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Abstract

A new variational multiscale, stabilized method based oieagqwise linear approximation of the equations for Lagramghock
hydrodynamics is presented. Acoustic instabilities (ehgurglass modes) are controlled by a stabilizing opem@d¢ored using
the variational multi-scale analysis paradigm. The metlachplemented using a predictorulti-corrector time integrator which
guarantees global conservation of mass, momentum, arlcetategy for each iterate, and represents an important advaith
respect to previous work by some of the authors on the sulffgtouraging numerical comparisons with existing methndike
case of quadrilateral and hexahedral elements are présente
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1. Introduction grangian approach, that is, the variational formulatiomxs
pressed in the current configuration (see [3] for detailshis t
_In recent years, renewedrert has been devoted to the tech- o menciature). This strategy contrasts with the formaitein
nical advancement of Lagrangian shock hydrodynamics algqs3), which was posed in the original configuration (total or

rithms (ydrocodes in short). A (non-exhaustive) list of recent pure Lagrangian approach). The proposed updated Lagrangia
work to advance the robustness and accuracy of hydrocodes iapproach allows for a reduction in the computational caats,
cludes [1, 2, 4-12, 20-26, 33-35]. Very recent developmentg,q geformation gradient does not need to be evaluatedcexpli
[2, 6-10, 24-26] have focussed on reducing mesh distortiopy, ¢ is implicitly accounted for when the mesh nodal co-
while maintaining second-order accuracy in smooth reg@ins o qinates are updated. In addition, algorithms for fastayn

the flow. ics posed in the current configuration usually enjoy imptbve

~ This article presents an implementation of the stabilizajiscrete invariance and objectivity properties relativecor-
tion concept proposed in [32], aimed at improving the robust ,egn0nding algorithms cast in the original configuratiose(s

ness and accuracy of newly developed methods for Lagrangia[g’ 14, 38] and references therein, for more details).
shock hydrodynamics on piece-wise linear, continuous@ppr

mations [31, 33]. The proposed method adopts a piece-wiseli Second, the proposed method adopts a second-order
ear approximation of both thermodynamic and kinematic-vari Predictofmulti-corrector, mid-point type time integration pro-
ables, contrary to more traditional approaches in shockdiyd cedure similar to [34, 35], to preserve at each iteratiomaglo
dynamics, which rely on a piece-wise constant discretpagf ~ Mass, momentum, and total energy. This is in contrast to
the thermodynamic variables. The present work stems frem ththe predictofmulti-corrector space-time integrator proposed in
earlier work in [31, 33], and represents a considerableragiva [33], in which conservation is guaranteed only when con-
from many points of view. vergence of the iterative process is attained. For more de-
First of all, the proposed variational formulation of thesk  tails on the stability and accuracy properties of the prepos
hydrodynamics equations is developed using an updated Lfredictoymulti-corrector algorithm, the reader can refer to [36].

Third, the use of lumped mass matrices in the momentum
HThis research was partially funded by the DOE NNSA Advanagdrsific and internal energy time mtegra_‘uon provides increasedsb o
Computing Program and the Computer Science Researchutestit Sandia  hess under severe shock conditions. One of the problersatic i
National Laboratories. Sandia is a multiprogram labosatgerated by Sandia  syes discovered in the development of the algorithm predent
Corporation, a Lockheed Martin Company, for the United&t@epartment of : :
Energy under contract DEACO4-94-AL85000. in [33] was that negatlve. undershoots of the pressure and int
*Corresponding author nal energy could occur in a number of challenging test cases.
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has eliminated this problem. This result is very importagit e
pecially when complex constitutive models, usually in tabu
form, are used in the computations.

The overall result is a method of improved robustness and
accuracy, with very encouraging performance on a number
of challenging computations, such as the three-dimenkiona
Noh [28] and Sedov [37] tests on Cartesian (i.e, non-polar)
meshes.

Although the proposed method can also be applied to trian- @
gular and tetrahedral finite element meshes (see [33], for an
example in the context of earlier developments), the fodus o
the present paper is on computations with quadrilaterals an
hexahedral elements. Focusing exclusively on these types o
mesh topologies allows us to present extensive numerical co
parisons with respect to earlier methods developed by sédme o
the authors [33—-35], and other research groups [1, 22]. -Addi
tional developments on triangular and tetrahedral meslies w
be the object of future publications.

The rest of the exposition is organized as follows: Section 2
is devoted to presenting the equations of Lagrangian hydrod
namics and highlighting their structure as a nonlinearesysif
wave propagation equations. In Section 3 we present tha-vari the deformation Jacobian determinant can be defined:
tional form of the equations, while in Section 4 we introdtlee

Figure 1: Sketch of the Lagrangian map

time-integration strategy with a discussion on its conston F = Ve, or inindex notation, Fia = % = % , (3)
properties. Section 5 is dedicated to the implementatichef A A
variational multscale stabilizing operators developed3a], J = detfF), (4)

further analyzing their properties from an algorithmicraf whereV, is the gradient in the original configuration. In the

view. In Section 6 we introduce the discontinuity CapturingdomainQ, the equations for the displacement update and con-
operators (artificial viscosities), needed to further #isbthe <o\ ation of mass. momentum. and energy read:

proposed formulation in the presence of shock waves. Genera

considerations on the implementation and time-step cbaiteo u=v, (5)
presented in Section 7, while Section 8 is devoted to the dis- 0J = po, (6)
cussion and comparison of numerical results, in two ancethre .

) ) ) . . . ov=pb+V, 0o, (7
dimensions. A summary of conclusions is presented in Sectio .
9. pe=pr+Vvyv:o+V,:-(. (8)

Here,V, andV,- are the current configuration gradient and diver-
gence operators, arn(g indicates the material, or Lagrangian,
2. Equations of Lagrangian shock hydrodynamics time derivative.u = x — X is the displacement vectasy is
the reference (initial) density, is the (current) density is the
. ] ] _velocity, b is the body force (e.g., gravity); is the symmetric
The classical equations of Lagrangian shock hydrodynamlc‘gauchy stress tensarjs the energy source term, ands the
govern the rate of change ir_l positi_on, momentum and energy ¢feat flux. We also denote 5 = € + v - v/2 the total energy,
a compressible body of fluid, as it deforms. k& andQ be e sum of the internal energyand the kinetic energy - v/2.
open sets ifR™ (whereng is the number of spatial dimensions). E, ¢, b, r are measured per unit mass. Equations (5)—(8) are

Thedeformation most commonly adopted in shock-hydrodynamics algorithms
[5], and make use of the quasi-linear rather than the coaserv
¢ 1 Q0 — Q=¢(Q), (1) tive form of the internal energy equation. The sum of the in-
X x=¢p(X,t), ¥XeQyt>0, (2) ternal energy equation (8) and the kinetic energy equathon (

scalar product of (7) with the velocity vectaryields the equa-

maps the material coordinae representing the initial position  tion for the conservation of total energy.
of an infinitesimal material particle of the body, xpthe posi-

tion of that particle in the current configuration (see Fig.(ly

is the domain occupied by the body in its initial configuratio
with boundaryly. ¢ mapsQg to Q, the domain occupied by the
body in its current configuration, with bounddryg is usually ~ Assuming that the boundaly = 9Q is partitioned ad™ =
asmooth, invertible map, so that thdeformation gradient,and T9UTh, 9N I" = 0, displacement boundary conditions are

Remarkl. Although (8) is notin conservative form, it can still
be used to develop a globally conservative variational tdam
tion, as will be shown in Section 4.




enforced on th®irichlet boundany™, that is, Findp, p,e € S,,u,ve S,, suchthat, Yy € V,, V¢ € V,,

