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Abstract

Galilean invariance is one of the key requirements of many physical models adopted in theoreti-
cal and computational mechanics. Spurred by recent research developments in shock hydrodynamics
computations [16], a detailed analysis on the principle of Galilean invariance in the context of SUPG
operators is presented. It was observed in [16] that lack of Galilean invariance can yield catastrophic
instabilities in Lagrangian computations. Here, the analysis develops at a more general level, and an
arbitrary Lagrangian-Eulerian (ALE) formulation is used to explain how to consistently derive Galilean
invariant SUPG operators. Stabilization operators for Lagrangian and Eulerian mesh computations are
obtained as limits of the stabilization operator for the underlying ALE formulation. In the case of Eule-
rian meshes, it is shown that most of the SUPG operators designed for compressible flow computations
to date are not consistent with Galilean invariance. It is stressed that Galilean invariant SUPG formu-
lations can provide consistent advantages in the context of complex engineering applications, due to the
simple modifications needed for their implementation.
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A Discourse on Galilean Invariance, SUPG Stabilization,

and the Variational Multiscale Framework

1 Introduction

The Galilean invariance principle states that the form of the equations of motion of an isolated system
should be invariant when a change of observer, consisting of a translation with constant velocity V G, is
applied.

In the case of numerical computations, it is advisable for the discretized equations of motion to maintain
the same invariance properties of the continuum. Bubnov- and Petrov-Galerkin finite element methods
are obtained by enforcing the so-called Galerkin orthogonality property, which states that the equations
of motion (i.e., the residual) must be orthogonal to the test function space. In this case, the Galilean
principle readily translates into the requirement that the residual must remain orthogonal to the Bubnov-
and Petrov-Galerkin test spaces, after a Galilean transformation is performed. It is straightforward to
prove that if the equations of the continuum are invariant, so are the discrete equations generated by a
Bubnov- or Petrov-Galerkin method. This is due to the fact that the constant velocity V G factors out of
all the integrals in the variational statement, as will be clear from the discussion in section 7.

Figure 1. Results from the computations from [16]. Mesh distortion plot: The color scheme
represents the pressure. Above: SUPG formulation violating Galilean invariance. Below: SUPG
abiding the Galilean invariance principle. A classical quadrilateral Saltzmann mesh is used in an
implosion computation. The initial velocity is of unit magnitude and directed horizontally from
right to left, except the left boundary which is held fixed. The initial density is unity and the initial
specific internal energy is 10−1. A shock forms at the left boundary and advances to the right. Note
the mesh coasting phenomenon on the top right corner of the upper domain, absent in the SUPG
formulation satisfying Galilean invariance, below.
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SUPG and variational multiscale stabilized methods [8, 10, 11, 12, 13, 14] can be interpreted as Petrov-
Galerkin methods in which the test space depends on the local structure of the partial differential equations
simulated. A typical stabilized method is derived from the corresponding Bubnov-Galerkin method by
perturbing the test function space on element interiors. The stability properties of SUPG-stabilized methods
depend on the structure of the test function perturbation. In this case, invariance of the test function
perturbation has to be ensured to avoid the paradox of having the stability properties of the method
depending on the observer. As was shown in [16], “standard” stabilization procedures – which usually
lack Galilean invariance – were found to generate catastrophic instabilities when applied in compressible
Lagrangian hydrodynamics computations (see, e.g., Fig. 1).

More recent work of the author has been focusing on exploring the development of SUPG-stabilized
methods for shock hydrodynamics applications on arbitrary Lagrangian-Eulerian meshes, and the question
of invariance was posed again. An important aspect of the ongoing investigation is related to what happens
when the Eulerian rather than the Lagrangian limit of the ALE equations is taken. To the best of the
author’s knowledge, the large majority of the stabilization operators developed to date in the context of
Eulerian (fixed) meshes for compressible flow computations are not consistent with Galilean invariance.

A new approach that obviates this issue will be presented and compared to the old approach. As a
point of note, the instabilities documented in [16] manifested themselves whenever the inconsistent terms
became predominant in the stabilization operator, while were absent in all other conditions. Therefore, it
is quite possible that a milder form of such instabilities might have been experienced by other researchers,
and erroneously attributed to “weakenesses” in the design of the stabilization tensor τ , whose definition has
a substantial degree of arbitrariness. This statement cannot be made more precise, and may be considered
as the author’s “reasonable doubt”.

It will be shown that, for certain definitions of the set of solution variables, conformity with Galilean
invariance can be achieved by a number of straightforward simplifications, which imply a conspicuous re-
duction in the computational cost of the stabilization operator. As will become clear from the forthcoming
discussion, it is easier and computationally more efficient to develop Galilean invariant stabilized oper-
ators, which, in addition, have the potential for improved reliability in complex geometry, multi-physics
applications.

Since SUPG methods have proved to be a well-established and reliable tool for compressible flow
simulations, questions about the importance of Galilean invariance may arise. An answer to these concerns
is provided in [16], where the pitfalls caused by neglecting the main principles of physics are carefully
presented and analyzed. Consequently, one should always wonder whether to take risks on invariance
issues, considering the ever-increasing level of complexity of modern numerical computations.

The rest of the material is organized as follows: A very general discussion of the issue of Galilean
invariance in the context of ALE equations and its Eulerian and Lagrangian limits is presented in section
2. The ALE description of the kinematics of motion is developed in section 3. Section 4 presents an example
of the invariance issue in the context of a one dimensional scalar advection equation, and a brief survey of
Galilean invariant SUPG methods for incompressible flows. A stabilized space-time variational formulation
of the ALE compressible Euler equations is developed in section 6. Section 7 presents an analysis of the
invariance properties of the residuals and their effect on the approximation to the subgrid-scale solution.
In section 8, a Galilean consistency analysis shows that standard SUPG formulations for compressible flows
yield a non-invariant test function space. A new, invariant approach is also developed, and its advantages
are analyzed in detail. Conclusions are summarized in section 9.
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v v̂ v v̂ṽ ˜̂v

−V G−V G

Figure 2. Sketch of a Galilean transformation for a generic ALE mesh. Left: A material domain,
and the corresponding mesh (the red grid), are moving with velocity v (black arrow) and v̂ (red
arrow), respectively. Left: After a Galilean transformation is applied, the material and the mesh
are moving with velocities ṽ = v − V G and ˜̂v = v̂ − V G, respectively. The relative velocity of the
material with respect to the mesh is an invariant: c̃ = ṽ − ˜̂v = v − V G − v̂ + V G = v − v̂ = c.

2 Galilean transformations in the ALE context

This section presents an overview on how Galilean invariance applies to SUPG formulations in various
reference frames. In order to explore the computational implications of the Galilean principle, we need to
think about the mesh as a (possibly moving) laboratory which is used to sample the numerical data. In
this sense, we cannot completely separate the numerical aspects from the physics of the problem, since
SUPG forces act to stabilize advection and pressure perturbations across the mesh.

With respect to the Eulerian (current configuration) reference frame, a Galilean transformation can be
expressed by the affine mapping

G : R
+ × R

nd × R
nd −→ R

+ × R
nd × R

nd (1)
[

t xT vT
]T 7→

[

t̃ x̃T ṽT
]T

(2)

or, in matrix form,





t̃
x̃

ṽ



 =





1 01×3 01×3

−V G I3×3 03×3

03×1 03×3 I3×3









t
x

v



−





0
03×1

V G



 (3)

which can be easily inverted as





t
x

v



 =





1 01×3 01×3

V G I3×3 03×3

03×1 03×3 I3×3









t̃
x̃

ṽ



+





0
03×1

V G



 (4)

and consists of a spatial coordinate shift by V Gt. Therefore, if x represents the coordinate in the original
reference frame, and x̃ the coordinate in the transformed reference frame, x̃ = x−V Gt indicates that the
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v ≡ v̂ v ≡ v̂ ṽ ≡ ˜̂v

−V G

Figure 3. Sketch of a Galilean transformation for a Lagrangian mesh. Left: A material domain,
and the corresponding mesh (the red grid), are moving with the same velocity v ≡ v̂ (black arrow).
Left: After a Galilean transformation is applied, the material and the mesh are moving with velocity
ṽ ≡ ˜̂v = v − V G = v̂ − V G. Therefore a Lagrangian mesh is transformed into a Lagrangian mesh
by a Galilean transformation.

coordinate x̃ is shifted by V Gt with respect to the coordinate x. Analogously, ṽ = v−V G, while the time
coordinate is unchanged. Galilean transformations are routinely used to check the consistency of models
in physics and computational sciences. In particular, a well-designed model or numerical scheme must be
invariant to Galilean transformations. This can be symbolically expressed by saying that any generalized
functional form M representing a model, either physical or numerical, should transform as

M(v,x, t, . . . )
G−→ M(ṽ, x̃, t̃, . . . ) (5)

If a mesh is used to discretize a spatial domain by a computational model, Galilean transformations
apply to both the mesh and the domain, and the relative velocities between the mesh and the domain
are preserved. This simple observation has clear implications when considering the Galilean invariance
properties of SUPG formulations. For example, in the generic ALE context (see Fig. 2), an invariant
SUPG perturbation to the Bubnov-Galerkin test function can only depend on thermodynamic variables
and their gradients, the difference c between the material velocity v and the mesh velocity v̂, and derivatives
of the velocities and position vectors, the only invariant quantities.

