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Abstract

A new variational multiscale, stabilized method based on a piecewise linear approximation of the equations for Lagrangian shock
hydrodynamics is presented. Acoustic instabilities (e.g., hourglass modes) are controlled by a stabilizing operatorderived using
the variational multi-scale analysis paradigm. The methodis implemented using a predictor/multi-corrector time integrator which
guarantees global conservation of mass, momentum, and total energy for each iterate, and represents an important advance with
respect to previous work by some of the authors on the subject. Encouraging numerical comparisons with existing methodsin the
case of quadrilateral and hexahedral elements are presented.
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1. Introduction

In recent years, renewed effort has been devoted to the tech-
nical advancement of Lagrangian shock hydrodynamics algo-
rithms (hydrocodes in short). A (non-exhaustive) list of recent
work to advance the robustness and accuracy of hydrocodes in-
cludes [1, 2, 4–12, 20–26, 33–35]. Very recent developments
[2, 6–10, 24–26] have focussed on reducing mesh distortion
while maintaining second-order accuracy in smooth regionsof
the flow.

This article presents an implementation of the stabiliza-
tion concept proposed in [32], aimed at improving the robust-
ness and accuracy of newly developed methods for Lagrangian
shock hydrodynamics on piece-wise linear, continuous approxi-
mations [31, 33]. The proposed method adopts a piece-wise lin-
ear approximation of both thermodynamic and kinematic vari-
ables, contrary to more traditional approaches in shock hydro-
dynamics, which rely on a piece-wise constant discretization of
the thermodynamic variables. The present work stems from the
earlier work in [31, 33], and represents a considerable advance
from many points of view.

First of all, the proposed variational formulation of the shock
hydrodynamics equations is developed using an updated La-
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grangian approach, that is, the variational formulation isex-
pressed in the current configuration (see [3] for details on this
nomenclature). This strategy contrasts with the formulation in
[33], which was posed in the original configuration (total or
pure Lagrangian approach). The proposed updated Lagrangian
approach allows for a reduction in the computational costs,as
the deformation gradient does not need to be evaluated explic-
itly, but is implicitly accounted for when the mesh nodal co-
ordinates are updated. In addition, algorithms for fast dynam-
ics posed in the current configuration usually enjoy improved
discrete invariance and objectivity properties relative to cor-
responding algorithms cast in the original configuration (see
[3, 14, 38] and references therein, for more details).

Second, the proposed method adopts a second-order
predictor/multi-corrector, mid-point type time integration pro-
cedure similar to [34, 35], to preserve at each iteration global
mass, momentum, and total energy. This is in contrast to
the predictor/multi-corrector space-time integrator proposed in
[33], in which conservation is guaranteed only when con-
vergence of the iterative process is attained. For more de-
tails on the stability and accuracy properties of the proposed
predictor/multi-correctoralgorithm, the reader can refer to [36].

Third, the use of lumped mass matrices in the momentum
and internal energy time integration provides increased robust-
ness under severe shock conditions. One of the problematic is-
sues discovered in the development of the algorithm presented
in [33] was that negative undershoots of the pressure and inter-
nal energy could occur in a number of challenging test cases.
The combination of mass lumping with the new time-integrator
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has eliminated this problem. This result is very important es-
pecially when complex constitutive models, usually in tabular
form, are used in the computations.

The overall result is a method of improved robustness and
accuracy, with very encouraging performance on a number
of challenging computations, such as the three-dimensional
Noh [28] and Sedov [37] tests on Cartesian (i.e, non-polar)
meshes.

Although the proposed method can also be applied to trian-
gular and tetrahedral finite element meshes (see [33], for an
example in the context of earlier developments), the focus of
the present paper is on computations with quadrilaterals and
hexahedral elements. Focusing exclusively on these types of
mesh topologies allows us to present extensive numerical com-
parisons with respect to earlier methods developed by some of
the authors [33–35], and other research groups [1, 22]. Addi-
tional developments on triangular and tetrahedral meshes will
be the object of future publications.

The rest of the exposition is organized as follows: Section 2
is devoted to presenting the equations of Lagrangian hydrody-
namics and highlighting their structure as a nonlinear system of
wave propagation equations. In Section 3 we present the varia-
tional form of the equations, while in Section 4 we introducethe
time-integration strategy with a discussion on its conservation
properties. Section 5 is dedicated to the implementation ofthe
variational multscale stabilizing operators developed in[32],
further analyzing their properties from an algorithmic point of
view. In Section 6 we introduce the discontinuity capturing
operators (artificial viscosities), needed to further stabilize the
proposed formulation in the presence of shock waves. General
considerations on the implementation and time-step control are
presented in Section 7, while Section 8 is devoted to the dis-
cussion and comparison of numerical results, in two and three
dimensions. A summary of conclusions is presented in Section
9.

2. Equations of Lagrangian shock hydrodynamics

The classical equations of Lagrangian shock hydrodynamics
govern the rate of change in position, momentum and energy of
a compressible body of fluid, as it deforms. LetΩ0 andΩ be
open sets inRnd (wherend is the number of spatial dimensions).
Thedeformation

ϕ : Ω0→ Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinateX, representing the initial position
of an infinitesimal material particle of the body, tox, the posi-
tion of that particle in the current configuration (see Fig. 1). Ω0

is the domain occupied by the body in its initial configuration,
with boundaryΓ0. ϕmapsΩ0 toΩ, the domain occupied by the
body in its current configuration, with boundaryΓ. ϕ is usually
a smooth, invertible map, so that thedeformation gradient, and

Ω0

Ω

ϕ

X

x

Figure 1: Sketch of the Lagrangian mapϕ.

thedeformation Jacobian determinant can be defined:

F = ∇Xϕ , or, in index notation, FiA =
∂ϕi

∂XA
=

∂xi

∂XA
, (3)

J = det(F) , (4)

where∇X is the gradient in the original configuration. In the
domainΩ, the equations for the displacement update and con-
servation of mass, momentum, and energy read:

u̇ = v , (5)

ρJ = ρ0 , (6)

ρ v̇ = ρ b + ∇x· σ , (7)

ρǫ̇ = ρ r + ∇xv : σ + ∇x · q . (8)

Here,∇x and∇x· are the current configuration gradient and diver-
gence operators, anḋ(·) indicates the material, or Lagrangian,
time derivative. u = x − X is the displacement vector,ρ0 is
the reference (initial) density,ρ is the (current) density,v is the
velocity, b is the body force (e.g., gravity),σ is the symmetric
Cauchy stress tensor,r is the energy source term, andq is the
heat flux. We also denote byE = ǫ + v · v/2 the total energy,
the sum of the internal energyǫ and the kinetic energyv · v/2.
E, ǫ, b, r are measured per unit mass. Equations (5)–(8) are
most commonly adopted in shock-hydrodynamics algorithms
[5], and make use of the quasi-linear rather than the conserva-
tive form of the internal energy equation. The sum of the in-
ternal energy equation (8) and the kinetic energy equation (the
scalar product of (7) with the velocity vectorv) yields the equa-
tion for the conservation of total energy.

Remark1. Although (8) is not in conservative form, it can still
be used to develop a globally conservative variational formula-
tion, as will be shown in Section 4.

Assuming that the boundaryΓ = ∂Ω is partitioned asΓ =
Γg ∪ Γh, Γg ∩ Γh = ∅, displacement boundary conditions are
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enforced on theDirichlet boundaryΓg, that is,

u|Γg = ubc(x, t) , (9)

andtraction boundary conditions are enforced on theNeumann
boundaryΓh, by means of a physical traction vectort, that is,

σn|Γh = t(x, t) . (10)

Equations (5)–(8), and boundary conditions (9)-(10) com-
pletely define the evolution of the system, once appropriateini-
tial conditions are specified.

