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Abstract

This article presents an analysis of the global angular nmbume conservation and objectivity properties for a premdjotulti-
corrector scheme often used in shock hydrodynamics coniguisain combination with staggered spatial discretizaioAs the
number of iterations increases, the numerical solutiorhefgredictotmulti-corrector algorithm converges to that of an implicit
mid-point time integrator, which preserves global angmiamentum and incremental objectivity. In the case of a finiteaber of
iterations, the order of accuracy with which these quagitire preserved is always higher than the order of accuf#ty method,
and decays ast?, wherei is the iteration index.

Key words: Angular momentum conservation, incremental objectiyitgedictofmulti-corrector algorithm, mid-point time
integrator, Lagrangian shock hydrodynamics, staggeneditation.

1. Introduction and incremental objectivity. In the case of a finite number of
) ) ) iterations, the order of accuracy with which these quatiéire
This article presents an analysis of global angular momens eserved is always higher than the order of accuracy of the

tum conservation and incremental objectivity propert@dfie 1 ethod. and decays as\#, wherei is the iteration index.
time-integration algorithm proposed in [7, 8]. This method

identically corresponds to the staggered (in space) finfte d
ference formulations of [1, 2] in the case of one spatial dime
sion, and maintains their structure and many of their priger 2. The Lagrangian hydrodynamics system
in multiple dimensions. Based on a predigioulti-corrector
variant of the implicit mid-point time integrator, this ajgach
does not require staggering in time between kinematic agd th  In order to begin the discussion, we briefly summarize the
modynamic variables to achieve second-order accuracyrand esystem of Lagrangian equations for a compressible fluid in
sure conservation of global mass, linear momentum and totathich heat fluxes, heat sources, and body forces are abssnt. L
energy. The analysis documented in this article also applie Qg andQ be open sets iR™ (whereny is the number of spatial
a variation of the algorithm, which uses piecewise linearth dimensions). Theleformation
modynamic variables [9].

A number of remarks on angular momentum conservation @100 — Q= p(Qo), (1)
and incremental objectivity were made in [7, 8] about thestim X x = @(X.f), VX €Qo t20 o)
integrator under discussion, but complete and detailedaler BEARA 0 t="
tions were missing. This brief article documents the simple ) _ _ o -
derivations to evaluate these results, and was spurred iy coMaps the material coordinaXe representing the initial position
versations with members of the research community in shocRf @n infinitesimal material particle of the body, xpthe posi-
hydrodynamics, whose comments and observations are thanfion of that particle in the current configuration (see Fij.(lo
fully acknowledged. |s_the domain occupied by the body in its |n|t!al conﬂg_uraﬂo

It is shown that, for an increasing number of iterations, theVith boundaryl’s. ¢ mapsQ to Q, the domain occupied by

limit mid-point algorithm preserves global angular momant the body in its current configuration. Tkeformation gradient
anddeformation Jacobian determinacén be defined as
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the subscriptn + 1/2 refers to quantities computed at time
thr1/2 = (th+tne1)/2. For the derivations that follow, it is impor-
tant to notice that the algorithmic Cauchy stressay contain
stabilization and discontinuity capturing terms, in amditto
the constitutive stress relationship. The specific fornards
not relevant as long as it is a symmetric tensor, as is the case
in [8, 9]. The algorithm is implemented by first computing the
new iterate i(+ 1) of the velocity at tlman+1 and by subse-
quently updating the position |terat,e 1), using

0=l oy~ ALV, (10)
To ensure second-order accuracy this iteration must barege
at least two times. By defining the second Pisianmetric
stress tensd with the relation

J( (i) _ F(')

i) oHT
n+1/2 Tnire = n+1/28( F (11)

n+1/2" nil/2

and replacing the algorithmic Cauchy stressising (11), it is
possible to rewrite (9) as

ozf 50 po (VI*D — )
Qo

Figure 1: Sketch of the Lagrangian map

servation of mass, momentum, and energy read:

- (g®
Gy ) + At fg D Y, (69) 1 (FO,,801 ) - (12)
pI=po. 6) Considering homogeneous Neumann (zero traction) boundary