In the Lagrangian limit the mesh is tied to the material (v = v̂, i.e., c = 0, see Fig. 3), and the absolute
velocity of the material v cannot enter the expression for the SUPG perturbation to the test space.

In the Eulerian limit, the mesh, seen from the transformed coordinate system, is moving with constant
velocity −V G (see Fig. 4). Therefore, an Eulerian mesh transforms into a uniformly moving mesh after a
Galilean change of coordinates is performed. This situation is not paradoxical, but a simple consequence
of the general principle of invariance applied to the ALE framework.

Remark 1 Developing SUPG operators for Eulerian meshes is somewhat problematic, since it is not
possible to discern from the equations whether the meaning of “v” is v− v̂ = v−0 = c, a relative velocity,
or simply v, the absolute material velocity. In this sense the best way to develop SUPG operators for
Eulerian computations is to start from the ALE formulation and then take the limit for a fixed (Eulerian)
mesh.
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v

v̂ = 0

v ṽ

˜̂v = −V G

−V G

Figure 4. Sketch of a Galilean transformation for an Eulerian mesh. Left: The material is
moving with velocity v, while the mesh is fixed (v̂ = 0). Left: After a Galilean transformation is
applied, the material is moving with velocity ṽ = v − V G and the mesh is undergoing a rigid body
translation with velocity ˜̂v = −V G. Therefore a motionless mesh, after transformation, assumes
uniform translational motion. However, c̃ = ṽ − ˜̂v = v − V G + V G = v = c, as for a generic ALE
mesh.

3 Kinematics of motion in the ALE context

The purpose of the present section is to fix the notation for arbitrary Lagrangian Eulerian equations and
recall a number of very important results. The notation used in [1] is adopted in what follows, with minor
differences. The reader can also refer to [3] or [4] for further details. A point of departure in the discussion
of the arbitrary Lagrangian-Eulerian approach is to define the material (or Lagrangian), referential, and
Eulerian reference frames. Let Ω0, Ω̂, and Ω be open sets in R

nd (see, e. g., Fig. 5). The deformation ϕ
is the transformation from the material to the Eulerian reference frame

ϕ : Ω0 → Ω = ϕ(Ω0), (6)

X 7→ x = ϕ(X , t), ∀X ∈ Ω0, t ≥ 0, (7)

HereX is the material coordinate (which usually corresponds to the point vector in the initial configuration
of the body), and x is the point vector in the Eulerian frame. Ω0 is the domain occupied by the body in the
material reference frame. ϕ maps Ω0 to Ω, the domain occupied by the body in the current configuration
(Eulerian frame). It is also useful to define the deformation gradient, and the Jacobian determinant :

F = ∇Xϕ =
∂ϕi

∂Xj
=

∂xi

∂Xj
(8)

J = det(F ) (9)

The referential map ϕ̂, from the referential frame to the Eulerian frame, is defined as

ϕ̂ : Ω̂ → Ω = ϕ̂(Ω̂), (10)

χ 7→ x = ϕ̂(χ, t), ∀χ ∈ Ω̂, t ≥ 0, (11)

where χ is the point vector in the referential frame. Ω̂, the domain occupied by the body in the refer-
ential frame, is mapped to Ω by ϕ̂. In addition, the mesh deformation gradient and the mesh Jacobian
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Ω0

Ω

Ω̂

ϕ ϕ̂

ψ
X

x

χ

Figure 5. Sketch of the maps ϕ, ϕ̂, and ψ for the generalized ALE framework.

determinant are defined as:

F̂ = ∇χ ϕ̂ =
∂ϕ̂i

∂χj
=
∂xi

∂χj
(12)

Ĵ = det(F̂ ) (13)

The referential frame of reference lies on a mesh which is not fixed in space (Eulerian) nor attached
to the material (Lagrangian), but moves in time with an arbitrary motion. The transformation from the
material to the referential frame will also be needed, namely

ψ : Ω0 → Ω̂ = ψ(Ω0), (14)

X 7→ χ = ψ(X , t), ∀X ∈ Ω0, t ≥ 0, (15)

The definition of the referential deformation gradient reads

∇Xψ =
∂ψi

∂Xj
=

∂χi

∂Xj
(16)

Displacements can then be defined as

u = ϕ(X, t) −ϕ(X , 0) = x(X, t) −X (17)

û = ϕ̂(χ, t) − ϕ̂(χ, 0) = x(χ, t) −X (18)

with the practical assumption, χ(X , t = 0) = X. The referential displacement û is the displacement
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undergone by the mesh. Analogously, material and mesh velocities can be defined:

v =
∂x

∂t

∣

∣

∣

∣

X

=
∂u

∂t

∣

∣

∣

∣

X

= u̇, (19)

v̂ =
∂x

∂t

∣

∣

∣

∣

χ

=
∂u

∂t

∣

∣

∣

∣

χ

(20)

Using the chain rule, it is possible to derive two very important expressions for the Lagrangian time
derivative of a scalar-valued function f :

ḟ(χ, t) =
∂f

∂t

∣

∣

∣

∣

χ

+w · ∇χf =
∂f

∂t

∣

∣

∣

∣

χ

+ c · ∇xf (21)

where ∇χ and ∇x are the gradients in the referential and Eulerian frames, respectively. w = ∂tχ |
X

=

ψ̇(X , t) = χ̇ is the particle referential velocity, that is the velocity of a material point seen from the
referential frame. The convective velocity c is the velocity of the material relative to the mesh, and is
related to w through

c = v − v̂ = F̂w (22)

or, in index notation, ci = vi − v̂i = F̂ijwj , with F̂ij = ∂χj
ϕ̂i(χ, t) = ∂χj

xi.

3.1 Limit behavior

In the Lagrangian limit, χ ≡ X , v̂ = v, and F̂ ≡ F , ∀t, so that w = χ̇ = Ẋ = 0, and, in addition,
c = F̂w = 0.

In the Eulerian limit, χ ≡ x, v̂ = 0, and F̂ ≡ I, ∀t, so that w = χ̇ = ẋ = v, and, in addition,
c = F̂w = Iw = w = v.

4 Preamble: Linear scalar advection equation in one dimension

The discussion in the case of compressible flow equations will involve a large number of algebraic manipula-
tions. However, the issues object of the discussion can be easily explained in the case of a scalar advection
equation of the type

φ̇

∂φ

∂t

∣

∣

∣

∣

χ

+ w
∂φ

∂χ

∂φ

∂t

∣

∣

∣

∣

x

+ v
∂φ

∂x































= f (23)

where the Lagrangian, ALE, and Eulerian descriptions of motion have been adopted. To avoid including
boundary conditions in the discussion, the domains are infinite, namely, Ω0 = Ω̂ = Ω = (−∞,∞). Assum-
ing w and v constant (i.e., the material and the mesh velocities are constants, possibly different from one
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another) the Galerkin formulations corresponding to problem (23) in the three reference frames are given
by:

0 =

∫

Ω0

Ψh
(

φ̇h − f
)

dX (24)

0 =

∫

Ω̂

(

ψ̂h ∂φh

∂t

∣

∣

∣

∣

χ

− ∂ψ̂h

∂χ
wφh − ψ̂hf

)

dχ (25)

0 =

∫

Ω

(

ψh ∂φh

∂t

∣

∣

∣

∣

x

− ∂ψh

∂x
vφh − ψhf

)

dx (26)

where φh is the numerical approximation to φ and Ψh, ψ̂h, and ψh are the test functions, collocated at
the nodes of the Lagrangian, ALE, and Eulerian meshes, respectively. To fix the ideas, we can think of
solving the Galerkin formulations above in the space of continuous functions which are piecewise linear
over each element of the discretization. Let us then ask ourselves the question: “What is the correct way
of stabilizing the Galerkin discretizations (24)–(26)?” The answer is easy in this simple case.

