to the nonlinear nature of the Navier-
Stokes equations, the effect of u′ on u cannot be ignored.

Remark

The homogeneous structure of the filter results in the commutativity of spatial
differentiation and filtering, a property exploited in the derivation of the equations governing
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filtered quantities. However, in order to obtain the filtered equations corresponding to (380)-
(383), the filtering operation needs to be performed for all x ∈ Ω, and in particular for
x ∈ Ω\Ω∆, where

Ω∆ = {x | D∆(x) ⊂ Ω} . (390)

In this case, the support of the filtering operation extends beyond the boundary of Ω. For
a schematic illustration, see Figure 34. Clearly, this creates mathematical ambiguities. (Note
that this problem does not arise in cases of domains with periodic boundary conditions.)
An alternative approach is to reduce the size of the filter as the boundary is approached, but
this too creates mathematical complications. This issue will not be addressed further herein. It
needs to be emphasized, though, that it is an important issue. (For recent literature concerning
this problem, see Galdi and Layton, 2000; John and Layton, 1998; Layton, 1996; Ghosal and
Moin, 1995.)

6.2.1. Filtered Navier-Stokes equations

∂u

∂t
+ ∇ · (u ⊗ u) + ∇p = ν∆u + f in Q (391)

∇ · u = 0 in Q (392)

u = 0 on P (393)

u(0+) = u(0−) on Ω . (394)

The nonlinear term in (391) gives rise to a closure problem : how to compute u ⊗ u ? This
necessarily entails some form of approximation. To this end, define the subgrid-scale stress

T = u ⊗ u − u ⊗ u . (395)

In terms of the subgrid-scale stress, the filtered momentum equation (391) is rewritten as

∂u

∂t
+ ∇ · (u ⊗ u) + ∇p = ν∆u + ∇ · T + f . (396)

Thus, T needs to be modeled to close the system. To be more precise, only the deviatoric part
of T , namely,

dev T = T − ( 1

3
tr T ) I , (397)

where I is the identity tensor, needs to be modeled, and the dilatational part, 1

3
tr T , may be

subsumed by p.

6.3. Smagorinsky closure

The classical and most widely used closures are based on the Smagorinsky eddy viscosity
model Smagorinsky (1963):

T S = 2νT ∇
su (398)

where

νT = (CS∆)2 |∇su| (399)

∇
su = 1

2

(

∇u + (∇u)T
)

(400)

|∇su| = (2∇
su · ∇su)

1/2
(401)
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. .

.

.

Ω∆

Ω\Ω∆

Γ

x1

x2

x3

x4

D∆(x1) ⊂ Ω∆ ⊂ Ω

D∆(x2) ⊂ Ω

D∆(x3) ⊂/ Ω

D∆(x4) ⊂/ Ω

Figure 34. The support of the filter extends beyond the boundary of Ω.

and CS is referred to as the Smagorinsky constant. Note, T S is deviatoric, i.e., T S =
dev T S .

Various criticisms have been lodged against the Smagorinsky model (see, e.g., Germano et
al., 1991; Piomelli, 1998). Typical of these are:

1. T S does not replicate the asymptotic behavior of T near walls, in particular, T S does
not vanish at walls.

2. Values of CS obtained from the decay of homogeneous isotropic turbulence tend to be
too large for other situations, such as in the presence of mean shear.

3. T S produces excessive damping of resolved structures in transition, resulting in
incorrect growth rate of perturbations.

As a result of these shortcomings, many modifications have been proposed, such as wall
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functions, intermittency functions, etc. Perhaps the most notable achievement is the dynamic
subgrid-scale model (Germano et al., 1991), in which it is assumed that CS is a function of
space and time, that is

CS = CS(x, t) . (402)

The identification of CS is performed adaptively by sampling the smallest resolved scales and
using this information to model the subgrid scales. The dynamic model has been applied to a
variety of flows and improved results have been obtained in most cases. For a recent review of
the state-of-the-art and assessment, see Piomelli (1998). It is a widely held opinion that any
proposal of a new LES model based on the Smagorinsky concept must address, at the very
least, the shortcomings delineated above.

6.3.1. Estimation of parameters The Smagorinsky parameters CS and ∆ may be determined
by a procedure due to Lilly (1966,1967,1988). In Lilly’s analysis it is assumed that turbulent
kinetic energy dissipation and dissipation produced by the Smagorinsky model are in balance.
The limit of resolution is assumed to fall in the Kolmogorov inertial subrange and |∇su|
is determined by spectral integration. This enables quantification of CS∆ and νT . A brief
summary of the steps involved follows.

ln k

ln E(k)

ln k̄

1

−5/3

Figure 35. Kolmogorov energy spectrum.

Consider Figure 35. E(k) is the spectral amplitude of kinetic energy, defined as the integral
over surfaces of spheres in wave-number space parametrized by the radius k. In the inertial
subrange

E(k) = αε2/3k−5/3 (403)
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where α is the Kolmogorov constant and ε is the turbulent dissipation. |∇su| may be
determined from the relation

1
2 |∇

su|2 =

∫ k̄

0

k2E(k) dk (404)

where k̄ corresponds to the resolution limit, which is the cut-off wave number for spectral
discretization. Equating turbulent kinetic energy dissipation with dissipation produced by the
Smagorinsky model, and evaluating (404) using (403), yields

ε = T S · ∇su

= 2(CS∆)2 |∇su| (∇su · ∇su)

= (CS∆)2 |∇su|3

= (CS∆)2
(

3α

2

)3/2

k̄2ε (405)

from which it follows that

CS∆ =

(

2

3α

)3/4

k̄−1 (406)

and

νT =

(

2

3α

)

ε1/3 k̄−4/3 . (407)

Assuming k̄ = const h̄−1, where h̄ is the mesh parameter, it follows from (406) and (407)
that

CS∆ = O(h̄) (408)

and

νT = O(h̄4/3) . (409)