Ul = Upe(X, 1) , 9) 0= [ ¢-(U-Vv)dQ, (15)
Qo
andtraction boundary conditionsare enforced on thideumann B
boundany™, by means of a physical traction vectythat is, 0= % ¥ (po = pJ) Ao , (16)
O'nlrh = t(X, t) . (10) l// (poV) dQo + f Vﬁﬂ o dQ
Equations (5)-(8), and boundary conditions (9)-(10) com- f Y- tdl - f./, (ob) d2, a7
pletely define the evolution of the system, once appropitéte

tial conditions are specified.
0= | ¢ (poe) on—fz,b(VS/:&+pr)dQ
Qo Q

2.1. Constitutive laws + f V- qdQ (18)

whereVs = 1/2(V," + V,) is the symmetric part of the gradi-
The analysis presented in what follows is specific to mateent operator. In (17)—(18), we have used the idepiiiQ

0=
rials with no deformation strength. In this case, the Cauchy dQ, which states that the mass of an infinitesimal particle
stresso reduces to an isotropic tensor, dependent only on thg = 0o d9% does not change under the Lagrangian deforma-
thermodynamic pressure: tion map. The terne-"denotes in general a symmetric algorith-

mic stress tensor, namely
o = —Plngxng » (11)
&z_p|+a-vms+0-art, (19)

An equation of state of the type whereo s is a variational multiscale stabilizing stress tensor,

R ando g is an artificial viscosity stress tensor, designed to cap-
p=ppe) . (12)  ture shock layers. Since is symmetricVy : o = V¥ : o.
Analogously,gdenotes an algorithmic flux vector,
is assumed. For example, equations of state of Mie-Gréneis
type are compatible with (12), namely 4= q+ Adms + Aart » (20)

R wherely is an artificial, shock-capturing vector flux, aighs
Plo.€) = fulp) + falo)e (13) s a variational multiscale stabilizing vector flux. Boihyms
andA,ms are residual-based quantities. Specific derivations and
and apply to materials such as compressible ideal gases, c@efinitions for the terms "and d will be given in subsequent
volume gases, high explosives, etc. (See [27] for moreldétai sections.

Ideal gases satisfy (13), with = 0 andf, = (y — 1)p, to yield )
g fy (13)., with 2=(r=1Dp. oy Remark2. For reasons that will become clear subsequently

. 3 1 14 (see Section 5 and Section @);,s and A4 do not possess the
Plo.€) = (y — Lpe . (14) structure of heat fluxes, and this terminology is therefoept
propriate.

In the proposed spatial approximatiafl, variables (both kine-

3. Variational formulation matic and thermodynamic) can be approximated by piece-
wise linear, continuous functions (node-centered degoées
freedom). Consequently, the test-spaces for the equatams

The first step in the development of a variational form forsist of piece-wise linear, continuous functions. More [ely:
(5)—(8) is to define thérial spaces for the kinematic and ther-

modynamic variables, characterizing tiate of the system. Sh= {x//h e (COQ)™ : '/’hlsze € (P1(Qe))™,

Let S, denote the space of admissible values for the kinematic h ® onl“g} 21)
variables (displacements, velocities, acceleratioms), S the ¥ = Goe ’

space of admissible thermodynamic states (densitiesymes VI ={y" e Q)™ : ", € PQ)™,

internal energies). In additiotest spaces can be defined’, o g ‘

is the space of variations (compatible with the boundary con Y =0onl } ’ (22)
dition (9)) for the kinematic variables, ard, is the space of Sh = {,ph e CYQ): ,ph| c Pl(Qe),} , (23)
variations for the thermodynamic variables. The complaté v 7 h e

ational problem reads: =5y (24)



where P1(Q¢) is the space of piece-wise linear polynomials where the physical tractionacts only on the Neumann bound-
over the elemerg, andg,(t) indicates the generalized essential ary (i.e., tlrs = 0). The variational form (26) yields the fol-
(Dirichlet) boundary conditions, possibly dependent aneti  lowing discrete equations, for the nodal vectoof velocity
For example, ifS" is used to approximate displacements, thendegrees-of-freedom:

Oe = Une. If insteadS! is used to approximate velocities, then

0 indicates a boundary velocity., compatible withup. [MJ] (Vns1 = Vn) + At Fry12 =0, (27)

Remark3. In the current formulation, traction (i.enatural) ~ Where mass lumping has been applied to
boundary conditions are imposed in (17) through the weak

form, while the spaceS, incorporates the set odssential
boundary conditions (9). Consequently, boundary conuaitio
of kinematic (Dirichlet) type are imposettongly.

[M,] = [diag(Mo, Mo, Mo)] , (28)

adiagonal [Qq X Nnp) X (Ng X Np)]-matrix (nnp is the number of
nodes in the mesh). Specifically, usiNg to indicate the shape
function associated with nodein the global node numbering,

Remark4. In contrast with previous work in [33], the density _ .
the vectoM is defined as

is also expressed with piece-wise linear continuous foneti
Numerical results not be reported here, for the sake of tytevi

showed little diference between the two approaches. Mo = {Moal , (29)

Mo;a = f Napo dQo . (30)
Qo

4. Time integration and discrete weak forms

AnalogouslyFn.1/2 is a (g X Nnp)-vector:
The variational form of the Lagrangian hydrodynamics equa-

tions and its conservation properties are strictly relatethe Fre1/2 ={Fnr1/2:a) (32)
choice of time-integration algorithm. In the present waak,

explicit iterative time integrator is derived by combiniagnid- Fniy2a = f 0n+1/2(ViNa)n+1/2 dQ

point method with a predict¢gmulti-corrector strategy. The iz

proposed formulation conserves mass, momentum and tetal en — f Natns1/2dl, (32)
ergy without resorting to any staggered approach in timd, an o1

stems from previous work in [35] (and also from similar ideas

developed in the context afimetic or compatible discretiza- ~ 4-1.2. Energy balance

tions [2, 10]). Discretizing (18) in time yields:
Find e € 8", such that, Yy € V!,

4.1. Discrete equations

For the sake of simplicity, it is assumed that the body fdrce 0= | ¢"po(en1— &) d
the heat fluxg and the heat sourtgnkr are absent. The time e
step is indicated byt, and the mid-point value of a quantify — At y" (V)ns1/2 : Gne1y2dQ
is defined as: Qni1j2
fo+ f —f V" g2 0dQ 33
fn+1/2 — n 5 n+1 i (25) oo ':0 qn+1/2 ( )

wheref, = f(t,). In what follows, with slight abuse of nota- SO that an update equation for the nodal veetaf internal
tion, the superscriptt” - denoting numerical discretization - is  €nergy degrees-of-freedom can be derived:
omitted from the solution variables, discrete gradientatues,

and the domain geometry. [M] (€ns1 = €n) + At Wne1/2 =0, (34)

where M.] = [diag(Mo)], andWp.1,2 is annp-dimensional vec-
4.1.1. Momentum balance tor defined as

The variational problem associated with the conservatfon o
linear momentum reads Whi1/2 =(Whi1/2:a) » (35)
Findv e S, such that, Vy" € V",
Whi1/2:4 = = L Na (VV)n+1/2 © One/2 dQ
n+1/2

0= [ " po(Vne1 — Vo) dQ .
o + f (ViNa) - Gpny1/20Q . (36)
5 Qn+
+ At f (Vx'/’h)n+l/2 D One1/2dQ b
OQni1r2 4.1.3. Mass balance

- Atf Y- thea2dl, (26) The mass conservation equation (16) can be slightly rear-
T ranged to yield:



Find p € S, such that, Yy € V5, tests performed with this combination could not be run to com
pletion due to inversion of some of the element volumes. This

f W0 dQo = f Wod dQg = f yhodQ . (37) fact seems to indicate that the propoged Qisplacemenwtnj.at

Q Q Q effectiveonly in the context of piece-wise linear approximation

. . . . . of thermodynamic variables.
Testing the previous equation using nodal shape functions

yields 4.1.5. Equation of state
The equation of state is evaluated at each time step at the

