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Abstract

A new stabilized method based on a continuous, piece-wigailiapproximation of the equations for Lagrangian shoakdvy
dynamics is presented. Numerical instabilities are cdletidoy a stabilizing operator derived using the variatiomaltiscale
analysis paradigm. The proposed approach satisfies globhakcvation and Galilean invariance properties, and Ising®n the
interpretation of the Lagrangian shock hydrodynamics ggogs.as a nonlinear system of wave propagation equations.
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1. Introduction (see [3, 19] for a detailed introduction to the subject). She
lution enrichment by fine-scale subgrid contributions |xieg

_In recent years, renewedert has been devoted to the tech- gnhanced stability without reducing accuracy, as the nietho
nical advancement of Lagrangian shock hydrodynamics algorjies on residual-based (therefore variationally caesi ap-
rithms (hydrocodesn short), spurred by the current and fore- proximations of the fine scales (see also [47]). Stabilizatip-
seeable computational challenges in terms of physical @0€l g grators are developed in the context of smooth flows, and need
m_etric c_omplexity (for a non-exhaustive list of publicat®on {5 pe complemented by appropriate discontinuity captuimg
this topic, see [1, 2, 4, 5, 8-12, 15, 16, 32-38, 44-46]). INgrators (e.g., artificial viscosities [53]), whenever dho@ve
particular, the developments in [2, 8-12, 36-38] focussed 0 yiscontinuities are expected.
improving the robustness of simulations with respect tohmes 1,4 present work stems from earlier work [43, 44], and rep-

distortion, whilé maintaining second-order accuracy isth  esents a considerable advance from many points of view. The
regions of-theflow. o ) , method leverages a variational formulation of the shock hy-
This article presents a new stabilization conceptin WHi€h t o4y namics equations in updated Lagrangian form, for thic
variational multiscale approach [20, 21, 27] is applied ® L ot integrals are computed directly in the current conéigur
grangian shock hydrodynamic flows in combination with piece ;4 (see [3] for details on this nomenclature). This stgte
wise linear, continuous finite element approximations.c8pe  ynirasts with the formulation in [44], which was posed ia th

cally, the proposed method adopts a continuous piece-lise | origina| configuration (total or pure Lagrangian approa@h.|
ear approximation of both the_rmodynamlc and kmemauc—van The proposed updated Lagrangian approach allows for a re-
ables, contrary to more traditional approaches in shock hygyction in the computational costs, as the deformationigrad
drodynamics, which rely on a piece-wise constant dis@etiz g mapping from the original to the current configuratioeslo
t!on of the thermodynamlc varlab_les. A multiscale deconpos ot need to be evaluated explicitly, but is implicitly catmed
tion of the solution into coarse (discretely represengaiiales 1, ndating the coordinates of the mesh nodes. In addition,
and fine (subgrid) scales is adopted. An approximation of the g qrithms for fast dynamics posed in the current configura-
subgrid-scale componentof the solution is used to oMb o ysyally enjoy improved discrete invariance and olyégt
bilities of acoustic type, which are typically responsitilespu- o herties relative to corresponding algorithms cast éndtfig-
rious hourglass modes in the case of quadrilateeabhedral 5| configuration. This is due to the fact that the discetin
elements, or pressure instabilities (often referred td@®ent ¢ the ynsymmetric Piola stress tensor does not alwaysiese
artificial stiffness) in the case of triangufeatrahedral elements o same invariance properties of the analytical countefgee

[3, 19, 49] and references therein, for more details).
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lization concepts in a simpler setting. In Section 4, the-gen
eral variational multiscale stabilization framework foetfully
nonlinear case is proposed. Section 5 investigates thée@ali
invariance and conservation properties of the proposeuifta-
tion, while conclusions are summarized in Section 6. Fozmxt
sive numerical computations, the reader should refer th [48
which the general approach described here is applied in Eomb
nation with a second-order predictoulti-corrector time inte-
grator. A complete von Neumann stability and accuracy analy
sis of this time integrator is presented in [47], for the &érieed,
one-dimensional Lagrangian hydrodynamics equations.

2. Equationsof Lagrangian shock hydrodynamics

The classical equations of Lagrangian shock hydrodynamics
govern the rate of change in position, momentum and energy of
a compressible body of fluid, as it deforms. K& andQ be
open sets ifR™ (whereng is the number of spatial dimensions).

Thedeformation
Figure 1: Sketch of the Lagrangian map
Q0 — Q=9¢(Q), 1)
X x=p(X,t), ¥YXeQot>0, (2)  Remarkl. Equations (5)—(8) are most commonly adopted in

shock-hydrodynamics algorithms [5], and make use of the
quasi-linear rather than the conservative form of the irdker
energy equation. The sum of the internal energy equation (8)
and the kinetic energy equation (the product of (7) by the ve-
locity vectorv) yields the equation for the conservation of total
energy.

maps the material coordina¥e representing the initial position
of an infinitesimal material particle of the body, xpthe posi-
tion of that particle in the current configuration (see Fig.(ly
is the domain occupied by the body in its initial configuratio
with boundarydQg. ¢ mapsQg to Q, the domain occupied by
the body in its current configuration, with bound@®. ¢ is

usually asmoothinvertible map, so that thgeformation gradi-  Remark2. Although (8) is not in conservative form, it can still
ent and thedeformation Jacobian determinacén be defined pe ysed to develop a globally conservative variational fdam

as tion, as shown in Section 5.2 in the general case, and [4&] for
o _ . . specific predictgmulti-corrector time integrator.
F = Vi, or inindex notation, Fix = :% = :7)(' , (3)
A A Assuming that the boundaryQ is partitioned asoQ =
J = detfF), (4)