Remarks

1. Assuming ∆ = h̄ = πk̄−1 and α = 1.4, it follows from (406) that CS
∼= 0.18. However,

smaller values, often around 0.10, are often used in practice (Germano et al., 1991 ).
2. The excessive damping of resolved structures may be explained by (398) and (409). An

O(h̄4/3) viscosity acts on all scales present. It is known from the analysis of artificial
viscosity methods that, even for linear model problems, an O(h̄4/3) artificial viscosity
results in convergence that is at most O(h̄4/3) in L2 and O(h̄2/3) in H1. This is indeed
very slow convergence and is deemed by most analysts as unacceptable. Furthermore,
these results are probably optimistic for the (nonlinear) Navier-Stokes equations. The
physical design of the Smagorinsky model results in the correct extraction of total
kinetic energy, but the flaw seems to be that the extraction of kinetic energy occurs in
all scales and, in particular, in the so-called “resolved scales.”
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3. The analysis described assumed an isotropic discretization. The anisotropic case has also
been addressed by Lilly (1988). See also Scotti and Meneveau (1993), Scotti, Meneveau
and Fatica (1997).

4. The concepts of filtering and the filtered equations involve subtleties not described here.
For more extensive discussion of these issues, the interested reader may consult Carati,
Winckelmans and Jeanmart (2001), Winckelmans et al. (2001), and Winckelmans,
Jeanmart and Carati (2002).

5. It has been observed that some common filters are isomorphisms (e.g., the Gaussian
filter). In these cases, u can be reconstructed from u. Consequently, the filtered
equations contain the same information as the Navier-Stokes equations. A formulation
of LES which circumvents the use of the filtered equations, and associated conceptual
difficulties, is presented next.

6.4. Variational multiscale method

6.4.1. Space-time formulation of the incompressible Navier-Stokes equations Consider a
Galerkin space-time formulation with weakly imposed initial condition. Let V = V(Q) denote
the trial solution and weighting function spaces, which are assumed to be identical. Assume
U = {u, p} ∈ V implies u = 0 on P and

∫

Ω p(t) dΩ = 0 for all t ∈ ]0, T [. The variational
formulation is stated as follows:

Find U ∈ V such that ∀W = {w, q} ∈ V

B(W , U) = (W , F ) (410)

where

B(W , U) = (w(T−), u(T−))Ω −
(

∂w

∂t
, u

)

Q

− (∇w, u ⊗ u)Q

+ (q, ∇ · u)Q − (∇ · w, p)Q + (∇sw, 2ν∇
su)Q (411)

and

(W , F ) = (w, f)Q + (w(0+), u(0−))Ω. (412)

This formulation implies weak satisfaction of the momentum equations and incompressibility
constraint, in addition to the initial condition. The boundary condition is built into the
definition of V .

Remarks

1. u(0−) is viewed as known when computing the solution in Q.
2. The standard weak formulation corresponding to the discontinuous Galerkin method

with respect to time is obtained by replacing [0, T ] by [tn, tn+1], n = 0, 1, 2, . . . and
summing over the space-time slabs

Qn = Ω×]tn, tn+1[ . (413)

In this case, (410)-(412) are viewed as the variational equations for a typical slab.
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3. The conditions ∇ · u = 0 on Q and u = 0 on P imply

(∇u, u ⊗ u)Q = 0 . (414)

In the discrete case this term may need to be altered to preserve this property. See
Quarteroni and Valli (1994), p.435.

Kinetic energy decay inequality :
Substitution of U for W in (410) leads to the inequality

1
2

∣

∣

∣

∣u(T−)
∣

∣

∣

∣

2

Ω
+ 2ν ||∇su||2Q ≤ 1

2

∣

∣

∣

∣u(0−)
∣

∣

∣

∣

2

Ω
+ (u, f )Q (415)

from which follows

1
2

∣

∣

∣

∣u(T−)
∣

∣

∣

∣

2

Ω
+ ν ||∇su||2Q ≤ 1

2

∣

∣

∣

∣u(0−)
∣

∣

∣

∣

2

Ω
+

CΩ

4ν
||f ||2Q , (416)

where CΩ is the constant in the Poincaré inequality:

||u||2Ω ≤ CΩ ||∇su||2Ω . (417)

6.4.2. Separation of scales The variational multiscale formulation of LES was introduced in
Hughes, Mazzei and Jansen (2000). Let

V = V ⊕ V ′ (418)

The reader is reminded that V is identified with a standard finite element space and V ′

is ∞-dimensional. In the discrete case, V ′ can be replaced with various finite-dimensional
approximations, such as hierarchical p-refinement, bubbles, etc. In any case, (418) enables
decomposition of (410) into two sub-problems:

B(W , U + U ′) = (W , F ) (419)

B(W ′, U + U ′) = (W ′, F ) (420)

where

U = U + U ′ (421)

W = W + W ′ (422)

in which U , W ∈ V and U ′, W ′ ∈ V ′.
It is important to realize that although the use of the over-bar and prime notations continues

to connote large and small scales, the meaning is quite different than for the classical LES
formulation considered previously. Here U and U ′ may be thought of as “projections” of U

onto V and V ′, respectively. The terminology “projections” is used loosely because U and U ′

are obtained from U by solving coupled nonlinear problems, viz.,

B(W , U + U ′) = B(W , U) (423)

B(W ′, U + U ′) = B(W ′, U) . (424)

Consequently, it is not possible to identify a simple filtering relationship between U and U ,
such as (385)-(386). Nevertheless, U represents the part of U which lives in V , and thus

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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clearly is a large-scale representation of U . Likewise, U ′ is a small-scale representation of U .
The relationship between the present U and its filtered counterpart is a complex mathematical
problem. Reference may be made to Galdi and Layton (2000) and John and Layton (1998) for
initiatory attempts at its resolution.