[Vnealpnia = Mo, (38) nodal points, and a nodal pressure is computed as a fundtion o
wherep,,, is the vector of nodal degrees-of-freedom for theNdal internal energy and nodal density:
density attn,1, that is, 01 = —Pritl = —Plons1, €nc1)l - (46)

Pt = (Presa) s (39) Anpiece-wise continuous pressure field is then interpoltited

the nodal values of the pressure. Therefore, we can writs-a di
and Vn1] = [diag(Vni1)] is the diagonal matrix of (lumped) crete form of the pressure degrees-of-freedom updateiequat

nodal volumes, with as follows:
Vhier = {Vhiral s (40) Pri1 = B(Pnsa: €nea) - (47)
Viiia = f Nadn,1 dQo = f Na dQ . (41) 4.2. Global consgrvation properties
Qo Ot 4.2.1. Conservation of mass

Equation (38) (or, correspondingly, (37)) is a statement of
global conservation of mass. This can be easily seen bygesti
(37) against a constant unit test function, which yields

Remark5. Following the finite-volume method nomenclature,
the interpretation ofVn,1} is analogous to a vector of co-
volumes.

dQo = dQ = total mass 48
4.1.4. Displacement equations Lopo 0 L’O (48)

Positions are updated from velocities using a weak projecm the context of the discrete equations (with lumping agmpto
tion, rather than using a set of ordinaryffdrential equations the second integral above), we can easily see that (48) ig-equ
for the nodal positions. The time-discretization of themdqua-  gjent to contracting (38) with the vectar a n,,-dimensional
tions for the position yields: vector whose entries are all unity, namely

Findu € 8", such that, Yy € VY, ,
4 1"[Vnsalpnes = 17{Mo} = discrete total mass  (49)

Y" - (Ui —Un) dQo — At | " Vini12dQ =0 (42)  4.2.2. Conservation of linear and angular momentum

% 2 Let us assume, as is customary when proving conservation
and leads to the update equation for the veatof nodal dis-  statements, that only homogenous Neumann (zero-traction)
placements: boundary conditions are imposed, so that the test and tiiaHf

Une1 — Un— At Vpa12 =0, (43)  tion spaces for the velocities coincide (i.8] = V). Test-

ing (26) against the shape functigfi = e, i = 1,...,nq (the
constant unit vector of the Cartesian basis in thle direction)
yields a conservation statement for the global momentuiman t
directiong. Namely, as the boundary term and the integral in-
volving the test function gradient disappear, (26) yields

0= f p0 (Vine1 — Vin) dQo
Qo

with

Vni12 = {Vni1/2:a) (44)

Vni1/2.A = V6;1A ( f NaVni1/2 dQO) . (45)
Qo

Remark6. In the case of the displacement update, the inverse

of a lumped volume matrix is premultiplied by the vector of =f Pn+1Vine1 dQ —f onVindQ , (50)
nodal positions, and the velocities are tested againstdaldaln Qnaa n

shape functions. This leads to an explicit procedure which iwherevi = v- &. This is analogous to contracting the entries of
very similar in structure to the momentum equation updateyector equation (27) corresponding to tttecomponent against
This choice was preferred in [33] to the simpler approach othe vectorl:

integrating in time ordinary dierential equations for the nodal 1T([Mi)] (Vime1 = Vin) = O, (51)

displacements, due to its superior results. ) _ )
where M; ] is the diagonal block of§1,] corresponding to the

Remark?7. Note also that an early attempt to apply the pro-degrees-of-freedom associated with thigh direction. Under
posed displacement update to the more traditional finiteeht  appropriate boundary conditions, an algorithmic form eftib-
method in [35] (i.e., with thermodynamic variablesstant on  tal angular momentum is also conserved (see [19] for a éetail
element interiors) proved disastrous. In fact, a numbemsfd  discussion).
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(a) Three-dimensional Noh test B3@lement mesh). (b) Three-dimensional Sedov test ¢lement mesh).

Figure 2: Energy history for a three-dimensional Noh tega))2 and a three-dimensional Sedov test (2(b)). The plotthe upper row show the change in the
internal (blue line) and kinetic (red line) energies, noliz&a with the total energy. The plots on the lower row show tibtal energy relative increment between

time tn, andty,1, namely 1%, — &%)/l Note the scale of the vertical axis is 2 in the lower plots.

4.2.3. Conservation of total energy where, in particular, recallin@il””l Na =1,

Proving conservation of total energy is somewhat less obvi-
ous. The proof will be given in the special case when mass 1"Wpi1p = - 17 {—f Na (VVnt1/2 & One1j2 dQ}
lumping is used, although it holds also when a consistensmas Oneae

matrix is used (see [32, 34, 35] for complete details). Wé wil +17 {f (V.Na) - § dQ}
assume again homogenous Neumann boundary conditions, for Qni1j2 " /2

which it is possible to test (27) with" = vi.1/2. Summing Mhp

over all the nodes, the kinetic energy balance for the sysem =- f ( NA] (VV)nt1/2 @ One1y2dQ
obtained: Qni12 \A=1

Mhp
+ f Vx [Z NA) ° qn+l/2 dQ
Qni1/2 A=l

1 1
SVaalMlViis = SVAIMIVA = —AL Vo oFniaz . (52)
=-— f (VV)ni1/2 @ One12dQ
-Qn+1/2

This result holds by virtue of the following identity (reCp\,]
is diagonal, therefore symmetric): + f V(1) - Uniq /2 dQ
Qnya2
1 1 =- f (VV)ns1y2 : One120dQ (55)
§VI+1/2[MV] (Vne1 = Vn) = 3 (VI+1 + VI) [M.] (Vns1 — Vi) Oniz

1 1 Comparing (31)—(32) with (35)—(36), and taking into acdoun
— EV;I]—+1[MV]Vn+l _ EVI[Mv]Vn ) (55) p g ( ) ( ) ( ) ( ) g

(53) T T
Vni12Fne12 = =1 Whiay2 (56)

Testing (33) with a unit constant shape function over thé@@nt Summing (52) and (54), we derive a statement of conservation
domain (i.e.,wh|QO = 1), is equivalent to contracting (34) with of the algorithmic total energy:
1

1 1
Ele[Mv]vml +1T[Mo]€ns1 = EVI[MV]vn +1"[Mo]en .
17[Mo] (ene1 — €n) = At 1T W15, (54) (57)
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Table 1: Outline of the predictanulti-corrector algorithm. Note that, because ';.erevxml/? and\éarlﬁ mdllcate tfhelc(icurrent conggurathn) %ra

of mass lumping, all matrices are diagonal, so that all swesperations are - lent oper.ator an .t eve QCIIY leldtat ty,.1/2 and iterate an

just vector divisions. Three iterations were typically digethe computations.  J, respectively. This notation is needed to understand how co
servation is enforcedt each iteration of the predictomulti-

corrector procedure.