For the Lagrangian form (24), there is no advection across the mesh, and a simple ordinary differential
equation does not need stabilization. Anticipating a later discussion, the case of compressible Euler equa-
tions is more complicated, since there is still no advection of material across the computational grid, but
acoustic waves do propagate through the mesh and need stabilization.

For the ALE equation (25), the advection is given by the particle referential velocity w, and, applying
the SUPG method originally developed by Brooks and Hughes in [2], the stabilization term reads:

SUPG(ψ̂h, φh) =

nel
∑

e=1

∫

Ω̂e

(

w
∂ψ̂h

∂χ

)

τe

(

∂φh

∂t

∣

∣

∣

∣

χ

+ w
∂φh

∂χ
− f

)

dχ (27)

where a typical choice for τ is given by (see also the recent, concurrent work of Masud [15])

τe =

(

(

2

∆t

)β

+

∣

∣

∣

∣

2w

∆χe

∣

∣

∣

∣

β
)

−1/β

(28)

with β ≥ 1. ∆χe is the element length of the referential mesh.

Remark 2 The perturbation to the test function, w∂χψ̂
hτe, is clearly invariant. Therefore, for this simple

example, the Petrov-Galerkin method generated by the SUPG approach is invariant at the discrete level.

Notice that the residual ∂φh

∂t

∣

∣

∣

χ
+ w ∂φh

∂χ − f is also invariant. For more complicated sets of nonlinear

equations, this last condition may not always be verified, as explained in section 7.

In the Eulerian case, the advection is due to the material velocity v, and the derivations are analogous
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to the ALE case:

SUPG(ψh, φh) =

nel
∑

e=1

∫

Ωe

(

v
∂ψh

∂x

)

τe

(

∂φh

∂t

∣

∣

∣

∣

x

+ v
∂φh

∂x
− f

)

dx (29)

τe =

(

(

2

∆t

)β

+

∣

∣

∣

∣

2v

∆xe

∣

∣

∣

∣

β
)

−1/β

(30)

Remark 3 The Eulerian and Lagrangian cases are limits of the ALE case. In fact, (27) vanishes for
w = 0, and transforms to (29), for w = v.

The previous derivations are clearly consistent with the principle of Galilean invariance: If a Galilean
transformation is applied to the Eulerian mesh, we will recover an ALE formulation as in (27)–(28), with
a transformed mesh velocity ˜̂v = −V G, so that w̃ = ṽ − ˜̂v = v − V G + V G = v. With these substitutions,
the transformed SUPG operator is exactly identical to the original Eulerian SUPG operator, and for a
very important reason: it is the advection relative to the mesh that needs stabilization, and not the absolute
advection.

Remark 4 It would have been utterly incorrect to say that for the transformed Eulerian case, the form of
(29)–(30) would hold unchanged, with ṽ in place of v. In this case, the SUPG operator would change even
if the advection relative to the mesh were unchanged: This is the key point of the entire discussion.

Remark 5 It is clear that if a general approach needs to be developed, it is crucial to start from the ALE
equations and take Lagrangian and Eulerian limits, rather than trying to generalize a concept developed for
the Eulerian equations. For additional considerations on stabilization issues in the ALE context, see [15].

5 A brief survey on stabilized methods for incompressible flow

Although the present work is mainly focused on compressible flows, it is worthwhile to briefly discuss the
incompressible case, for which all the most commonly used stabilization techniques are Galilean invariant.

5.1 SUPG stabilization of the incompressible Navier-Stokes equations, Brooks and
Hughes [2]

Considering the incompressible Navier-Stokes equations in ALE advective form, it is straightforward to see
that Galilean invariance is preserved:

SUPG(ψ̂
h
v ; ρ,v

h,w,ph) =

nel
∑

e=1

∫

Ω̂e
n

(τw · ∇χ ψ̂
h
v ) · R̂es

v
(ρ,vh,w,ph) dΩ̂ (31)
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Here ψ̂
h
v is the test function vector, and

R̂es
v
(ρ,vh,w, ph) = Ĵρ

∂vh

∂t

∣

∣

∣

∣

χ

+ Ĵρw · ∇χv + cof F̂∇χp− Ĵρg

= Ĵ

(

ρ
∂vh

∂t

∣

∣

∣

∣

χ

+ ρc · ∇xv + ∇xp− ρg

)

(32)

where cof F̂ = ĴF̂
−T

. In the Eulerian limit, w = v, χ = x, and the familiar expression for the stabilization
is recovered. Notice that Galilean invariance holds as long as

τ = τ(w, ν,∆t,∆χe) (33)

where ν is the physical viscosity, and ∆χe is a mesh length scale.

5.2 PSPG stabilization, Tezduyar [19]

PSPG-type terms (see, e.g., [18, 20, 19]) are also Galilean consistent. In the ALE context, their form is:

PSPG(ψ̂h
ρ ; ρ,vh,w,ph) =

nel
∑

e=1

∫

Ω̂e
n

τPSPG

ρ
∇χψ̂h

ρ · R̂esv(ρ,vh,w,ph) dΩ̂ (34)

where ψ̂h
ρ is the test function for the mass conservation (divergence-free velocity field constraint), and

τPSPG = τPSPG(w, ν,∆t,∆χe) (35)

5.3 Advanced multiscale concepts and turbulence [9]

Recent developments in the application of multiscale methods to stabilization and turbulence subgrid
modeling hinge upon substituting the subgrid-scale approximation

v′ ≈ −τR̂esv(vh,w, ph) (36)

in the Galerkin mesh-scale equations. As long as the τ parameter is in the form (33), the overall approach
is Galilean invariant.

6 ALE equations of compressible flows

The present section contains the derivation and discretization of the ALE equations, using the space-time
formulation developed in [17].
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6.1 Generalized Reynolds transport theorem

In order to derive useful integral forms of conservation laws, a generalized version of the classical Reynolds
transport theorem is needed. The transport theorem is simply an integral equation between the material
reference frame and an arbitrary reference frame, which may or may not correspond to the Eulerian frame.
Hence, if referential coordinates are used,

d

dt

∫

Ω̂
fĴ dΩ̂ =

∫

Ω̂

∂(fĴ)

∂t

∣

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂=∂Ω̂
fw · n̂ Ĵ dΓ̂ (37)

Equation (37) can be derived noticing that it corresponds to the standard form in Eulerian coordinates
with χ in place of x and w in place of v.

6.2 Integral form of the ALE equations in the referential coordinate frame

Applying (37) to the mass, momentum, and total energy, it is easily derived (see [1], pp. 443–447):

0 =

∫

Ω̂

∂ρ̂

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂
ρ̂w · n̂ dΓ̂ (38)

0 =

∫

Ω̂

∂(ρ̂v)

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂
(ρ̂v ⊗w − P̂ )n̂ dΓ̂ −

∫

Ω̂
ρ̂g dΩ̂ (39)

0 =

∫

Ω̂

∂(ρ̂E)

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂
(ρ̂Ew − P̂ T

v + Q̂) · n̂ dΓ̂

−
∫

Ω̂
ρ̂(v · g + s) dΩ̂ (40)

where ρ̂ = ρĴ , g is the body force term per unit mass (e.g., the gravitational acceleration), P̂ = ĴσF̂
−T

=
σ cof F̂ , σ is the Cauchy stress tensor in Eulerian coordinates, E = e+v ·v/2 is the total energy per unit

mass, e is the internal energy per unit mass, Q̂ = (qTcof F̂ )T = (cof F̂ )T q = Ĵ F̂
−1
q, q is the heat flux

in the Eulerian frame, and s is a heat source (s > 0) or sink (s < 0) per unit mass. Let us introduce the
following definitions:

Û = ĴU , U =













ρ
ρv1
ρv2
ρv3
ρE













, Ẑ =















0

−Ĵρg1
−Ĵρg2
−Ĵρg3

−Ĵρvigi − Ĵρs















(41)

Ĝi =















Ĵρwi

Ĵρv1wi − P̂1i

Ĵρv2wi − P̂2i

Ĵρv3wi − P̂3i

ĴρEwi − vkP̂ik + Q̂i















=















Ĵρwi

Ĵρv1wi − σ1k cofF̂ki

Ĵρv2wi − σ2k cofF̂ki

Ĵρv3wi − σ3k cofF̂ki

ĴρEwi + (qk − vjσjk) cofF̂ki















(42)

with i = 1, 2, 3. U is the vector of conserved variables, Û is the vector of generalized ALE conserved
variables, Ĝi is the Euler flux in the i-th direction, and Ẑ is a vector-valued source term.
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Remark 6 Notice that

Ĝi = wiÛ + Ĝ
L
i , Ĝ

L
i =















0

−σ1k cofF̂ki

−σ2k cofF̂ki

−σ3k cofF̂ki

(qk − vjσjk) cofF̂ki















(43)

where Ĝ
L
i is the Lagrangian limit of the Euler flux Jacobians, as w → 0.