Let

B1(W , U , U ′) =
d

dε
B(W , U + εU ′)

∣

∣

∣

∣

ε=0

(425)

B2(W , U , U ′) =
d2

dε2
B(W , U + εU ′)

∣

∣

∣

∣

ε=0

. (426)

With these, write

B(W , U + U ′) = B(W , U) + B1(W , U , U ′) + 1
2B2(W , U , U ′) (427)

where

1
2B2(W , U , U ′) = − (∇w, u′ ⊗ u′)Q (428)

and

B1(W , U , U ′) =
(

w(T−), u′(T−)
)

Ω
−
(

∂w

∂t
, u′

)

Q

− (∇w, u ⊗ u′ + u′ ⊗ u)Q

+ (q, ∇ · u′)Q − (∇ · w, p′)Q + (∇sw, 2ν∇
su′)Q . (429)

B1(W , U , U ′) is the linearized Navier-Stokes operator. With the aid of (427)-(429), rewrite
(419) and (420) as

B(W , U) + B1(W , U , U ′) = (∇w, u′ ⊗ u′)Q +
(

W , F
)

(430)

B1(W
′, U , U ′) − (∇w′, u′ ⊗ u′)Q = −

[

B(W ′, U) −
(

W ′, F
)]

. (431)

This amounts to a pair of coupled, nonlinear variational equations. Given the small scales (i.e.,
U ′), (430) enables solution for the large scales (i.e., U). Likewise, the large scales drive the
small scales through (431). Note, the right hand side of (431) is the residual of the large
scales projected onto V ′.

Remark
The subgrid-scale stress, T (see (395)), may be decomposed into the Reynolds stress, cross

stress and Leonard stress. In the variational formulation, the analogs of these terms are:

(∇w, u′ ⊗ u′)Q (Reynolds stress) (432)

(∇w, u ⊗ u′ + u′ ⊗ u)Q (Cross stress) (433)

(∇w, u ⊗ u)Q − (∇w, u ⊗ u)Q = − (∇w′, u ⊗ u)Q (Leonard stress) (434)

Note that (432)-(433) appear in (430), and (434) appears in the right-hand side of (431). Up
to this point our results are exact, that is, nothing has been omitted and no modeling has
been performed.
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6.4.3. Modeling of subgrid scales Observe that closure is not the motivation for modeling
in the case of the variational multiscale formulation. In fact, there is no closure problem
whatsoever. The need for modeling is due simply to the inability of typical discrete
approximations to properly represent all necessary scales. This is viewed as a conceptual
advantage of projection/variational methods over the classical filtered equation approach.

Thus, add
(

∇w′, R′
S

)

Q
to (431), where

R′
S = 2ν′

T ∇
su′ . (435)

(Specification of ν′
T will be postponed for the moment.) The end result is

B′(W ′, U , U ′) = −
[

B(W ′, U) −
(

W ′, F
)]

(436)

where

B′(W ′, U , U ′) ≡ B1(W
′, U , U ′) − (∇w′, u′ ⊗ u′)Q + (∇sw′, 2ν′

T ∇
su′)Q . (437)

This is the modeled small-scale equation which replaces (431). The large-scale equation, (430),
remains the same, that is, there is no modeling.

Remark
Collis (2001) has presented an interpretation of this formulation that is more consistent

with traditional turbulence modeling concepts. He assumes

u = u + u′ + u′′ (438)

w = w + w′ + w′′ (439)

and

V = V ⊕ V ′ ⊕ V ′′ (440)

where V and V ′ are the same finite-dimensional spaces considered here and V ′′ is infinite-
dimensional. Thus the discrete approximation amounts to simply omitting V ′′. The idea is
schematically illustrated in Figure 36. Collis (2001) may also be consulted for clarifications to
the formulation.

6.4.4. Eddy viscosity models Two candidate definitions of ν′
T will be considered. In both

cases, parameters will be estimated by way of the Lilly analysis (see Section 6.3.1). However,
this time there are two relevant wave-number scales: k̄, the resolution limit of the space V,
and k′, the resolution limit of the space V = V ⊕ V ′. The interpretation of k̄ is assumed to be
similar to before (see Section 6.3.1). Figure 37 schematically contrasts the present situation
with classical LES.
Note that in generalizing the Lilly analysis to the current situation, it is necessary to calculate
spectral integrals over the interval [k̄, k′] (see Fig. 38). Consequently, it is assumed this interval
lies entirely within the inertial subrange.

The assumed forms of ν′
T are:

ν′
T = (C′

S∆′)2 |∇su′| (441)
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VV

V ′ (retained)V ′ (retained)

k′ = kck′ = kc

kk

V ′′ (omitted)V ′′ (omitted)

Figure 36. Collis interpretation of the variational multiscale formulation.

0

Ts

kkc = k

0

Rs = 0 R′

s

kk kc = k′

Figure 37. Above: in classical LES, the subgrid-scale stress, T S , acts on all scales present, namely
k ∈ [0, k̄]. Below: in the multiscale model, the model acts only on the small scales, namely k ∈ [k̄, k′].

and

ν′
T = (C′

S∆′)2 |∇su| . (442)

In the first case, ν′
T depends exclusively on small-scale velocity components. In the second

case, ν′
T depends on the large-scale components.

As before, |∇su| is evaluated through (403) and (404); the small-scale counterpart is
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ln k̄ ln k′
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Figure 38. Kolmogorov energy spectrum. The interval of small scales is assumed to lie within the
inertial subrange.

evaluated with (403) and

1
2 |∇

su′|2 =

∫ k′

k̄

k2E(k) dk . (443)

With this result in hand, calculations similar to (405) yield:

C′
S∆′ =

(

2

3α

)3/4

k̄−1 [(k′/k̄)4/3 − 1]−3/4 (444)

C′
S∆′ =

(

2

3α

)3/4

k̄−1 [(k′/k̄)4/3 − 1]−1/2 (445)

corresponding to (441) and (442), respectively. For a given discretization, from which k̄ and k′

can be determined, (444) and (445) provide estimates of C′
S∆′ for the two cases considered.