Retrieve loop parameterssep imax

Initialize all variables with initial conditions 4.3.1. Algorithmic conservation of global total energy

FormMo, [M.,], and M.] The proposed predictonulti-corrector approach maintains
Forn=0 Nstep (TiMe-step loop beging) all the conservation properties of the base mid-point élgor.
s+ Nstep( €p 1oop begr (ii+1) :
SetAt (respecting the CFL condition) Note that the work vectow,:, (see Table 1) is computed

holding the geometry and all the terms in the integral (59) at

; VO _
Predictor:Y Yn iterate {), while the velocityv,.1/2 is evaluated using iterate

n+l —

Fori=0,..., Imax 1 (Multi-corrector loop begins) (i+1). This new iterate is readily available after the momen-
Asse’_“bly-':ml/z ) ) tum equation is integrated in time (the predighoulti-corrector
Velocity updatev, ;" = vn — At[M,J"F ) mimics a Gauss-Seidel solution strategy). Using arguménts
Assembly'W(i’iI/lz) tually identical to the ones presented in Section 4.2, ias/do

N+ § - . . .
Internal energy updateﬂill) =€, — At [ME]*lwg;'I/lz) realize that the identity
oy s . 1 l i l - 1 . .,. 1
Position updateu’"? = u, + At v, W) Py = —1TWUT) (60)
(+1) _ /[, (+1)
Volume updatevmi B V(gnfl ) guarantees that total energy is conserveehah iterate of the
Density updatepg:l) = [Vgil)]’ll\/lo predictofmulti-corrector algorithm, namely,
: i+1 A i+1 i+1
Equation of state updatef,? = p(p{/?. €\17)

n+1 n+1

1 4 - oy 1
End (Multi-corrector loop ends) i(Vgill))T[Mv]V(Hl) + [Molel = QVI[MV]Vn +Mgen . (61)

1 — “maﬂ
Time updatexn., = Yoy The time histories of the kinetic, internal and total enesgire-
End (Time-step loop ends)

Exit sented in Figure 2 confirm, within machine precision, the-con

servation properties of the proposed algorithm in the cése o
three-dimensional Noh test (Fig. 2(a)), and a three-dinoaas
Sedov test (Fig. 2(b)). The reader can refer to Section 8 for
more details on the setup of these tests.

Remark8. The approach followed in the proof of global con-
servation properties, is very similar to the one presemt¢8s],
with the exception of the treatment of the term contairing ~ 5. Variational multiscale stabilization

4.3. A predictor/multi-corrector approach Variational multiscale stabilization of piece-wise limehs-

) . ) _ ) _cretizations of the Lagrangian hydrodynamics equations wa
The algorithm developed in Section 3 requires the INVersion,ready explored in [31, 33] for total Lagrangian formula-

of a m_atr_ix: The force anql work terms are computed at _the Midfions, The present article, instead, implements the ajpproa
point in time, and necessitate knowledge of the solutioima t proposed in [32], which directly applies the variationallmu

tn+1. However, a fully explicit procedure can be recovered byjiscaie paradigm [15, 16, 18] to updated Lagrangian formula
resorting to a predictgmulti-corrector approach. For this pur- iqng The variational multiscale analysis and design efstia-

pose, a number of prelimin_ary de_finitions are needed. The stayiji-ation method are presented in complete detail in [32H

of the S¥St?rm ?t tleeTth. is defined by means of the vector ¢ the sake of brevity, are omitted here.fiiees to say that the

Yo = [Us,ve.p..€,p.]" . As can be appreciated in Table 1, 1, iscale analysis is based on a decomposition of theisalut
the proposed approach consists of a velocity update, fellow i, 5 coarse-scale component, representable over thetcomp
in the order, by internal energy, pos)morp density and §WES  y4ional mesh, and a fine-scale component, which belongs to
(or, more generally, stress) updel_t6§+l/2_|nd|cates the evalu- o subgrid space of unresolved scales. By finding appropri-
ation ofFy./> using the stat&’ at iterate {). The definition of 540 4pnroximations to the fine-scale solution, it is possibl

the iterate of the work vecty. /> is somewhat dierent: stabilize the shock hydrodynamic equations from acougpe-
instabilities, responsible for the appearance of spurlous-

() Yy () . - .

Wit SIWiiioal s (58) glass modes in quadrilateral and hexahedral computatmals,
wid Na (W) ) 350 g0 artificial stiffness in triangular and tetrahedral computations. As

m+1/Z.A ot “n+1/27°n+1/27 1 P nel/2 indicated in [32], aninimalist strategy (to obtain the simplest

n+1, B . ape .

! ' ' and most #icient expression for the stabilization terms) sug-

+ f(i) (ngll/zNA) . (”:151'11/2 dQ . (59) geststo enrich the pressure and velocity vyith f.ine-scalepcxam

Qg nents. Recalling the structure of the algorithmic stre83 éhd



Figure 3: Sketch of the length-scélg as a function of the direction afg,.
The plots show the envelope lof;; as the angle thatg, forms with thex;-axis

varies from 0 to 360 degrees. Note the smooth transition efiehgth-scale
near the corners of the elements.

L

the algorithmic vector flux (20), we have:
U'vms:_p/I > (62)
Ams = ph\/ s (63)

where p" is the coarse-scale discrete pressyreis the fine-
scale subgrid pressure, antlis the fine-scale velocity. In

Remark10. The termRes, = p + pC3V, - v can be termed
a pressure residual. It is indeed a residual since, as elétall
in [32], the internal energy equation can be rearrangedas 0
1o ape|p Resp. It was shown in [35] that the expression Res,
can also be derived by considering isentropic processesrin p
fect materials (materials free from internal dissipatioecima-
nisms), and thaRes'r‘, measures thproduction of entropy due
to the numerical discretization. In regions of smooth flﬁws';
should vanish, but because of numerical instabilitiesperical
entropy can be generated. It was also shown in [34, 35] that the
same approximation can be obtained by linearizing the expre
sion forp’ = p- p" = P(p, €) — p" aboutp”.

Remark11. With respect to the work in [35], the additional
fine-scale velocity’ is used to stabilize the energy equatigh.

is a scaled function of the momentum equation discrete resid
ual. The specific scaling has the purpose of developing & stab
lization operator which retains the structure of the Lagian
hydrodynamics equations, represented by the system foem of
nonlinear wave equation (see [32] for complete details)s &
also the reason why the same scaling paramefeith dimen-
sion of time) is used for both fine-scale velocity and pressur

Remark12. The termAyms = p"V has the meaning of the
work done by the interaction of the fine-scale velocity wiik t
coarse-scale pressure.

Remark13. Observe thaflyns is a function of the momentum
equation residual, and, consequently, vanishes at puraaton
discontinuities, where pressure and velocity are contisumnd

in particular constantd,ms has dimensions of a heat flux, but

particular, fine-scale pressure and velocity are approdcha this interpretation would be erroneous, since heat fluxesaer
by residuals of a pressure and momentum equation, respetive at contact discontinuities.

tively. In the context of the proposed predi¢gtaulti-corrector
method, this amounts to set

- m0
p=-1 (Resp)ml/2 , (64)
hi(i) ,
c :
- (p e _s) (Res")"™" (65)
apl, p n+1/2 /2
(66)

wherecs is the speed of sound in the mediums the stabiliza-
tion parameter with dimension of time, and

O ol TP
_ Mo+ i\
(Resp)mm =T A +(pcs V- V)n+l/2 ’ (67)
3 (i+1) _
mEHD Ry \Pn 1~ 'n hi(i)
(ReSv)nJrl/z = Prsi)2 + m — + (pr)nJr]_/g > (68)

whereV" denotes the coarse-scale discrete velocity.

Remark9. Note that the ternp 6pe|p is the inverse of the
Gruneisen parameter, a quantity that is typically exmeéss
a pure function of the densifyin Mie-Griineisen constitutive
models. The Gruneisen parameter varies very mildly away fr
phase transition states. This quantity and the speed ofisamen
usually provided by equations of state in tabular form.

Remark14. Also the fine-scale pressuig vanishes at pure
contacts, since the residugés; vanishes for constant veloc-
ity and pressure fields.

Remark15. It is easy to verify that the proposed stabilization
approach satisfies Galilean invariance properties, sineee-
locity always appears in incremental form with respect &cgp

or time. In [29-31], Galilean invariance properties were-re
ognized as important for the specific case of Lagrangian and
arbitrary Lagrangian-Eulerian (ALE) computations.

Remark16. When shock waves are present in the material, the
analysis with which the proposed stabilization mechanisen a
derived does not apply. From a physical point of view, a shock
wave is an infinitely thin layer in which the flow does not be-
have as a perfect material, due to internal dissipation aech
nisms. At the numerical level, these irreversible mechasis
are introduced by shock-capturing operators in the fornrtdf a
ficial viscosities, which smear the discontinuity over a feils

of the computational grid.
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(c) VMS-C. (d) VMS-AC [31, 33].