Q9 U 9Qh, 0Q9 N oQ" = 0, displacement boundary conditions

whereV, is the gradient in the original configuration. In the are enforced on thBirichlet boundaryQ?, that is,
domainQ, the equations for the displacement update and con-

servation of mass, momentum, and energy read: Ulags = Upe(X. 1) . )

) andtraction boundary conditionare enforced on theumann

u=v, . . .
boundanpQ", by means of a physical traction vectothat is,
pJd=po, (6)
pV =p b+ Vx' o, (7) O'nl(')gh = t(X, t) . (10)
pe=pr+Vy:o+V,:-q. (8)

Equations (5)—(8), and boundary conditions (9)-(10) com-
Here,V, andV,- are the current configuration gradient and diver-Pletely define the evolution of the system, once constieutas
gence operators, ar(g indicates the material, or Lagrangian, lationships for the stress and heat fluxq are specified, to-
time derivative.u = x — X is the displacement vectgsy is  9ether with appropriate initial conditions.

the reference (initial) density, is the (current) density is the

velocity, b is the body force (e.g., gravityjr is the symmet- 2.1. Constitutive laws

ric Cauchy stress tensariis the energy source term, aads The analysis presented in what follows is specific to mate-
the heat flux. Using index notatiom;” : V,v = o dxvj, and  rials with no deformation strength. In this case, the Cauchy

Vv:io=o0:Vyv=0":Vy, sinceo is symmetric. We also stresso reduces to an isotropic tensor, dependent only on the
denote byE = e+Vv-v/2 the total energy, the sum of the internal thermodynamic pressure:

energye and the kinetic energy- v/2. E, ¢, b, r are measured
per unit mass. o = —Plogng » (11)



An equation of state of the type

p=plo,e) ,

is assumed. For example, equations of state of Mie-Gréneis
type are compatible with (12), namely

Plo.e) = fi(o) + fa(p)e ,

(12)

(13)

and apply to materials such as compressible ideal gases, CEduation (20) can be further simplified recalling that a ther

volume gases, high explosives, etc. (See [39] for moreldétai
Ideal gases satisfy (13), with = 0 andf, = (y — 1)p, to yield

Plo. €) = (v — L)pe . (14)

2.2. Structure of the Lagrangian shock hydrodynamics flows

It is important at this point to further elaborate on the stru
ture of the Lagrangian shock hydrodynamic equations, ksscau
of the important implications on the choice of stabililpati
techniques for the discrete variational formulation. Tés th
end, recall that, in general, if an equation of state of thmety
€ = €(p, p) exists, then

Oe

dply

Oe

de = do + ﬁp

(15)

Assuming, without loss of generality,= 0 andr = 0, equation

(15) can be used together with the mass conservation equatio

in differential form
p+pVev=0, (16)
to rearrange the energy equation (8):

0 = pe + pV,-v

65’ - Oe
p+p =
p apl,

:p$ p+pvx'v

=Pa—p p+ 17)

p

where, for a general compressible fIQV\E)pe|p # 0. Itis pos-

sible to further manipulate the previous result using treayn
namic identities. First note that, by standard calculusveer
tions,

Oe

(_

ap

op

I

del,

(18)

By the Gibbs identity (i.e., the combined first and seconddéw
thermodynamicsile — p/p?dp = 6dy (6 being the temperature
andn the entropy per unit mass),

P Oe

=p 19
5 pmw (19)

Combining (18) and (19) in the term multiplying the divergen
in (17) yields

p

Jde

p P P _ 6p (65 _ Oe )
g_;p (96 ap aply,
ap| de 6p Oe
=p|l=—| — — 20
p(aepap Oe o, Op p) (20)

dynamic relation of the typp = p(p, €) yields

9p Jp

dp= 6p€d o + 6epd€’ (21)
and, particularly,
op ap op| de
A L I (22)
oply, Ople  Oel, dpl,
Substituting (22) into (20) yields
p_ &’
b pr?pp_p(ap de|  dp| de )
| T\oel, dpl,  del, ap
%p €lp dpl,  O€l, dpl,
_ (%] 2| , o
e b Opl,  Opl,
_, 9
P %),
= pc2, (23)

wherecs is the isentropic speed of sound in the medium. Hence
(17) reduces to

(b+pc2Vev) .

P

de
O=p 6_p (24)
The termp apelp # 0 can be simplified in (24), and the mo-

mentum and energy equations can be combined into the mixed,
first-order system form of a nonlinear wave equatiow iand

©

0=pV+V,p, (25)

0= p+pcV,.v. (26)

Remark3. It is important to recognize the relation between
6pe|p and the Grineisen paramelgrefined as

1
Oe

1 op

p O€l,

(27)

The produci T varies only mildly with as a function of the
thermodynamic state of a fluid system, as long as the staté its
is far from phase transition [39]. In the case of an ideal gas
satisfying ay-law equation of state, it is easy to derwd” =

v — 1 = constant.