Equations (38)–(40) can be expressed more succinctly in vector form:

∂t|χÛ(Y ) + ∂χi
Ĝi(Y ) + Ẑ = 0 (44)

where the Gauss divergence theorem has been applied, as well as the fact that (38)–(40) hold on an
arbitrary domain. Y is the vector of solution variables to be specified subsequently.

6.3 Mie-Grüneisen constitutive laws

It is assumed that the materials under consideration do not possess deformation strength, so that the
Cauchy stress tensor σ reduces to an isotropic tensor, dependent only on the thermodynamic pressure:

σij = −p δij (45)

with δij , the Kronecker tensor. Mie-Grüneisen materials satisfy an equation of state of the form p =
f1(ρ; ρr, er) + f2(ρ; ρr, er)e, where ρr and er are fixed reference thermodynamic states. More succinctly,

p = f1(ρ) + f2(ρ) e (46)

If f1 = 0 and f2 = (γ − 1) ρ, the equation of state for an ideal gas, p = (γ − 1) ρ e, is recovered. Thanks
to the Mie-Grüneisen constitutive equations, a quasi-linear form of (44) can be developed, namely,

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (47)

The definitions of Â0, Âi, and Ĉ will be given in section 8, and depend on the choice of the solution vector
Y .

6.4 A space-time variational formulation in referential coordinates

In order to lay the foundations for the subsequent discussion, a space-time variational formulation in
the referential frame is presented. The analysis of Galilean invariance is not strictly dependent on the
variational formulation adopted, and, for example, similar conclusions hold for alternative space-time or
semi-discrete formulations. In this paper, the approach developed in [17] for the purely Lagrangian case is
extended to the ALE equations.
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Figure 6. General finite element discretization in space-time.

Given a partition 0 = t0 < t1 < t2 < . . . < tN = T of the time interval I =]0, T ], let In =]tn, tn+1], so
that ]0, T ] =

⋃N−1
n=0 In. The space-time domain Q̂ = Ω̂ × I can be divided into time slabs

Q̂n = Ω̂ × In (48)

with “lateral” boundary P̂n = Γ̂× In (Γ̂ = ∂Ω̂ is the boundary of Ω̂). A sketch of the general discretization
in space-time is presented in Figure 6. We will only make use of discretizations prismatic in time. The
material domain Ω̂ is further divided into material-subdomains Ω̂e (elements in space, a partition of the

initial configuration). Thus Ω̂ =
⋃nel

e=1 Ω̂e, and, consequently, a typical space-time element is given by the
prism (i.e., tensor product domain)

Q̂e
n = Ω̂e × In (49)

It is also assumed that the space-time boundary is partitioned as P̂n = P̂ g
n ∪ P̂ h

n , P̂ g
n ∩ P̂ h

n = ∅ (i.e., P̂n

is divided into a Dirichlet boundary P̂ g
n and a Neumann boundary P̂ h

n ). Let us define the test and trial
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function spaces as follows:

Ŝh =
{

V̂
h

: V̂
h ∈ (C0(Q̂))m,

V̂
h
∣

∣

∣

Q̂e
n

∈ (P1(Ω̂
e) ×P1(In))m, V̂

h
= Gbc(t) on P̂ g

n

}

(50)

V̂h =
{

Ŵ
h

: Ŵ
h
∣

∣

∣

Ω̂
∈ (C0(Ω̂))m,

Ŵ
h
∣

∣

∣

Q̂e
n

∈ (P1(Ω̂
e) ×P0(In))m,Ŵ

h
= 0 on P̂ g

n

}

(51)

where Gbc(t) is the vector of Dirichlet boundary conditions, Pk is the set of polynomials up to degree k,
and m = nd + 2, nd ∈ {1, 2, 3}. The trial function space Ŝh is given by the piecewise-linear, continuous
functions on Q̂ = Ω̂×]0, T [, while the test function space V̂h is given by functions that are continuous
piecewise-linear in space and discontinuous, piecewise-constant in time. The variational statement reads:

Find Y h ∈ Ŝh, such that ∀Ŵ h ∈ V̂h

B(Ŵ ,Y h) + SUPG(Ŵ
h
,Y h) + DC(Ŵ

h
,Y h) = F(Ŵ ) (52)

with

B(Ŵ ,Y h) =

∫

Ω̂
Ŵ

h
(χ) · Û(Y h(χ, tn+1)) − Ŵ

h
(χ) · Û(Y h(χ, tn)) dΩ̂

+

∫

Q̂n

(

−Ŵ h
,i · Ĝi(Y

h) + Ŵ
h · Ẑ(Y h)

)

dQ̂

+

∫

P̂ g
n

Ŵ
h · Ĝi(Y

h)n̂idP̂ (53)

F(Ŵ ) = −
∫

P̂ h
n

Ŵ
h · Ĥ in̂i dP̂ (54)

Ŵ is the vector-valued test function, n̂i is the i-th component of the normal to the space-time boundary, and

Ĥ i is the Neumann flux across the boundary in the i-th direction. The SUPG operator SUPG(Ŵ
h
,Y h)

will be defined subsequently. The discontinuity capturing operator DC(Ŵ
h
,Y h), will be omitted in the

following discussion, which applies to regions of smooth flows, away from discontinuities.

Remark 7 The proposed formulation is second-order-in-time and, following derivations analogous to [17],
it can be easily proven to embed global conservation of mass, momentum and total energy.

6.5 SUPG Stabilization

The SUPG stabilization operator can be abstractly defined as

SUPG(Ŵ
h
,Y h) = −

(nel)n
∑

e=1

∫

Q̂e
n

(L̂∗

SHŴ h) · τ̂ R̂es(Y h)dQ̂ (55)
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where

R̂es = L̂ = Â0 ∂t|χ + Âi∂χi
+ Ĉ (56)

L̂SH = Â0 ∂t|χ + Âi∂χi
(57)

L̂∗

SH = −ÂT
0 ∂t|χ − ÂT

i ∂χi
(58)

τ̂ = τ̂ (∆t, he, Â0, Âi, Ĉ, . . . ) (59)

∆t is the time increment, and he is the e-th element mesh scale. For the discussion that follows, a precise
definition of τ̂ is not needed. Instead, its functional dependence on the parameters and various terms in
the formulation is sufficient to fully understand the issues under investigation.

Remark 8 The rest of the discussion will be focused on assessing whether or not the perturbation to the
Bubnov-Galerkin test function, −(L̂∗

SHŴ h) · τ̂ , is Galilean invariant.

6.5.1 A multiscale view on Galilean invariance

The SUPG stabilization is obtained from a linearized multiscale decomposition of the Galerkin discretiza-
tion, according to the following equations:

B(Ŵ
h
,Y h) +

∫

Q̂n

L̂∗

SHŴ
h · Y ′ dQ̂ = 0 (60)

Y ′ = L̂−1
SH(−R̂es(Y h)) = −

∫

Q̂n

Ĝ
′

SH R̂es(Y h) dQ̂, in V ′(Q̂n) (61)

where Ĝ
′

SH is the subgrid-scale element Green’s function for the ALE equations of shock hydrodynamics,
and L̂∗

SH and L̂SH are obtained using the full Fréchet derivative of the Galerkin residual. Ideally, Y ′ is
also an invariant of the Galilean transformation, since it is defined as the difference of Y and Y h (see [16]
for the trivial proof). However, due to the linearization, both (60)–(61) may yield second-order Galilean
inconsistencies. Consequently, when the exact solution Y ′ to the linearized subgrid problem (61) is inserted
into the mesh-scale equation (60), second-order Galilean inconsistencies are to be expected.

Furthermore, the approximation to the Green’s function operator adopted in SUPG methods, namely

Ĝ
′

SH ≈ τ̂ (χ; t)δ(χ̃ − χ; t̃− t) (62)

may result too coarse in certain instances, preventing the expression for

Y ′ ≈ −τ̂ (χ; t) R̂es(Y h(χ; t)) (63)

to retain first- or zeroth-order invariance properties. Since Y ′ is tied to the expression of the test function
perturbation through τ̂ , stability can be at risk, as documented in [16]. The proposed extension to the
ALE equations of the approach developed in [17, 16] is designed to remove Galilean inconsistencies from
the SUPG operator, with specific emphasis on the construction of the Petrov-Galerkin test space.