2.1. Constitutive laws

The analysis presented in what follows is specific to mate-
rials with no deformation strength. In this case, the Cauchy
stressσ reduces to an isotropic tensor, dependent only on the
thermodynamic pressure:

σ = −pInd×nd , (11)

An equation of state of the type

p = p̂(ρ, ǫ) , (12)

is assumed. For example, equations of state of Mie-Grüneisen
type are compatible with (12), namely

p̂(ρ, ǫ) = f1(ρ) + f2(ρ)ǫ , (13)

and apply to materials such as compressible ideal gases, co-
volume gases, high explosives, etc. (See [27] for more details.)
Ideal gases satisfy (13), withf1 = 0 and f2 = (γ − 1)ρ, to yield

p̂(ρ, ǫ) = (γ − 1)ρǫ . (14)

3. Variational formulation

The first step in the development of a variational form for
(5)–(8) is to define thetrial spaces for the kinematic and ther-
modynamic variables, characterizing thestate of the system.
Let Sκ denote the space of admissible values for the kinematic
variables (displacements, velocities, accelerations), andSγ the
space of admissible thermodynamic states (densities, pressures,
internal energies). In addition,test spaces can be defined:Vκ

is the space of variations (compatible with the boundary con-
dition (9)) for the kinematic variables, andVγ is the space of
variations for the thermodynamic variables. The complete vari-
ational problem reads:

Find ρ, p, ǫ ∈ Sγ, u, v ∈ Sκ, such that, ∀ψ ∈ Vγ, ∀ψ ∈ Vκ,

0 =
∫

Ω0

ψ · (u̇ − v) dΩ0 , (15)

0 =
∫

Ω0

ψ (ρ0 − ρJ) dΩ0 , (16)

0 =
∫

Ω0

ψ · (ρ0v̇) dΩ0 +

∫

Ω

∇s
xψ : σ̃dΩ

−

∫

Γh
ψ · t dΓ −

∫

Ω

ψ · (ρb) dΩ , (17)

0 =
∫

Ω0

ψ (ρ0ǫ̇) dΩ0 −

∫

Ω

ψ
(

∇s
xv : σ̃ + ρr

)

dΩ

+

∫

Ω

∇xψ · q̃ dΩ , (18)

where∇s
x = 1/2(∇x

T + ∇x) is the symmetric part of the gradi-
ent operator. In (17)–(18), we have used the identityρ0 dΩ0 =

ρdΩ, which states that the mass of an infinitesimal particle
dm = ρ0 dΩ0 does not change under the Lagrangian deforma-
tion map. The term ˜σ denotes in general a symmetric algorith-
mic stress tensor, namely

σ̃ = −pI + σvms + σart , (19)

whereσvms is a variational multiscale stabilizing stress tensor,
andσart is an artificial viscosity stress tensor, designed to cap-
ture shock layers. Sinceσ is symmetric,∇xv : σ = ∇s

xv : σ.
Analogously, ˜q denotes an algorithmic flux vector,

q̃ = q + λvms + λart , (20)

whereλart is an artificial, shock-capturing vector flux, andλvms

is a variational multiscale stabilizing vector flux. Bothσvms

andλvms are residual-based quantities. Specific derivations and
definitions for the terms ˜σ and q̃ will be given in subsequent
sections.

Remark2. For reasons that will become clear subsequently
(see Section 5 and Section 6),λvms andλart do not possess the
structure of heat fluxes, and this terminology is therefore inap-
propriate.

In the proposed spatial approximation,all variables (both kine-
matic and thermodynamic) can be approximated by piece-
wise linear, continuous functions (node-centered degrees-of-
freedom). Consequently, the test-spaces for the equationscon-
sist of piece-wise linear, continuous functions. More precisely:

Sh
κ =

{

ψh ∈ (C0(Ω))nd : ψh
∣

∣

∣

Ωe
∈ (P1(Ωe))nd ,

ψh = gbc(t) onΓg
}

, (21)

Vh
κ =

{

ψh ∈ (C0(Ω))nd : ψh
∣

∣

∣

Ωe
∈ (P1(Ωe))

nd ,

ψh = 0 onΓg
}

, (22)

Sh
γ =

{

ψh ∈ C0(Ω) : ψh
∣

∣

∣

Ωe
∈ P1(Ωe),

}

, (23)

Vh
γ =S

h
γ , (24)
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whereP1(Ωe) is the space of piece-wise linear polynomials
over the elemente, andgbc(t) indicates the generalized essential
(Dirichlet) boundary conditions, possibly dependent on time.
For example, ifSh

κ is used to approximate displacements, then
gbc = ubc. If insteadSh

κ is used to approximate velocities, then
gbc indicates a boundary velocityvbc, compatible withubc.

Remark3. In the current formulation, traction (i.e.,natural)
boundary conditions are imposed in (17) through the weak
form, while the spaceSκ incorporates the set ofessential
boundary conditions (9). Consequently, boundary conditions
of kinematic (Dirichlet) type are imposedstrongly.

Remark4. In contrast with previous work in [33], the density
is also expressed with piece-wise linear continuous functions.
Numerical results not be reported here, for the sake of brevity,
showed little difference between the two approaches.

4. Time integration and discrete weak forms

The variational form of the Lagrangian hydrodynamics equa-
tions and its conservation properties are strictly relatedto the
choice of time-integration algorithm. In the present work,an
explicit iterative time integrator is derived by combininga mid-
point method with a predictor/multi-corrector strategy. The
proposed formulation conserves mass, momentum and total en-
ergy without resorting to any staggered approach in time, and
stems from previous work in [35] (and also from similar ideas
developed in the context ofmimetic or compatible discretiza-
tions [2, 10]).

4.1. Discrete equations

For the sake of simplicity, it is assumed that the body forceb,
the heat fluxq and the heat source/sink r are absent. The time
step is indicated by∆t, and the mid-point value of a quantityf
is defined as:

fn+1/2 =
fn + fn+1

2
, (25)

where fn = f (tn). In what follows, with slight abuse of nota-
tion, the superscript “h” - denoting numerical discretization - is
omitted from the solution variables, discrete gradient operators,
and the domain geometry.

4.1.1. Momentum balance
The variational problem associated with the conservation of

linear momentum reads
Find v ∈ Sh

κ , such that, ∀ψh ∈ Vh
κ ,

0 =
∫

Ω0

ψh · ρ0 (vn+1 − vn) dΩ0

+ ∆t
∫

Ωn+1/2

(∇xψ
h)n+1/2 : σ̃n+1/2 dΩ

− ∆t
∫

Γh
n+1/2

ψh · tn+1/2 dΓ , (26)

where the physical tractiont acts only on the Neumann bound-
ary (i.e., t|Γg = 0). The variational form (26) yields the fol-
lowing discrete equations, for the nodal vectorv of velocity
degrees-of-freedom:

[Mv] (vn+1 − vn) + ∆t Fn+1/2 = 0 , (27)

where mass lumping has been applied to

[Mv] = [diag(M0,M0,M0)] , (28)

a diagonal [(nd × nnp)× (nd × nnp)]-matrix (nnp is the number of
nodes in the mesh). Specifically, usingNA to indicate the shape
function associated with nodeA in the global node numbering,
the vectorM0 is defined as

M0 = {M0;A} , (29)

M0;A =

∫

Ω0

NAρ0 dΩ0 . (30)

Analogously,Fn+1/2 is a (nd × nnp)-vector:

Fn+1/2 ={Fn+1/2;A} , (31)

Fn+1/2;A =

∫

Ωn+1/2

σ̃n+1/2(∇xNA)n+1/2 dΩ

−

∫

Γn+1/2

NA tn+1/2 dΓ , (32)

4.1.2. Energy balance
Discretizing (18) in time yields:
Find ǫ ∈ Sh

γ, such that, ∀ψh ∈ Vh
γ,

0 =
∫

Ω0

ψhρ0 (ǫn+1 − ǫn) dΩ0

− ∆t
∫

Ωn+1/2

ψh (∇xv)n+1/2 : σ̃n+1/2 dΩ

−

∫

Ωn+1/2

∇xψ
h · q̃n+1/2 dΩ , (33)

so that an update equation for the nodal vectorǫ of internal
energy degrees-of-freedom can be derived:

[Mǫ ] (ǫn+1 − ǫn) + ∆t Wn+1/2 = 0 , (34)

where [Mǫ ] = [diag(M0)], andWn+1/2 is annp-dimensional vec-
tor defined as

Wn+1/2 ={Wn+1/2;A} , (35)

Wn+1/2;A = −

∫

Ωn+1/2

NA (∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫

Ωn+1/2

(∇xNA) · q̃n+1/2 dΩ . (36)

4.1.3. Mass balance
The mass conservation equation (16) can be slightly rear-

ranged to yield:

4



Find ρ ∈ Sh
γ, such that, ∀ψh ∈ Vh

γ,

∫

Ω0

ψhρ0 dΩ0 =

∫

Ω0

ψhρJ dΩ0 =

∫

Ω

ψhρdΩ . (37)

Testing the previous equation using nodal shape functions
yields

[Vn+1]ρn+1 = M0 , (38)

whereρn+1 is the vector of nodal degrees-of-freedom for the
density attn+1, that is,

ρn+1 = {ρn+1;A} , (39)

and [Vn+1] = [diag(Vn+1)] is the diagonal matrix of (lumped)
nodal volumes, with

Vn+1 = {Vn+1;A} , (40)

Vn+1;A =

∫

Ω0

NA Jn+1 dΩ0 =

∫

Ωn+1

NA dΩ . (41)

Remark5. Following the finite-volume method nomenclature,
the interpretation of{Vn+1} is analogous to a vector of co-
volumes.

