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Abstract

A new stabilized method based on a continuous, piece-wise linear approximation of the equations for Lagrangian shock hydro-
dynamics is presented. Numerical instabilities are controlled by a stabilizing operator derived using the variational multiscale
analysis paradigm. The proposed approach satisfies global conservation and Galilean invariance properties, and hinges upon the
interpretation of the Lagrangian shock hydrodynamics equations as a nonlinear system of wave propagation equations.
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1. Introduction

In recent years, renewed effort has been devoted to the tech-
nical advancement of Lagrangian shock hydrodynamics algo-
rithms (hydrocodesin short), spurred by the current and fore-
seeable computational challenges in terms of physical and geo-
metric complexity (for a non-exhaustive list of publications on
this topic, see [1, 2, 4, 5, 8–12, 15, 16, 32–38, 44–46]). In
particular, the developments in [2, 8–12, 36–38] focussed on
improving the robustness of simulations with respect to mesh
distortion, while maintaining second-order accuracy in smooth
regions of the flow.

This article presents a new stabilization concept in which the
variational multiscale approach [20, 21, 27] is applied to La-
grangian shock hydrodynamic flows in combination with piece-
wise linear, continuous finite element approximations. Specifi-
cally, the proposed method adopts a continuous piece-wise lin-
ear approximation of both thermodynamic and kinematic vari-
ables, contrary to more traditional approaches in shock hy-
drodynamics, which rely on a piece-wise constant discretiza-
tion of the thermodynamic variables. A multiscale decomposi-
tion of the solution into coarse (discretely representable) scales
and fine (subgrid) scales is adopted. An approximation of the
subgrid-scale component of the solution is used to control insta-
bilities of acoustic type, which are typically responsiblefor spu-
rious hourglass modes in the case of quadrilateral/hexahedral
elements, or pressure instabilities (often referred to as element
artificial stiffness) in the case of triangular/tetrahedral elements
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(see [3, 19] for a detailed introduction to the subject). Theso-
lution enrichment by fine-scale subgrid contributions provides
enhanced stability without reducing accuracy, as the method
relies on residual-based (therefore variationally consistent) ap-
proximations of the fine scales (see also [47]). Stabilization op-
erators are developed in the context of smooth flows, and need
to be complemented by appropriate discontinuity capturingop-
erators (e.g., artificial viscosities [53]), whenever shock wave
discontinuities are expected.

The present work stems from earlier work [43, 44], and rep-
resents a considerable advance from many points of view. The
method leverages a variational formulation of the shock hy-
drodynamics equations in updated Lagrangian form, for which
most integrals are computed directly in the current configura-
tion (see [3] for details on this nomenclature). This strategy
contrasts with the formulation in [44], which was posed in the
original configuration (total or pure Lagrangian approach [3]).
The proposed updated Lagrangian approach allows for a re-
duction in the computational costs, as the deformation gradi-
ent mapping from the original to the current configuration does
not need to be evaluated explicitly, but is implicitly calculated
by updating the coordinates of the mesh nodes. In addition,
algorithms for fast dynamics posed in the current configura-
tion usually enjoy improved discrete invariance and objectivity
properties relative to corresponding algorithms cast in the orig-
inal configuration. This is due to the fact that the discretization
of the unsymmetric Piola stress tensor does not always preserve
the same invariance properties of the analytical counterpart (see
[3, 19, 49] and references therein, for more details).

The rest of the exposition is organized as follows: Section 2
is devoted to presenting the equations of Lagrangian hydrody-
namics and highlighting their structure as a nonlinear (mixed)
system for acoustic wave propagation. In Section 3, the varia-
tional multiscale analysis is applied to a simplified linearprob-
lem, to make the reader familiar with the fundamental stabi-
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lization concepts in a simpler setting. In Section 4, the gen-
eral variational multiscale stabilization framework for the fully
nonlinear case is proposed. Section 5 investigates the Galilean
invariance and conservation properties of the proposed formula-
tion, while conclusions are summarized in Section 6. For exten-
sive numerical computations, the reader should refer to [48], in
which the general approach described here is applied in combi-
nation with a second-order predictor/multi-corrector time inte-
grator. A complete von Neumann stability and accuracy analy-
sis of this time integrator is presented in [47], for the linearized,
one-dimensional Lagrangian hydrodynamics equations.

2. Equations of Lagrangian shock hydrodynamics

The classical equations of Lagrangian shock hydrodynamics
govern the rate of change in position, momentum and energy of
a compressible body of fluid, as it deforms. LetΩ0 andΩ be
open sets inRnd (wherend is the number of spatial dimensions).
Thedeformation

ϕ : Ω0→ Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinateX, representing the initial position
of an infinitesimal material particle of the body, tox, the posi-
tion of that particle in the current configuration (see Fig. 1). Ω0

is the domain occupied by the body in its initial configuration,
with boundary∂Ω0. ϕ mapsΩ0 to Ω, the domain occupied by
the body in its current configuration, with boundary∂Ω. ϕ is
usually asmooth, invertible map, so that thedeformation gradi-
ent, and thedeformation Jacobian determinantcan be defined
as

F = ∇Xϕ , or, in index notation, FiA =
∂ϕi

∂XA
=
∂xi

∂XA
, (3)

J = det(F) , (4)

where∇X is the gradient in the original configuration. In the
domainΩ, the equations for the displacement update and con-
servation of mass, momentum, and energy read:

u̇ = v , (5)

ρJ = ρ0 , (6)

ρ v̇ = ρ b + ∇x · σ , (7)

ρǫ̇ = ρ r + ∇xv : σ + ∇x· q . (8)

Here,∇x and∇x· are the current configuration gradient and diver-
gence operators, anḋ(·) indicates the material, or Lagrangian,
time derivative. u = x − X is the displacement vector,ρ0 is
the reference (initial) density,ρ is the (current) density,v is the
velocity, b is the body force (e.g., gravity),σ is the symmet-
ric Cauchy stress tensor,r is the energy source term, andq is
the heat flux. Using index notation,σT : ∇xv = σ ji ∂xiv j , and
∇xv : σ = σ : ∇xv = σT : ∇xv, sinceσ is symmetric. We also
denote byE = ǫ+v ·v/2 the total energy, the sum of the internal
energyǫ and the kinetic energyv · v/2. E, ǫ, b, r are measured
per unit mass.

Ω0

Ω

ϕ

X

x

Figure 1: Sketch of the Lagrangian mapϕ.

Remark1. Equations (5)–(8) are most commonly adopted in
shock-hydrodynamics algorithms [5], and make use of the
quasi-linear rather than the conservative form of the internal
energy equation. The sum of the internal energy equation (8)
and the kinetic energy equation (the product of (7) by the ve-
locity vectorv) yields the equation for the conservation of total
energy.