Remark 9 In addition, it should be understood that an invariant approximation of Y ′ may be advisable,
at least from the theoretical point of view, as will be further discussed in later sections.
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7 Galilean invariance and the role of the subgrid-scale solution

Before undertaking an exhaustive discussion on the construction of the SUPG operator, it is important to
understand how the numerical Galerkin residuals transform. It will be shown that for some choices of the
solution variables, it is possible to maintain invariance properties if the residuals are in advective form,
independently of the numerical quadrature adopted. This result does not hold for any solution vector, as
will be clear in the case of conservation variables. Therefore, a key point to be made is the following: Not
all forms of the numerical, non-vanishing residuals transform correctly.

Let us review how the Euler equations of gas dynamics transform. Namely,

0 =
∂(Ĵρ)

∂t

∣

∣

∣

∣

∣

χ

+
∂Ĵρwj

∂χj
(64)

0 =
∂(Ĵρvi)

∂t

∣

∣

∣

∣

∣

χ

+
∂

∂χj
(Ĵρviwj − P̂ij) − ρĴgi (65)

0 =
∂(ĴρE)

∂t

∣

∣

∣

∣

∣

χ

+
∂

∂χj
(ĴρEwj − viP̂ij) − ρĴvigi − ρĴs (66)

or, more simply,

0 = R̂es
ρ
(ρ;χ,w,v, t) (67)

0 = R̂es
ρv
i (ρ, p;χ,w,v, t)

= vi R̂es
ρ
(ρ;χ,w,v, t) + R̂es

v

i (ρ, p;χ,w,v, t) (68)

0 = R̂es
E
(ρ, e, p;χ,w,v, t)

=
(

e+
vkvk

2

)

R̂es
ρ
(ρ;χ,w,v, t)

+vi R̂es
v

i (ρ, p;χ,w,v, t) + R̂es
e
(ρ, e, p;χ,w,v, t) (69)

where the mass conservation residual R̂es
ρ
, the momentum equation advective residual R̂es

v
, and the

internal energy equation residual R̂es
e

are defined as

R̂es
ρ
(ρ;χ,w,v, t) = Ĵ

∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(70)

R̂es
v

i (ρ, p;χ,w,v, t) = Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi (71)

R̂es
e
(ρ, e, p;χ,w,v, t) = Ĵρ

∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj
+
∂vi

∂χj
p cofF̂ij − Ĵρs (72)

Here, the identity

˙̂
J =

∂vi

∂χj
cofF̂ij − Ĵ

∂wj

∂χj
(73)
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has been used to rearrange the mass conservation equation (64) as follows:

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ Ĵρ

∂wj

∂χj
+ ρ





∂Ĵ

∂t

∣

∣

∣

∣

∣

χ

+ wj
∂Ĵ

∂χj





= Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ Ĵρ

∂wj

∂χj
+ ρ

˙̂
J (74)

= Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ

∂vi

∂χj
cofF̂ij (75)

Recalling that x(X , t = 0) = χ(X, t = 0) = X, it easy to verify that a Galilean transformation applied to
the referential coordinate system reads









t̃
χ̃

w̃

ṽ









=









t
χ

w

v − V G









, or,









t
χ

w

v









=









t̃
χ̃

w̃

ṽ + V G









(76)

Hence,

R̂es
ρ
(ρ;χ,v,w, t)

G−→ R̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃) (77)

R̂es
v

i (ρ, p;χ,v,w, t)
G−→ R̂es

ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃) (78)

R̂es
e
(ρ, e, p;χ,v,w, t)

G−→ R̂es
e
(ρ, e, p; χ̃, ṽ, w̃, t̃) (79)

R̂es
ρv
i (ρ, p;χ,v,w, t)

G−→ ṽiR̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃)

+R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (80)

R̂es
E
(ρ, e, p;χ,v,w, t)

G−→
(

e+
ṽkṽk

2

)

R̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃)

+ṽi R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+R̂es
e
(ρ, e, p; χ̃, ṽ, w̃, t̃)

+V G
i

(

ṽiR̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃)

+R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)
)

+
V G

k V
G
k

2
R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (81)
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The last two equations can be written more compactly as:

R̂es
ρv
i (ρ, p;χ,v,w, t)

G−→ R̂es
ρṽ
i (ρ, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (82)

R̂es
E
(ρ, e, p;χ,v,w, t)

G−→ R̂es
E
(ρ, e, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρṽ
i (ρ, p; χ̃, ṽ, w̃, t̃)

+
V G

k V
G
k

2
R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (83)

As expected, the equations transform appropriately, since the terms multiplied by the transformation
velocity V G annihilate exactly. In other words, if an exact multiscale decomposition of the solution is
applied, the resulting equations would satisfy the invariance principle.

If, however, as already mentioned in [16], the subgrid-scale problem is solved only approximately, the
situation is different and the numerical residuals are not necessarily invariant.

On the one hand, no matter the numerical quadrature used, the numerical approximations to the

“advective” residuals R̂es
h;ρ

, R̂es
h;v

, and R̂es
h;e

would transform correctly, if, for example, the set of
solution variables is given by [ρ, vT , p]T , [ρ, vT , e]T , or [e, vT , p]T . More generally, if v is a variable in
the solution vector, and the remaining two entries are given by functions of the thermodynamic quantities,
the resulting advective form of the residuals would transform correctly. It is important to notice that, in
the advective form of the residual, the velocity v appears only in differentiated form.

Instead, R̂es
h;ρv

and R̂es
h;E

would not transform correctly, because V G multiplies some of the non-
vanishing residual terms. Hence, the approximation to the subgrid-scale solution Y ′ ≈ −τ̂ R̂es(Y h) would
not be invariant if these residuals were used in its construction. In addition, not all solution vectors yield
invariant advective forms, as will become clear in the case of conservation variables.

It is also important to realize, however, that residuals are usually higher-order corrections: In the
computations performed in [17, 16], virtually no difference in the results was observed between SUPG
operators with and without invariant residuals in the approximation to Y ′. The fact that instabilities were
experienced only for a non-invariant SUPG test function perturbation indicates that the latter is far more
stringent then Galilean consistency of the residual terms. Nonetheless, it should be advisable to preserve
invariance also for the approximations to Y ′.

8 Quasi-linear forms and invariance

Quasi-linear differential forms of the ALE equations have a central role in the design of SUPG operators,
which make use of a fairly arbitrary combination of the Euler flux Jacobians to define a perturbation to
the Bubnov-Galerkin test function space. Hence, a key requirement to be respected is that every Euler
flux Jacobian must be invariant, or one cannot expect the perturbed test space to be independent of the
observer. In what follows, two examples will be presented.

First, the case of density-pressure variables (Y = [ρ vT p]T ) will be analyzed, and it will be shown
how to successfully address the issue of lack of Galilean invariance affecting classical SUPG formulations.
Specifically, invariance in the SUPG operator can be recovered by using the advective form of the residuals
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when constructing the Euler flux Jacobians. For the sake of completeness, the derivations in the case of the
pressure primitive variables (Y = [e vT p]T ), and density-internal energy variables (Y = [ρ vT e]T ), are
presented in appendix A.1. Pressure primitive variables are of greater interest in the aerospace community,
since they allow to span the compressible and incompressible limit of the Euler equations. Instead, density-
internal energy variables are traditionally used in the community developing hydrocodes.

Second, the discussion will proceed with the conservation variables (U = [ρ ρvT ρE]T ). In this case,
the advective form of the residuals does not lead to invariance properties for the Euler flux Jacobians.
This fact does not imply that there is no hope to recover invariance when conservation variables are used,
rather, that a successful approach is still to be developed.

8.1 Density-pressure variables

A quasi-linear form of the Euler equations using pressure variables (Y = [ρ vT p]T ) will be derived using
the traditional Fréchet differentiation approach and the new minimal approach of [16]. The structure and
invariance properties of the resulting SUPG perturbations of the Galerkin test function will be analyzed.

For simplicity, heat fluxes are assumed absent. Applying the Piola identity

∂(cof F̂ij)

∂χj
≡ ∂

∂χj

(

Ĵ F̂−1
ji

)

= 0 (84)

to the stress terms in (65)–(66) yields

∂P̂ij

∂χj
=

∂(ĴσikF̂
−1
jk )

∂χj
=
∂σik

∂χj
Ĵ F̂−1

jk = − ∂p

∂χj
Ĵ F̂−1

ji = − ∂p

∂χj
cofF̂ij (85)

∂viP̂ij

∂χj
=

∂(viĴσikF̂
−1
jk )

∂χj
=
∂(viσik)

∂χj
Ĵ F̂−1

jk = −∂(vip)

∂χj
cofF̂ij (86)

Using (73),

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(87)

0 = vi

(

Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂kj

∂vk

∂χj

)

+Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi (88)
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0 =
(

e+
vkvk

2

)

(

Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj

)

+vi

(

Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi

)

+Ĵρ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj
+
∂vi

∂χj
p cofF̂ij − Ĵρs (89)

Remark 10 The momentum and energy equations contain the mass conservation equation multiplied by
the velocity component vi, and internal energy e, respectively. In addition, the energy equation contains
the kinetic-energy equation, the scalar product of the velocity times the momentum equation.