(b) VMS-PO [34, 35].

Figure 4: Saltzmann test. Comparison of the mesh displagerasults for thevMS-P0, VMS-C, VMS-AC methods. The meshes in Figures 4(b), 4(c), 4(d) are

rotated by 90 degrees counter-clockwise.



5.1. Choice of the stabilization parameters

The stabilization parameteiis defined as in [32], using sim-
ilar criteria to [31, 33, 35]:

At CF I—nomi nal

= CFLaw (69)

where CFLyomina IS the target globalCourant-Friedrichs-
Levy (CFL) number (specified by the user) whi& Lacyal

is the actual CFL number at time In practice the ra-
tio CFLpominal/CFLactua is @almost always unity, so that =
c;At/2, perfectly matching the definition given in [32]. The
only exceptions are the startups of highly transients cdepu
tions, in which time steps are initially forced to be very dma

and are progressively increased to nominal values by mdans

stabilization operator, there is some flexibility in chawsthe
viscosity constant, and other constant combinations vaened
to perform equally well.

Remark18. The values; = 1.4 andc, = 1.0 were chosen so
thatvar, andvat,p peak at about the same value in computa-
tions, while maintaining a slightly éfierent spatial variation.

Remark19. Maybe the most striking peculiarity of the adopted
discontinuity operator is the introduction of thefdisive term
At in the energy equation, in starch contrast, for exampldy wit
[35]. This idea was already incorporated in the method pro-
posed in [33]. One would be tempted to think abat as an
grtificial heat flux, but this interpretation would be incect.

a compound (exponential growth) scaling. Under these eondi” fact, the termla involves only pressure gradients, and not

tions, the parameter, because of the scaling witht, would
result extremely small, negativelytacting the spatial stability
of the overall algorithm. After the initial transient hagpsed
(typically involving between 30 and 50 time steps), theaati

CFLnominal /CFLactua becomes and stays equal to unity. The

valuec, = 2 (for whicht = At) seemed to give the best re-
sults, although values in the range/213] proved also ffec-
tive. Therefore, to a certain extent, the stability proigsrof
the method are not overly sensitive to changes of the stabili
tion parameter value.

temperature (i.e., internal energy) gradients.

Remark20. Mostimportantly, the termy is not active at con-
tact discontinuities, where the pressure is continuoustgmd
ically constant. A4 is only active where shocks are present,
and because the corresponding artificial viscosity doesaade
with the speed of sound, this term is expected to be fairlylisma
in compression regions where the pressure gradients atke sma

Remark21. The scaling of the viscosities is solely based on
the gradient of the solution, since the variational mudtissta-

Remark17. The analysis of stability and accuracy presentedbilization is already designed to control acoustic (hoasg) in-

in [36] shows that when three iterations of the predijtturiti-
corrector method are applied in combination with= 2 and a

stabilities.

safety parameteCFL = 0.8 (see also Section 7.1), very good Remark22. By construction, the integral term containing
performance is to be expected, since the method is charactds compatible with a global conservation statement for the t
ized by high wave number dissipation, accurate low wave numtal energy. Note also that the pressure gradient is easity co

ber behavior, and very low dispersion error over the entaeav

putable because the pressure field is approximated by piece-

number spectrum. These theoretical findings were confirmed iwise linear (continuous) finite element shape functions &so

computations, not reported here, for the sake of brevity.

6. Artificial viscosity and discontinuity capturing operator

Section Section 4.1.5).

Remark23. The use of the symmetric gradient in the defini-
tion of o4t ensures, at the continuum level, objectivity of the

The discontinuity capturing operator is implemented as fol artificial viscosity operator [38]. The definition (70) is necef-

lows:
— Y Vart;vVXSV 5 |f Vx .v< O s
O-art B { Ondxnd ) OtherWIse. (70)
p Ope|, vatpVip. if V-v<O,
Agrt = p - 71
o { Ong > otherwise. (71)

The scaling and structure dfy; are chosen with the purpose
of dissipating pressure oscillations in the energy equafidne
artificial viscosities are

Varty = C1|V - VI h3 (72)

Vart;p = C2 art (73)

[V.pl h3/2
p

The values; = 1.4 andc, = 1.0 were found to perform best

fective in damping artificial pure shear motion, with respec
the more common definition [5]

Tat = —(EvartVx V) | . (74)
Artificially produced homogeneous shear motion can have dis
ruptive consequences on shock hydrodynamics computatfons

fluids, since itis not resisted by hourglass controls (oftgpe),
nor the discretized physical stress.

Remark24. The proposed artificial viscosity operators are
Galilean invariant, because their expressions involvg gré-
dients of velocity and pressure. Consequently, the prapose
method is overall Galilean invariant.

The length-scally is defined in a similar fashion to [33], and
is designed tatably sample a mesh length along the normal to

in the computations of Section 8. Similarly to the case of thehe shock front. This means that, for a given mésh,should

10
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Figure 5: Saltzmann test, comparison against the exadi@ol(in red). Left columnMS-P0O method. Center column/MS-C method. Right columnvYMS-AC
method. From the top row down: Density, pressure, internatgy, horizontal velocity, vertical velocityv,, and artificial viscosities. The solution is plotted as a
function of the coordinate;. The exact solution is represented by the continuous fiveedots represent all the nodal values of the numerical solution (projected

along thexz-coordinate onto a single plane).

not vary abruptly for small changes in the direction of thech
normal. An dfective definition was found to be

2

hart = — s
nk, (FoFL)  ne

ox

% )

(75)

Fo = (76)

whereng, is a unit vector in the direction normal to the shock
front, andF the gradient of the mapping from the element’s
parent domain to its current configuration. In pract((t'e] FE)
measures thgiretch in the direction given byg,. A plot of the

in [17]. A reliable approximation tmg, was found to be:

0.75-V + 0.25- %2

Vx
Ny = ||V|| [IVxpll (77)
V Vip

Basically, the direction of the shock normal is a weighteerav
age of the direction of the acceleration veatpand the density
gradient (see also [39, 40]). Again, there is some flexibitit
the definition of the shock direction, and alternative ckeiare
possible.

7. General considerations on implementation

envelope ofhy as the shock normal angle spans the interval/.1. CFL condition

[0, 360]-degrees is presented in Figure 3, for various quadrila

The calculation of the Courant-Friedrichs-LeyHL) con-

eral elements. This definition is analogous to the one adoptedition is based on the analysis in [36] of a linearized versio

11
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Figure 6: Two dimensional Noh test, mesh deformation. Caispa between theMS-P0O method (upper left corner), théMS-C method (upper right corner), and
the VMS-AC method (lower right corner).

of the proposed algorithm in the case of one-dimensiona&l perdition for the purely difusive case, namely:
odic flows. This analysis precisely accounts for tffee of the

parametec, and the artificial viscosity on the overall stability, 2
and yields the condition At < CFL min { € } (80)
1<e<ng | 2vart,
h2
At <CFL min © (78)  This situation is often encountered in hypervelocity intpac

e+ \JVar, + C:C&h2 piston problems (i.e., the Saltzmann test in Section 8r), i
which the internal energy rises from a very low initial value
The specific bound for the safety fact6FL depends on the as a result of kinetic energy conversion or work done on the
number of iterations. In [36], it was found that for one andsystem at its boundaries.
three iterations stability is achievedGFL < 1.0, and for two
and four iterations stability is achievedGfL < 0.9.

S ) ) Unless otherwise stated, all computations presented srathi
Remark25. In the case when the artificial viscosity vanishesijcie where run with three iterations of the predictor multi

andc; = 1.0, one recovers the classical condition corrector time integratot, = 2, andCFL = 0.8, which corre-

sponds to a very favorable condition in the linearized cagté,
} (79)  high wave number dissipation, high accuracy in the low wave
number range, and low dispersion error throughout the eentir
Remark26. Conversely, in the case of a very low temperaturewave number spectrum (see [36] for a detailed justificatibn o
fluid with artificial viscosity active, one recovers the CFine  these claims).