Remarks

1. Note that fixing k̄ in (444) and (445) implies that

k′ ↑ ↓ ⇔ C′
S∆′ ↓ ↑ (446)

for both cases, confirming the intuitively obvious result that the inclusion of more small
scales reduces the size of C′

S∆′, and vice versa. If ∆′ = πk̄−1, as in Remark 1 of Section
6.3.1, (444) and (445) show that C′

S is just a function of the Kolmogorov constant, α,
and the ratio k′/k̄.
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2. The argument can also be reversed: For fixed k̄ and C′
S∆′ = CS∆ (i.e., the value for

the classical Smagorinsky model), what is k′? The answer to this question estimates the
size of V ′ in comparison with V. It turns out that for both (444) and (445),

k′ = 23/4k̄ ≈ 1.7k̄ . (447)

Roughly speaking, the resolution limit needs to be almost twice as great. If it is assumed
that

k′/k̄ = h̄/h′, (448)

(447) implies

h′ = h̄/23/4 ≈ 0.6h̄ , (449)

which amounts to a finer mesh by almost a factor of two in each direction. Note that
for (447)-(449), as before,

C′
S∆′ = O(h̄) (450)

ν′
T = O(h̄4/3) . (451)

However, keep in mind that R′
S only acts on the small scales.

3. An even more attractive option may be the analytical determination of U ′ from the
small-scale equation, (431), and its elimination from the large-scale equation, (430). This
gives rise to a nonlinear stabilized method, in which eddy viscosities are not utilized. For
initiatory studies pursuing these ideas, see Scovazzi (2004); Calo (2004); and Hughes,
Calo and Scovazzi (2004).

6.4.5. Précis of results For convenience, the main LES/variational multiscale equations are
summarized here:

Large scales

B(W , U) + B1(W , U , U ′) = (∇w, u′ ⊗ u′)Q +
(

W , F
)

(452)

Small scales

B1(W
′, U , U ′) − (∇w′, u′ ⊗ u′)Q = −

[

B(W ′, U) −
(

W ′, F
)]

(453)

Modeled small scales

B′(W ′, U , U ′) = −
[

B(W ′, U) −
(

W ′, F
)]

(454)

where

B′(W ′, U , U ′) = B1(W
′, U , U ′) − (∇w′, u′ ⊗ u′)Q + (∇sw′, 2ν′

T ∇
su′)Q (455)

and

ν′
T = (C′

S∆′)2 |∇su′| (456)
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c© 2004 John Wiley & Sons, Ltd.



83

or

ν′
T = (C′

S∆′)2 |∇su| . (457)

Modeled system
A concise way of writing the combined system of (452) and (454) is

B(W , U) = (W , F ) (458)

where

B(W , U) ≡ B(W , U) + (∇sw′, 2ν′
T ∇

su′)Q . (459)

Kinetic energy decay inequality for the modeled system
This follows immediately from (458) with W replaced by U :

1
2

∣

∣

∣

∣u(T−)
∣

∣

∣

∣

2

Ω
+ 2ν ||∇su||2Q +

∣

∣

∣

∣

∣

∣
(2ν′

T )1/2
∇

su′
∣

∣

∣

∣

∣

∣

2

Q
≤ 1

2

∣

∣

∣

∣u(0−)
∣

∣

∣

∣

2

Ω
+ (u, f )Q (460)

which leads to

1
2

∣

∣

∣

∣u(T−)
∣

∣

∣

∣

2

Ω
+ ν ||∇su||2Q +

∣

∣

∣

∣

∣

∣
(2ν′

T )1/2
∇

su′
∣

∣

∣

∣

∣

∣

2

Q
≤ 1

2

∣

∣

∣

∣u(0−)
∣

∣

∣

∣

2

Ω
+

CΩ

4ν
||f ||2Q . (461)

Remarks

1. Note, if U is an exact solution of the Navier-Stokes equations, then

B(W , U) = (W , F ) ∀W ∈ V . (462)

In particular,

B(W ′, U) = (W ′, F ) ∀W ′ ∈ V ′ . (463)

Consequently, for both the exact and the modeled small-scale equations (i.e., (453) and
(454), respectively), it follows that U ′ = 0. From (462), it also follows that

B(W , U) = (W , F ) ∀W ∈ V . (464)

These results verify that (452) is identically satisfied. This means the equation governing
the large scales retains its consistency, or residual structure, despite the modeling of
small scales, in contrast to the classical LES case described in Section 6.2.

2. By virtue of the fact that U ′ = {u′, p′} ∈ V ′ ⊂ V , u′ = 0 on P . Furthermore, the
small-scales equations (either (453) or (454)) imply ∇ · u′ = 0 on Q. From this it may
be concluded that u′ attains the correct asymptotic structure near walls by the usual
argument. In particular, the [1,2] component of u′ ⊗u′ in (452) behaves like x3

2, where
x1 is the streamwise direction and x2 is the direction normal to the wall.
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6.5. Relationship with other methods

6.5.1. Nonlinear Galerkin method The approach has both similarities to, and differences
with, the work of Temam and colleagues. The similarities are that both approaches invoke scale
separation from the outset and both employ projected forms of the Navier-Stokes equations,
rather than the filtered versions used in classical LES. The salient differences are as follows:
In the earlier work of the Temam group (see Dubois, Jauberteau and Temam, 1993 for a
representative exposition):

(i) In the equation governing large-scales, the classical Reynolds stress term is neglected.
(ii) In the equation governing small scales, the only term acting on small scales which is

retained is the Stokes operator term. In particular, the cross-stress, time-derivative and
small-scale Reynolds stress terms are neglected.

These assumptions are strong ones and can be shown to limit the applicability of the approach
to discretizations which are only somewhat coarser than required for a fully-resolved direct
numerical simulation (DNS). Otherwise excessive dissipation is encountered. This may be
contrasted with the present approach in which all these terms are retained. Obviously, it is
assumed here to be important to retain the terms omitted in the Temam’s group earlier work.
In addition, a model is added to the equation governing the small scales in the present case.