4.1.4. Displacement equations
Positions are updated from velocities using a weak projec-

tion, rather than using a set of ordinary differential equations
for the nodal positions. The time-discretization of the rate equa-
tions for the position yields:

Find u ∈ Sh
γ, such that, ∀ψh ∈ Vh

γ,

∫

Ω0

ψh · (un+1 − un) dΩ0 − ∆t
∫

Ω0

ψh · vn+1/2 dΩ0 = 0 (42)

and leads to the update equation for the vectoru of nodal dis-
placements:

un+1 − un − ∆t vn+1/2 = 0 , (43)

with

vn+1/2 = {vn+1/2;A} , (44)

vn+1/2;A = V−1
0;A

(∫

Ω0

NAvn+1/2 dΩ0

)

. (45)

Remark6. In the case of the displacement update, the inverse
of a lumped volume matrix is premultiplied by the vector of
nodal positions, and the velocities are tested against the nodal
shape functions. This leads to an explicit procedure which is
very similar in structure to the momentum equation update.
This choice was preferred in [33] to the simpler approach of
integrating in time ordinary differential equations for the nodal
displacements, due to its superior results.

Remark7. Note also that an early attempt to apply the pro-
posed displacement update to the more traditional finite element
method in [35] (i.e., with thermodynamic variablesconstant on
element interiors) proved disastrous. In fact, a number of basic

tests performed with this combination could not be run to com-
pletion due to inversion of some of the element volumes. This
fact seems to indicate that the proposed displacement update is
effectiveonly in the context of piece-wise linear approximation
of thermodynamic variables.

4.1.5. Equation of state
The equation of state is evaluated at each time step at the

nodal points, and a nodal pressure is computed as a function of
nodal internal energy and nodal density:

σn+1 = −pn+1I = −p̂(ρn+1, ǫn+1)I . (46)

A piece-wise continuous pressure field is then interpolatedfrom
the nodal values of the pressure. Therefore, we can write a dis-
crete form of the pressure degrees-of-freedom update equation
as follows:

pn+1 = p̂(ρn+1, ǫn+1) . (47)

4.2. Global conservation properties
4.2.1. Conservation of mass

Equation (38) (or, correspondingly, (37)) is a statement of
global conservation of mass. This can be easily seen by testing
(37) against a constant unit test function, which yields

∫

Ω0

ρ0 dΩ0 =

∫

Ω

ρdΩ = total mass. (48)

In the context of the discrete equations (with lumping applied to
the second integral above), we can easily see that (48) is equiv-
alent to contracting (38) with the vector1, a nnp-dimensional
vector whose entries are all unity, namely

1T [Vn+1]ρn+1 = 1T {M0} = discrete total mass. (49)

4.2.2. Conservation of linear and angular momentum
Let us assume, as is customary when proving conservation

statements, that only homogenous Neumann (zero-traction)
boundary conditions are imposed, so that the test and trial func-
tion spaces for the velocities coincide (i.e.,Sh

κ = V
h
κ ). Test-

ing (26) against the shape functionψh = ei, i = 1, . . . , nd (the
constant unit vector of the Cartesian basis in theith direction)
yields a conservation statement for the global momentum in the
directionei. Namely, as the boundary term and the integral in-
volving the test function gradient disappear, (26) yields

0 =
∫

Ω0

ρ0
(

vi,n+1 − vi,n
)

dΩ0

=

∫

Ωn+1

ρn+1vi,n+1 dΩ −
∫

Ωn

ρnvi,n dΩ , (50)

wherevi = v · ei. This is analogous to contracting the entries of
vector equation (27) corresponding to theith component against
the vector1:

1T ([Mi,v]
(

vi,n+1 − vi,n
)

) = 0 , (51)

where [Mi,v] is the diagonal block of [Mv] corresponding to the
degrees-of-freedomvi associated with theith direction. Under
appropriate boundary conditions, an algorithmic form of the to-
tal angular momentum is also conserved (see [19] for a detailed
discussion).
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(a) Three-dimensional Noh test (303-element mesh).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3
x 10

−13

t

 

 

Normalized kinetic energy

Normalized internal energy

Total energy relative increment

(b) Three-dimensional Sedov test (443 element mesh).

Figure 2: Energy history for a three-dimensional Noh test (2(a)), and a three-dimensional Sedov test (2(b)). The plots on the upper row show the change in the
internal (blue line) and kinetic (red line) energies, normalized with the total energy. The plots on the lower row show the total energy relative increment between
time tn, andtn+1, namely (Etot

n+1 − E
tot
n )/Etot

n . Note the scale of the vertical axis is 10−13 in the lower plots.

4.2.3. Conservation of total energy

Proving conservation of total energy is somewhat less obvi-
ous. The proof will be given in the special case when mass
lumping is used, although it holds also when a consistent mass
matrix is used (see [32, 34, 35] for complete details). We will
assume again homogenous Neumann boundary conditions, for
which it is possible to test (27) withψh = vn+1/2. Summing
over all the nodes, the kinetic energy balance for the systemis
obtained:

1
2

vT
n+1[Mv]vn+1 −

1
2

vT
n [Mv]vn = −∆t vT

n+1/2Fn+1/2 . (52)

This result holds by virtue of the following identity (recall [Mv]
is diagonal, therefore symmetric):

1
2

vT
n+1/2[Mv] (vn+1 − vn) =

1
2

(

vT
n+1 + vT

n

)

[Mv] (vn+1 − vn)

=
1
2

vT
n+1[Mv]vn+1 −

1
2

vT
n [Mv]vn .

(53)

Testing (33) with a unit constant shape function over the entire
domain (i.e.,ψh

∣

∣

∣

Ω0
= 1), is equivalent to contracting (34) with

1:

1T [M0] (ǫn+1 − ǫn) = −∆t 1T Wn+1/2 , (54)

where, in particular, recalling
∑nnp

A=1 NA = 1,

1T Wn+1/2 = − 1T

{

−

∫

Ωn+1/2

NA (∇xv)n+1/2 : σ̃n+1/2 dΩ

}

+ 1T

{∫

Ωn+1/2

(∇xNA) · q̃n+1/2 dΩ

}

= −

∫

Ωn+1/2















nnp
∑

A=1

NA















(∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫

Ωn+1/2

∇x















nnp
∑

A=1

NA















· q̃n+1/2 dΩ

= −

∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫

Ωn+1/2

∇x (1) · q̃n+1/2 dΩ

= −

∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ . (55)

Comparing (31)–(32) with (35)–(36), and taking into account
(55),

vT
n+1/2Fn+1/2 = −1T Wn+1/2 . (56)

Summing (52) and (54), we derive a statement of conservation
of the algorithmic total energy:

1
2

vT
n+1[Mv]vn+1 + 1T [M0]ǫn+1 =

1
2

vT
n [Mv]vn + 1T [M0]ǫn .

(57)
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Table 1: Outline of the predictor/multi-corrector algorithm. Note that, because
of mass lumping, all matrices are diagonal, so that all inverse operations are
just vector divisions. Three iterations were typically used in the computations.