Remark2. Although (8) is not in conservative form, it can still
be used to develop a globally conservative variational formula-
tion, as shown in Section 5.2 in the general case, and [48] fora
specific predictor/multi-corrector time integrator.

Assuming that the boundary∂Ω is partitioned as∂Ω =

∂Ωg ∪ ∂Ωh, ∂Ωg∩ ∂Ωh = ∅, displacement boundary conditions
are enforced on theDirichlet boundary∂Ωg, that is,

u|∂Ωg = ubc(x, t) , (9)

andtraction boundary conditionsare enforced on theNeumann
boundary∂Ωh, by means of a physical traction vectort, that is,

σn|∂Ωh = t(x, t) . (10)

Equations (5)–(8), and boundary conditions (9)-(10) com-
pletely define the evolution of the system, once constitutive re-
lationships for the stressσ and heat fluxq are specified, to-
gether with appropriate initial conditions.

2.1. Constitutive laws

The analysis presented in what follows is specific to mate-
rials with no deformation strength. In this case, the Cauchy
stressσ reduces to an isotropic tensor, dependent only on the
thermodynamic pressure:

σ = −pInd×nd , (11)
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An equation of state of the type

p = p̂(ρ, ǫ) , (12)

is assumed. For example, equations of state of Mie-Grüneisen
type are compatible with (12), namely

p̂(ρ, ǫ) = f1(ρ) + f2(ρ)ǫ , (13)

and apply to materials such as compressible ideal gases, co-
volume gases, high explosives, etc. (See [39] for more details.)
Ideal gases satisfy (13), withf1 = 0 and f2 = (γ − 1)ρ, to yield

p̂(ρ, ǫ) = (γ − 1)ρǫ . (14)

2.2. Structure of the Lagrangian shock hydrodynamics flows

It is important at this point to further elaborate on the struc-
ture of the Lagrangian shock hydrodynamic equations, because
of the important implications on the choice of stabililzation
techniques for the discrete variational formulation. To this
end, recall that, in general, if an equation of state of the type
ǫ = ǫ̂(ρ, p) exists, then

dǫ =
∂ǫ

∂ρ

∣

∣

∣

∣

∣

p
dρ +

∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

dp . (15)

Assuming, without loss of generality,q = 0 andr = 0, equation
(15) can be used together with the mass conservation equation
in differential form

ρ̇ + ρ∇x ·v = 0 , (16)

to rearrange the energy equation (8):

0 = ρǫ̇ + p∇x ·v

= ρ
∂ǫ

∂ρ

∣

∣

∣

∣

∣

p
ρ̇ + ρ

∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

ṗ+ p∇x·v

= ρ
∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

























ṗ+

p
ρ
− ρ ∂ǫ

∂ρ

∣

∣

∣

∣

p

∂ǫ
∂p

∣

∣

∣

∣

ρ

∇x·v

























, (17)

where, for a general compressible flow,ρ ∂pǫ
∣

∣

∣

ρ
, 0. It is pos-

sible to further manipulate the previous result using thermody-
namic identities. First note that, by standard calculus deriva-
tions,

(

∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

)−1

=
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

. (18)

By the Gibbs identity (i.e., the combined first and second lawof
thermodynamics)dǫ − p/ρ2dρ = θdη (θ being the temperature
andη the entropy per unit mass),

p
ρ
= ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

. (19)

Combining (18) and (19) in the term multiplying the divergence
in (17) yields

p
ρ
− ρ ∂ǫ

∂ρ

∣

∣

∣

∣

p

∂ǫ
∂p

∣

∣

∣

∣

ρ

= ρ
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

(

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

−
∂ǫ

∂ρ

∣

∣

∣

∣

∣

p

)

= ρ

(

∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

−
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

p

)

(20)

Equation (20) can be further simplified recalling that a thermo-
dynamic relation of the typep = p̂(ρ, ǫ) yields

dp=
∂p
∂ρ

∣

∣

∣

∣

∣

ǫ

dρ +
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

dǫ , (21)

and, particularly,

0 =
∂p
∂ρ

∣

∣

∣

∣

∣

p
=
∂p
∂ρ

∣

∣

∣

∣

∣

ǫ

+
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

p
. (22)

Substituting (22) into (20) yields

p
ρ
− ρ ∂ǫ

∂ρ

∣

∣

∣

∣

p

∂ǫ
∂p

∣

∣

∣

∣

ρ

= ρ

(

∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

−
∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

p

)

= ρ

(

∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

+
∂p
∂ρ

∣

∣

∣

∣

∣

ǫ

)

= ρ
∂p
∂ρ

∣

∣

∣

∣

∣

η

= ρc2
s , (23)

wherecs is the isentropic speed of sound in the medium. Hence
(17) reduces to

0 = ρ
∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

(

ṗ+ ρc2
s∇x·v

)

. (24)

The termρ ∂pǫ
∣

∣

∣

ρ
, 0 can be simplified in (24), and the mo-

mentum and energy equations can be combined into the mixed,
first-order system form of a nonlinear wave equation inv and
p:

0 = ρv̇ + ∇xp , (25)

0 = ṗ+ ρc2
s∇x ·v . (26)

Remark3. It is important to recognize the relation between
∂pǫ

∣

∣

∣

ρ
and the Grüneisen parameterΓ, defined as

Γ =
1

ρ
∂ǫ

∂p

∣

∣

∣

∣

∣

ρ

=
1
ρ

∂p
∂ǫ

∣

∣

∣

∣

∣

ρ

. (27)

The productρ Γ varies only mildly with as a function of the
thermodynamic state of a fluid system, as long as the state itself
is far from phase transition [39]. In the case of an ideal gas
satisfying aγ-law equation of state, it is easy to deriveρ Γ =
γ − 1 = constant.
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Remark4. The structure of (25)–(26) can be best appreciated
in a simplified case, when the small strain approximation is ap-
plied (i.e.,∇x ≈ ∇X), and time and space variations of density
and speed of sound are neglected (see also [43]). In this case,
the sum of the divergence of the momentum equation and the
time derivative of the energy equation yields

0 = p̈− c2
s∆X p , (28)

where∆X(·) = ∇X· (∇X(·)) is the Laplace operator. Taking instead
the sum of the time derivative of the momentum equation and
the gradient of the energy equation,

0 = v̈ − c2
s∆Xv . (29)

Therefore, the pressure and each of the velocity components
abide a wave equation, with speed of propagation of distur-
bances given bycs.