12

At < CFL min {E

1<e<ng | Cg,
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Figure 7: Two-dimensional Noh test on a Cartesian mesh: @oisgn with the exact solution (in red). Left columwMS-PO method. Center columnv/MS-C
method. Right columnVMS-AC method. From the top row down: Density, pressure, internakgy, radial velocityv;, tangential velocityv;, and artificial

viscosities. Each variable is plotted as a function of thbusr = xf + xg All solution points are rotated around the origin to alignasingle radial plane.

7.2. Notation maintains the typical structure of a standard hydrocode,
The quality, accuracy and robustness of the proposed method  in that all thermodynamic variables are approximated as

is evaluated by comparing it to two previously developed-var ~ Piece-wise constant functions over the elements of the

ational multiscale methods [33, 35], and other state of the a ~ Computational mesh.
computations [1, 22]. In particular the following notatitm

used: 8. Numerical computations

VMS-C indicates thevariational multiscale conservative 8.1, Saltzmann test
method, the newly proposed conservative approach to La- the gsajtzmann test evaluates the ability of a numerical
grangian shock hydrodynamics. method to capture the features of a planar shock over a ghidtor

VMS-AC indicates thevariational multiscale asymptotically ~ Mesh (see the initial mesh geometry in Fig. 4(a)). A rectéargu
conservative method, proposed in [31, 33]. This method d0main of gasx = 5/3, po = 1) is initially at r?ft’ at zero tem-

. - — H -+

adopts an iterative predictor-corrector approach which ierature (i. e., for practical purposes,= 10°). Attime g,

conservative only when convergence of the iterations is atin€ |eft boundary is set in motion with unit velocity, and gen
tained. erates a compression shock of infinite strength (infinite Mac

number), propagating from left to right through the computa
VMS-PO indicates thevariational multiscale Q1/P0 method, tional domain. All other boundary conditions are of “rofler
proposed in [34, 35]. This method is conservative, buttype (zero normal velocifdisplacement). Given a value of the

13



(a) VMS-PO [34, 35]. (b) VMSs-C. (c) VMS-AC [31, 33].

Figure 8: Two-dimensional Sedov test on a Cartesian mesimp@adson of mesh deformation patterns.

ideal gas isentropic constapt= 5/3, the thermodynamic state of the velocity, transverse to the shock front normal. At the
past the shock is given by values of pressure, internal gnerghorizontal boundaries, the roller boundary conditionséahe
and density of 43, 1/2, 4, respectively. The Saltzmann test is transverse velocity to be zero, and are responsible for an in
both a robustness and an accuracy test. Computations are perease in the kinetic energy error in the neighboring ardee T
formed atCFL = 0.8, and compared at the final non-dimesionalnumerical error on the kinetic energy is compensated bythe n
timeT = 0.7. merical error in the internal energy, as the total energyab-g
Figures (Figs. 4(b), 4(c), 4(d)) show the mesh displacemenrdlly conserved (in a certain sense, “two wrongs make a rjght”
results, where it can be observed that the mesh deformadten p and the lumped mass matrix does not allow information to be
tern ofVMS-C is somewhat intermediate betweéMS-AC and  redistributed globally over the mesh.
VMS-PO. Similar conclusions are obtained by observing Figure
5, where the three methods (blue dots) are compared agaénst tRemark29. In order to explain the behavior of the various
exact solution (red continuous line). methods under consideration, a number of additional tasts,
reported here for the sake of brevity, showed the following
Remark27. The new conservativ/MS-C method does not trends: The combination of mass lumping and strict enforce-
produce any negative undershoots, clearly manifest for thghent of conservation seems responsible for the /aneler-
VMS-AC method. This is considered by the authors a considshoots near the boundary for tiS-P0 andVMS-C methods.
erable robustness improvement, especially for applinattdo  Thjs phenomenon is somewhat expected as the lumping proce-
more realistic materials for which equations of state avemi  dure, beneficial in the computation of shock discontinsite-
in tabular rather than analytic form. fectively localizes the solution information. When lumping is
used, the numerical forces and work associated to a paaticul
degree-of-freedom cannot have theffeet redistributed over
neighboring nodes by the inversion of a diagonal lumped mass
matrix, as opposed to the case of the consistent mass matrix.

The VMS-AC method shows very good agreement with the
plateaus of the exact solution for density and internal energy,
while theVMS-PO0 solution shows wide overshogisidershoots
near the lateral boundaries (the horizontal boundariedgn F
4(a)) of the computational domain. Th&MS-C method has
less pronounced overshoots near the horizontal boundalies
though the overshoot in the internal energy plot past thelsho
location is more pronounced than in both ti#MS-PO and
VMS-AC results. Note that theMS-P0 method utilizes a form
of the artificial viscosity which also includes a term scglin
with the speed of sound, while the artificial viscosities thoe
VMS-C andVMS-AC methods are purely based on the solution
gradient: This is the reason for theffdrent behavior of the ar- ~ The Noh test [28] is an implosion test. The velocity has an

tificial viscosity past the shock front, in the last row of gglin  initial uniform radial distribution (the velocity field pots to the
Figure 5. origin, and has unit magnitude, except at the origin, whigise i

forced to zero). The initial internal energy should be zéxd,
Remark28. It is important to analyze the typical numerical for practical purposes the value16is used. The gas constant
challenges involved in the Saltzmann test. The numerical ery = 5/3 is applied to all computations, and the initial density
ror in the shock region is responsible for a spurious compbne is set to a constant unit value. The shock speed 3s 4o that

14

Remark30. Instead, when the consistent mass matrix was
used, th&/MS-C method showed improved results near the hor-
izontal boundaries, but produced negative undershootkeof t
internal energy ahead of the shock front. For this reasas, th
choice is not endorsed by the authors as viable.

8.2. Two-dimensional Noh test on a Cartesian quadrant
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Figure 9: Two-dimensional Sedov test on a Cartesian mesimp@dson with the exact solution (in red). Left columfvS-PO method. Center column/MS-C
method. Right columnVMS-AC method. From the top row down: Density, pressure, internakgy, radial velocityv;, tangential velocityv;, and artificial

viscosities. Each variable is plotted as a function of thbusr = xf + xg All solution points are rotated around the origin to alignasingle radial plane.

at the final time of ® in the computation, the discontinuity exact solution. The density and internal energy plots fer th
is found atr = 0.2. The exact solution for the density past VMS-P0 method are fiected by a pronounced overheating er-
the shock is 1® and decays as 4 t/r in front of the shock, ror near the origin (for a full description of numerical oleat-
ing errors, see [28]). These errors are much reduced in g ca
of the VMS-AC andVMS-C methods, due to the specific form
of the discontinuity capturing operator adopted. Agaire th
thermodynamic variables computed with ti#S-C method
are all positive, while th& MS-AC method produces negative

The mesh deformation results presented in Figure 6 show th&fndershoots in internal energy and pressure. With respéogt
the best mesh deformation (in terms of regularity of the eleVMS-P0 solution, thevMS-C solution presents an internal en-
ments and smoothness of the mesh lines) is achieved with tH¥9y Overshoot past the shock, but has lower transverseitelo
VMS-C method. Overheating near the implosion corner pro£fTor. In general, the numerical solutions computed with th
duce element of larger area (i. e., lower density) in the casérée methods are in good agreement with the exact solution,
of the VMS-PO method. TheVMS-P0O and VMS-C methods considering the coarseness of the mesh (for extensivesstodi

show less mesh distortion because both use a similar definiti this problem, see, e.g., [28]). In the case of the density fiie
of the element mesh length in the artificial viscosity, lesse ~ VMS-P0 method presents a more pronounced angular disper-

to large variations in direction from element to elemenintha Sion of the numerical data with respect to ¥&S-C method,
the VMS-AC method. Figure 7 shows a comparison against thélso confirmed in the tangential velocity plots.