Remark4. The structure of (25)—(26) can be best appreciatedpressures). In additiotgstspaces have been introducéd; is
in a simplified case, when the small strain approximatiompis a the space of variations for the kinematic variables (coibjat
plied (i.e.,V, ~ V,), and time and space variations of density with the boundary conditions), ard, is the space of variations
and speed of sound are neglected (see also [43]). In this cader the thermodynamic variables.

the sum of the divergence of the momentum equation and the

time derivative of the energy equation yields 3.2. Variational multiscale analysis and stabilization
) The variational multiscale analysis of (30)—(31) is accom-
0=p-ciAp, (28)  plished by decomposing the exact solution state ve¥tor

, o IVI,p]T € SasY = Y"+ Y. Y' € 8" is themesh or coarse
whereA,(:) = Vi (V«()) is the Laplace operator. Taking instead gcgle solution, belonging to the discrete approximaticacep
the sum of the time derivative of the momentum equation ancth v+ <’ is the subgrid or finescale solution, the com-
the gradient of the energy equation, ponent of the solution not represented on the computational

0=V-RAV. (29) mesh. I.n view of the adopted boundary conditions, the follow

ing choice of function spaces can be made

Therefore, the pressure and each of the velocity components  gh _ q/h _ {wh e (CoQ)™ : lljh| € (P1(Qe))™
abide a wave equation, with speed of propagation of distur- 8 Qe o
bances given bys. Y =00nsQl = aQ} , (32)

Sh=Vh=fyheC%Q): ", eP1(Qd). ), (33

3. Variational multiscale analysis of the linearized problem . . L .
y P where P1(Q¢) is the space of piece-wise linear polynomials

over the elemeng, ny is the number of space dimensions, and
Consider the linearized case, as a first attempt in develogilomogeneous Dirichlet boundary conditions have been incor
ing a stabilized formulation. Interestingly, the work thed to ~ porated (strongly) into the definition of the function space
the present article was first developed in the general neatin Hence,S = S"P S (herecd does not denote an orthogo-
setting and only later restricted to the simpler linear cagmw-  nal sum decomposition), and analogousty= V" V. We
ever, with the purpose of most clearly discussing the maiasd ~ obtain

the linearized case is introduced first. Recalling thaténsimall _

. o . . : : v=V1v (34)
strain approximation the mesh is considered fixed, the discu .
sion can be limited to the momentum equation (7) and energy p=p'+p, (35)

equation (8), since the mass and displacement updateseramuc
trivial statements. As a point of note, it will be clear frorhat
follows that the variational multiscale analysis assurhasfine

scales are small with respect to the coarse scales, in sdeie in Y p(P + V) dQ - f(V* NP+ p)dQ =0, (36)
gral sense. As a consequence, this approach applies matural Ja Q

to smooth flow fields, and is less appropriate in the presehce o f hiah | o 2

o > o2 o . . V.- (V+Vv))da=0. (37
solution discontinuities. This point is of particular imence Qw (p P ApCVe (Vi )) (37)
in the nonlinear case, for which variational multiscale rapers
are based on lacally linearized approach.

so that (30)—(31), when tested a¢{! andV", respectively, re-
duce to

Equation (37) can be rearranged, using integration by pasts

follows:
3.1. Variational equations mg;wh(ph 4P +pc§ (Vx'vh)) do — f wah .(p cé\/) do
Neglecting body forces, heat fluxes, and heat sources, a . Q
assuming, without loss of generality, homogeneous Digichl % h _ _
boundary conditions for the velocity, the variational staent " Z 90, v (pcﬁ\/) e d(0Qe) =0,
of (25)—(26), can be expressed as: - (38)

Find pe S,,ve S, suchthatyy € V,, Vg € V,,
wheren, indicates the outward pointing normal with respect to

_ e _ ) the elemene. Recalling now thag" is continuous across the
0= fg v (V) a2 L Voo g pdQ, (30) interface between elements, and thahdcs are constant in the
linearized case, one can express the last term in (38) uséng t
0= f,p(erpcg v, - v) dQ, (31) following identity, often employed in discontinuous G &ier
Q formulations:
whereV, = V,, Q = Qp, andp andcs are assumed constant. Nel h{ 2
In particular,S, denotes thdrial space of admissible values Z j{;ﬂ 4 (P Cs‘/)' Ne d(0Q)
for the kinematic variables (velocities, in this case, viidund- ¢

ary conditions strongly embedded in the function space defin = f Y (pcﬁ\/) -nd©OQ) + fx//hpcﬁ [V]dE. (39)
tion), andsS, the trial space of admissible thermodynamic states aQ &
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The term W] = w™ - n~ +w" - n* is often referred to as the where Res" and Resg are operators belonging to the dual

jump operator, with the superscriptsndicating the values of spaces&;)* and (5,)", the spaces of continuous linear func-
w and n on either side of an interface between two elementdionals overS; and S, respectively. Recalling that, by defi-
(i.e., an edge or face in the interior of the domaié)denotes nition, the test functions vanish where pure Dirichlet bdany
the set of interior element interfaces. Note thatapproxima- conditions are applied, and that the discrete test andspates
tion has been made so far (the fieldlsv, p", p’ are assumedto are constituted of continuous functions (so that interelet
be knowrexactly. In order to obtain a viable stabilization strat- jumps vanish) the residual operators have the expressions:
egy, a few conditions on the terms in the coarse-scale emsati

are required. Some of the conditions have a straightforward (Res", w) = fw. (") dQ — f(vx -w)p" dQ
justification, while others are dictated by simplicity arabe of ' Q Q

implementation. _ fw'(ph\-/h +prh) do (46)
Coarse-scale conditions Q

(i) Time derivatives of the fine-scales are neglected. This h " ) S
quasi-staticapproximation is equivalent to assuming that (Res, w) = Lw(p +p ¢ (V- )) da. (47)
the fine scales adjust instantaneously to complement the
coarse scales. Some authors [14] have been arguing #ssuming (as usually reasonable) thabelongs to the space
favor of tracking in time the subgrid-scale component inL?(®) of square integrable functions, the Riesz Representation
the solution. However, this would involve the additional Theorem [6, 55] allows to identify
computational cost of storing and integrating in time the .