O0=pv-V,-0o, (7)  conditions, an admissible choice fép is 5 = & x gogil/z, for
O=pe—0:VV. (8) somef € R3. This yields

Here,V, andV,- are the current configuration gradient and diver- 0 =f ol o0 (VD _y,

gence operators, ar(g) indicates the material, or Lagrangian, o §X Pniyj2 po( nel n)

time derivative.u = x — X is the displacement vectqyy is O

the reference (initial) density, is the (current) density is the + At (.fx #n 1/2) ( n+1/2 n+1/2)

velocity, o is the Cauchy stress, ardhe internal energy per

unit mass. In the case of compressible fluidss —pl, where f &x s0n+1,2 P0 (\/ELP )
p is the thermodynamic pressure, related to density andiater
energy by an equation of state of the type p(p, €). 4 Atf (fngl/z) (Fgll/zsgll/z)
3. Angular momentum =f £x ‘szl/z o (\/g:ll) )
Qo

Following the derivations in [7, 8] or [9] a predicfanulti- N Atf g (F(') o= )
corrector algorithm can be designed to integrate the eopsti . m1/2%m1/2° ntl/2
of motion in Lagrangian coordinates. The analysis thabfed 1)
is focused on the conservation of angular momentum, a prop- = f S0n+1/2 X Po (\/fm )
erty which is derived from the equations governing the evolu
tion of linear momentum and displacements. We avoid present +ALE: (f Fgll/zsgll/ZFnEI/Z) i (13)
ing the discrete form of all other equations, as they areeletr

vant in the discussion that follows. The Lagrangian weaknfor
of the momentum conservation equation for the prediotalti-
corrector algorithm in [8] reads

G2 po(Voit (14)
0= L 5¢ - po (\4:11)‘\’") + At f(i) (Y, (5<p))n+1/2- 5111/2, jg; n+1/2 ( n+l )
0

n+1/2

where¢ is the skew-symmetritensor satisfyinga = (£ x a),
Va € R®. Note that the term

(9) representsan algorithmic increment in total angular mdoran
between time step and the ( + 1)th iterate at time step+ 1,
wheredyp is an admissible variation of the motion (or, defor- computed using the deformation at the midpoint in time and
mation) ¢, n is the time step index,i)is iterate index, and iterate ().
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3.1. Alimit case: Mid-point integrator

— oo, for which we obtain

In this casee

First consider the limitj,i
the classical, implicit mid-point integrator.
also [11]),

0= 'f (f ‘pn+i/2 X po (V§1+)1

i

Removing the superscrips) for convenience, using (10) and
(11), and defining

_ vn))

() ) (0T
Fn+l/28§1+l/2Fn+l/2) : (15)

M = f o onvn) = fg (o). (1)

we can further manipulate (15) into

At
+ 5 Vneg2 X po(Vns1 — Vi)

: (f Jn+1/2 0'n+1/2)
Qo
=& LO ((son + % Vn+1/2) X (POVn+1)) - Hn)
5 (L Vn+1/2 X (PoVn))
=& (f ((‘Pml - % Vn+l/2) X (POVn+l)) - Hn)
Qo

5§ ( Vii1/2 X (PoVn))
Qo

At
& (Hn+l — I - 2 f £0 Vni1/2 X (vn + Vn+1))
Qo

: (Hn+1 =TIl - Atf 00 Vni1/2 X Vn+1/2)
Qo

' (Hn+1 - Hn) .

&
£ 17
To derive (17), we have used the identity: on12 = 0 (by

definition,é is skew-symmetric aner,,.1/2 is Ssymmetric), and
the trivial factw x w = 0, Yw € R3. Due to the arbitrariness

of ¢, equation (17) is a statement of conservation of angular

momentum between time stepandn + 1.