15

wheret is time andr = /x4 + X5 is the radius. The values of
pressure and internal energy past the shock ay8 a6d 12,
respectively. The initial domain of a Cartesian quadrajiJ&
[0, 1] is subdivided into 5& 50 squares.
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Figure 10: Three-dimensional Noh test on a Cartesian mesishiMeformation for the test performed on thé stesh.

In general theVMS-P0 method vyields sharper shock pro- value, 09792/(4h%) = 409.7, with h = 1.1/45 the initial length
files than theVMS-C method, at the expense of higher trans-of the side of the mesh quadrilaterals [37].
versgtangential velocity errors, and a more pronounced disper- |n the case of th¥MS-C andVMS-AC methods, the internal

sion of the data around the exact, symmetric solution. energy initial condition is further projected onto the nbfila
. . . nite element basis used to approximate the thermodynamiic va
8.3. Two-dimensional Sedov test on a Cartesian quadrant ables [33]. The mesh deformation results are shown in Figure

The Sedov test is a multi-dimensional blast test. An exacB. Since the exact solution is obtained by self-similarityua
solution, which possesses cylindrical symmetry, is derivith ~ ments and has radial symmetry, the mesh deformation is ex-
self-similarity arguments in [37]. pected to be smooth. Figure 8(b) shows a clear superiority fo

The proposed version of the Sedov blast test is performed ofie VMS-C method, in terms of mesh displacements (similar
the [0 1.1]x[0, 1.1] quadrant, subdivided into 4itially iden- ~ deformation patterns, although more distorted, can berobde
tical squares, and assesses the ability of the method teaesp for the VMS-AC method in Fig. 8(c)). On the other hand, the
the cylindrical symmetry. The initial density has a unifounit ~ results for thevMS-P0 method show a pronounced distortion
distribution,y = 1.4, and the internal energy is “zero” (actually, in the element near the origin, possibly due to the onset of an
10-14) everywhere, except the first square zone on the bottorourglass mode, as already observed in [34, 35].
left corner of the quadrant, near the origin, where it takes t A comparison of the three approaches with respect to the ex-

16
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Figure 11: Three-dimensional Noh test on a Cartesian mesmp@rison with the exact solution (in red) for the*3eft), 60° (center), and 100(right) meshes.
In light blue (cyan), th&/MS-P0 method, in dark blue theMS-C method. From the top row down: Density, pressure, intematgy, radial velocity;, tangential

velocity v, and artificial viscosities. Each variable is plotted asrecfion of the radius = ,/xf + x% All solution points are rotated around the origin to alignao
single radial plane.

act solution is presented in Figure 9. Considering the densi cosity and stabilization are responsible for the improveie
plots, the results indicate that tS-P0 method is the clos- the results.

est to the exact solution, followed (in terms of accuracyxhe

VMS-C andVMS-AC methods. Specifically, the density peak, 8.4. Three-dimensional Noh test on a Cartesian octant

a good indicator of the overall quality of the computatios, i o . . . .
g g y P The initial conditions for the Noh test in three dimensiore a

at 535 for theVMS-C method, against.58 for theVMS-PO . . ) ; )
method and only 24 for theVMS-AC method. The results of identical to the two-dimensional case, but will generateosem
intense, spherical shock pattern. In this case, since theksh

Figure 8 for the mesh displacements are also confirmed by t ' A X
tangential velocity plots, which show that th&S-C method hMach numberl_s |nf|n_|tg forboth thetyvo- and three-dlmgnalon
case, the density ratio is a better indicator of the sho@nisity.

has the smallest tangential velocity error. In the three-dimensional case, this ratio is 64, againsoi.the
Remark31. As shown inin Figure 9, the values of the artificial two-dimensional case. The domain J01] x [0, 1.1] x [0, 1.1]
viscosity are lower for th&MS-C andVMS-AC methods with  is uniformly meshed with three meshes of resolutiod 30
respect to th&MS-P0O method. This resulted in a reduction in 27,000, 6¢ = 216 000, and 108= 1,000 000 cubes. A radial
the number of time steps to complete the computation on thehock propagates with speeflin the computational domain,
order of 30%. It is important to notice the higher accura@t th so that at the final time of.6 in the computation, the discon-
theVMS-C method shows in capturing the solution with respecttinuity is found atr = 0.2. The exact solution for the density
to the VMS-AC method. The dferent choice of artificial vis- behind the shock is 6@ and decays as (t/r)? in front of the
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(a) VMS-P0O method. (b) VMS-C method.

Figure 12: Three-dimensional Sedov test on a Cartesian wfed#® elements: Th&/MS-P0O method, could not be run to completion (Fig. 12(a)), due to an
hourglass pattern developing near the coordinate origime VIMS-C method (Fig. 12(b)) did not experience the onset of housgfasdes, and could be run
successfully.

shock, whereis time and’ = /X2 + X2 + X2 is the radius. Past orQinate origin. This amounts to setting t.he initial distrion

6 of internal energy to zero, with the exception of the neagksst
ment to the origin for whiclyg = 0.851/(8h°), with h the initial

in the two- length of the sides of the cubic elements [37]. Note alsolibat

dimensional setting, also the three-dimensional restitsvs cause the initial conditions are changed as the mesh is define
larger distortion in the mesh near the coordinate origirtier ~ tNiS particular setup of the refinement study cannot be used t

VMS-PO method (Fig. 10(a)), than themMs-C method (Fig evaluate convergence rates. As in the two-dimensional, case
10(b)). Again, this is.a conse:quence of larger overheahin.g ej[he initial conditions forth_e thermodynamic variables g/pro-
rors for theVMS-PO with respect to the/MS-C method, as 1€Cted onto the nodal basis.

gpp_reciable in the comparison with the exact solution m Remark32. The Sedov test in three dimensions is much more
n Flgurg 11 Beqause .théMS'AC method was never |mplg- challenging than its two-dimensional counterpart, as it ca
mented in three dimensions, we do not present any comparisop, o easily trigger hourglass-type instabilities, for tiuada-

with such approach. We would expect, however, a trend Very,o ) reasons: On the one hand, the spherical pattern of the

similar to the two-dimensional case. flow is responsible for a higher concentration of internairey;

As in the two-dimensional case, th@1S-PO method shows  , the other hand, the space of hourglass modes is much larger
somewhat sharper shock profiles than ¥s-C method, al in three than in two dimensions. In fact, while there are 2rhou
the expense of a more pronounc_ed overshoot in the pressur@ass modes out of 8 kinematic modes for a two-dimensional
a larger internal energy overheating, a larger scatterfrtg® 3 yrilateral, there are actually 12 hourglass modes o@#of
data about the exact solution, and, particularly, largesrenin - i,omatic modes for a three dimensional hexahedron [3EeSin
the tangential velocity. Both solutions converge to thece®a-  , ~5rtesian mesh is used to represent a spherical flow, iais gu

Iutlon.as., the mesh is refined, gnd the overall numerical 8101, 1o ad that all the hourglass modes are to some extentexcite
are within the bounds of what is expected for these mesh reso-

the shock, the pressure and internal energy take the vad8s
and 12, respectively.
Similarly to what was already observed

lutions [28]. The most remarkable result is that #1S-P0 methoddoes
. . . not pass the refinement test. Using the implementation detailed
8.5. Three-dimensional Sedov test on a Cartesian octant in [34], it was only possible to run successfully the case on