3. Variational multiscale analysis of the linearized problem

Consider the linearized case, as a first attempt in develop-
ing a stabilized formulation. Interestingly, the work thatled to
the present article was first developed in the general nonlinear
setting and only later restricted to the simpler linear case. How-
ever, with the purpose of most clearly discussing the main ideas,
the linearized case is introduced first. Recalling that in the small
strain approximation the mesh is considered fixed, the discus-
sion can be limited to the momentum equation (7) and energy
equation (8), since the mass and displacement updates reduce to
trivial statements. As a point of note, it will be clear from what
follows that the variational multiscale analysis assumes that fine
scales are small with respect to the coarse scales, in some inte-
gral sense. As a consequence, this approach applies naturally
to smooth flow fields, and is less appropriate in the presence of
solution discontinuities. This point is of particular importance
in the nonlinear case, for which variational multiscale operators
are based on alocally linearized approach.

3.1. Variational equations

Neglecting body forces, heat fluxes, and heat sources, and
assuming, without loss of generality, homogeneous Dirichlet
boundary conditions for the velocity, the variational statement
of (25)–(26), can be expressed as:

Find p ∈ Sγ, v ∈ Sκ, such that,∀ψ ∈ Vγ, ∀ψ ∈ Vκ,

0 =
∫

Ω

ψ · (ρv̇) dΩ −
∫

Ω

∇x · ψ pdΩ , (30)

0 =
∫

Ω

ψ
(

ṗ+ ρc2
s ∇x · v

)

dΩ , (31)

where∇x = ∇X, Ω = Ω0, andρ andcs are assumed constant.
In particular,Sκ denotes thetrial space of admissible values
for the kinematic variables (velocities, in this case, withbound-
ary conditions strongly embedded in the function space defini-
tion), andSγ the trial space of admissible thermodynamic states

(pressures). In addition,testspaces have been introduced:Vκ is
the space of variations for the kinematic variables (compatible
with the boundary conditions), andVγ is the space of variations
for the thermodynamic variables.

3.2. Variational multiscale analysis and stabilization
The variational multiscale analysis of (30)–(31) is accom-

plished by decomposing the exact solution state vectorY =
[vT , p]T ∈ S asY = Yh + Y′. Yh ∈ Sh is themesh- or coarse-
scale solution, belonging to the discrete approximation space
Sh. Y′ ∈ S′ is the subgrid- or fine-scale solution, the com-
ponent of the solution not represented on the computational
mesh. In view of the adopted boundary conditions, the follow-
ing choice of function spaces can be made

Sh
κ = V

h
κ =

{

ψh ∈ (C0(Ω))nd : ψh
∣

∣

∣

Ωe
∈ (P1(Ωe))nd,

ψh = 0 on∂Ωg = ∂Ω
}

, (32)

Sh
γ = V

h
γ =

{

ψh ∈ C0(Ω) : ψh
∣

∣

∣

Ωe
∈ P1(Ωe),

}

, (33)

whereP1(Ωe) is the space of piece-wise linear polynomials
over the elemente, nd is the number of space dimensions, and
homogeneous Dirichlet boundary conditions have been incor-
porated (strongly) into the definition of the function spaces.
Hence,S = Sh

⊕

S′ (here
⊕

does not denote an orthogo-
nal sum decomposition), and analogously,V = Vh

⊕

V′. We
obtain

v = vh + v′ , (34)

p = ph + p′ , (35)

so that (30)–(31), when tested onVh
κ andVh

γ, respectively, re-
duce to

∫

Ω

ψh · ρ(v̇h + v̇′) dΩ −
∫

Ω

(∇x · ψ
h)(ph + p′) dΩ = 0 , (36)

∫

Ω

ψh
(

ṗh + ṗ′ + ρ c2
s(∇x · (vh + v′)

)

dΩ = 0 . (37)

Equation (37) can be rearranged, using integration by parts, as
follows:
∫

Ω

ψh
(

ṗh + ṗ′ + ρ c2
s (∇x · vh)

)

dΩ −
∫

Ω

∇xψ
h ·

(

ρ c2
s v′

)

dΩ

+

nel
∑

e=1

∫

∂Ωe

ψh
(

ρ c2
s v′

)

· ne d(∂Ωe) = 0 ,

(38)

wherene indicates the outward pointing normal with respect to
the elemente. Recalling now thatψh is continuous across the
interface between elements, and thatρ andcs are constant in the
linearized case, one can express the last term in (38) using the
following identity, often employed in discontinuous Galerkin
formulations:

nel
∑

e=1

∫

∂Ωe

ψh
(

ρ c2
s v′

)

· ne d(∂Ωe)

=

∫

∂Ω

ψh
(

ρ c2
s v′

)

· n d(∂Ω) +
∫

Ẽ

ψh ρ c2
s [[v′]] dẼ . (39)
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The term [[w]] = w− · n− + w+ · n+ is often referred to as the
jump operator, with the superscripts± indicating the values of
w and n on either side of an interface between two elements
(i.e., an edge or face in the interior of the domain).Ẽ denotes
the set of interior element interfaces. Note thatno approxima-
tion has been made so far (the fieldsvh, v′, ph, p′ are assumed to
be knownexactly). In order to obtain a viable stabilization strat-
egy, a few conditions on the terms in the coarse-scale equations
are required. Some of the conditions have a straightforward
justification, while others are dictated by simplicity and ease of
implementation.

Coarse-scale conditions

(i) Time derivatives of the fine-scales are neglected. This
quasi-staticapproximation is equivalent to assuming that
the fine scales adjust instantaneously to complement the
coarse scales. Some authors [14] have been arguing in
favor of tracking in time the subgrid-scale component in
the solution. However, this would involve the additional
computational cost of storing and integrating in time the
fine-scale component of the state variables.

(ii) For smooth flows, one can expect that the spacesSγ,Sκ
are composed of smooth functions (in particular,contin-
uousfunctions). Recalling that we have already defined
the discrete spacesSh

γ,S
h
κ as spaces of continuous func-

tions, we can conclude that in the case of smooth flow,
alsoS′γ,S

′
κ are constituted of continuous functions. The

condition
∫

Ẽ

ψh [[v′]] dẼ = 0 (40)

represents a weak enforcement of the continuity ofv′

across element interfaces. Although in many instances
not explicitly stated, this last condition is often implicitly
invoked in SUPG stabilized formulation for compressible
flows [17, 18, 20–23, 25–27].

(iii) Analogously, the condition
∫

∂Ω

ψhv′ · n d(∂Ω) = 0 (41)

is weakly enforcing a vanishing fine-scale solution at the
boundary of the domainΩ, where boundary conditions ap-
ply. This is again a fairly standard hypothesis in variational
multiscale formulations [20, 21, 27].