In the present case, the following identity will become very useful:

Ĵ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂e

∂χj
= Ĵ

∂e

∂p

∣

∣

∣

∣

ρ

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

+ Ĵ
∂e

∂ρ

∣

∣

∣

∣

p

(

∂ρ

∂t

∣

∣

∣

∣

χ

+wj
∂ρ

∂χj

)

= Ĵe,p

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

+ Ĵe,ρ

(

∂ρ

∂t

∣

∣

∣

∣

χ

+ wj
∂ρ

∂χj

)

= Ĵe,p

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

− e,ρρ cofF̂ij
∂vi

∂χj
(90)

where (64) has been used in the last step. Here, e,p = ∂e
∂p

∣

∣

∣

ρ
, and e,ρ = ∂e

∂ρ

∣

∣

∣

p
.

8.1.1 The “standard”, non-invariant approach

The quasi-linear vector form reads

Â0(Y ) ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (91)

with

Â
(NG)
0 =















Ĵ 0 0 0 0

Ĵv1 Ĵρ 0 0 0

Ĵv2 0 Ĵρ 0 0

Ĵv3 0 0 Ĵρ 0

ĴE Ĵρv1 Ĵρv2 Ĵρv3 Ĵρe,p















, (92)

Ĉ
(NG)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs −Ĵρg1 −Ĵρg2 −Ĵρg3 0















, (93)
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and, for i = 1, 2, 3,

Â
(NG)
i =





































Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

Ĵwiv1 Ĵρwi+

ρv1cofF̂1i ρv1cofF̂2i ρv1cofF̂3i cofF̂1i

Ĵwiv2 Ĵρwi+

ρv2cofF̂1i ρv2cofF̂2i ρv2cofF̂3i cofF̂2i

Ĵwiv3 Ĵρwi+

ρv3cofF̂1i ρv3cofF̂2i ρv3cofF̂3i cofF̂3i

ĴwiE Ĵρwiv1+ Ĵρwiv2+ Ĵρwiv3+ Ĵρwie,p+

(ρE+p (ρE+p (ρE+p cofF̂kivk
−ρ2e,ρ)cofF̂1i −ρ2e,ρ)cofF̂2i −ρ2e,ρ)cofF̂3i





































(94)

Remark 11 This choice leads to Jacobians of the Euler fluxes which are not invariant if considered sepa-
rately. By inspection, it is easy to realize that there is a large number of terms which contain components
of the velocity vector v. Therefore, a single Euler flux Jacobian or an arbitrary combination of Euler
flux Jacobians are not necessarily invariant. This is precisely the situation for the perturbation to the test

function −(L̂∗

SHŴ
h
) · τ̂ = (Â

T
0 ∂t|χ Ŵ

h
+Â

T
i ∂χi

Ŵ
h
)τ̂ , which lacks invariance properties, with potentially

very negative consequences on the overall stability of the formulation.

Remark 12 Although in principle it is possible to develop a tensor τ̂ which would make the perturbation
to the test function Galilean invariant, it should be evident to the reader that, in practice, the current
structure of the Jacobians makes this task extremely difficult.

Remark 13 Obviously, also the approximation to Y ′ is not invariant.

8.1.2 A new Galilean invariant approach

The previous approach is not the only way to derive a quasi-linear form of the Euler equations. Starting
from (87)–(89), additional algebraic manipulations can be performed. Let us therefore remove the mass
conservation equation terms from the momentum and total energy equations, and the kinetic energy
equation from the total energy equation. Hence, the following system of equations in advective form is
obtained:

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(95)

0 = Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi (96)

0 = Ĵρ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj
+
∂vi

∂χj
p cofF̂ij − Ĵρs (97)

Thus,

Â
(Gal)
0 =















Ĵ 0 0 0 0

0 Ĵρ 0 0 0

0 0 Ĵρ 0 0

0 0 0 Ĵρ 0

0 0 0 0 Ĵρe,p















, Ĉ
(Gal)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs 0 0 0 0















, (98)
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and, for i = 1, 2, 3,

Â
(Gal)
i =















Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

0 Ĵρwi 0 0 cofF̂1i

0 0 Ĵρwi 0 cofF̂2i

0 0 0 Ĵρwi cofF̂3i

0
(

p−ρ2e,ρ
)

cofF̂1i

(

p−ρ2e,ρ
)

cofF̂2i

(

p−ρ2e,ρ
)

cofF̂3i Ĵρwie,p















(99)

Remark 14 Each of the generalized advective matrices developed respects the principle of Galilean invari-
ance, since they are function of F̂ , Ĵ , w, p, ρ, e,p, and e,ρ, all invariant quantities.

Remark 15 One can think about the proposed approach as being “minimalist”. In fact it produces the
minimal number of entries in the Jacobians while still retaining the generalized advective structure of the
quasi-linear form, now reduced to the mass conservation equation, the advective form of the momentum
equation, and the advective form of the internal energy equation.

Remark 16 With respect to the standard Jacobians, the Galilean invariant Jacobians require 77 fewer
terms to be computed. The compact sparsity pattern is clearly noticeable in (98)–(99). It is unusual and
quite remarkable that a consistent approach leads to a significant reduction in the computational cost.

Remark 17 In appendix A, the previous discussion is extended to the case of pressure primitive variables,
and density-internal energy variables. The conclusions that can be drawn in these two cases are virtually
identical to the present case of density-pressure variables.

8.1.3 The Lagrangian limit

The Lagrangian limit is very instructive in understanding the issues related to lack of Galilean invariance.

Standard, non-invariant approach

Â
(NG)
0 =













J 0 0 0 0
Jv1 ρ0 0 0 0
Jv2 0 ρ0 0 0
Jv3 0 0 ρ0 0
JE ρ0v1 ρ0v2 ρ0v3 ρ0e,p













, (100)

Ĉ
(NG)

=













0 0 0 0 0
−Jg1 0 0 0 0
−Jg2 0 0 0 0
−Jg3 0 0 0 0
−Js −ρ0g1 −ρ0g2 −ρ0g3 0













, (101)
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where ρ0 = ρ J is the initial density distribution, and, for i = 1, 2, 3,

Â
(NG)
i =

















0 ρ cofF1i ρ cofF2i ρ cofF3i 0

0 ρv1cofF1i ρv1cofF2i ρv1cofF3i cofF1i

0 ρv2cofF1i ρv2cofF2i ρv2cofF3i cofF2i

0 ρv3cofF1i ρv3cofF2i ρv3cofF3i cofF3i

0 (ρE+p (ρE+p (ρE+p cofF̂kivk
−ρ2e,ρ)cofF1i −ρ2e,ρ)cofF2i −ρ2e,ρ)cofF3i

















(102)

Remark 18 A large number of terms are multiplied by the velocity components, with the potential for very
dangerous consequences, since now a standard implementation of the SUPG operator would generate nodal
forces depending on the observer. As documented in [16] and Figure 1, simulations of even mild shocks
could not be successfully completed with this approach.

Galilean invariant approach

Â
(Gal)
0 =













J 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 ρ0e,p













, Ĉ
(Gal)

=













0 0 0 0 0
−Jg1 0 0 0 0
−Jg2 0 0 0 0
−Jg3 0 0 0 0
−Js 0 0 0 0













(103)

where ρ0 = ρ J , and, for i = 1, 2, 3,

Â
(Gal)
i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 0 0 0 cofF1i

0 0 0 0 cofF2i

0 0 0 0 cofF3i

0 (p−ρ2e,ρ)cofF1i (p−ρ2e,ρ)cofF2i (p−ρ2e,ρ)cofF3i 0













(104)

Remark 19 None of the entries in (103)–(104) depends on v. The Lagrangian formulation presented here
is slightly different from the one in [17], in which the algebraic constraint ρ0 = ρ J is enforced strongly in
the equations. This amounts to removing the first row and column from (103)–(104). Using a diagonal
τ̂ tensor, the simulations in [17] never suffered from instabilities, even in the most demanding implosion
computations, with shock strengths exceeding Mach 10,000,000.