. : Res! = p V" + v,p" (48)
fine-scale component of the state variables. v =P «H s

(i) For smooth flows, one can exp_ect th.at the .spaﬁggsk r’; —pip A (V,- V), (49)

are composed of smooth functions (in particutzmntin-

uousfunctions). Recalling that we have already defined;hereres" andres" are now considered as elements &)

; o _ ) ‘ _ ).
the discrete spaces), S} as spaces of continuous func- |gea|ly, one would like to solve exactly the fine-scale e,
tions, we can conclude that in the case of smooth flowy,t, in practice, this is rarely possible and, for the puepo
alsoS), S are constituted of continuous functions. The giapjjizationunnecessaryin fact, simple approximateshsatz
condition based on the scaling of the residual arfiisient to provide the

fwh [V]dé =0 (40) needed stabilization mechanisms.
é

o Fine-scale representation conditions
represents a weak enforcement of the continuityof

across element interfaces. Although in many instanceV) Probably the simplest possibility is to assume that
not explicitly stated, this last condition is often imptigi

invoked in SUPG stabilized formulation for compressible V= —TERest1 , (50)
flows [17, 18, 2023, 25-27]. b
(iii) Analogously, the condition p'=-TRes, (51)
YV - nd@EQ) = 0 (41) wherer is an appropriate parameter with the dimension of
o0 time. This amounts to postulate that the dynamics of the
is weakly enforcing a vanishing fine-scale solution at the  fine scale decouple, as the fine-scale velocitg assumed
boundary of the domaif?, where boundary conditions ap- to depend only on the momentum equation resideay,
ply. This is again a fairly standard hypothesis in variagion andthe fine-scale pressipeonly on the pressure equation
multiscale formulations [20, 21, 27]. reS|duaIResg. The factor Yp in front of Rest‘ is needed

for a correct dimensional scaling @f

With the previous conditions, (36) and (39) reduce to: . L e
P (36) (39) (v) Using criteria similar to [43, 44, 46], the stabilizatipa-

fl/]h (o \-,h) do — f(Vx ) wh)(ph +p)dQ =0, (42) rameterr can be defined as
Q Q
—c & 52)
[ (o) do- [ (pv)=0. 43 oy (
Q Q
The variational multiscale approach now requires to test th ~ In practice, represents the averagiert of the Green's
momentum and energy equations on the fine-scale spaces, that function associated with the fine-scale equations [7, 20,
is, 21, 27]. For the purpose of constructing stabilization
mechanisms, it is not necessary to have a very accurate ap-
f,// (pV) dQ — f(VX )P dQ = —(Res, ¢y,  (44) proximation of the Green'’s function, and a correct scaling
Q Q is suficient. Consequently, there is some freedom in defin-
flﬁ' (p’ +y p (Y, \/)) dQ = —(ResM,y’y,  (45) ing the constant.. The choicec, = 2 (for whichz = At)
Q seemed to give the best results in the computations in



[48], where a second-order predigtoulti-corrector time  Remark?7. In the discussion to follow on the nonlinear case,
integrator was used. These findings where confirmed byt will be easy to appreciate that the variational multiscal
the von Neumann analysis of stability for such algorithmapproach and the more classical instantiations of the SUPG
[47], which reveals that, fot, = 2 and three iterations of method for compressible flows may have some substantial dif-
the predictofcorrector, the dispersion error is particularly ferences in the overall structure of the stabilizing terms.

small over the entire spectrum of discrete wave numbers.

However, values in the range/4, 3] also lead to robust Remark8. In [13], a numerical stability analysis is presented
and accurate solutions in the nonlinear case, proving thder a SUPG-stabilized method applied to the system form of a
a sharp estimate af. is not required. With dferent time- ~ general linear hyperbolic wave equation. Although the @nes
stepping procedures, alternative choices may be superiokork and the work in [13] have been developed over the years

For more details on this subject, the reader can refer té" complete independence and foffdrent purposes, there are
[47, 48]. similarities in the form of the stabilizing operators, aadéin
the linear case. Most importantly, the detailed stabilitglgisis
Remark5. Only one definition ofr is used for both the pres- in multiple dimensions included in [13] directly appliesttee
sure and velocity equations, governing the propagation ofinearized acoustic system under investigation in thegrear-
acoustic waves. Because pressure and velocity disturbamnee ticle, and lays the theoretical foundations for a rigorausgsis
always tightly coupled, using aftierent definition ofr for the  of the proposed approach in the nonlinear case.
momentum and pressure equations may have potentially nega-
tive effects on the dissipation and dispersion error characterisSummarizing, the classical stability analysis of SUPG mésh
tics of the stabilized algorithm [47]. for compressible flows [22—24, 29, 30, 50], and the recenkwor
in [13] show that the proposed variational multiscale applo
Remark6. Similar results would have been obtained if the provides stability to formulations with equal-order iisfation
standard SUPG methodology for systems of equations werr pressure and velocity. These results constitute a sthew
used in place of the multiscale analysis (see [13, 43, 441). | retical foundation for the nonlinear method which is desed
fact, it is possible to rewrite the system of equations (88))  next. It is worthwhile at this point to present the overadiist