With the previous conditions, (36) and (39) reduce to:
∫

Ω

ψh · (ρ v̇h) dΩ −
∫

Ω

(∇x · ψ
h)(ph + p′) dΩ = 0 , (42)

∫

Ω

ψh
(

ṗh + ρ c2
s (∇x· vh)

)

dΩ −
∫

Ω

∇xψ
h ·

(

ρ c2
s v′

)

= 0 . (43)

The variational multiscale approach now requires to test the
momentum and energy equations on the fine-scale spaces, that
is,

∫

Ω

ψ′ · (ρv̇′) dΩ −
∫

Ω

(∇x · ψ
′)p′ dΩ = −〈Resh

v ,ψ
′〉 , (44)

∫

Ω

ψ′
(

ṗ′ + ψ′ ρ c2
s (∇x · v′)

)

dΩ = −〈Resh
ǫ , ψ

′〉 , (45)

where Resh
v and Resh

p are operators belonging to the dual
spaces (S′κ)

∗ and (S′γ)
∗, the spaces of continuous linear func-

tionals overS′κ andS′γ, respectively. Recalling that, by defi-
nition, the test functions vanish where pure Dirichlet boundary
conditions are applied, and that the discrete test and trialspaces
are constituted of continuous functions (so that inter-element
jumps vanish) the residual operators have the expressions:

〈Resh
v ,w〉 =

∫

Ω

w · (ρhv̇h) dΩ −
∫

Ω

(∇x · w)ph dΩ

=

∫

Ω

w ·
(

ρhv̇h + ∇xp
h
)

dΩ , (46)

〈Resh
ǫ ,w〉 =

∫

Ω

w
(

ṗh + ρ c2
s (∇x · vh)

)

dΩ . (47)

Assuming (as usually reasonable) thatw belongs to the space
L2(Ω) of square integrable functions, the Riesz Representation
Theorem [6, 55] allows to identify

Resh
v = ρ v̇h + ∇xp

h , (48)

Resh
p = ṗh + ρ c2

s (∇x · vh) , (49)

whereResh
v andResh

ǫ are now considered as elements ofL2(Ω).
Ideally, one would like to solve exactly the fine-scale equations,
but, in practice, this is rarely possible and, for the purpose of
stabilization,unnecessary. In fact, simple approximatedansatz
based on the scaling of the residual are sufficient to provide the
needed stabilization mechanisms.

Fine-scale representation conditions

(iv) Probably the simplest possibility is to assume that

v′ = −τ
1
ρ

Resh
v , (50)

p′ = −τ Resh
p , (51)

whereτ is an appropriate parameter with the dimension of
time. This amounts to postulate that the dynamics of the
fine scale decouple, as the fine-scale velocityv′ is assumed
to depend only on the momentum equation residualResh

v ,
and the fine-scale pressurep′ only on the pressure equation
residualResh

p. The factor 1/ρ in front of Resh
v is needed

for a correct dimensional scaling ofv′.
(v) Using criteria similar to [43, 44, 46], the stabilization pa-

rameterτ can be defined as

τ = cτ
∆t
2
. (52)

In practice,τ represents the average effect of the Green’s
function associated with the fine-scale equations [7, 20,
21, 27]. For the purpose of constructing stabilization
mechanisms, it is not necessary to have a very accurate ap-
proximation of the Green’s function, and a correct scaling
is sufficient. Consequently, there is some freedom in defin-
ing the constantcτ. The choicecτ = 2 (for whichτ = ∆t)
seemed to give the best results in the computations in
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[48], where a second-order predictor/multi-corrector time
integrator was used. These findings where confirmed by
the von Neumann analysis of stability for such algorithm
[47], which reveals that, forcτ = 2 and three iterations of
the predictor/corrector, the dispersion error is particularly
small over the entire spectrum of discrete wave numbers.
However, values in the range [1/2, 3] also lead to robust
and accurate solutions in the nonlinear case, proving that
a sharp estimate ofcτ is not required. With different time-
stepping procedures, alternative choices may be superior.
For more details on this subject, the reader can refer to
[47, 48].

Remark5. Only one definition ofτ is used for both the pres-
sure and velocity equations, governing the propagation of
acoustic waves. Because pressure and velocity disturbances are
always tightly coupled, using a different definition ofτ for the
momentum and pressure equations may have potentially nega-
tive effects on the dissipation and dispersion error characteris-
tics of the stabilized algorithm [47].

Remark6. Similar results would have been obtained if the
standard SUPG methodology for systems of equations were
used in place of the multiscale analysis (see [13, 43, 44]). In
fact, it is possible to rewrite the system of equations (30)–(31)
as

A0Ẏ + Ai Y,xi = 0 , (53)

whereY = [vT , p]T , and

A0 =

[

ρI3×3 03×1

01×3 1

]

, (54)

Ai =





























0 0 0 δ1i

0 0 0 δ2i

0 0 0 δ3i

ρ c2
sδ1i ρ c2

sδ2i ρ c2
sδ3i 0





























, (55)

with δi j the Kronecker tensor (δi j = 1 if i = j, δi j = 0 oth-
erwise). The stabilization proposed in [13, 43, 44] followsa
methodology similar to [17, 18, 22, 23, 25, 26] and yields:

Y′ = −τ(A0Ẏ + Ai Y,xi ) = −τ(Ẏ + A−1
0 Ai Y,xi ) , (56)

whereτ = τA−1
0 , so that

Ẏ + A−1
0 Ai Y,xi =

[ 1
ρ
Resh

v

Resh
p

]

. (57)

The fundamental reason why these derivations match the pre-
viously developed multiscale analysis is due to the fact that τ
has been chosen as a diagonal matrix. The precise definition
of τ is somewhat arbitrary, and many different approaches to
its design have been proposed [13, 17, 18, 22, 23, 25, 26, 28,
31, 43, 44, 51, 52]. Had notτ been diagonal, a fully coupled
residual ansatz forY′ would have been obtained. This aspect
is a consequence of the connection betweenτ and the Green’s
function for the fine-scale equations [20, 21, 27].

Remark7. In the discussion to follow on the nonlinear case,
it will be easy to appreciate that the variational multiscale
approach and the more classical instantiations of the SUPG
method for compressible flows may have some substantial dif-
ferences in the overall structure of the stabilizing terms.

Remark8. In [13], a numerical stability analysis is presented
for a SUPG-stabilized method applied to the system form of a
general linear hyperbolic wave equation. Although the present
work and the work in [13] have been developed over the years
in complete independence and for different purposes, there are
similarities in the form of the stabilizing operators, at least in
the linear case. Most importantly, the detailed stability analysis
in multiple dimensions included in [13] directly applies tothe
linearized acoustic system under investigation in the present ar-
ticle, and lays the theoretical foundations for a rigorous analysis
of the proposed approach in the nonlinear case.