Retrieve loop parameters:nstep, imax

Initialize all variables with initial conditions
FormM0, [Mv], and [Mǫ]
For n = 0, . . . , nstep(Time-step loop begins)

Set∆t (respecting the CFL condition)

Predictor:Y(0)
n+1 = Yn

For i = 0, . . . , imax− 1 (Multi-corrector loop begins)
Assembly:F(i)

n+1/2

Velocity update:v(i+1)
n+1 = vn − ∆t[Mv]−1F(i)

n+1/2

Assembly:W(i,i+1)
n+1/2

Internal energy update:ǫ (i+1)
n+1 = ǫn − ∆t [Mǫ]−1W(i,i+1)

n+1/2

Position update:u(i+1)
n+1 = un + ∆t v(i+1)

n+1/2

Volume update:V(i+1)
n+1 = V

(

u(i+1)
n+1

)

Density update:ρ(i+1)
n+1 = [V(i+1)

n+1 ]−1M0

Equation of state update:p(i+1)
n+1 = p̂

(

ρ
(i+1)
n+1 , ǫ

(i+1)
n+1

)

End (Multi-corrector loop ends)

Time update:Yn+1 = Y(imax)
n+1

End (Time-step loop ends)
Exit

Remark8. The approach followed in the proof of global con-
servation properties, is very similar to the one presented in [35],
with the exception of the treatment of the term containing ˜q.

4.3. A predictor/multi-corrector approach

The algorithm developed in Section 3 requires the inversion
of a matrix: The force and work terms are computed at the mid-
point in time, and necessitate knowledge of the solution at time
tn+1. However, a fully explicit procedure can be recovered by
resorting to a predictor/multi-corrector approach. For this pur-
pose, a number of preliminary definitions are needed. The state
of the system at timet = t• is defined by means of the vector
Y• = [uT

• , v
T
• , ρ

T
• , ǫ

T
• ,p

T
• ]

T . As can be appreciated in Table 1,
the proposed approach consists of a velocity update, followed,
in the order, by internal energy, position, density and pressure
(or, more generally, stress) updates.F(i)

n+1/2 indicates the evalu-
ation ofFn+1/2 using the stateY at iterate (i). The definition of
the iterate of the work vectorWn+1/2 is somewhat different:

W(i, j)
n+1/2 ={W

(i, j)
n+1/2;A} , (58)

W(i, j)
n+1/2;A = −

∫

Ω
(i)
n+1/2

NA ((∇x)
(i)
n+1/2v( j)

n+1/2) : σ̃(i)
n+1/2 dΩ

+

∫

Ω
(i)
n+1/2

(

∇x
(i)
n+1/2NA

)

· q̃(i)
n+1/2 dΩ . (59)

Here∇x
(i)
n+1/2 andv( j)

n+1/2 indicate the (current configuration) gra-
dient operator and the velocity field att = tn+1/2 and iteratei and
j, respectively. This notation is needed to understand how con-
servation is enforcedat each iteration of the predictor/multi-
corrector procedure.

4.3.1. Algorithmic conservation of global total energy
The proposed predictor/multi-corrector approach maintains

all the conservation properties of the base mid-point algorithm.
Note that the work vectorW(i,i+1)

n+1/2 (see Table 1) is computed
holding the geometry and all the terms in the integral (59) at
iterate (i), while the velocityvn+1/2 is evaluated using iterate
(i+1). This new iterate is readily available after the momen-
tum equation is integrated in time (the predictor/multi-corrector
mimics a Gauss-Seidel solution strategy). Using argumentsvir-
tually identical to the ones presented in Section 4.2, it is easy to
realize that the identity

(v(i+1)
n+1/2)T Fi

n+1/2 = −1T W(i,i+1)
n+1/2 (60)

guarantees that total energy is conserved ateach iterate of the
predictor/multi-corrector algorithm, namely,

1
2

(v(i+1)
n+1 )T [Mv]v

(i+1)
n+1 + [M0]ǫ(i+1)

n+1 =
1
2

vT
n [Mv]vn +MT

0 ǫn . (61)

The time histories of the kinetic, internal and total energies pre-
sented in Figure 2 confirm, within machine precision, the con-
servation properties of the proposed algorithm in the case of a
three-dimensional Noh test (Fig. 2(a)), and a three-dimensional
Sedov test (Fig. 2(b)). The reader can refer to Section 8 for
more details on the setup of these tests.

5. Variational multiscale stabilization

Variational multiscale stabilization of piece-wise linear dis-
cretizations of the Lagrangian hydrodynamics equations was
already explored in [31, 33] for total Lagrangian formula-
tions. The present article, instead, implements the approach
proposed in [32], which directly applies the variational mul-
tiscale paradigm [15, 16, 18] to updated Lagrangian formula-
tions. The variational multiscale analysis and design of the sta-
bilization method are presented in complete detail in [32],and
for the sake of brevity, are omitted here. Suffices to say that the
multiscale analysis is based on a decomposition of the solution
into a coarse-scale component, representable over the compu-
tational mesh, and a fine-scale component, which belongs to
the subgrid space of unresolved scales. By finding appropri-
ate approximations to the fine-scale solution, it is possible to
stabilize the shock hydrodynamic equations from acoustic-type
instabilities, responsible for the appearance of spurioushour-
glass modes in quadrilateral and hexahedral computations,and
artificial stiffness in triangular and tetrahedral computations. As
indicated in [32], aminimalist strategy (to obtain the simplest
and most efficient expression for the stabilization terms) sug-
gests to enrich the pressure and velocity with fine-scale compo-
nents. Recalling the structure of the algorithmic stress (19) and
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Figure 3: Sketch of the length-scalehart as a function of the direction ofnsh.
The plots show the envelope ofhart as the angle thatnsh forms with thex1-axis
varies from 0 to 360 degrees. Note the smooth transition of the length-scale
near the corners of the elements.

the algorithmic vector flux (20), we have:

σvms = −p′I , (62)

λvms = phv′ , (63)

where ph is the coarse-scale discrete pressure,p′ is the fine-
scale subgrid pressure, andv′ is the fine-scale velocity. In
particular, fine-scale pressure and velocity are approximated
by residuals of a pressure and momentum equation, respec-
tively. In the context of the proposed predictor/multi-corrector
method, this amounts to set

p′ = −τ
(

Resh
p

)(i)

n+1/2
, (64)

v′ = −τ
(

ρ
∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

c2
s

p

)h;(i)

n+1/2

(

Resh
v

)(i,i+1)

n+1/2
, (65)

(66)

wherecs is the speed of sound in the medium,τ is the stabiliza-
tion parameter with dimension of time, and

(

Resh
p

)(i)

n+1/2
=

ph;(i)
n+1 − ph

n

∆t
+ (ρ c2

s ∇x · v)h;(i)
n+1/2 , (67)

(

Resh
v

)(i,i+1)

n+1/2
= ρ

h;(i)
n+1/2

vh,(i+1)
n+1 − vh

n

∆t
+ (∇xp)h;(i)

n+1/2 , (68)

wherevh denotes the coarse-scale discrete velocity.

Remark9. Note that the termρ ∂pǫ
∣

∣

∣

ρ
is the inverse of the

Grüneisen parameter, a quantity that is typically expressed as
a pure function of the densityρ in Mie-Grüneisen constitutive
models. The Grüneisen parameter varies very mildly away from
phase transition states. This quantity and the speed of sound are
usually provided by equations of state in tabular form.

Remark10. The termResp = ṗ + ρ c2
s ∇x · v can be termed

a pressure residual. It is indeed a residual since, as detailed
in [32], the internal energy equation can be rearranged as 0=

ρ ∂pǫ
∣

∣

∣

ρ
Resp. It was shown in [35] that the expression forResp

can also be derived by considering isentropic processes in per-
fect materials (materials free from internal dissipation mecha-
nisms), and thatResh

p measures theproduction of entropy due
to the numerical discretization. In regions of smooth flow,Resh

p
should vanish, but because of numerical instabilities,numerical
entropy can be generated. It was also shown in [34, 35] that the
same approximation can be obtained by linearizing the expres-
sion for p′ = p − ph = p̂(ρ, ǫ) − ph aboutph.

Remark11. With respect to the work in [35], the additional
fine-scale velocityv′ is used to stabilize the energy equation.v′

is a scaled function of the momentum equation discrete resid-
ual. The specific scaling has the purpose of developing a stabi-
lization operator which retains the structure of the Lagrangian
hydrodynamics equations, represented by the system form ofa
nonlinear wave equation (see [32] for complete details). This is
also the reason why the same scaling parameterτ (with dimen-
sion of time) is used for both fine-scale velocity and pressure.