as lized variational form of the linearized acoustic problem:
AoY + A Yy =0, 53
YA S o= [y prda- [uhpiae
whereY = [v', p|7, and Q Q
i +f(vx-¢h)r(ph+pc§(vx-vh)) dQ (58)
| plaxa O3 Q
AO - O 1 ’ (54)
L b Oszﬁh(ph+p ¢ (V- V")) dO
0 0 0 & "2 ( " h)
o 0 0 0 &y +fVXw ceT(o V' + Vip') dQ. (59)
AI - 0 0 O 63i > (55) Q
| pCi61u pCZ6a pCs O Itis clear that the terms
with &;; the Kronecker tensowsf = 1if i = j, 6;; = 0 oth- h _
erwise). The stabilization proposed in [13, 43, 44] follows QT ¢ (V)% V) dQ. (60)
methodology similar to [17, 18, 22, 23, 25, 26] and yields: h h
frcgvxlp -V, p"dQ (61)
Q

Y = —1t(AY + A Yy) = —t(Y + APA Yy) .  (56)

have a stabilizing fect on equations (58)—(59), since they are

wherer = tAq%, so that the weak forms of a divergence-type incomplete Laplacian of
the velocity and a full Laplacian of the pressure, respebtiv

1pach
,Res, } (57)  The stability analysis in [13] confirms such conjecture.

Remark9. lItis interesting to observe the terms (60)—(61) scale
The fundamental reason why these derivations match the preyith c2, which represents an acoustic-inspired kinematic vis-
viously developed multiscale analysis is due to the facttha cosity. There are therefore some similarities between the s
has been chosen as a diagonal matrix. The precise definitigijlizing terms in (58)—(59) and the so-called linear ariific
of T is somewhat arbitrary, and manyfigirent approaches to viscosity [5, 40, 54], used to control acoustic oscillatigrast
its design have been proposed [13, 17, 18, 22, 23, 25, 26, 28hock fronts. There is however one majoffelience, since the
31, 43, 44, 51, 52]. Had natbeen diagonal, a fully coupled |inear artificial viscosity approach is not variationallgnsis-
residual ansatz for’ would have been obtained. This aspecttent, and degrades the order of accuracy of the method to first
is a consequence of the connection betweand the Green’s  order. In the case of the stabilized equations (58)—(5%), th
function for the fine-scale equations [20, 21, 27]. terms (60)—(61) do not degrade the original order of acgurac



of the method to first order, since they are complemented by.2. Variational multiscale analysis and stabilization

time derivative terms to form complete, variationally cistent It is important to observe that the following analysis apgli
residuals (see also [47] for an analysis of formal order ofiac  j the case of smooth flows (smooth solutions), for which the
racy). fine scales are assumed small with respect to the coarse.scale

In particular, in the case of nonlinear systems, the vanigi

Remark10. In the computations in [48], the artificial viscosi- multiscale framework leverages lacal linearization of the
ties adopted to control oscillations at shock fronts do mok-C  equations. As in the linear case, the first step consistsvielde
tain the linear scaling [5]. Best results in numerical compu oping of a multiscale description of the solution. For thieesaf
tations were obtained using only a quadratic viscosity of vo simplicity, and without loss of generality, the heat soysire
Neumann-Richtmyer type [5, 53], indicating that the siabil r, the body forceb, and the thermal heat fluxare assumed ab-
ing term in (60)—(61) performed well in controlling numeaic  sent. The exact solution for the stafe= [uT,v",p,€,p]” € S
instabilities of acoustic nature. of the system is decomposed¥is= Y" + Y’, whereY" € S" is
themesh or coarsescale solution, and’ € S’ is thesubgrid
or fine-scale solution, witt§ = S" P S'. In the proposed spa-
tial approximationall variables (both kinematic and thermody-
namic, including pressure, density and internal energypar
o ) proximated by piece-wise linear, continuous functionsd@o
4.1. Variational equations centered degrees-of-freedom). Consequently, the tesesp

As in the linear case, the first step in the development of 4T the equations consist of piece-wise linear, continufans-
variational form for (5)—(8) is to define theal spaces for the tiONS. More precisely:
kinematic and thermodynamic variables, which charactehie
stateof the system. LeJ)S/K denote the space of admissible val- 82 - {'/’h € (Co@)™: 'Ph|ge € (P1(Qe)™,

4, Variational multiscale analysis of the nonlinear problem

ues for the kinematic variables (displacements, velagitie- ,/,h = gyo(t) on agg} , (66)
celerations), andS, the space of admissible thermodynamic h h Orr . oh N
states (densities, pressures, internal energies). Itiaaldi/, Vi :{‘/’ c(C@Q)ty |ge € (P1(Qe))™,
is the (test) space of variations (compatible with the baupnd y" =0 Onagg} , (67)
condition (9)) for the kinematic variables, afid, is the (test) " ho o
space of variations for the thermodynamic variables. The-co Sh={u"eCoQ): v lo, € P1(Q). | - (68)
plete variational problem reads: ah—sh (69)
Findp, p,e € S,, andu,v € S, such thatyy € V,, V¢ € v
Ve, where g,(t) indicates the generalized essential (Dirichlet)
boundary conditions, possibly dependent on time. For exam-
0 =f Y- (U—-V) dQg, (62) Ple,if SMis used to approximate displacements, thgn= Upc.
Q If insteadS" is used to approximate velocities, they, indi-
cates a velocity at the boundary compatible with. Hence:
0= - pJ) dQ 63
J. wteo-p9 ao. (63) v .
_ v=V+V (71)
0= [ ooy d - [ (%.9) pt0 oY
Q Q PO =Py *Po s (72)
—f l//-td(@Q)—f(//-(pb) dQ, (64) p=p"+p, (73)
0Q Q e=€e"+¢€, (74)
0= [ wind o+ [ w (pV.-vepn do p=p'+p . (75)
Qo Q