Summarizing, the classical stability analysis of SUPG methods
for compressible flows [22–24, 29, 30, 50], and the recent work
in [13] show that the proposed variational multiscale approach
provides stability to formulations with equal-order interpolation
for pressure and velocity. These results constitute a soundtheo-
retical foundation for the nonlinear method which is described
next. It is worthwhile at this point to present the overall stabi-
lized variational form of the linearized acoustic problem:

0 =
∫

Ω

ψh · ρv̇h dΩ −
∫

Ω

(∇x · ψ
h)ph dΩ

+

∫

Ω

(∇x · ψ
h) τ

(

ṗh + ρ c2
s (∇x · vh)

)

dΩ , (58)

0 =
∫

Ω

ψh
(

ṗh + ρ c2
s (∇x· vh)

)

dΩ

+

∫

Ω

∇xψ
h · c2

s τ
(

ρ v̇h + ∇xp
h
)

dΩ . (59)

It is clear that the terms
∫

Ω

τ c2
s (∇x · ψ

h)(∇x · vh) dΩ , (60)
∫

Ω

τ c2
s ∇xψ

h · ∇xp
h dΩ (61)

have a stabilizing effect on equations (58)–(59), since they are
the weak forms of a divergence-type incomplete Laplacian of
the velocity and a full Laplacian of the pressure, respectively.
The stability analysis in [13] confirms such conjecture.

Remark9. It is interesting to observe the terms (60)–(61) scale
with τc2

s, which represents an acoustic-inspired kinematic vis-
cosity. There are therefore some similarities between the sta-
bilizing terms in (58)–(59) and the so-called linear artificial
viscosity [5, 40, 54], used to control acoustic oscillations past
shock fronts. There is however one major difference, since the
linear artificial viscosity approach is not variationally consis-
tent, and degrades the order of accuracy of the method to first
order. In the case of the stabilized equations (58)–(59), the
terms (60)–(61) do not degrade the original order of accuracy
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of the method to first order, since they are complemented by
time derivative terms to form complete, variationally consistent
residuals (see also [47] for an analysis of formal order of accu-
racy).

Remark10. In the computations in [48], the artificial viscosi-
ties adopted to control oscillations at shock fronts do not con-
tain the linear scaling [5]. Best results in numerical compu-
tations were obtained using only a quadratic viscosity of von
Neumann-Richtmyer type [5, 53], indicating that the stabiliz-
ing term in (60)–(61) performed well in controlling numerical
instabilities of acoustic nature.

4. Variational multiscale analysis of the nonlinear problem

4.1. Variational equations

As in the linear case, the first step in the development of a
variational form for (5)–(8) is to define thetrial spaces for the
kinematic and thermodynamic variables, which characterize the
stateof the system. LetSκ denote the space of admissible val-
ues for the kinematic variables (displacements, velocities, ac-
celerations), andSγ the space of admissible thermodynamic
states (densities, pressures, internal energies). In addition,Vκ

is the (test) space of variations (compatible with the boundary
condition (9)) for the kinematic variables, andVγ is the (test)
space of variations for the thermodynamic variables. The com-
plete variational problem reads:

Find ρ, p, ǫ ∈ Sγ, andu, v ∈ Sκ, such that,∀ψ ∈ Vγ, ∀ψ ∈
Vκ,

0 =
∫

Ω0

ψ · (u̇ − v) dΩ0 , (62)

0 =
∫

Ω0

ψ (ρ0 − ρJ) dΩ0 , (63)

0 =
∫

Ω0

ψ · (ρ0v̇) dΩ0 −

∫

Ω

(∇x· ψ) pdΩ

−

∫

∂Ω

ψ · t d(∂Ω) −
∫

Ω

ψ · (ρb) dΩ , (64)

0 =
∫

Ω0

ψ (ρ0ǫ̇) dΩ0 +

∫

Ω

ψ (p∇x · v + ρr) dΩ

+

∫

Ω

∇xψ · q dΩ , (65)

where the identityρ0 dΩ0 = ρdΩ has been used, stating that the
mass of an infinitesimal particledm= ρ0 dΩ0 does not change
under the Lagrangian deformation map.

Remark11. In the current formulation, traction (i.e.,natural)
boundary conditions are imposed in (64) through the weak
form, while the spaceSκ incorporates the set ofessential
boundary conditions (9), that is, boundary conditions of kine-
matic (Dirichlet) type are imposedstrongly.

4.2. Variational multiscale analysis and stabilization

It is important to observe that the following analysis applies
in the case of smooth flows (smooth solutions), for which the
fine scales are assumed small with respect to the coarse scales.
In particular, in the case of nonlinear systems, the variational
multiscale framework leverages alocal linearization of the
equations. As in the linear case, the first step consists in devel-
oping of a multiscale description of the solution. For the sake of
simplicity, and without loss of generality, the heat source/sink
r, the body forceb, and the thermal heat fluxq are assumed ab-
sent. The exact solution for the stateY = [uT , vT , ρ, ǫ, p]T ∈ S

of the system is decomposed asY = Yh + Y′, whereYh ∈ Sh is
themesh- or coarse-scale solution, andY′ ∈ S′ is thesubgrid-
or fine-scale solution, withS = Sh

⊕

S′. In the proposed spa-
tial approximation,all variables (both kinematic and thermody-
namic, including pressure, density and internal energy) are ap-
proximated by piece-wise linear, continuous functions (node-
centered degrees-of-freedom). Consequently, the test-spaces
for the equations consist of piece-wise linear, continuousfunc-
tions. More precisely:

Sh
κ =

{

ψh ∈ (C0(Ω))nd : ψh
∣

∣

∣

Ωe
∈ (P1(Ωe))nd ,

ψh = gbc(t) on∂Ωg
}

, (66)

Vh
κ =

{

ψh ∈ (C0(Ω))nd : ψh
∣

∣

∣

Ωe
∈ (P1(Ωe))

nd ,

ψh = 0 on∂Ωg
}

, (67)

Sh
γ =

{

ψh ∈ C0(Ω) : ψh
∣

∣

∣

Ωe
∈ P1(Ωe),

}

, (68)

Vh
γ =S

h
γ , (69)

where gbc(t) indicates the generalized essential (Dirichlet)
boundary conditions, possibly dependent on time. For exam-
ple, if Sh

κ is used to approximate displacements, thengbc = ubc.
If insteadSh

κ is used to approximate velocities, thengbc indi-
cates a velocity at the boundary compatible withubc. Hence:

u = uh + u′ , (70)

v = vh + v′ , (71)