8.1.4 A simple example: one-dimensional, Lagrangian gas dynamics

The effect of lack of Galilean invariance on the perturbation to the test function can be easily appreciated
in a simple one-dimensional example. Let us consider the general definition of the τ̂ tensor given in [6, 7]:

τ̂ = Â
−1
0

(

C2 +

(

∂ξ0
∂t

)2

I +
∂ξi
∂Xj

∂ξi
∂Xk

AjAk

)

−1/2

(105)

where Ai = ÂiÂ
−1
0 , C = ĈÂ

−1
0 and ξi are the coordinates in the parent domain of each element, and ξ0

refers to the time axis.
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Remark 20 It is not the intention of the author to critisize a particular reference in the available litarature.
The large majority of stabilization operators adopts similar expressions, so it is fair to say that the following
example is prototypical of current stabilization approaches to compressible flows.

In one dimension,

∂ξ0
∂t

=
2

∆t
(106)

∂ξi
∂Xj

∂ξi
∂Xk

AjAk =

(

2

∆X

)2

A2
1 (107)

Substituting (100)–(102) into (105), and recalling that in the current space-time formulation ∂t|χŴ =
0, it can be obtained:

−(L̂∗

SHŴ
h
) · τ̂ = (Â

T
0 ∂t|χŴ

h
+ Â

T
i ∂χi

Ŵ
h
)τ̂

= ∂XŴ
h
Â1τ̂ (108)

where, for an ideal gas,

Â1τ̂ =









− v
J β

β
J 0

v2(−3+γ)β
2J

−v(−2+γ)β
J

(γ−1)β
J

v(−2pγ+v2(2−3γ+γ2)ρ)β
2(γ−1)ρJ

(2pγ+v2(−3+5γ−2γ2)ρ)β

2(γ−1)ρJ
v(γ−1)β

J









(109)

β =
∆t

2
√

1 + α2
, α =

cs∆t

∆x
, ∆x = J∆X, cs =

√

γ
p

ρ
(110)

Depending on the value of v, the perturbation to the test function can assume a wide range of values (v
can also be negative, so that sign inversions can occur, particularly problematic to stability). It is clear
that this approach leads to observer-dependent stabilization operators. Instead, in the case of the Galiean
invariant approach,

Â1τ̂ =







0 β
J 0

0 0 γ−1
J β

0 βc2s
(γ−1)J 0






(111)

independent of the velocity v.

8.1.5 The Eulerian limit

The standard approach is widely documented in the literature for Eulerian meshes, and will be shown to
be inconsistent with the Galilean principle.
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Standard, non-invariant approach

Â
(NG)
0 =













1 0 0 0 0
v1 ρ 0 0 0
v2 0 ρ 0 0
v3 0 0 ρ 0
E ρv1 ρv2 ρv3 ρe,p













, (112)

Ĉ
(NG)

=













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s −ρg1 −ρg2 −ρg3 0













, (113)

and, for i = 1, 2, 3,

Â
(NG)
i =





















vi ρδ1i ρδ2i ρδ3i 0

viv1 ρ(vi+v1δ1i) ρv1δ2i ρv1δ3i δ1i

viv2 ρv2δ1i ρ(vi+v2δ2i) ρv2δ3i δ2i

viv3 ρv3δ1i ρv3δ2i ρ(vi+v3δ3i) δ3i

viE ρviv1+ ρviv2+ ρviv3+ ρvie,p
(ρE+p (ρE+p (ρE+p +vi

−ρ2e,ρ)δ1i −ρ2e,ρ)δ2i −ρ2e,ρ)δ3i





















(114)

Remark 21 Although non-invariant, the previous Jacobians and their variations with different sets of
variables are currently used in the large majority of SUPG-stabilized finite element methods for compressible
flow applications, with potentially very dangerous consequences on the reliability of the results.

Remark 22 As a justification for the inconsistencies found in the literature to date, it is virtually im-
possible to discern whether a velocity term transforms correctly, if only the Eulerian form of the equations

is available, since w = F̂
−1

(v − v̂) = I(v − 0) = v. The reverse approach is needed, in which first a
consistent ALE formulation is developed and then the Eulerian equations are derived as a limit.

Galilean invariant approach

Â
(Gal)
0 =













1 0 0 0 0
0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
0 0 0 0 ρe,p













, Ĉ
(Gal)

=













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s 0 0 0 0













(115)

and, for i = 1, 2, 3,

Â
(Gal)
i =













vi ρδ1i ρδ2i ρδ3i 0
0 ρvi 0 0 δ1i

0 0 ρvi 0 δ2i

0 0 0 ρvi δ3i

0 (p−ρ2e,ρ)δ1i (p−ρ2e,ρ)δ2i (p−ρ2e,ρ)δ3i ρvie,p













(116)

29



8.2 Conservation variables

Conservation variables are widely used in SUPG methods for aircraft design applications. Therefore, they
are a very good candidate for the invariance analysis. Unfortunately, casting the residuals in advective
form is not a successful strategy in deriving invariant Euler flux Jacobians. The reason for this problem
has to be traced to the particular structure of the conservation variables, which combine kinematic and
thermodynamic quantities in their definition. As a starting point in the derivations, the following identity
will become very useful:

0 = ∂t|χÛ + ∂χi
Ĝi + Ẑ

= ∂t|χ(ĴU) + ∂χi
(wiĴU + Ĝ

L
i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(F̂−1

ij cj ĴU + Ĝ
L
i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(Ĵ F̂−T

ji cjU + Ĝ
L
i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(cofF̂jicjU + Ĝ

L
i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ +UcofF̂ji∂χi
cj + cofF̂jicj∂χi

U + ∂χi
Ĝ

L
i + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ĴU∇x · c+ Ĵwi∂χi
U + ∂χi

Ĝ
L
i + Ẑ

= Ĵ∂t|χU + ĴU∇x · v + Ĵwi∂χi
U + ∂χi

Ĝ
L
i + Ẑ

= Ĵ∂t|χU + Ĵwi∂χi
U +UcofF̂ij∂χj

vi + ∂χi
Ĝ

L
i + Ẑ

= Ĵ∂t|χU + Ĵw · ∇χU + ĴU∇x · v + ∂χi
Ĝ

L
i + Ẑ (117)

where the term ∂χi
Ĝ

L
i can be readily computed, using again the Piola identity:

∂χi
Ĝ

L
i = ∂χi















0

p cofF̂1i

p cofF̂2i

p cofF̂3i

vjp cofF̂ji















=















0

∂χi
p cofF̂1i

∂χi
p cofF̂2i

∂χi
p cofF̂3i

(p ∂χi
vj + vj∂χi

p) cofF̂ji















(118)

The quasi-linear form of the system of equations for conservation variables can be completed by deriving
expressions for ∂χj

vi, and ∂χj
p. For the sake of simplicity, and without lack of generality on the conclusions,
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the case of an ideal gas will be considered, for which:

vi =
Ui+1

U1
(119)

∂vi

∂χj
=

1

U1

∂Ui+1

∂χj
− Ui+1

U2
1

∂U1

∂χj
(120)

p = (γ − 1)

(

U5 −
1

2U1

∑

k=1

U2
k+1

)

(121)

∂p

∂χj
= (γ − 1)

(

∂U5

∂χj
+

1

2

3
∑

k=1

(

Uk+1

U1

)2 ∂U1

∂χj
−

3
∑

k=1

Uk+1

U1

∂Uk+1

∂χj

)

(122)

e =
U5

U1
− 1

2

∑

k=1

(

Uk+1

U1

)2

(123)

∂e

∂χj
=

1

U1

∂U5

∂χj
− U5

U2
1

∂U1

∂χj
− Uk+1

U2
1

∂Uk+1

∂χj
+

3
∑

k=1

Uk+1Uk+1

U3
1

∂U1

∂χj
(124)

κ =
1

2

∑

k=1

(

Uk+1

U1

)2

(125)

where κ = 1
2v · v is the kinetic energy per unit mass.