In more recent work (see Dubois, Jauberteau and Temam, 1998), Temam and co-
workers retain all the terms omitted in their previous work and employ an adaptive strategy
in space and time to resolve small-scale behavior. This seems to be a DNS approach, although
Dubois, Jauberteau and Temam (1998) characterize it as somewhere between LES and DNS.
The present approach is similar, except for the model in the small-scale equation. It is felt
appropriate to characterize the present formulation as LES, or at least closer to LES than that
of Dubois, Jauberteau and Temam (1998).

6.5.2. Adaptive wavelet decomposition Farge, Schneider and Kevlahan (1999) present a
very interesting analysis of two-dimensional turbulence based on an adaptive wavelet
decomposition of the vorticity into coherent, non-Gaussian structures, and an incoherent,
Gaussian background. The efficiency of the wavelet representation is illustrated in a DNS
computation of a mixing layer in which the time evolution of the coherent part only involves
8% of the wavelet coefficients. The remaining coefficients, associated with the incoherent part,
are simply discarded at each time step. In order to maximize data compression, the velocity-
vorticity form of the Navier-Stokes equations is employed in preference to the velocity-pressure
form.

The wavelet decomposition at each time step is an example of a priori scale separation, as
advocated in the present work. However, when Farge, Schneider and Kevlahan (1999) discuss
modeling they do so in the context of the filtered form of the equations, as in classical LES,
and are faced with the problem of representing the subgrid-scale stress T . They propose the
following possibilities: (i) The Smagorinsky model; (ii) a dynamic generalization in which the
eddy viscosity νT is estimated in terms of the enstrophy fluxes in wavelet space, such that when
energy flows from large to small scales νT will be positive and vice versa (i.e., backscatter);
and (iii) the subgrid-scale stress T modeled as a Gaussian forcing term proportional to the
variance of the incoherent parts of the vorticity and velocity. In modeling T in these ways it
seems inevitable that at least some of the shortcomings associated with the use of the filtered
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Figure 39. The perfectly-matched layer.

equations will eventually be encountered. For example, T may act too strongly on the coherent
(i.e., resolved) structures, and there seems no a priori control of kinetic energy if backscatter
occurs. However, it would seem possible to reformulate the numerical procedure in terms of
the variational multiscale method, associating coherent structures with the space V and the
incoherent background with V ′. In this way some difficulties might be circumvented, but the
efficiency of the method might also be compromised.

6.5.3. Perfectly-matched layer in electromagnetics and acoustics Consider an exterior infinite
domain Ω ⊂ Rd, d = 1, 2, or 3. In electromagnetic wave propagation there is interest in
solving exterior infinite-domain problems with finite elements. A finite region is introduced,
discretized by finite elements and surrounded by a truncated boundary. The situation is seen
to be the same as for the acoustics problem considered previously in Section 2, but here there
is no attempt to solve the far-field problem exactly and severe restrictions are not placed
on the shape of the external region. For example, the external region need not be amenable
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to a separation-of-variables solution, as is required for the Dirchlet-to-Neumann formulation
considered in Section 2. In order to absorb out-going waves and to prevent spurious reflections,
a finite layer is introduced in which the properties of the medium are artificially altered to
be dissipative. The dissipation in the layer is designed to match that of the inner region at
the interface, which is typically non-dissipative, and to progressively increase further into the
layer. To ensure a smooth transition between the inner region and the layer, the dissipation
coefficient is assumed to be zero, and to have zero derivative, at the interface. A quadratic
variation is seen to be a simple way to achieve the desired dissipative properties in the layer,
and is one often used in practice (see Fig. 39.) The dissipative layer is said to be “perfectly
matched.” The simplicity, generality and effectiveness of the approach have led to its popularity
in electromagnetics, despite the lack of a rigorous theory to support the precise variation and
amplitude of artificial dissipation. Harari, Turkel and Slavutin (2000) may be referred to for a
penetrating analysis and references to important literature. The perfectly-matched layer has
features in common with ideas and techniques used in turbulence as evidenced by the following.

Figure 40. DNS Results for homogeneous turbulence, Domaradzki et al. , Reλ = 70 (Taylor microscale
Reynolds number).

Remarks

1. The concept of “spectral eddy viscosity,” introduced by Heisenberg (1948), has
undergone extensive study in the turbulence literature (see, e.g., Kraichnan, 1976;
Domaradzki, Liu and Brachet, 1993; Domaradzki et al., 1994; McComb and Young,
1998). The idea is to take the spatial Fourier transform of the Navier-Stokes equations,
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Figure 41. DNS results for wall-bounded flow, Domaradzki et al. , Reτ = 210 (Reynolds number based
on friction velocity).

and eliminate the pressure by projection onto the space of divergence-free modes,

∂û(k)

∂t
= −νk2û(k) + N(k|û(q), û(p)) (465)

Here, k, p, and q are wave vectors and N(k|û(q), û(p)) is the Fourier transform of
the nonlinear term. Equation (465) is then multiplied by the complex conjugate of
the Fourier coefficient, namely û

∗(k), and integrated over spherical surfaces of radius
k = |k| in wave-vector space, to derive an evolution equation for the energy spectrum,
E(k),

∂E(k)

∂t
= −2νk2E(k) + T (k|û(q), û(p)) (466)

where T (k|û(q), û(p)) is referred to as the energy transfer term . It represents the
energy transferred from the spherical surface of radius k, to Fourier modes with wave
numbers p and q. This equation can be given a numerical analysis interpretation by
introducing a cutoff, kc, and thinking of it as representing the limit of resolution of
a discretization, in this case, spectral truncation. All Fourier modes with wave-vector
amplitude larger than kc are viewed as missing. The interesting case is energy transfer
for wave numbers k < kc. It makes sense to split the energy transfer term into two parts
as follows:

∂E(k)