The proposed version of the Sedov blast test is performethe 22 mesh. Already in the case of the#sesh, due to a
on the [01.1] x [0, 1.1] x [0, 1.1] octant, subdivided into 22 spurious hourglass pattern, two nodes of the mmslpased
10,648, 44 = 85,184, 88 = 681, 472 cubic elements. This to infinitesimal distance, driving the time step to zero, s e
refinement study is aimed at evaluating the robustness of thegent in Figure 12(a). This, in spite of the fact that, in castr
method, since, as the mesh-spacingis refined, the initedrial ~ to the two-dimensional case, even for ¥gS-PO method the
energy distribution is changed so that all the initial indren-  initial condition on the internal energy was smoothed byt firs
ergy keeps being concentrated in the element adjacenttmthe performing a nodal projection, and then re-averaging the re
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Figure 13: Three-dimensional Sedov test on a Cartesian:reshparison with the exact solution (in red) of computatiperformed on a 22mesh (left column),
44% mesh (center column), and Behesh (right column). In light blue (only on the left columhtyMS-PO method, in dark blue theMS-C method. On the left
column, from the top down: Pressure, density and internatgsn On the right column, from top down: Radial velocity tangential velocity, and artificial

viscosities. Each variable is plotted as a function of thtusr = (/X2 + 3 + 2.

sult on each of the elements of the initial mesh (see [34]). Irproblem, as the presented three-dimensional test on @Gartes
this particular test, th& MS-PO method performance should geometry has not been reported in the literature.

be taken as indicative of a typical finite element or finite dif  On the contrary, Figure 12(b) shows how easily ¥#¢S-C
ference method for shock hydrodynamics based on piece-wisfiethod passes the test. The slight distortion in the meshes d
constant thermodynamic variables and shock capturinf-arti to a small acoustic pulse produced by the artificial visgasit
cial viscosities. In fact, we also replaced the variatianalti- the initial stages of the transient, and should not be méstak
scale hourglass control in thS-P0 method with a Flanagan-  for an hourglass pattern: Extensive testing and analysiseof
Belytschko viscous hourglass control [13], and found no- subdynamic transient confirms this claim.

stantial improvement on the results. More specifically)dinge Figure 13 shows a comparison of th#1S-P0 and VMS-C
values of the Flanagan-Belytschko hourglass viscositleé@e ethods with the exact solution. We observe that the thermo-
to run the 23-element test case precluded robust computationgynamic variables are converging to the exact solutionHer t
in the case of the three-dimensional Noh test (see, for morgyis.c method, while the error in the transverse velocity does
details, [34]). This is by no means a _cr.|t|que of the Flanagannot seem to converge in the’-norm (the maximum norm).
Belytschko hourglass control [13], originally designedsta- This is thought to depend on the increased intensity of the sp

g(lllrftee ;tOIII? i?ﬁﬁzir;::isf Z?&ﬁ;ﬁﬁf:;:&%giﬁiﬁlvzsm ::; rious acoustic pulse as the mesh is refined (due to the irexteas
mass .ressures 91 are a viable choice for this cha?len in localization of initial internal energy near the origin)b§erve
&P [l 9 gthat, as the mesh is refined, the region of convergence oéthe r
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(a) Computations in [1]. (b) Computations in [22]. Right: density contours. Left: shaleformation.

Figure 14: Three-dimensional Sedov test on a Cartesian,meslits from the computations performed in [1] (Fig. 1%(ahd in [22] (Fig. 14(b)). Contour plot of
the density and mesh deformation outline.

dial velocity extends further and further from the shockaoss  tours in Figure 14(b), thefiect of the mesh distortion may be
the origin, meaning that there is convergence in a poinewisresponsible for a larger dispersion of the data (espeansr
andL'-/L?-integral sense. the density peak) in Figure 15. Analyzing more carefully the

One important point of note is the fact that the proposecdcolor scheme in Figure 14(b) (relative to the>4ll grid), it
VMS-C method shows very low radial dispersion of the datais possible to observe that the darker red color (represgnti
(particularly, pressure and density). This may be due to théigher density values) is found in the center of the computa-
fact that the mesh distortion near the origin is very moderattional domain, away from the edges aligned with the Cantesia
in computations (compare also with Figs. 14(a) and 14(b))axes. This seems to indicate that the density peaks at tie int
In summary, from the presented results, it is clear that theior of the computational domain, away from edge boundaries
VMS-C method shows exceptional robustness with respect ttn the case of th&MS-C method in Figure 12(b), instead, this
the VMS-P0O method. pattern does not appear, and the iso-surfaces at constesityde

The only sources in the literature in which the proposedstay very close to spherical. The results in Figure 15 compar
three-dimensional Sedov test was attempted are found in thetherwise well with th&/MS-C method. Considering Figure 15
work of Andersoret al. [1], in which adaptive multi-resolution and the 20-element computation, most of the data pointseclus
(AMR) techniques in combination with a traditional finitelvo at the peak value of 4, and some reach the higher valueBof 4
umefinite difference method are used, and in the very promisthese results compare well with the®2®8ement computations
ing work of Nkonga and Maire [22], where successful compu-performed with the/MS-C method in Figure 13. In particular,
tations on 28 and 4G-element meshes are performed, usingthe VMS-C method yields a lower peak of the density, proba-
a Godunov-type finite volume method. These results are sunbly due to the fact that at this resolution level, the mergibn
marized in Figures 14 and 15, to help the reader in the companodal projection of the initial condition may reduce the lpea
isons. value of the initial internal energy pulse. For finer meslires,

Although the absence of quantitative results in [1] makes istead, the density peak produced by ¥#é¢S-C method at the
difficult to precisely compare results, a few observations can bénal instant of the computation becomes considerably srarp
made. In the opinion of the authors, the AMR refineryégt  Returning to Figure 15, in the 40-element computation, mbst
refinement procedure applied in the computations in [1] mayhe data points cluster at the peak value 5, and some reach the
have a beneficialféect in filtering out hourglass modes. These value 55, in good comparison with the results for ti#1S-C
effects are however flicult to reliably control, as the AMR method on the f4element mesh in Figure 13. No results on
technique is not targeted at removing hourglpasse. The  meshes of fineness comparable with thé-8®&ment case of
density contoymesh deformation plot of Figure 14(a) shows Figure 13 are presented in [22].
still a considerable amount of distortion in the element tiea
coordinatg origin,_dge to the qnset of an hourglass mode (fog Summary
more details on this interpretation, see [34, 35]).

A similar distortion pattern is also seen in the case of the re This work documents the developments of an updated La-
sults in Figure 14(b) using the method in [22], which did notgrangian stabilized formulation for Lagrangian shock toydr
however prevent the computations from running to comphetio dynamics for materials obeying a generalized caloric or-Mie
on 20 and 4G-element meshes. Considering the density conGrilneisen equation of state. A complete presentation ef th
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o (5]
Figure 15: Three-dimensional Sedov test on a Cartesian,meslits from the [6]
computations performed in [22]. The density is plotted foesolution of 26
elements (left) and 40elements. The density is plotted as a function of the
radiusr = (/X2 + X2 + X, and all the data is collapsed on a single radial plot. [7]
(8]

variational multiscale general methodology used to dettiee
method proposed here can be found in [32], in which stability
properties are thoroughly discussed. The proposed digarit
derives from and combines recent work of the authors in the
context of stabilization of Lagrangian hydrodynamics egss  [10]
[31, 33] and strictly conservative time integration teciugs
[34, 35]. The reader can also refer to [36], in which a von Neu-ll]
mann stability analysis of the method is performed for the- sp
cific time integrator adopted in the numerical computations
Extensive numerical computations on quadrilateral and hex1Z]
ahedral elements in two and three dimensions have been pre-
sented and compared with results from previous develomnen(is]
by some the authors and with state-of-the-practice computa
tions by other research groups. In particular, a numberregth 14]
dimensional Sedov test computations showed encouraging rg
sults in terms of the robustness of the method with respect to
instabilities of hourglass type, which can be considerediras  [15]
tually absent. Additional work should be devoted to thotdyg
testing the present methodology in the case of trianguldr an
tetrahedral meshes in two and three dimensions, and compdts]
ing the results to the ones produced in [33].
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