In the Lagrangian setting, the displacement and mass conser
+ fgvxw -qdQ, (65)  vation equations (5)-(6) are associated with a standingpnt

wave (with respect to the Lagrangian material coordinajes)
where the identity dQy = p dQ has been used, stating that the erning the motion of contact discontinuities. In this comte
mass of an infinitesimal particttm = po dQg does not change it is also important to observe that numerical schemes in La-
under the Lagrangian deformation map. grangian coordinates, by construction, are capable ofgaigc

capturing and tracking contact discontinuities withoudiad
Remark11. In the current formulation, traction (lm,atural) any numerical dissipation_ Consequenﬂy’ the incorpo[mjf
boundary conditions are imposed in (64) through the weakhe equations (62)—(63) is not critical in the analysis,ahigan
form, while the spaceS, incorporates the set oéssential pe restricted to equations (64) and (65). This simplified ap-
boundary conditions (9), that is, boundary conditions @feki  proach has the main advantage of producing a “minimalist sta
matic (Dirichlet) type are imposestrongly. bilization”, of easier numerical implementation. Nameen



tested over the discrete spacgsandV", (64) and (65) reduce
to

0= | ¢" (o5 +p(" +V)dQ
Qo

- fg (¥, M + pyda. (76)
0= fg 0 WMo + pp) (€N + €) dQy
s fg S EVNEN AR, (77)

where, in order to simplify the analysis, homogenous DIgth
boundary conditions are imposed for the velocity. The eperg
equation (77) can be rearranged, using integration by ,pasts
follows:

f Y (o + pp) (€N + €) dQy
Qo
+ f Y V" (P + p') d
Q
- f V" ((p" + P)V) d2
Q

- f y" (V(p" + p)) -V dQ
Q

Ney
Nl
0Qe

e=1

" (P + )V - ned(@Q) =0. (78)

Recalling thaty" is continuous across element interfaces, the

last term in (78) can be expressed as

Ne|

f x//h(ph+p')\/-ned§2:f Y pVv - ndEQ)
Qe 0Q

h ~
+sz|[p\/]|d8, (79)

where, as in the linear casey] = w™ - n” + w" - n* denotes
the jump operator applied 8, and& denotes the set of interior
element interfaces. Then (78) becomes

f Y (o + pp) (€N + €) dQy
Qo
+f¢h vV (p"+ ) dO
Q
- [ v (0" pv) do
Q
- [ (mh ) v o
Q
+f y" ph\/-nd(aQ)+j:z,bh|[ph\/]| d€=0.  (80)
0Q &

From now on, we will focus on the variational forms (76) and
(80). Analogous projections of (76) and (80) onto the findesca

test space¥’, andV’, can be considered, to generate the fine-

scale problemsNo approximatiorhas been made so far, and
the initial geometry of the computational grid, as well as th

8

displacement field are assumed to be knaxactly In order

to obtain a treatable problem, a number of conditions hagto b
enforced on the terms in the coarse-scale equations. A®in th
linear case, some of these conditions are straightforvadingrs

are dictated by simplicity and ease of implementation.

Coarse-scale conditions

(i) Fine-scale terms are considersthall with respect to
coarse-scale terms. Therefore, if necessary, products of
fine-scale terms can be neglected, being higher-order cor-
rections. Thisis, essentially, a statement of local lirezar
tion of the variational problem under consideration.

(iiy Fine-scale components of the displacemarit§.e., fine-
scale node positions and mesh geometry) are considered
negligible, with the purpose of a simpler implementation.
Although not pursued here, there is a possibility to quan-
tify these fine-scale contributions.

(i) ppis considered negligible, singg is adatumof the prob-
lem.

(iv) Asinthe linear case, time derivatives of the fine-ssalee

neglected, in favor of a quasi-static approximation.

In order to preserve global conservation propertiesene

force as a design condition that the last three integralderm

in (80) vanish. Let us review each of these conditions:

v)

f y" (V(p" + p)) -V dQ =0 (81)
Q

enforces that the projection onto the test function space of
the inner product between the pressure gradient and fine-
scale viscosity vanishes. An equivalent interpretation is
that, in a weak sense, the fine-scale component of the ve-
locity does not produce any internal work. This condition
can also be understood as the constraintda be a zero-
energy, hourglass mode [3, 5]. The condition

f y" p"Vv - nd@EQ) =0 (82)
oQ

weakly enforces that the fine-scale velocity does not pro-
duce any work at the boundaéf2 of the domain. This
condition is equivalent to imposing that the fine-scale ve-
locity vanishes at the boundaf{2, and, as already men-
tioned in Section 3.2, is a standard (often implicit) hypoth
esis in variational multiscale formulations [20, 21, 27} F
nally, the condition

f y"I[p"v]dE=0 (83)
&

weakly enforces that the surface wai'k/ - n, produced by

the interaction of the fine-scale velocity and coarse-scale
pressure, is continuous across element interfaces. In the
case of a smooth, sincep” andV" are continuous, this
condition can also be justified by observing tifat v—v"

must also be continuous. Notice that, although often not
explicitly stated, (83) is implicitly invoked in most SUPG
stabilized formulations for compressible flows.