3.2. General case: Predictonulti-corrector
In the predictoimulti-corrector in [1, 2, 7-9],if and (j) are

finite, and the displacements are updated only after the meme

tum equation is computed. It is then natural to §8t=£ (i)

in (14), when attempting to derive a statement of total aagul

momentum conservation. Hence (14) reduces to

0=¢- (f ‘Pn+1/2Xp0(Vg:11)_Vn))
+At§:(f O &) EOT

n+1/2~n+1/2 n+1/2) : (18)

By definition,£ is skew-symmetric, so that, by (11), the second
integral in (18) vanishes. This time however, we cannotiabta
a straightforward conservation statement for an algorithan-
gular momentum defined as

o := f o x pod)
Qo

In fact, (18) reduces to

At L
0=¢- (‘Pn T VE1+1/2) (\44:1)
Qo

([ [[ore 2 o)< o) -
_%g.(jg;o ﬂll/ZX(PoVn))

Sfr) < o) -

-6 [ (A )< o)
( v X(POVn))

n+1/2
i+1)
\/SHl )) .

(19)

- Vn)

(|+1) (

n+1/2 (20)

Proceeding further, we obtam

0=¢. (H(I+l) Hn)

n+1
_g:.(% fg (v
~6(3 [ W o)
63 [ i x ol

_ (i+1)
= ¢ - (i - 1)
At ; ;
(i+1) (i) 1)
-¢- (? f (anj:l/z - an+1/2) ( \4:1 ))
Qo
At :
(i+1) (i)
+&- (7 fg (VnI:1/2 - an+1/2) X (POVn))
0

A i+
-6 (3 [, it ol )

_ g (H(I+l) Hn)

n+l

_‘f’:'(%f (\4:11/)2
—g-(At f o VY

ne1/2 X
=& (I ~ o)

(G [ mlad -

(|+1) (i)
ne1/2 Vn+1/2) (

o)

(i+1)
Ve X

oo

n+1

VO

n+1/2

)< (4

n+1

_ Vn))
<)

n+1/2

)% (40 -w)) . @



Becauseigjll) # VSL' this expression shows thHﬂ:ll) # Ip. vectors associated to the positioand velocityv, respectively,

and
Remark1. As the iterative process proceeds, the error on an-
gular momentum conservation is driven to zero, since Mo = f Napo A% (30)
) . ’ Qq
lim (Vi -V ) =0. (22)
1m0 It is easy to observe that all previous conclusions apply &ls

Using the truncation analysis developed in [5] for the gligsi the case of lumped mass matrices, once the qlgorithmic defini
tion and phase error, itis possible to give an estimate tetge  tion of global angular momentum (29) is substituted in plate
on total angular momentum conservation, at least in theafase (19).
smooth solutions. Proceeding as in [5], Taylor expansidns o
the dissipation and phase errors for iterajeatd () — oo dif- 4. Incremental Objectivity
fer by a termO(At?). Then

e ) i Incrementa! ob_jectivity is_the property for which the aqt'un‘
=y = My, =T = O(ALY) (23)  astress constitutive model is unchanged under a pure ragig b
rotation. In particular, any well posed constitutive mostebuld
not produce a change in internal energy, if the motion isrgive

0]

Hn+l

which implies that the global angular momentum conserwvatio

: 2 e 4 .
grztrG'S]P (Aﬂt] ) Iﬁr gh_et: f|rstt |tertateO(At ) for the second iterate, by pure rotation, as a consequence of the fundamental invari
(_ ) for the _ Ird itera e-, ete. . _ ance principles in mechanics. This concept can be refotaulila

Itis also possible to derive an expression for an incrementg4, 10] in the context of numerical time integration algbrits
angular momentum quantity that is conserved at each iterat®y evaluating whether objectivity is preserved at the in@a-

by casting equation (18) as tal level, between time stepandn + 1. Consider again the
_ _ momentum equation (12) with homogeneous Neumann bound-
fg (pg)ﬂ/z X po (Vﬂill) - Vn) = 0. (24)  ary conditions. It is then possible to choose as an adméssibl
0

variationsg = 1 (\/f:ll) + vn), to obtain:

Hence, the quantity defined as 1 _ _
0= [ (2w poti? - w0
Qo

n
M0 =i o 3 ([ ol xptdsd -w) . (@9) M o
k=0 \W<o +7L VilViiy + Vn] - (le/zsfm/z). (31)
0

where
This easily simplifies to
Ilp := f ®o X PoVo » (26) A
“ DT 5 [ B (FS0.) = 0. (32
is an exactly conserved quantity. Unfortunately, (25) is @o ’
straightforward definition of total angular momentum. where the total kinetic energy is defined as
Remark2. Note that if the choicej] = (i + 1) is made in (13), q._ 1 NORRYO
. . Tn == pPoVp - V' . (33)
we would not have obtained a conservation statement elther. Q
fact, algebraic manipulations similar to (17) lead to
Next, recall that
— (i+1) x . (0] D} (i+1)T i
0= 'f'(HnI:l - Hn) +ALE: (f Fn|+1/23g+1/2':n|:1/2) - (27) (i+1) i+1) vﬂjll) + Vi
Qo @i — ¢n = At \/ﬁHl/2 = At — (34)

sV FEUT s not sym-

- ; 0]
Due to the iterate missmatck: 12 nia)2

n+1/2 i i i i i
metric, and so This can be substituted into equation (32) producing

n™*Y_1, # 0. (28)

n+1

Tg:ll)—Tn + L(ngll)_ Fn) (Fgll/Zngrl/Z) = 0. (39
0

Remark3. In numerical computations, mass lumping is most
commonly adopted, and the precise definition of the totaliang This equation represents the change in kinetic energy fhem t
lar momentum is similar, but not identical to (19), namely previous time step to the current time step and iterate. ,|&2,[1

i 7-9], to ensure conservation of total energy during thaiies

HSP = Z XS_)A % (MO'AVS-)A) ) (29)  process, the specific internal energy is updated as
~ po(elr? — en) = (FUD = Fo) 1 (FY, 80, )
n+ n+ ) n+ n+
whereA is the global node numbering,, is the total number I (i+1) .0
of nodes in the mesk, andv are the nodal degrees-of-freedom - Fn+1/2(Fn+1 —Fn): n+1/2 (36)
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(a) Initial mesh. (b) Mesh att = 0.125.
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(c) Mesh at = 0.25

Figure 2: Initial mesh configuration and time evolution ofsheleformation for a numerical test of global angular mom@ntonservation. The initial velocity is
given by a rigid body rotation field. The initial density isityn the initial energy is given by (46). As the material e due to the initial velocity condition, the
pressure relaxes and the flow expands.

Noting that
(O R (0]
I:nl+1/2 - E (Fnl+l + Fn) > (37)
this can be algebraically expanded to yield
) 1, 7 g - )
(i+1) — 0 gl+1) (0] - gl
po(ensy = &n) = 2 (Fnl+1Fn|:1 - l:nl+1|:n) : Sg+1/2
L S N S )
+ z(FnFn':1 —FaFn) st .. (38)

Consider initially the limit case as$)(— oo and the fixed-point
iteration converges. Then,

T
n+1

1
po(ens1 — &n) = E(F Fri1— F;|1- Fn) : Sz

1
+ E(FIle - F-rl;rl':n) . Sn+1/2 .

(39)
Recalling thaiS is symmetric, thaf [ Fn.q — F! , Fy is skew-
symmmetric, and thak = F'F, this simplifies to
1
po(ens1 — &n) = > (Cni1—Cn) 1 Sniry2 - (40)

Assume that the incremental motion over the time tefs a

rigid rotation. ThenF,,; = QF, for someQ € SQ3) (the
group of proper orthogonal rotations). This implies t8at; =

Ch and thusen,1 = &n. Now consider the non-limit case where

5

(i) < o0 and the fixed-point iteration is not converged. Hence,
1

) o )
P0(8S:11) —é&n) = 2 (Fglngill) - Cn) : Sg)ﬂ/z
Licte@n) _ g0 g ). o)
s (Fn Frt’ — I:nl+1':ﬂ) : Sgu/z S CY
Observe that
N a1 1
FOLFLD # i @)

and thatFEFﬂIll) - FSlen is not a skew tensor in general.
Therefore, equation (41) cannot easily be simplified anthiir
due to the “mismatching” terms involving) @nd { + 1).