ρ0 = ρ
h
0 + ρ

′
0 , (72)

ρ = ρh + ρ′ , (73)

ǫ = ǫh + ǫ′ , (74)

p = ph + p′ . (75)

In the Lagrangian setting, the displacement and mass conser-
vation equations (5)-(6) are associated with a standing entropy
wave (with respect to the Lagrangian material coordinates)gov-
erning the motion of contact discontinuities. In this context,
it is also important to observe that numerical schemes in La-
grangian coordinates, by construction, are capable of precisely
capturing and tracking contact discontinuities without adding
any numerical dissipation. Consequently, the incorporation of
the equations (62)–(63) is not critical in the analysis, which can
be restricted to equations (64) and (65). This simplified ap-
proach has the main advantage of producing a “minimalist sta-
bilization”, of easier numerical implementation. Namely,when
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tested over the discrete spacesVh
κ andVh

γ, (64) and (65) reduce
to

0 =
∫

Ω0

ψh · (ρh
0 + ρ

′
0)(v̇h + v̇′) dΩ0

−

∫

Ω

(∇x · ψ
h)(ph + p′) dΩ , (76)

0 =
∫

Ω0

ψh(ρh
0 + ρ

′
0)(ǫ̇h + ǫ̇′) dΩ0

+

∫

Ω

ψh (∇x · (vh + v′))(ph + p′) dΩ , (77)

where, in order to simplify the analysis, homogenous Dirichlet
boundary conditions are imposed for the velocity. The energy
equation (77) can be rearranged, using integration by parts, as
follows:

∫

Ω0

ψh(ρh
0 + ρ

′
0)(ǫ̇h + ǫ̇′) dΩ0

+

∫

Ω

ψh ∇x·vh
(

ph + p′
)

dΩ

−

∫

Ω

∇xψ
h ·

(

(ph + p′)v′
)

dΩ

−

∫

Ω

ψh
(

∇x(ph + p′)
)

· v′ dΩ

+

nel
∑

e=1

∫

∂Ωe

ψh
(

ph + p′
)

v′ · ne d(∂Ω) = 0 . (78)

Recalling thatψh is continuous across element interfaces, the
last term in (78) can be expressed as

nel
∑

e=1

∫

∂Ωe

ψh
(

ph + p′
)

v′ · ne dΩ =
∫

∂Ω

ψh pv′ · n d(∂Ω)

+

∫

Ẽ

ψh[[ pv′]] dẼ , (79)

where, as in the linear case, [[w]] = w− · n− + w+ · n+ denotes
the jump operator applied tow, andẼ denotes the set of interior
element interfaces. Then (78) becomes

∫

Ω0

ψh(ρh
0 + ρ

′
0)(ǫ̇h + ǫ̇′) dΩ0

+

∫

Ω

ψh ∇x ·vh
(

ph + p′
)

dΩ

−

∫

Ω

∇xψ
h ·

(

(ph + p′)v′
)

dΩ

−

∫

Ω

ψh
(

∇x(ph + p′)
)

· v′ dΩ

+

∫

∂Ω

ψh phv′ · n d(∂Ω) +
∫

Ẽ

ψh[[ phv′]] dẼ = 0 . (80)

From now on, we will focus on the variational forms (76) and
(80). Analogous projections of (76) and (80) onto the fine scale
test spacesV′κ andV′γ can be considered, to generate the fine-
scale problems.No approximationhas been made so far, and
the initial geometry of the computational grid, as well as the

displacement field are assumed to be knownexactly. In order
to obtain a treatable problem, a number of conditions has to be
enforced on the terms in the coarse-scale equations. As in the
linear case, some of these conditions are straightforward,others
are dictated by simplicity and ease of implementation.

Coarse-scale conditions

(i) Fine-scale terms are consideredsmall with respect to
coarse-scale terms. Therefore, if necessary, products of
fine-scale terms can be neglected, being higher-order cor-
rections. This is, essentially, a statement of local lineariza-
tion of the variational problem under consideration.

(ii) Fine-scale components of the displacementsu′ (i.e., fine-
scale node positions and mesh geometry) are considered
negligible, with the purpose of a simpler implementation.
Although not pursued here, there is a possibility to quan-
tify these fine-scale contributions.

(iii) ρ′0 is considered negligible, sinceρ0 is adatumof the prob-
lem.

(iv) As in the linear case, time derivatives of the fine-scales are
neglected, in favor of a quasi-static approximation.

(v) In order to preserve global conservation properties, ween-
force as a design condition that the last three integral terms
in (80) vanish. Let us review each of these conditions:

∫

Ω

ψh
(

∇x(p
h + p′)

)

· v′ dΩ = 0 (81)

enforces that the projection onto the test function space of
the inner product between the pressure gradient and fine-
scale viscosity vanishes. An equivalent interpretation is
that, in a weak sense, the fine-scale component of the ve-
locity does not produce any internal work. This condition
can also be understood as the constraint onv′ to be a zero-
energy, hourglass mode [3, 5]. The condition

∫

∂Ω

ψh phv′ · n d(∂Ω) = 0 (82)

weakly enforces that the fine-scale velocity does not pro-
duce any work at the boundary∂Ω of the domain. This
condition is equivalent to imposing that the fine-scale ve-
locity vanishes at the boundary∂Ω, and, as already men-
tioned in Section 3.2, is a standard (often implicit) hypoth-
esis in variational multiscale formulations [20, 21, 27]. Fi-
nally, the condition

∫

Ẽ

ψh[[ phv′]] dẼ = 0 (83)

weakly enforces that the surface workphv′ ·n, produced by
the interaction of the fine-scale velocity and coarse-scale
pressure, is continuous across element interfaces. In the
case of a smoothv, sinceph andvh are continuous, this
condition can also be justified by observing thatv′ = v−vh

must also be continuous. Notice that, although often not
explicitly stated, (83) is implicitly invoked in most SUPG
stabilized formulations for compressible flows.
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With the previous conditions, (76) and (78) reduce to:
∫

Ω0

ψh · (ρh
0v̇h) dΩ0 −

∫

Ω

∇x ·ψ
h(ph + p′) dΩ = 0 , (84)

∫

Ω0

ψh(ρh
0ǫ̇

h) dΩ0 +

∫

Ω

ψh ∇x ·vh(ph + p′) dΩ

−

∫

Ω

∇xψ
h ·

(

phv′
)

dΩ = 0 . (85)

Remark12. Equations (84)–(85) present striking similarities
with equations (42)–(43), once the integrals of the time deriva-
tives are pushed forward to the current configuration:

∫

Ω

ψh · (ρhv̇h) dΩ −
∫

Ω

∇x·ψ
h(ph + p′) dΩ = 0 , (86)

∫

Ω

ψh
(

ρhǫ̇h + ph ∇x·vh
)

dΩ +
∫

Ω

ψhp′ ∇x·vh dΩ

−

∫

Ω

∇xψ
h ·

(

phv′
)

dΩ = 0 , (87)

where, in particular,

ρhǫ̇h + ph ∇x·vh = ρh ∂ǫp
h
∣

∣

∣

h

ρ

(

ṗh + ρh (ch
s)

2 (∇x · vh)
)

. (88)

Therefore, the variational multiscale stabilization of the nonlin-
ear case retains part of the structure of the linearized case. This
observation is important in designing appropriate approxima-
tions top′ andv′.