With the previous conditions, (76) and (78) reduce to: where, for pure Dirichlet boundary condition&Res",-) e
(S)* and(Resh,-) € (8;)" are defined by pushing forward to
l/,h . (pg\-p) dQy — f Vx-t//h(ph +p)dQ=0, (84) the current configuration and integrating by parts:
Qo Q
YP(onE") dOdo + f y" VAP + p)de (Resl,w) = fg w- (p"" + v,p") daa, (92)
Qo Q
- f vy (p'v)de=0. (85) (Res!,w) = f w(p"e" + (V, - v)p") dea. (93)
Q Q

Remark12. Equations (84)—(85) present striking similarities As in the linear case, by means of the Riesz Representation
with equations (42)—(43), once the integrals of the timévder Theorem, it is possible to identify the residual operatoith w

tives are pushed forward to the current configuration: the following members of the spaté(Q)
[ @ da- [ v@paa-o. (o) Res) = p'V + V.p", (94)
Q Q h - AN
Res! = p"e + (V,- v")p" . (95)

fwh (0" + p" v -V") d + f y"p V" dQ
Q Q We now need to make further assumptions about the subgrid

- f AR (ph\/) dQa =0, (87) dynamics, to obtain a treatable fine-scale problem. Thedund
Q mental idea is to explore a simple solutiansatz inspired by
where, in particular, the results already obtained in the linear wave propagatsa.

Fine-scale conditions
P+ PV = o O (B + " (€D (Ve V) . (88)
(vi) Recalling the structure of the momentum equation (25),
Therefore, the variational multiscale stabilization & tionlin- we can assume the following structure for the fine-scale
ear case retains part of the structure of the linearized ddse velocity:
observation is important in designing appropriate appnaxi
tions top’ andv’. L (€2 e

V= apl,

Resh , (96)

Remark13. The term

wherer is defined as in (52). This produces the stabilizing
flﬁh p VeV dQ (89) term
Q

is not present in the linearized case, and is of fundamemtal i PV =
portance in preserving global conservation of total enengy

the nonlinear case. It is also important to notice that thimt

would not appear if a standard SUPG approach were appliéHi) Recalling the structure of the energy equation (26§ w
Details on the global conservation properties of the pregos have thaRes! = p 6pe| Res with

stabilization approach are presented in Section 5.2.

(Cs)2 V" - Res! (97)

- . . Resp = p"+p"(c))? V.-V (98)
The variational multiscale approach now requires to test th

momentum and energy equations on the fine-scale spHftes

. It was shown in [46] that the expression f@esg can also
andV}, thatis,

be derived by considering isentropic processes in perfect
materials (materials free from internal dissipation mecha

f W - (05 + pp)V dQo + f ¥ - (ppv") dQy nisms). It was also shown in [45, 46] tHRes, measures
Qo Qo the productionof entropy due to the numerical discretiza-
_ f(V* )P dQ = —(Res", '), tion. In regions of smooth ﬂOV\ReSB should vanish, but
Q ' because of numerical instabilitiesymerical entropycan
(90) be generated. At this point, it becomes natural to use the
Vo h o e ., -h pressure residual to build an approximation to the fine-
% ¥'(po + po)€ Ao + % ¥'poe” dlo scale pressure as follows:
v [ v @0 evp o = —rRes] (99)
Q
+ f W (V- V)p"dQ = —(Res, y'y , It was shown in [46] that the same approximation can be
Q obtained by taking the ffierencep’ = p— p" and lineariz-

(91) ing the equation of state = p(p, €) aboutp".



(viii) Because the system of equations at hand has the steict _ h O h
of a non-linear wave equation, it makes sense to use the B Qp ap
same parameterin both the momentum and energy equa-

(" (" + p"(cD)? V,v")) d +

tions (see also [47] for more details on this interpretation f (T(CS)Z V" (" + V,p") dQ +

from the point view of the von Neumann analysis of sta-

bility). f v vx-\)1 o (B + p"(ED? V) der. (103)
Q

Remark14. In [46], the variational multiscale approach was It is easy to appreciate that (102) is an almost identicah{no
used to stabilize formulations with piece-wise constaetriio-  linear) statement of (58). The first two terms in equatior8{10
dynamic variables, enriching the discrete pressure by a finéire almost identical to the terms in (59), with the exceptiat
scale pressure defined as in (99). In the present approach, weey are scaled by" 6pe| As already mentioned, the last term
also add the contribution of the fine-scale veloeitjo stabilize  jn equation (103) is not present in (59), and is importantin e
the energy equation. suring conservation of total energy of the overall formiolat

Remark17. Recalling that for an ideal gas
Remark15. By definition, the terms’ and p’ vanish at pure "9 ! ¢

contagt discontinuitigs, where the pressure and velonitgan- o 6pe|h - 1/(y-1), (104)
stant in space and time, and perfectly matched (equal) sicros L

the contact interface. Therefore, interpreting the t@fivi as  the connection between (103) and its linear counterpajti¢59
a heat flux term would betterly incorrect This term, instead, even more stringent.