Remark12. The termλvms = phv′ has the meaning of the
work done by the interaction of the fine-scale velocity with the
coarse-scale pressure.

Remark13. Observe thatλvms is a function of the momentum
equation residual, and, consequently, vanishes at pure contact
discontinuities, where pressure and velocity are continuous and
in particular constant.λvms has dimensions of a heat flux, but
this interpretation would be erroneous, since heat fluxes are ac-
tive at contact discontinuities.

Remark14. Also the fine-scale pressurep′ vanishes at pure
contacts, since the residualResp vanishes for constant veloc-
ity and pressure fields.

Remark15. It is easy to verify that the proposed stabilization
approach satisfies Galilean invariance properties, since the ve-
locity always appears in incremental form with respect to space
or time. In [29–31], Galilean invariance properties were rec-
ognized as important for the specific case of Lagrangian and
arbitrary Lagrangian-Eulerian (ALE) computations.

Remark16. When shock waves are present in the material, the
analysis with which the proposed stabilization mechanism are
derived does not apply. From a physical point of view, a shock
wave is an infinitely thin layer in which the flow does not be-
have as a perfect material, due to internal dissipation mecha-
nisms. At the numerical level, these irreversible mechanisms
are introduced by shock-capturing operators in the form of arti-
ficial viscosities, which smear the discontinuity over a fewcells
of the computational grid.
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(a) Initial mesh.

(b) VMS-P0 [34, 35]. (c) VMS-C. (d) VMS-AC [31, 33].

Figure 4: Saltzmann test. Comparison of the mesh displacement results for theVMS-P0, VMS-C, VMS-AC methods. The meshes in Figures 4(b), 4(c), 4(d) are
rotated by 90 degrees counter-clockwise.
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5.1. Choice of the stabilization parameters

The stabilization parameterτ is defined as in [32], using sim-
ilar criteria to [31, 33, 35]:

τ = cτ
∆t
2

CFLnominal

CFLactual
. (69)

where CFLnominal is the target globalCourant-Friedrichs-
Levy (CFL) number (specified by the user) whileCFLactual

is the actual CFL number at timet. In practice the ra-
tio CFLnominal/CFLactual is almost always unity, so thatτ =
cτ∆t/2, perfectly matching the definition given in [32]. The
only exceptions are the startups of highly transients computa-
tions, in which time steps are initially forced to be very small
and are progressively increased to nominal values by means of
a compound (exponential growth) scaling. Under these condi-
tions, the parameterτ, because of the scaling with∆t, would
result extremely small, negatively affecting the spatial stability
of the overall algorithm. After the initial transient has elapsed
(typically involving between 30 and 50 time steps), the ratio
CFLnominal/CFLactual becomes and stays equal to unity. The
valuecτ = 2 (for which τ = ∆t) seemed to give the best re-
sults, although values in the range [1/2, 3] proved also effec-
tive. Therefore, to a certain extent, the stability properties of
the method are not overly sensitive to changes of the stabiliza-
tion parameter value.

Remark17. The analysis of stability and accuracy presented
in [36] shows that when three iterations of the predictor/multi-
corrector method are applied in combination withcτ = 2 and a
safety parameterCFL = 0.8 (see also Section 7.1), very good
performance is to be expected, since the method is character-
ized by high wave number dissipation, accurate low wave num-
ber behavior, and very low dispersion error over the entire wave
number spectrum. These theoretical findings were confirmed in
computations, not reported here, for the sake of brevity.

6. Artificial viscosity and discontinuity capturing operator

The discontinuity capturing operator is implemented as fol-
lows:

σart =

{

ρ νart;v∇
s

x v , if ∇x · v < 0 ,
0nd×nd , otherwise.

(70)

λart =

{

ρ ∂pǫ
∣

∣

∣

ρ
νart;p∇xp , if ∇x · v < 0 ,

0nd , otherwise.
(71)

The scaling and structure ofλart are chosen with the purpose
of dissipating pressure oscillations in the energy equation. The
artificial viscosities are

νart;v = c1|∇x · v| h2
art , (72)

νart;p = c2

√

|∇xp|
ρ

h3/2
art , (73)

The valuesc1 = 1.4 andc2 = 1.0 were found to perform best
in the computations of Section 8. Similarly to the case of the

stabilization operator, there is some flexibility in choosing the
viscosity constant, and other constant combinations were found
to perform equally well.

Remark18. The valuesc1 = 1.4 andc2 = 1.0 were chosen so
that νart;v andνart;p peak at about the same value in computa-
tions, while maintaining a slightly different spatial variation.

Remark19. Maybe the most striking peculiarity of the adopted
discontinuity operator is the introduction of the diffusive term
λart in the energy equation, in starch contrast, for example, with
[35]. This idea was already incorporated in the method pro-
posed in [33]. One would be tempted to think aboutλart as an
artificial heat flux, but this interpretation would be incorrect.
In fact, the termλart involves only pressure gradients, and not
temperature (i.e., internal energy) gradients.

Remark20. Most importantly, the termλart is not active at con-
tact discontinuities, where the pressure is continuous andtyp-
ically constant. λart is only active where shocks are present,
and because the corresponding artificial viscosity does notscale
with the speed of sound, this term is expected to be fairly small
in compression regions where the pressure gradients are small.

Remark21. The scaling of the viscosities is solely based on
the gradient of the solution, since the variational multiscale sta-
bilization is already designed to control acoustic (hourglass) in-
stabilities.

Remark22. By construction, the integral term containingλart

is compatible with a global conservation statement for the to-
tal energy. Note also that the pressure gradient is easily com-
putable because the pressure field is approximated by piece-
wise linear (continuous) finite element shape functions (see also
Section Section 4.1.5).

Remark23. The use of the symmetric gradient in the defini-
tion of σart ensures, at the continuum level, objectivity of the
artificial viscosity operator [38]. The definition (70) is more ef-
fective in damping artificial pure shear motion, with respect to
the more common definition [5]

σart = − (ρνart∇x · v) I . (74)

Artificially produced homogeneous shear motion can have dis-
ruptive consequences on shock hydrodynamics computationsof
fluids, since it is not resisted by hourglass controls (of anytype),
nor the discretized physical stress.

Remark24. The proposed artificial viscosity operators are
Galilean invariant, because their expressions involve only gra-
dients of velocity and pressure. Consequently, the proposed
method is overall Galilean invariant.

The length-scalehart is defined in a similar fashion to [33], and
is designed tostably sample a mesh length along the normal to
the shock front. This means that, for a given mesh,hart should
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Figure 5: Saltzmann test, comparison against the exact solution (in red). Left column:VMS-P0 method. Center column:VMS-C method. Right column:VMS-AC
method. From the top row down: Density, pressure, internal energy, horizontal velocityv1, vertical velocityv2, and artificial viscosities. The solution is plotted as a
function of the coordinatex1. The exact solution is represented by the continuous line,the dots represent all the nodal values of the numerical solution (projected
along thex2-coordinate onto a single plane).

not vary abruptly for small changes in the direction of the shock
normal. An effective definition was found to be

hart =
2

√

nT
sh

(

F2FT
2

)−1
nsh

, (75)

F2 =
∂x
∂ξ

, (76)

wherensh is a unit vector in the direction normal to the shock
front, andF2 the gradient of the mapping from the element’s
parent domain to its current configuration. In practice,

(

F2FT
2

)

measures thestretch in the direction given bynsh. A plot of the
envelope ofhart as the shock normal angle spans the interval
[0, 360]-degrees is presented in Figure 3, for various quadrilat-
eral elements. This definition is analogous to the one adopted

in [17]. A reliable approximation tonsh was found to be:

nsh =

0.75 v̇
||v̇|| + 0.25 ∇xρ

||∇xρ||
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.75 v̇
||v̇|| + 0.25 ∇xρ

||∇xρ||

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (77)

Basically, the direction of the shock normal is a weighted aver-
age of the direction of the acceleration vector ˙v, and the density
gradient (see also [39, 40]). Again, there is some flexibility in
the definition of the shock direction, and alternative choices are
possible.