∂t
= −2νk2E(k) + T<(k|û(q), û(p)) + T>(k|û(q), û(p)) (467)

where T<(k|û(q), û(p)) assumes p and q are smaller in magnitude than kc, hence T< is
exactly included in the numerical model, and T>(k|û(q), û(p)) assumes at least one of p

and q is larger in magnitude than kc, hence T> is omitted in the numerical model. One
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Figure 42. Direct-interaction approximation (DIA) results for homogeneous turbulence from
Kraichnan.

view of the modeling problem in turbulence is to approximately represent this omitted
term. Since it typically represents a flow of energy from the surface of radius k to modes
beyond the cutoff, it has been customary to rescale it as a spectral eddy viscosity ,
that is,

νT (k) =
−T>(k|û(q), û(p))

2k2E(k)
(468)

Theoretical studies of Kraichnan (1976), assuming infinite Reynolds number, suggested
the form of νT (k) involves a plateau at low wave number and cusp at higher wave
number, peaking at the cutoff (see Fig. 42). Initial studies of DNS data bases (well-
resolved turbulent solutions at low Reynolds number) confirmed the presence of the
cusp, but the plateau was at zero, rather than the value predicted by the Kraichnan
theory (see Fig’s. 40 and 41 from Domaradzki, Liu and Brachet, 1993; Domaradzki et
al., 1994). The issue was clarified by McComb and Young (1998) who studied a higher
Reynolds number flow and systematically varied the location of the cutoff kc. The cusp
is clearly apparent in all cases, but the plateau also emerges at a very low value of the
cutoff (see Fig. 43). Keeping in mind that a spectral eddy viscosity model acts as an
artificial viscosity and, due to the predominance of the cusp, it is very reminiscent of
the cusp-like structure of the artificial dissipation employed in the perfectly-matched
layer. Both mechanisms attempt to remove information which would be transferred to
scales present in the numerical approximations. This amounts to an analogy between
wave-vector space behavior, in the case of turbulence, with physical space behavior, in
the case of the perfectly-matched layer. The latter case is hyperbolic, and the former
represents, in aggregate, an almost hyperbolic phenomenon in wave-vector space. It is
interesting that similar dissipative mechanisms are used to represent seemingly very
different phenomena, namely, radiation damping in the electromagnetic case, a linear
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Figure 43. DNS results from McComb & Young on a 2563 mesh at Reλ = 190, 16.5 < kc < 112.5.

hyperbolic mechanism in physical space, and energy transfers due to nonlinearities in
turbulence, which become nonlocal interactions in wave-vector space. The predominance
of the cusp in both cases suggests a similar mechanism may be present. In fact, it can
be shown in the case of turbulence that the cusp is produced by linearized interactions
(i.e., “cross stress” terms) and the transfers are confined to a spherical layer in wave-
vector space of precisely twice the radius of the cutoff, kc (see Hughes, Wells and Wray,
2004).

2. The version of the variational multiscale method described previously may be thought of
as an approximation of spectral eddy viscosity in that the artificial viscosity inspired by
the Smagorinsky model is assumed to act only in a high wave-number layer in spectral
space (see Fig. 44). Likewise, it may be thought of as a wave-vector interpretation of the
perfectly-matched layer, although no attempt has so far been made to attain a smooth
match.

3. “Hyperviscosities” in spectral formulations (see, e.g., Borue and Orszag, 1994,1996),
which are also cusp-like, may be viewed as approximations of spectral eddy viscosity.
As pointed out by Cerutti, Meneveau and Knio (2000), however, their behavior in
physical space does not correlate very well with turbulent energy transfers. When inverse
transformed to physical space, hyperviscosities lead to higher-order spatial differential
operators, which cannot be easily implemented in many numerical methods such as, for
example, finite elements.

6.5.4. Dissipative structural dynamics time integrators It was observed many years ago that
it was important to introduce dissipative mechanisms in structural dynamics time integrators
to prevent spurious oscillations and dangerous “overshoot phenomena” in high frequencies,
which turn out to be equivalent to high wave-vector components (see Hughes, 1987, Chapter
9, and references therein). In structural dynamics it was argued that time integrators could
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c© 2004 John Wiley & Sons, Ltd.



90 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

ln kln k

ln E(k)ln E(k)

kk k′k′ kdkd

Figure 44. In three-dimensional turbulence, energy transfers in spectral space cascade from small wave
number to large wave number, reminescent of wave propagation phenomena in exterior problems in
physical space. In the variational multiscale method, artificial viscosity is incorporated in the annular
layer [k, k′] to approximate the energy-transfer mechanism. This is reminescent of the perfectly-

matched layer.
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Figure 45. Spectral radii for Newmark methods with varying β.

be developed to remove high-frequency components of the solution, but that care needed to
be exercised in order not to degrade accuracy in low-frequency components. The HHT α-
method (see Hilber, Hughes and Taylor, 1977; Hilber and Hughes, 1978) and Park’s method
(Park, 1975) are two well-known integrators designed to satisfy these objectives. For further
discussion and evaluation, see Hughes (1987). There again is an analogy with the variational
multiscale method in that dissipation is added in the high wave-number regime to remove
spurious pile-up of energy near the cutoff (i.e., limit of resolution) whereas it is avoided in the
low wave-number regime so as not to degrade accuracy in the well-resolved modes. There are
similarities with the other ideas described previously mutatis mutandis. As a measure of the
high-frequency dissipation, one often uses the spectral radius of the amplification operator.
A value of 1 indicates no dissipation and a value of 0 indicates maximal dissipation. Figure
45 illustrates the cusp-like behavior of spectral radii of some dissipative integrators used in
structural dynamics. Note the absence of dissipation in low frequencies and the presence of
dissipation in high frequencies.

6.6. Summary

In this section a variational multiscale approach to Large Eddy Simulation, has been described.
The approach may be contrasted with classical LES in which modeling of the subgrid-scale
stress in the filtered equations is performed first, and scale separation is accomplished a
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posteriori by, for example, the dynamic modeling procedure.
Criticisms lodged against the classical LES/Smagorinsky model are addressed in the context

of the present approach. Specifically, even with a positive, constant-coefficient, eddy viscosity
term, the present approach:

1. Yields the correct asymptotic behavior at walls for the classical Reynolds stress, cross-
stress, Leonard stress and, consequently, the subgrid-scale stress. In particular, no
modeling of these terms is performed.