represents the work produced by the interaction between the

fine-scale velocity and the coarse-scale pressure. Remark18. Stabilization is provided by the term

hy2 h h
Remark16. When shock waves are present in the material, the fQT (c)p (VX"// )( VX'Vh) da, (105)
analysis just presented does not apply. From a physicat poin (106)
of view, a shock wave is an infinitely thin layer in which the
flow does not behave as a perfect material, due to internal dign the momentum equation (102), and by the terms
sipation mechanisms. At the numerical level, these irstbr

h
mechanisms are introduced by shock-capturing operatongin fr(cg)z o %€ (Vxx//h . prh) dQ, (107)
form of artificial viscosities, which smear the discontityaver apl,
a few cells of the computational grid. LT(C,;)Z . (VX-Vh)Z da. (108)
Itis now interesting to summarize the overall stabilizedrfa- in the energy equation (103) As in the linear wave propaga-
lation obtained. Namely, (84)—(85) become: tion case, these stabilizing terms are scaled by the aceusti
type kinematic viscosity(cl)?. Analogous to the linear case,
yh- (pg\-/h) dQo — f V4" p do since the_stabiliz_ed formulation is residual-base_d anttian-
Q ally consistent, it does not produce a degradation of therord

of accuracy [47].
+fVX-(//hT(ph+ph(Cg)2Vx-Vh) dQ=0, (100) uracy (471
Q

Remark19. As already mentioned atthe end of Section 3.2, the

,ph(pg'eh) dQo + f Y" V" P dQ valuec, = 2 (for whicht = At) seems to give the best results
Q in the computations in [48] for the nonlinear case. The von

de
h

+ Lp % this choice corresponds to very low dispersion error in e |

P . . . . .

earized version of the predicfanulti-corrector algorithm used

Neumann analysis of stability documented in [47] shows that
+ f YV (B4 p"()? VV) d2 =0, (101) in[48].
Q

7(cl)? V" (o™ + V,p") dQ

Pushing forward some of the integrals to the current configuS. Invariance and conservation properties
ration, recallingRes!! = p 6pe| Res and collecting terms
yields:

5.1. Galilean Invariance
It is easy to verify that the proposed stabilization apphoac
satisfies Galilean invariance properties, since the vigl@ap-
0= f Y- (") dQ - f vy p dQ + pears in (100)—(101) always infiérentiated form with respect
Q Q to space or time. Galilean invariance properties were recog
f vyt (ph + ph(ch)? VXV“) dQ . (102)  hized as importantin [41-43] in the specific case of Lagramgi
Q and arbitrary Lagrangian-Eulerian (ALE) computations.

10



5.2. Global conservation
It is not very dificult to realize that the proposed algorithm

6. Summary

conserves global mass (see [48] for the case of a specific time This work documents the development of a theoretical frame-

integrator), and momentum. In particular, global consgowma
of momentum in theth direction is obtained by assuming ho-

work for updated Lagrangian stabilized formulations of La-
grangian shock hydrodynamics. The analysis apply to nadseri

mogenous Neumann (no traction) boundary conditions on thebeying a generalized caloric (e.g., Mie-Grineisen) &qoa
pressure, and testing the momentum equation (100) againgt state. The presentation of the main concepts has been per-

x//h = g, the unit vector of the Cartesian basis in ilie di-
rection. In this case, observing tHat- = 0 we obtain:

d (. h _ (oD _
fga (pvh)dQ—Loa (oM dQy = 0.

dt
It is also not very diicult to verify that the system (100)—(101)
satisfies conservation properties for the global total gyneln
[48], this result is proved for a specific predigiowlti-corrector
time integrator used in nonlinear computations. In thigisac
a general statement of broader applicability is proved.hm t
presentation of the key derivations, there is no need to e
cific expressions for the fine scale terms. The stabilizecequ
tions of momentum and energy in the case of pure homog
nous Neumann (traction) boundary conditions for the pmessu
are considered once more. Aside from th&eatent function
spaces on which these equations are defined, they lookddénti
to equations (84)—(85), and are shown below for convenience

(109)

o (ol d - f V(o4 p)dR =0, (110)
o) Q

WPl dedo + f WA+ ) d
IoN Q

—fwh-(ph\/) do=0. (111)
Q

formed first in the simpler linearized system of acousticaequ
tions, and then generalized to the full nonlinear systemasf L
grangian shock hydrodynamics equations. The proposed sta-
bilization approach preserves global conservation andeaal
invariance properties in the nonlinear case. The extensine
putations in [48] show the promise of the method, also in com-
parison with previous work done by the author and collabora-
tors on the subject [43, 44]. The reader can also refer tq [A7]
which a von Neumann stability analysis of the method is per-
formed for the specific time integrator adopted in the nuoaéri
computations in [48].

e-
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tion of the kinetic energy. For the same reason, it is alse pos

sible to choose/" = 1 over the entire computational domain,
and in this cas&y" = 0. Using the push-forward to the cur-
rent configuration and the identipy dQy = p dQ, it is easy to
derive:

d

dt

L. _ [ v+ o
sz V-V dO LVM(p +p)dQ,

Efph eth:—fVX-vh(ph+p’)dQ. (113)

(112)

Summing equations (112)—(113), the right-hand sides d¢ance 4]

yielding
d h 1 h _

which is a statement of conservation of global total eneqgy f
the proposed stabilized approach.

(114)

Remark20. The presence of the term involving-v'p’ in the
energy equation (111) is crucial in obtaining the candeltedf
terms which makes possible global conservation.
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