Remark13. The term
∫

Ω

ψh p′ ∇x ·vh dΩ (89)

is not present in the linearized case, and is of fundamental im-
portance in preserving global conservation of total energyin
the nonlinear case. It is also important to notice that this term
would not appear if a standard SUPG approach were applied.
Details on the global conservation properties of the proposed
stabilization approach are presented in Section 5.2.

The variational multiscale approach now requires to test the
momentum and energy equations on the fine-scale spacesV′κ
andV′γ, that is,

∫

Ω0

ψ′ · (ρh
0 + ρ

′
0)v̇′ dΩ0 +

∫

Ω0

ψ′ · (ρ′0v̇h) dΩ0

−

∫

Ω

(∇x · ψ
′)p′ dΩ = −〈Resh

v ,ψ
′〉 ,

(90)
∫

Ω0

ψ′(ρh
0 + ρ

′
0)ǫ̇′ dΩ0 +

∫

Ω0

ψ′ρ′0ǫ̇
h dΩ0

+

∫

Ω

ψ′ (∇x · (vh + v′))p′ dΩ

+

∫

Ω

ψ′ (∇x · v′)ph dΩ = −〈Resh
ǫ , ψ

′〉 ,

(91)

where, for pure Dirichlet boundary conditions,〈Resh
v , ·〉 ∈

(S′κ)
∗ and〈Resh

ǫ , ·〉 ∈ (S′γ)
∗ are defined by pushing forward to

the current configuration and integrating by parts:

〈Resh
v ,w〉 =

∫

Ω

w ·
(

ρhv̇h + ∇xp
h
)

dΩ , (92)

〈Resh
ǫ ,w〉 =

∫

Ω

w
(

ρhǫ̇h + (∇x · vh)ph
)

dΩ . (93)

As in the linear case, by means of the Riesz Representation
Theorem, it is possible to identify the residual operators with
the following members of the spaceL2(Ω)

Resh
v = ρ

hv̇h + ∇xp
h , (94)

Resh
ǫ = ρ

hǫ̇h + (∇x · vh)ph . (95)

We now need to make further assumptions about the subgrid
dynamics, to obtain a treatable fine-scale problem. The funda-
mental idea is to explore a simple solutionansatz, inspired by
the results already obtained in the linear wave propagationcase.

Fine-scale conditions

(vi) Recalling the structure of the momentum equation (25),
we can assume the following structure for the fine-scale
velocity:

v′ = −τρh (ch
s)

2

ph

∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

Resh
v , (96)

whereτ is defined as in (52). This produces the stabilizing
term

phv′ = −ρh ∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

τ(ch
s)

2 ∇xψ
h · Resh

v . (97)

(vii) Recalling the structure of the energy equation (26), we

have thatResh
ǫ = ρ

h ∂pǫ
∣

∣

∣

h

ρ
Resh

p, with

Resh
p = ṗh + ρh(ch

s)
2 ∇x·vh . (98)

It was shown in [46] that the expression forResh
p can also

be derived by considering isentropic processes in perfect
materials (materials free from internal dissipation mecha-
nisms). It was also shown in [45, 46] thatResh

p measures
theproductionof entropy due to the numerical discretiza-
tion. In regions of smooth flow,Resh

p should vanish, but
because of numerical instabilities,numerical entropycan
be generated. At this point, it becomes natural to use the
pressure residual to build an approximation to the fine-
scale pressure as follows:

p′ = −τ Resh
p . (99)

It was shown in [46] that the same approximation can be
obtained by taking the differencep′ = p− ph and lineariz-
ing the equation of statep = p̂(ρ, ǫ) aboutph.
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(viii) Because the system of equations at hand has the structure
of a non-linear wave equation, it makes sense to use the
same parameterτ in both the momentum and energy equa-
tions (see also [47] for more details on this interpretation
from the point view of the von Neumann analysis of sta-
bility).

Remark14. In [46], the variational multiscale approach was
used to stabilize formulations with piece-wise constant thermo-
dynamic variables, enriching the discrete pressure by a fine-
scale pressure defined as in (99). In the present approach, we
also add the contribution of the fine-scale velocityv′ to stabilize
the energy equation.

Remark15. By definition, the termsv′ and p′ vanish at pure
contact discontinuities, where the pressure and velocity are con-
stant in space and time, and perfectly matched (equal) across
the contact interface. Therefore, interpreting the termphv′ as
a heat flux term would beutterly incorrect. This term, instead,
represents the work produced by the interaction between the
fine-scale velocity and the coarse-scale pressure.

Remark16. When shock waves are present in the material, the
analysis just presented does not apply. From a physical point
of view, a shock wave is an infinitely thin layer in which the
flow does not behave as a perfect material, due to internal dis-
sipation mechanisms. At the numerical level, these irreversible
mechanisms are introduced by shock-capturing operators inthe
form of artificial viscosities, which smear the discontinuity over
a few cells of the computational grid.

It is now interesting to summarize the overall stabilized formu-
lation obtained. Namely, (84)–(85) become:

∫

Ω0

ψh · (ρh
0v̇h) dΩ0 −

∫

Ω

∇x ·ψ
h ph dΩ

+

∫

Ω

∇x ·ψ
h τ

(

ṗh + ρh(ch
s)

2 ∇x·vh
)

dΩ = 0 , (100)
∫

Ω0

ψh(ρh
0ǫ̇

h) dΩ0 +

∫

Ω

ψh ∇x ·vh ph dΩ

+

∫

Ω

ρh ∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

τ(ch
s)

2 ∇xψ
h ·

(

ρhv̇h + ∇xp
h
)

dΩ

+

∫

Ω

ψh ∇x·vh
(

ṗh + ρh(ch
s)

2 ∇x·vh
)

dΩ = 0 . (101)

Pushing forward some of the integrals to the current configu-

ration, recallingResh
ǫ = ρh ∂pǫ

∣

∣

∣

h

ρ
Resh

p, and collecting terms
yields:

0 =
∫

Ω

ψh · (ρhv̇h) dΩ −
∫

Ω

∇x·ψ
h ph dΩ +

∫

Ω

∇x ·ψ
h τ

(

ṗh + ρh(ch
s)

2 ∇x·vh
)

dΩ , (102)

0 =
∫

Ω

ρh ∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

(

ψh
(

ṗh + ρh(ch
s)

2 ∇x ·vh
))

dΩ +

∫

Ω

ρh ∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

(

τ(ch
s)

2 ∇xψ
h ·

(

ρhv̇h + ∇xp
h
))

dΩ +

∫

Ω

ψh ∇x ·vh τ
(

ṗh + ρh(ch
s)

2 ∇x ·vh
)

dΩ . (103)

It is easy to appreciate that (102) is an almost identical (non-
linear) statement of (58). The first two terms in equation (103)
are almost identical to the terms in (59), with the exceptionthat

they are scaled byρh ∂pǫ
∣

∣

∣

h

ρ
. As already mentioned, the last term

in equation (103) is not present in (59), and is important in en-
suring conservation of total energy of the overall formulation.

Remark17. Recalling that for an ideal gas

ρh ∂pǫ
∣

∣

∣

h

ρ
= 1/(γ − 1) , (104)

the connection between (103) and its linear counterpart (59) is
even more stringent.

Remark18. Stabilization is provided by the term
∫

Ω

τ (ch
s)

2ρh
(

∇x ·ψ
h
) (

∇x ·vh
)

dΩ , (105)

(106)

in the momentum equation (102), and by the terms
∫

Ω

τ(ch
s)

2 ρh ∂ǫ

∂p

∣

∣

∣

∣

∣

h

ρ

(

∇xψ
h · ∇xp

h
)

dΩ , (107)

∫

Ω

τ(ch
s)

2 ψh ρh
(

∇x ·vh
)2

dΩ , (108)

in the energy equation (103). As in the linear wave propaga-
tion case, these stabilizing terms are scaled by the acoustic-
type kinematic viscosityτ(ch

s)
2. Analogous to the linear case,

since the stabilized formulation is residual-based and variation-
ally consistent, it does not produce a degradation of the order
of accuracy [47].

Remark19. As already mentioned at the end of Section 3.2, the
valuecτ = 2 (for whichτ = ∆t) seems to give the best results
in the computations in [48] for the nonlinear case. The von
Neumann analysis of stability documented in [47] shows that
this choice corresponds to very low dispersion error in the lin-
earized version of the predictor/multi-corrector algorithm used
in [48].

5. Invariance and conservation properties

5.1. Galilean Invariance

It is easy to verify that the proposed stabilization approach
satisfies Galilean invariance properties, since the velocity ap-
pears in (100)–(101) always in differentiated form with respect
to space or time. Galilean invariance properties were recog-
nized as important in [41–43] in the specific case of Lagrangian
and arbitrary Lagrangian-Eulerian (ALE) computations.

10



5.2. Global conservation
It is not very difficult to realize that the proposed algorithm

conserves global mass (see [48] for the case of a specific time
integrator), and momentum. In particular, global conservation
of momentum in theith direction is obtained by assuming ho-
mogenous Neumann (no traction) boundary conditions on the
pressure, and testing the momentum equation (100) against
ψh = ei , the unit vector of the Cartesian basis in theith di-
rection. In this case, observing that∇x · ei = 0 we obtain:

d
dt

∫

Ω

ei · (ρhvh) dΩ =
∫

Ω0

ei · (ρh
0v̇h) dΩ0 = 0 . (109)

It is also not very difficult to verify that the system (100)–(101)
satisfies conservation properties for the global total energy. In
[48], this result is proved for a specific predictor/multi-corrector
time integrator used in nonlinear computations. In this section,
a general statement of broader applicability is proved. In the
presentation of the key derivations, there is no need to havespe-
cific expressions for the fine scale terms. The stabilized equa-
tions of momentum and energy in the case of pure homoge-
nous Neumann (traction) boundary conditions for the pressure
are considered once more. Aside from the different function
spaces on which these equations are defined, they look identical
to equations (84)–(85), and are shown below for convenience:

∫

Ω0

ψh · (ρh
0v̇h) dΩ0 −

∫

Ω

∇x·ψ
h(ph + p′) dΩ = 0 , (110)

∫

Ω0

ψh(ρh
0ǫ̇

h) dΩ0 +

∫

Ω

ψh ∇x·vh(ph + p′) dΩ

−

∫

Ω

∇xψ
h ·

(

phv′
)

dΩ = 0 . (111)

Since homogeneous Neumann conditions are applied (no trac-
tion and traction work at the boundary), it is clear thatvh ∈ Sh

also belong to the test function spaceVh. Therefore, (110) can
be tested againstψh = vh, obtaining an equation for the evolu-
tion of the kinetic energy. For the same reason, it is also pos-
sible to chooseψh = 1 over the entire computational domain,
and in this case∇xψ

h = 0. Using the push-forward to the cur-
rent configuration and the identityρ0 dΩ0 = ρdΩ, it is easy to
derive:

d
dt

∫

Ω

1
2
ρh (vh · vh) dΩ =

∫

Ω

∇x ·vh(ph + p′) dΩ , (112)

d
dt

∫

Ω

ρh ǫh dΩ = −
∫

Ω

∇x ·vh(ph + p′) dΩ . (113)

Summing equations (112)–(113), the right-hand sides cancel,
yielding

d
dt

∫

Ω

ρh

(

1
2

(vh · vh) + ǫh

)

dΩ = 0 , (114)

which is a statement of conservation of global total energy for
the proposed stabilized approach.

Remark20. The presence of the term involving∇x ·vhp′ in the
energy equation (111) is crucial in obtaining the cancellation of
terms which makes possible global conservation.

6. Summary

This work documents the development of a theoretical frame-
work for updated Lagrangian stabilized formulations of La-
grangian shock hydrodynamics. The analysis apply to materials
obeying a generalized caloric (e.g., Mie-Grüneisen) equation
of state. The presentation of the main concepts has been per-
formed first in the simpler linearized system of acoustic equa-
tions, and then generalized to the full nonlinear system of La-
grangian shock hydrodynamics equations. The proposed sta-
bilization approach preserves global conservation and Galilean
invariance properties in the nonlinear case. The extensivecom-
putations in [48] show the promise of the method, also in com-
parison with previous work done by the author and collabora-
tors on the subject [43, 44]. The reader can also refer to [47], in
which a von Neumann stability analysis of the method is per-
formed for the specific time integrator adopted in the numerical
computations in [48].
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