7. General considerations on implementation

7.1. CFL condition
The calculation of the Courant-Friedrichs-Levy (CFL) con-

dition is based on the analysis in [36] of a linearized version
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Figure 6: Two dimensional Noh test, mesh deformation. Comparison between theVMS-P0 method (upper left corner), theVMS-C method (upper right corner), and
theVMS-AC method (lower right corner).

of the proposed algorithm in the case of one-dimensional peri-
odic flows. This analysis precisely accounts for the effect of the
parametercτ and the artificial viscosity on the overall stability,
and yields the condition

∆t ≤ CFL min
1≤e≤nel























h2
e

νarte +

√

ν2
arte + cτc2

se
h2

e























. (78)

The specific bound for the safety factorCFL depends on the
number of iterations. In [36], it was found that for one and
three iterations stability is achieved ifCFL < 1.0, and for two
and four iterations stability is achieved ifCFL < 0.9.

Remark25. In the case when the artificial viscosity vanishes
andcτ = 1.0, one recovers the classical condition

∆t ≤ CFL min
1≤e≤nel

{

he

cse

}

. (79)

Remark26. Conversely, in the case of a very low temperature
fluid with artificial viscosity active, one recovers the CFL con-

dition for the purely diffusive case, namely:

∆t ≤ CFL min
1≤e≤nel

{

h2
e

2νarte

}

. (80)

This situation is often encountered in hypervelocity impact or
piston problems (i.e., the Saltzmann test in Section 8.1), in
which the internal energy rises from a very low initial value
as a result of kinetic energy conversion or work done on the
system at its boundaries.

Unless otherwise stated, all computations presented in this ar-
ticle where run with three iterations of the predictor multi-
corrector time integrator,cτ = 2, andCFL = 0.8, which corre-
sponds to a very favorable condition in the linearized case,with
high wave number dissipation, high accuracy in the low wave
number range, and low dispersion error throughout the entire
wave number spectrum (see [36] for a detailed justification of
these claims).
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7.2. Notation

The quality, accuracy and robustness of the proposed method
is evaluated by comparing it to two previously developed vari-
ational multiscale methods [33, 35], and other state of the art
computations [1, 22]. In particular the following notationis
used:

VMS-C indicates the variational multiscale conservative
method, the newly proposed conservative approach to La-
grangian shock hydrodynamics.

VMS-AC indicates thevariational multiscale asymptotically
conservative method, proposed in [31, 33]. This method
adopts an iterative predictor-corrector approach which is
conservative only when convergence of the iterations is at-
tained.

VMS-P0 indicates thevariational multiscale Q1/P0 method,
proposed in [34, 35]. This method is conservative, but

maintains the typical structure of a standard hydrocode,
in that all thermodynamic variables are approximated as
piece-wise constant functions over the elements of the
computational mesh.

8. Numerical computations

8.1. Saltzmann test

The Saltzmann test evaluates the ability of a numerical
method to capture the features of a planar shock over a distorted
mesh (see the initial mesh geometry in Fig. 4(a)). A rectangular
domain of gas (γ = 5/3,ρ0 = 1) is initially at rest, at zero tem-
perature (i. e., for practical purposes,ǫ0 = 10−14). At time t+0 ,
the left boundary is set in motion with unit velocity, and gen-
erates a compression shock of infinite strength (infinite Mach
number), propagating from left to right through the computa-
tional domain. All other boundary conditions are of “roller”
type (zero normal velocity/displacement). Given a value of the
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(a) VMS-P0 [34, 35]. (b) VMS-C. (c) VMS-AC [31, 33].

Figure 8: Two-dimensional Sedov test on a Cartesian mesh: Comparison of mesh deformation patterns.

ideal gas isentropic constantγ = 5/3, the thermodynamic state
past the shock is given by values of pressure, internal energy,
and density of 4/3, 1/2, 4, respectively. The Saltzmann test is
both a robustness and an accuracy test. Computations are per-
formed atCFL = 0.8, and compared at the final non-dimesional
time T = 0.7.

Figures (Figs. 4(b), 4(c), 4(d)) show the mesh displacement
results, where it can be observed that the mesh deformation pat-
tern ofVMS-C is somewhat intermediate betweenVMS-AC and
VMS-P0. Similar conclusions are obtained by observing Figure
5, where the three methods (blue dots) are compared against the
exact solution (red continuous line).

Remark27. The new conservativeVMS-C method does not
produce any negative undershoots, clearly manifest for the
VMS-AC method. This is considered by the authors a consid-
erable robustness improvement, especially for applications to
more realistic materials for which equations of state are given
in tabular rather than analytic form.

The VMS-AC method shows very good agreement with the
plateaus of the exact solution for density and internal energy,
while theVMS-P0 solution shows wide overshoots/undershoots
near the lateral boundaries (the horizontal boundaries in Fig.
4(a)) of the computational domain. TheVMS-C method has
less pronounced overshoots near the horizontal boundaries, al-
though the overshoot in the internal energy plot past the shock
location is more pronounced than in both theVMS-P0 and
VMS-AC results. Note that theVMS-P0 method utilizes a form
of the artificial viscosity which also includes a term scaling
with the speed of sound, while the artificial viscosities forthe
VMS-C andVMS-AC methods are purely based on the solution
gradient: This is the reason for the different behavior of the ar-
tificial viscosity past the shock front, in the last row of plots in
Figure 5.

Remark28. It is important to analyze the typical numerical
challenges involved in the Saltzmann test. The numerical er-
ror in the shock region is responsible for a spurious component

of the velocity, transverse to the shock front normal. At the
horizontal boundaries, the roller boundary conditions force the
transverse velocity to be zero, and are responsible for an in-
crease in the kinetic energy error in the neighboring area. The
numerical error on the kinetic energy is compensated by the nu-
merical error in the internal energy, as the total energy is glob-
ally conserved (in a certain sense, “two wrongs make a right”),
and the lumped mass matrix does not allow information to be
redistributed globally over the mesh.

Remark29. In order to explain the behavior of the various
methods under consideration, a number of additional tests,not
reported here for the sake of brevity, showed the following
trends: The combination of mass lumping and strict enforce-
ment of conservation seems responsible for the over/under-
shoots near the boundary for theVMS-P0 andVMS-C methods.
This phenomenon is somewhat expected as the lumping proce-
dure, beneficial in the computation of shock discontinuities, ef-
fectively localizes the solution information. When lumping is
used, the numerical forces and work associated to a particular
degree-of-freedom cannot have their effect redistributed over
neighboring nodes by the inversion of a diagonal lumped mass
matrix, as opposed to the case of the consistent mass matrix.

Remark30. Instead, when the consistent mass matrix was
used, theVMS-C method showed improved results near the hor-
izontal boundaries, but produced negative undershoots of the
internal energy ahead of the shock front. For this reason, this
choice is not endorsed by the authors as viable.

8.2. Two-dimensional Noh test on a Cartesian quadrant

The Noh test [28] is an implosion test. The velocity has an
initial uniform radial distribution (the velocity field points to the
origin, and has unit magnitude, except at the origin, where it is
forced to zero). The initial internal energy should be zero,but
for practical purposes the value 10−14 is used. The gas constant
γ = 5/3 is applied to all computations, and the initial density
is set to a constant unit value. The shock speed is 1/3, so that
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Figure 9: Two-dimensional Sedov test on a Cartesian mesh: Comparison with the exact solution (in red). Left column:VMS-P0 method. Center column:VMS-C
method. Right column:VMS-AC method. From the top row down: Density, pressure, internal energy, radial velocityvr , tangential velocityvt, and artificial

viscosities. Each variable is plotted as a function of the radiusr =
√

x2
1 + x2

2. All solution points are rotated around the origin to align on a single radial plane.

at the final time of 0.6 in the computation, the discontinuity
is found atr = 0.2. The exact solution for the density past
the shock is 16.0 and decays as 1+ t/r in front of the shock,

wheret is time andr =
√

x2
1 + x2

2 is the radius. The values of
pressure and internal energy past the shock are 16/3 and 1/2,
respectively. The initial domain of a Cartesian quadrant [0, 1]×
[0, 1] is subdivided into 50× 50 squares.