2. Reduces dissipation in the presence of mean shear.
3. Ameliorates damping of resolved structures since the eddy viscosity term acts only on

fluctuations.

Furthermore, the present approach de-emphasizes the role of the Smagorinsky constant
in producing dissipation, but accentuates dissipation effects associated with fluctuations.
Consequently, a single value of the constant is anticipated to behave in a more satisfactory
manner for a variety of complex flows.

In addition, the variational equation governing large scales, which is unmodeled, is
identically satisfied by all exact solutions of the Navier-Stokes equations. This is often referred
to as the “consistency condition” and is a key condition for obtaining error estimates. This
may be contrasted with the classical LES/constant-coefficient Smagorinsky model case which
does not possess this property.

On the other hand, the eddy viscosity models considered herein are very simple, perhaps
too simple. The energy transfers from low wave numbers to unresolved modes, present in
coarse and inviscid LES and manifested by the plateaus in Figures 42 and 43, are not well
represented by small-scale viscous mechanisms. Consequently, the search for better methods
continues. Nevertheless, experience so far with the present method has been remarkably good.

The fine-scale eddy viscosity approach to LES has been studied in a number of publications.
Initial numerical results were presented in Hughes et al. (2001); Hughes, Oberai and Mazzei
(2001); Oberai and Hughes (2002); Holmen et al. (2004); and Hughes, Wells and Wray (2004).
In Hughes et al. (2001), application was made to the LES of homogeneous, isotropic flows and
compared with the classical Smagorinsky model, the dynamic Smagorinsky model, and direct
numerical simulation (DNS) data, utilizing a spectral formulation. Overall, static, constant-
coefficient, models, (456) and (457), were found to be in better agreement with the DNS
data than both the classical and dynamic Smagorinsky models. Turbulent channel flows were
studied in Hughes, Oberai and Mazzei (2001). Friction Reynolds numbers of 180 and 395
were considered and comparison was made with the classical Smagorinsky model with Van
Driest damping, the dynamic Smagorinsky model and DNS data. Static, constant-coefficient,
multiscale models were utilized without wall damping functions. A pseudospectral Galerkin
formulation was employed. The multiscale methods achieved very good results compared with
DNS data, and again outperformed the classical and dynamic Smagorisnky models. An issue
with the multiscale formulation is the choice of scale partition and sensitivity of the computed
results to it. This topic was investigated in Holmen et al. (2004), in the context of channel
flows. In addition to static, constant-coefficient, multiscale models, a dynamic multiscale model
was studied, in which the small-scale eddy viscosity was defined by

ν′
T = (C′

S∆′)2 |∇s(u + u′)| (469)
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Note that, in this case, ν′
T depends on both large- and small-scale velocity components, and

C′
S∆′ is determined dynamically, in contrast to (456) and (457). The error in channel flow

simulations, relative to DNS results, was computed for various partitions between large-
and small-scale spaces. It was shown that the dynamic multiscale method was relatively
insensitive to the partition chosen. The static multiscale models were highly accurate at the
optimal partition ratio, but were more sensitive to the partition than the dynamic multiscale
model. Energy transfers and spectral eddy viscosity were studied for homogeneous isotropic
turbulence in Hughes, Wells and Wray (2004). Comparisons with DNS results were made
for the dynamic Smagorinsky and multiscale models over a range of discretizations. Both
models underestimated the DNS results for a very coarse LES, but the dynamic Smagorinsky
model was closer to the DNS. For moderate to well-refined LES, the dynamic Smagorinsky
model overestimated the spectral eddy viscosity at low wave numbers. The dynamic multiscale
model was in good agreement with DNS for these cases. The convergence of the multiscale
model to the DNS with grid refinement was more rapid then for the dynamic multiscale model.
Techniques for improving long-range energy transfers in multiscale models have been proposed
by Levasseur et al. (2006).

The variational multiscale formulation of LES was also extended by Farhat and Koobus
(2002) and Koobus and Farhat (2004) to the compressible Navier-Stokes equations for
unstructured finite element and finite volume discretizations. Results for vortex shedding
dominated flows are presented in Koobus and Farhat (2004) and shown to match experimental
data. Other works that present results for the variational multiscale formulation of LES and
variations are Winckelmans and Jeanmart (2001), Jeanmart and Winckelmans (2001), Collis
(2002), and Ramakrishnan and Collis (2002, 2004a, 2004b, 2006).

A summary of the main tenets of the approach described herein is presented as follows:

(i) Variational projection in preference to filtering. This obviates the closure problem and
complex issues associated with filtering and inhomogeneous wall-bounded flows are also
eliminated.

(ii) A priori scale separation in preference to a posteriori scale separation. This facilitates
modeling restricted to unresolved, high-wave number phenomena rather than all wave
numbers as in classical LES.

(iii) Modeling confined to the small-scale equation in preference to modeling within the large-
scale equation. This means that the large-scale equation is unmodeled and is consistent
in the weighted residual sense, in contrast to the modeled filtered equations.