Remark4. The predictor-corrector algorithm is incrementally
objective if the fixed-point iteration is driven to convenge.
Derivations analogous to the ones leading to (23) allowresti
tion of the order of accuracy with which incremental objeityi

is approximated. In fact, using the Taylor expansion result
[5], we obtain

(0]

€nn1

e

PR ()]
&n=¢ n+1

n+1

= O(At?) . (43)
Remark5. It is also important to notice that exact incremental
objectivity is an important requirement in constitutive aeting

for solid mechanics applications, while it is usually calesed
less critical in fluid mechanics computations. In fact, ivésy
frequent and widespread in computational fluid mechanics to
use non-objective time integration algorithms [3].
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Figure 3: Evolution of global angular moment for the problepecified by (44)—(46). Figure 3(a) shows the time historyhefrelative error in global angular
momentumAIl(t), for various iterates of the predictorulti-corrector. Figure 3(b) shows the time history of tleéative increment of global angular momentum
ApIl. In Figures 3(a) and 3(b) the black, blue, magenta, and ned lindicate the first, second, third, and fourth iteratespectively. Figure 3(c) shows a semi-
logarithmic plot of ATI(t = 0.25) as a function of the number of iterates of the prediotalti-corrector. Figure 3(d) shows a semi-logarithmictgbthe average
relative increment of angular momentyr, 1)y, as a function of the number of iterates of the predjotaiti-corrector.

5. A numerical experiment Hence the initial velocity field represents a rigid body tiota

around the origin, while the internal energy has a cosinélpro
long both the; andx, directions, and vanishes at the bound-
ry of the domain. Zero-traction boundary conditions are ap
Blied on the entire boundary (homogeneous Neumann bound-
ary conditions). As seen in Figures 2(b) and 2(c), the flow
er‘8tates, due to the initial condition on the velocity, andheat
same time it expands, as the initial distribution of presser
laxes toward equilibriumg = 0). Given the specifications of
the initiayboundary value problem, global angular momentum
is conserved.

In order to verify the previous statements, we have designeg
a simple experiment. Let us consider the rectangular domai
[-0.5,0.5] x [-0.05, 0.05], with superposed the mesh shown in
Figure 2(a) (commonly referred to as the Saltzmann mesh, s
[6, 8, 9], and references therein, for more details). Theenmlt
is an ideal gas withy = 5/3, for whicho = —plpxn,, With
p = (y—1)pe. Consider also the following initial conditions for
the velocity, density, and internal energy:

Vo =[—Xo, X1] , (44) Figure 3 shows the time history of the following quantities:
po =1.0, (45) ;he_ r_etl_a'?ive ec;r?r in global angular momentum (with respect
_1- cos(2x(x + 0.5)) e initial condition)

- 4

X (1 - cos(%(y + 0.05))) . (46) ATI(t) =

€0

I -To _ 1Y) _

1, 47
g o (47)



the relative increment in global angular momentum [7
Ilpe1 =11 II
AnH _ n+1 n_ n+1 1 i (48)
and the average relative increment in global angular monment

LN [9]

(AnI)n =N ApIl (49)

n=0

[10]

Because the flow solution is smooth, it is easy to apprediate t
rapid decay of the various measures of global angular momert]
tum, as the number of iterations increases. As seen in Fgure
3(c) and 3(d), the error in global angular momentum is within
machine precision for 4 or more iterates.

6. Summary

We have presented an analysis aimed at evaluating the to-
tal angular momentum conservation and incremental objgcti
properties of algorithms in the predictowlti-corrector class
documented in [1, 2, 7-9]. When convergence of the iterative
algorithm is attained, total angular momentum is conseexed
actly, and incremental objectivity is satisfied exactly.isTis
not the case for a finite iteraté { 1) of the predictgimulti-
corrector procedure, and the numerical approximatiorr éae
been estimated to scale A&, using a Taylor series expansion
argument.
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