The mesh deformation results presented in Figure 6 show that
the best mesh deformation (in terms of regularity of the ele-
ments and smoothness of the mesh lines) is achieved with the
VMS-C method. Overheating near the implosion corner pro-
duce element of larger area (i. e., lower density) in the case
of the VMS-P0 method. TheVMS-P0 and VMS-C methods
show less mesh distortion because both use a similar definition
of the element mesh length in the artificial viscosity, less prone
to large variations in direction from element to element than
theVMS-AC method. Figure 7 shows a comparison against the

exact solution. The density and internal energy plots for the
VMS-P0 method are affected by a pronounced overheating er-
ror near the origin (for a full description of numerical overheat-
ing errors, see [28]). These errors are much reduced in the case
of theVMS-AC andVMS-C methods, due to the specific form
of the discontinuity capturing operator adopted. Again, the
thermodynamic variables computed with theVMS-C method
are all positive, while theVMS-AC method produces negative
undershoots in internal energy and pressure. With respect to the
VMS-P0 solution, theVMS-C solution presents an internal en-
ergy overshoot past the shock, but has lower transverse velocity
error. In general, the numerical solutions computed with the
three methods are in good agreement with the exact solution,
considering the coarseness of the mesh (for extensive studies on
this problem, see, e.g., [28]). In the case of the density plot, the
VMS-P0 method presents a more pronounced angular disper-
sion of the numerical data with respect to theVMS-C method,
also confirmed in the tangential velocity plots.
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(a) VMS-P0 method. (b) VMS-C method

(c) Zoomed view. Left:VMS-P0 method. Right:VMS-C method,

Figure 10: Three-dimensional Noh test on a Cartesian mesh: Mesh deformation for the test performed on the 603 mesh.

In general theVMS-P0 method yields sharper shock pro-
files than theVMS-C method, at the expense of higher trans-
verse/tangential velocity errors, and a more pronounced disper-
sion of the data around the exact, symmetric solution.

8.3. Two-dimensional Sedov test on a Cartesian quadrant

The Sedov test is a multi-dimensional blast test. An exact
solution, which possesses cylindrical symmetry, is derived with
self-similarity arguments in [37].

The proposed version of the Sedov blast test is performed on
the [0, 1.1]×[0, 1.1]quadrant, subdivided into 452 initially iden-
tical squares, and assesses the ability of the method to respect
the cylindrical symmetry. The initial density has a uniformunit
distribution,γ = 1.4, and the internal energy is “zero” (actually,
10−14) everywhere, except the first square zone on the bottom
left corner of the quadrant, near the origin, where it takes the

value, 0.9792/(4h2) = 409.7, with h = 1.1/45 the initial length
of the side of the mesh quadrilaterals [37].

In the case of theVMS-C andVMS-AC methods, the internal
energy initial condition is further projected onto the nodal fi-
nite element basis used to approximate the thermodynamic vari-
ables [33]. The mesh deformation results are shown in Figure
8. Since the exact solution is obtained by self-similarity argu-
ments and has radial symmetry, the mesh deformation is ex-
pected to be smooth. Figure 8(b) shows a clear superiority for
the VMS-C method, in terms of mesh displacements (similar
deformation patterns, although more distorted, can be observed
for theVMS-AC method in Fig. 8(c)). On the other hand, the
results for theVMS-P0 method show a pronounced distortion
in the element near the origin, possibly due to the onset of an
hourglass mode, as already observed in [34, 35].

A comparison of the three approaches with respect to the ex-
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Figure 11: Three-dimensional Noh test on a Cartesian mesh: Comparison with the exact solution (in red) for the 303 (left), 603 (center), and 1003 (right) meshes.
In light blue (cyan), theVMS-P0 method, in dark blue theVMS-C method. From the top row down: Density, pressure, internal energy, radial velocityvr , tangential

velocity vt, and artificial viscosities. Each variable is plotted as a function of the radiusr =
√

x2
1 + x2

2. All solution points are rotated around the origin to align on a

single radial plane.

act solution is presented in Figure 9. Considering the density
plots, the results indicate that theVMS-P0 method is the clos-
est to the exact solution, followed (in terms of accuracy), by the
VMS-C andVMS-AC methods. Specifically, the density peak,
a good indicator of the overall quality of the computation, is
at 5.35 for theVMS-C method, against 5.58 for theVMS-P0
method and only 4.84 for theVMS-AC method. The results of
Figure 8 for the mesh displacements are also confirmed by the
tangential velocity plots, which show that theVMS-C method
has the smallest tangential velocity error.

Remark31. As shown in in Figure 9, the values of the artificial
viscosity are lower for theVMS-C andVMS-AC methods with
respect to theVMS-P0 method. This resulted in a reduction in
the number of time steps to complete the computation on the
order of 30%. It is important to notice the higher accuracy that
theVMS-C method shows in capturing the solution with respect
to theVMS-AC method. The different choice of artificial vis-

cosity and stabilization are responsible for the improvement in
the results.

8.4. Three-dimensional Noh test on a Cartesian octant

The initial conditions for the Noh test in three dimensions are
identical to the two-dimensional case, but will generate a more
intense, spherical shock pattern. In this case, since the shock
Mach number is infinite for both the two- and three-dimensional
case, the density ratio is a better indicator of the shock intensity.
In the three-dimensional case, this ratio is 64, against 16 for the
two-dimensional case. The domain [0, 1.1] × [0, 1.1] × [0, 1.1]
is uniformly meshed with three meshes of resolution 303 =

27, 000, 603= 216, 000, and 1003= 1, 000, 000 cubes. A radial
shock propagates with speed 1/3 in the computational domain,
so that at the final time of 0.6 in the computation, the discon-
tinuity is found atr = 0.2. The exact solution for the density
behind the shock is 64.0 and decays as (1+ t/r)2 in front of the
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(a) VMS-P0 method. (b) VMS-C method.

Figure 12: Three-dimensional Sedov test on a Cartesian meshof 443 elements: TheVMS-P0 method, could not be run to completion (Fig. 12(a)), due to an
hourglass pattern developing near the coordinate origin. The VMS-C method (Fig. 12(b)) did not experience the onset of hourglass modes, and could be run
successfully.

shock, wheret is time andr =
√

x2
1 + x2

2 + x2
3 is the radius. Past

the shock, the pressure and internal energy take the values 64/3
and 1/2, respectively.

Similarly to what was already observed in the two-
dimensional setting, also the three-dimensional results show
larger distortion in the mesh near the coordinate origin forthe
VMS-P0 method (Fig. 10(a)), than theVMS-C method (Fig.
10(b)). Again, this is a consequence of larger overheating er-
rors for theVMS-P0 with respect to theVMS-C method, as
appreciable in the comparison with the exact solution presented
in Figure 11. Because theVMS-AC method was never imple-
mented in three dimensions, we do not present any comparisons
with such approach. We would expect, however, a trend very
similar to the two-dimensional case.

As in the two-dimensional case, theVMS-P0 method shows
somewhat sharper shock profiles than theVMS-C method, at
the expense of a more pronounced overshoot in the pressure,
a larger internal energy overheating, a larger scattering of the
data about the exact solution, and, particularly, larger errors in
the tangential velocity. Both solutions converge to the exact so-
lution as the mesh is refined, and the overall numerical errors
are within the bounds of what is expected for these mesh reso-
lutions [28].

8.5. Three-dimensional Sedov test on a Cartesian octant

The proposed version of the Sedov blast test is performed
on the [0, 1.1] × [0, 1.1] × [0, 1.1] octant, subdivided into 223=
10, 648, 443 = 85, 184, 883 = 681, 472 cubic elements. This
refinement study is aimed at evaluating the robustness of the
method, since, as the mesh-spacing is refined, the initial internal
energy distribution is changed so that all the initial internal en-
ergy keeps being concentrated in the element adjacent to theco-

ordinate origin. This amounts to setting the initial distribution
of internal energy to zero, with the exception of the nearestele-
ment to the origin for whichǫ0 = 0.851/(8h3), with h the initial
length of the sides of the cubic elements [37]. Note also thatbe-
cause the initial conditions are changed as the mesh is refined,
this particular setup of the refinement study cannot be used to
evaluate convergence rates. As in the two-dimensional case,
the initial conditions for the thermodynamic variables were pro-
jected onto the nodal basis.