6.7. Appendix: Semi-discrete formulation

In this appendix, the ideas are illustrated in terms of a more traditional semi-discrete
formulation in which a midpoint rule algorithm is used for time discretization. Let un and
pn represent the algorithmic solution at time tn. The time step is denoted ∆t = tn+1 − tn. It
proves convenient to employ the jump and mean value operators, viz.,

[u] = un+1 − un (470)

〈u〉 = 1
2 (un+1 + un) . (471)
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The algorithm is an approximation to the semi-discrete variational formulation, given as
follows:
(

w,
∂u

∂t

)

Ω

− (∇w, u ⊗ u)Ω + (q, ∇ · u)Ω − (∇ · w, p)Ω + (∇sw, 2ν∇
su)Ω = (w, f)Ω (472)

Midpoint rule

1

∆t
(w, [u])Ω − (∇w, 〈u〉 ⊗ 〈u〉)Ω + (q, ∇ · 〈u〉)Ω − (∇ · w, 〈p〉)Ω

+ (∇sw, 2ν∇
s〈u〉)Ω = (w, 〈f 〉)Ω (473)

The kinetic energy evolution law immediately follows from (473) by replacing w with 〈u〉 and
q with 〈p〉, i.e.,

1
2 ||un+1||2Ω + 2ν∆t ||∇s〈u〉||2Ω = 1

2 ||un||2Ω + ∆t (〈u〉, 〈f 〉)Ω . (474)

In addition,

1
2 ||un+1||2Ω + ν∆t ||∇s〈u〉||2Ω ≤ 1

2 ||un||2Ω +
CΩ∆t

4ν
||〈f 〉||2Ω (475)

where CΩ is defined by (417).
The multiscale procedure is developed in analogous fashion to the space-time case (see

Section 6.4). Let

un = un + u′
n (476)

pn = pn + p′n (477)

w = w + w′ (478)

q = q + q′ (479)

These are substituted into (473) resulting in equations governing large and small scales, as
before. The details, which are straightforward, are left to the interested reader. Modeling also
follows the ideas developed previously, namely, to the left-hand side of (473) add the term

(∇sw′, 2ν′
T ∇

s〈u′〉)Ω . (480)

This amounts to adding viscous dissipation to the small scales equation. The modification to
the kinetic energy identity, (474), is

1
2 ||un+1||2Ω + 2ν∆t ||∇s〈u〉||2Ω + ∆t

∣

∣

∣

∣

∣

∣
(2ν′

T )1/2
∇

s〈u′〉
∣

∣

∣

∣

∣

∣

2

Ω
= 1

2 ||un||2Ω + ∆t (〈u〉, 〈f〉)Ω (481)

from which follows:

1
2 ||un+1||2Ω + ν∆t ||∇s〈u〉||2Ω + ∆t

∣

∣

∣

∣

∣

∣
(2ν′

T )1/2
∇

s〈u′〉
∣

∣

∣

∣

∣

∣

2

Ω
≤ 1

2 ||un||2Ω +
CΩ∆t

4ν
||〈f 〉||2Ω (482)

Remark
As remarked previously, the term (∇〈w〉, 〈u〉 ⊗ 〈u〉)Ω may need to be altered in the discrete

case in order to achieve

(∇〈u〉, 〈u〉 ⊗ 〈u〉)Ω = 0 . (483)
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See Quarteroni and Valli (1994), p.435.
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element method with residual-free bubbles for advection dominated equations. SIAM Journal
on Numerical Analysis 1999; 36:1933–1948.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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c© 2004 John Wiley & Sons, Ltd.



100 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Hughes TJR, Mazzei L, Oberai AA and Wray AA. The multiscale formulation of large eddy simulation:
Decay of homogeneous isotropic turbulence. Physics of Fluids 2001. 13:505–512.

Hughes TJR, Oberai AA and Mazzei L 2001. Large eddy simulation of turbulent channel flows by the
variational multiscale method. Physics of Fluids 2001; 13(6):1784–1799.

Hughes TJR, Sangalli G. Variational multiscale analysis: The fine-scale Green’s function, projection,
optimization, localization, and stabilized methods. ICES Report 05-46, The University of Texas
at Austin, 2005.

Hughes TJR, Scovazzi G, Bochev PB and Buffa A. A multiscale discontinuous Galerkin method with
the computational structure of a continuous Galerkin method. Computer Methods in Applied
Mechanics and Engineering 2006; 195(19-22): 2761–2787.

Hughes TJR, Wells GN and Wray AA. Energy transfers and spectral eddy viscosity in large eddy
simulations of homogeneous isotropic turbulence. Physics of Fluids 2004; 16(11):4044–4052.

Hulbert GM and Hughes TJR. Space-time finite element methods for second-order hyperbolic
equations. Computer Methods in Applied Mechanics and Engineering 1990; 84(3):327–348.

Jansen K, Whiting C, Collis SS and Shakib F. A better consistency for low-order stabilized finite
element methods. Computer Methods in Applied Mechanics and Engineering 1999; 174(3-4):153–
170.

Jeanmart H. and Winckelmans GS. Comparison of recent dynamic subgrid-scale models in the case of
the turbulent channel flow. Proceedings Summer Program 2002. Center for Turbulence Research,
Stanford University & NASA Ames: Stanford, 2002; pp. 105-116.

John V and Layton WJ. Approximating local averages of fluid velocities: The Stokes problem.
Computing 2001; 66(3):269–287.

Johnson C. Streamline diffusion methods for problems in fluid mechanics. In Finite Elements in Fluids,
Vol. VI Gallagher R, Carey GF, Oden JT and Zienkiewicz OC (eds). Wiley: Chichester, 1986;
251–261.

Johnson C. Numerical Solutions of Partial Differential Equations by the Finite Element Method.
Cambridge University Press: Cambridge, 1987.

Johnson C. Finite element methods for flow problems. Unstructured Grid Methods for Advection
Dominated Flows. AGARD Report 787: AGARD, 7 rue Ancelle, 92200 Neville sur Seine, France,
1992.

Johnson C and Hansbo P. Adaptive finite element methods in computational mechanics. Preprint
No. 1992-04/ISSN 0347-2809, Department of Mathematics, Chalmers University of Technology,
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and Métais O (eds.), Kluwer:Dordrecht, 2001.

Winckelmans GS, Jeanmart H and Carati D. On the comparison of turbulence intensities from large-
eddy simulation with those from experiment or direct numerical simulation. Physics of Fluids
2002; 14(5):1809–1811.

Winckelmans GS, Wray AA, Vasilyev OV and Jeanmart H. Explicit-filtering large-eddy simulation
using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Physics of
Fluids 2001; 13(5):1385–1403.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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