Remark32. The Sedov test in three dimensions is much more
challenging than its two-dimensional counterpart, as it can
more easily trigger hourglass-type instabilities, for twofunda-
mental reasons: On the one hand, the spherical pattern of the
flow is responsible for a higher concentration of internal energy;
on the other hand, the space of hourglass modes is much larger
in three than in two dimensions. In fact, while there are 2 hour-
glass modes out of 8 kinematic modes for a two-dimensional
quadrilateral, there are actually 12 hourglass modes out of24
kinematic modes for a three dimensional hexahedron [3]. Since
a Cartesian mesh is used to represent a spherical flow, it is guar-
anteed that all the hourglass modes are to some extent excited.

The most remarkable result is that theVMS-P0 methoddoes
not pass the refinement test. Using the implementation detailed
in [34], it was only possible to run successfully the case on
the 223 mesh. Already in the case of the 443 mesh, due to a
spurious hourglass pattern, two nodes of the meshcollpased
to infinitesimal distance, driving the time step to zero, as evi-
dent in Figure 12(a). This, in spite of the fact that, in contrast
to the two-dimensional case, even for theVMS-P0 method the
initial condition on the internal energy was smoothed by first
performing a nodal projection, and then re-averaging the re-
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Figure 13: Three-dimensional Sedov test on a Cartesian mesh: Comparison with the exact solution (in red) of computations performed on a 223 mesh (left column),
443 mesh (center column), and 883 mesh (right column). In light blue (only on the left column) theVMS-P0 method, in dark blue theVMS-C method. On the left
column, from the top down: Pressure, density and internal energy. On the right column, from top down: Radial velocityvr , tangential velocityvt, and artificial

viscosities. Each variable is plotted as a function of the radiusr =
√

x2
1 + x2

2 + x2
3.

sult on each of the elements of the initial mesh (see [34]). In
this particular test, theVMS-P0 method performance should
be taken as indicative of a typical finite element or finite dif-
ference method for shock hydrodynamics based on piece-wise
constant thermodynamic variables and shock capturing artifi-
cial viscosities. In fact, we also replaced the variationalmulti-
scale hourglass control in theVMS-P0 method with a Flanagan-
Belytschko viscous hourglass control [13], and found no sub-
stantial improvement on the results. More specifically, thelarge
values of the Flanagan-Belytschko hourglass viscosity needed
to run the 223-element test case precluded robust computations
in the case of the three-dimensional Noh test (see, for more
details, [34]). This is by no means a critique of the Flanagan-
Belytschko hourglass control [13], originally designed tosta-
bilize solid mechanics computations, and very effective in this
context. It is unclear if stabilization methods such as subzonal
masses/pressures [9] are a viable choice for this challenging

problem, as the presented three-dimensional test on Cartesian
geometry has not been reported in the literature.

On the contrary, Figure 12(b) shows how easily theVMS-C
method passes the test. The slight distortion in the mesh is due
to a small acoustic pulse produced by the artificial viscosity in
the initial stages of the transient, and should not be mistaken
for an hourglass pattern: Extensive testing and analysis ofthe
dynamic transient confirms this claim.

Figure 13 shows a comparison of theVMS-P0 andVMS-C
methods with the exact solution. We observe that the thermo-
dynamic variables are converging to the exact solution for the
VMS-C method, while the error in the transverse velocity does
not seem to converge in theL∞-norm (the maximum norm).
This is thought to depend on the increased intensity of the spu-
rious acoustic pulse as the mesh is refined (due to the increased
localization of initial internal energy near the origin). Observe
that, as the mesh is refined, the region of convergence of the ra-
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(a) Computations in [1]. (b) Computations in [22]. Right: density contours. Left: mesh deformation.

Figure 14: Three-dimensional Sedov test on a Cartesian mesh, results from the computations performed in [1] (Fig. 14(a)), and in [22] (Fig. 14(b)). Contour plot of
the density and mesh deformation outline.

dial velocity extends further and further from the shock towards
the origin, meaning that there is convergence in a point-wise
andL1-/L2-integral sense.

One important point of note is the fact that the proposed
VMS-C method shows very low radial dispersion of the data
(particularly, pressure and density). This may be due to the
fact that the mesh distortion near the origin is very moderate
in computations (compare also with Figs. 14(a) and 14(b)).
In summary, from the presented results, it is clear that the
VMS-C method shows exceptional robustness with respect to
theVMS-P0 method.

The only sources in the literature in which the proposed
three-dimensional Sedov test was attempted are found in the
work of Andersonet al. [1], in which adaptive multi-resolution
(AMR) techniques in combination with a traditional finite vol-
ume/finite difference method are used, and in the very promis-
ing work of Nkonga and Maire [22], where successful compu-
tations on 203- and 403-element meshes are performed, using
a Godunov-type finite volume method. These results are sum-
marized in Figures 14 and 15, to help the reader in the compar-
isons.

Although the absence of quantitative results in [1] makes it
difficult to precisely compare results, a few observations can be
made. In the opinion of the authors, the AMR refinement/de-
refinement procedure applied in the computations in [1] may
have a beneficial effect in filtering out hourglass modes. These
effects are however difficult to reliably control, as the AMR
technique is not targeted at removing hourglassper se. The
density contour/mesh deformation plot of Figure 14(a) shows
still a considerable amount of distortion in the element near the
coordinate origin, due to the onset of an hourglass mode (for
more details on this interpretation, see [34, 35]).

A similar distortion pattern is also seen in the case of the re-
sults in Figure 14(b) using the method in [22], which did not
however prevent the computations from running to completion
on 203- and 403-element meshes. Considering the density con-

tours in Figure 14(b), the effect of the mesh distortion may be
responsible for a larger dispersion of the data (especiallynear
the density peak) in Figure 15. Analyzing more carefully the
color scheme in Figure 14(b) (relative to the 403-cell grid), it
is possible to observe that the darker red color (representing
higher density values) is found in the center of the computa-
tional domain, away from the edges aligned with the Cartesian
axes. This seems to indicate that the density peaks at the inte-
rior of the computational domain, away from edge boundaries.
In the case of theVMS-C method in Figure 12(b), instead, this
pattern does not appear, and the iso-surfaces at constant density
stay very close to spherical. The results in Figure 15 compare
otherwise well with theVMS-C method. Considering Figure 15
and the 20-element computation, most of the data points cluster
at the peak value of 4, and some reach the higher value of 4.8:
these results compare well with the 223-element computations
performed with theVMS-C method in Figure 13. In particular,
the VMS-C method yields a lower peak of the density, proba-
bly due to the fact that at this resolution level, the mentioned
nodal projection of the initial condition may reduce the peak
value of the initial internal energy pulse. For finer meshes,in-
stead, the density peak produced by theVMS-C method at the
final instant of the computation becomes considerably sharper.
Returning to Figure 15, in the 40-element computation, mostof
the data points cluster at the peak value 5, and some reach the
value 5.5, in good comparison with the results for theVMS-C
method on the 443-element mesh in Figure 13. No results on
meshes of fineness comparable with the 883-element case of
Figure 13 are presented in [22].

9. Summary

This work documents the developments of an updated La-
grangian stabilized formulation for Lagrangian shock hydro-
dynamics for materials obeying a generalized caloric or Mie-
Grüneisen equation of state. A complete presentation of the
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Figure 15: Three-dimensional Sedov test on a Cartesian mesh, results from the
computations performed in [22]. The density is plotted for aresolution of 203

elements (left) and 403 elements. The density is plotted as a function of the

radiusr =
√

x2
1 + x2

2 + x2
3, and all the data is collapsed on a single radial plot.

variational multiscale general methodology used to derivethe
method proposed here can be found in [32], in which stability
properties are thoroughly discussed. The proposed algorithm
derives from and combines recent work of the authors in the
context of stabilization of Lagrangian hydrodynamics systems
[31, 33] and strictly conservative time integration techniques
[34, 35]. The reader can also refer to [36], in which a von Neu-
mann stability analysis of the method is performed for the spe-
cific time integrator adopted in the numerical computations.

Extensive numerical computations on quadrilateral and hex-
ahedral elements in two and three dimensions have been pre-
sented and compared with results from previous developments
by some the authors and with state-of-the-practice computa-
tions by other research groups. In particular, a number of three-
dimensional Sedov test computations showed encouraging re-
sults in terms of the robustness of the method with respect to
instabilities of hourglass type, which can be considered asvir-
tually absent. Additional work should be devoted to thoroughly
testing the present methodology in the case of triangular and
tetrahedral meshes in two and three dimensions, and compar-
ing the results to the ones produced in [33].
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