8.2.1 The “standard”, non-invariant approach

The quasi-linear vector form reads

Â0 ∂t|χU + Âi(U ) ∂χi
U + Ĉ(U) U = 0 (126)

with

Â
(NG)
0 = ĴI5×5, Ĉ

(NG)
= Ĵ













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s −g1 −g2 −g3 0













, (127)
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and, for i = 1, 2, 3,

Â
(NG)
i =

















































Ĵwi − Ucof
i

U1
cofF̂1i cofF̂2i cofF̂3i 0

−U2Ucof
i

U2
1

Ĵwi + U2

U1
cofF̂1i

U2

U1
cofF̂2i

U2

U1
cofF̂3i (γ−1)cof F̂1i

+(γ−1)κcof F̂1i − (γ−1)U2

U1
cofF̂1i − (γ−1)U3

U1
cofF̂1i − (γ−1)U4

U1
cofF̂1i

−U3Ucof
i

U2
1

U3

U1
cofF̂1i Ĵwi + U3

U1
cofF̂2i

U3

U1
cofF̂3i (γ−1)cof F̂2i

+(γ−1)κcof F̂2i − (γ−1)U2

U1
cofF̂2i − (γ−1)U3

U1
cofF̂2i − (γ−1)U4

U1
cofF̂2i

−U4Ucof
i

U2
1

U4

U1
cofF̂1i

U4

U1
cofF̂2i Ĵwi + U4

U1
cofF̂3i (γ−1)cof F̂3i

+(γ−1)κcof F̂3i − (γ−1)U2

U1
cofF̂3i − (γ−1)U3

U1
cofF̂3i − (γ−1)U4

U1
cofF̂3i

−U5Ucof
i

U2
1

U5

U1
cofF̂1i

U5

U1
cofF̂2i

U5

U1
cofF̂3i Ĵwi

+
(γ−1)κUcof

i

U1
− (γ−1)U2Ucof

i

U2
1

− (γ−1)U3Ucof
i

U2
1

− (γ−1)U4Ucof
i

U2
1

+
(γ−1)Ucof

i

U1

−pUcof
i

U2
1

+ p
U1

cofF̂1i + p
U1

cofF̂2i + p
U1

cofF̂3i
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where U cof
i =

∑3
k=1 Uk+1cofF̂ki.

Remark 23 It is easy to realize that the Euler flux Jacobians contain a large number of terms dependent on
the velocity components vi = Ui+1/U1. Therefore, a single Euler flux Jacobian or an arbitrary combination
of Euler flux Jacobians are not necessarily invariant.

8.2.2 Non-invariant Jacobians for the advective form

Due to the structure of the conservation variable vector, casting the system of equations in the advective
form (95)–(97) does not yield invariant Jacobians. In fact,

Â
(Adv)
0 = Ĵ















1 0 0 0 0

−U2

U1
1 0 0 0

−U3

U1
0 1 0 0

−U4

U1
0 0 1 0

−U5

U1
+2κ −U2

U1
−U3

U1
−U4

U1
1















, Ĉ
(Adv)

= Ĵ













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s 0 0 0 0













, (129)

and, for i = 1, 2, 3,

Â
(Adv)
i =









































Ĵwi − Ucof
i

U1
cofF̂1i cofF̂2i cofF̂3i 0

−Ĵwi
U2

U1
Ĵwi − (γ−1)U3

U1
cofF̂1i − (γ−1)U4

U1
cofF̂1i (γ−1)cof F̂1i

+(γ−1)κcof F̂1i − (γ−1)U2

U1
cofF̂1i

−Ĵwi
U3

U1
− (γ−1)U2

U1
cofF̂2i Ĵwi − (γ−1)U4

U1
cofF̂2i (γ−1)cof F̂2i

+(γ−1)κcof F̂2i − (γ−1)U3

U1
cofF̂2i

−Ĵwi
U4

U1
− (γ−1)U2

U1
cofF̂3i − (γ−1)U3

U1
cofF̂3i Ĵwi (γ−1)cof F̂3i

+(γ−1)κcof F̂3i − (γ−1)U4

U1
cofF̂3i

Ĵwi

(

−U5

U1
+2κ

)

−Ĵwi
U2

U1
−Ĵwi

U3

U1
−Ĵwi

U4

U1
Ĵwi

−pUcof
i

U2
1

+ p
U1

cofF̂1i + p
U1

cofF̂2i + p
U1

cofF̂3i
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Remark 24 Even the advective form of the equations generates Jacobians which are not invariant, since
they contain components of the material velocity vector v. This, by all means, does not imply that it is not
possible to cast the quasi-linear form of the ALE Euler equations in invariant form, but a more complicated
structure might be required. For the time being, this form is still to be found.

Remark 25 Similar considerations may apply in the case of the entropy variables, which possess a struc-
ture very similar to the one of conservation variables.

9 Summary

An extended invariance analysis of stabilized methods for compressible and incompressible flows has been
presented in the general ALE context. It was shown that most of the stabilization operators designed
to date for compressible flow applications on Eulerian meshes do not satisfy the principle of Galilean
invariance. It has been argued that this is both a physical and numerical flaw, since a non-invariant
Petrov-Galerkin test space can have direct consequences on the stability properties of SUPG methods.

Given the disastrous results documented in [16] for the Lagrangian limit, it is the opinion of the author
that at least a “reasonable doubt” on the correctness of the stabilization techniques lacking invariance
has to be raised. It was shown that, for the density-pressure, the pressure primitive, and the density-
internal energy vairables, a simple manipulation of the quasi-linear form of the equations of motion leads
to Galilean invariant formulations. This approach also has the advantage of a significant reduction in
the computational cost of the stabilization operator. The reliability of the new approach under severe
conditions was proven in [17], where diagonal τ tensors were used to stabilize shocks of strength in excess
of Mach 10,000,000.

More work is needed to develop Galilean invariant SUPG operators for the conservation and entropy
variables. Also, additional examples, in which lack of Galilean invariance leads to catastrophic results,
need to be found and investigated, to broaden the discussion and further confirm the importance of the
issue.

As a final comment, when considering complex compressible flow applications, conformity with physics
principles in the design of stabilization and subgrid-scale operators appears to be one of the not so many
guidelines available to the scientist. In this context, the price to be paid by neglecting the Galilean sanity
check may be much greater than expected. The effects of invariance inconsistencies are usually difficult to
isolate and track a posteriori, in large-scale industrial implementations.
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[10] T. J. R. Hughes, G.R. Feijóo, L. Mazzei, and J.-B. Quincy. The Variational Multiscale Method —
a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering,
166:3–24, 1998.

[11] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational multiscale
method. Computing and Visualization in Science, 3(47):147–162, 2000.

[12] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A.A. Wray. The multiscale formulation of large eddy
simulation: decay of homogenous isotropic turbulence. Physics of Fluids, 13:505–512, 2001.

[13] T. J. R. Hughes, A. A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel flows by
the variational multiscale method. Physics of Fluids, 13(6):1784–1799, 2001.

[14] T. J. R. Hughes, G. Scovazzi, and Franca L.P. Multiscale and stabilized methods. In E. Stein,
R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics. John Wiley &
Sons, 2004.

[15] A. Masud. Effects of mesh motion on the stability and convergence of ALE based formulations for
moving boundary flows. Computational Mechanics, DOI:10.1007/s00466–006–0062–9 (to appear),
2006.

[16] G. Scovazzi. Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG
operator for Lagrangian computations. Computer Methods in Applied Mechanics and Engineering,
196(4–6):966–978, 2007.

[17] G. Scovazzi, M. A. Christon, T. J. R. Hughes, and J. N. Shadid. Stabilized shock hydrodynamics: I.
A Lagrangian method. Computer Methods in Applied Mechanics and Engineering, 196(4–6):923–966,
2007.

[18] T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations. Advances
in Applied Mechanics, 28:1–44, 1992.

34



[19] T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization parameters.
International Journal for Numerical Methods in Fluids, 43:555–575, 2003.

[20] T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih. Incompressible flow computations with stabilized
bilinear and linear equal-order-interpolation velocity-pressure element. Computer Methods in Applied
Mechanics and Engineering, 95:221–242, 1992.

Appendix

A Quasi-linear forms and invariance: additional sets of solution vari-
ables

A.1 Pressure primitive variables

A quasi-linear form of the Euler equations using pressure primitive variables (Y = [e vT p]T ) is now
derived. In the literature, the temperature T is tipically used in place of the internal energy e (see, in the
case of ideal gases, Hauke and Hughes [6, 7], and Hauke [5]). However, the classical expressions for the
Euler Jacobians can be recovered noticing that, for an ideal gas, e = cvT , where cv is the specific heat for
an isocoric thermodynamic transformation. Also in the case of pressure primitive variables, the derivations
in (117) become very useful, since the ALE geometric terms are not under the derivative symbol. The
following manipulations will also be used:

∂•U = ∂•













ρ
ρv1
ρv2
ρv3
ρE













= ∂•













ρ













1
v1
v2
v3
E

























= ρ













0
∂•v1
∂•v2
∂•v3

vk∂•vk + ∂•e













+ ∂•ρ













1
v1
v2
v3
E
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where either ∂•=∂t|χ or ∂•=∂χj
, and ∂•ρ=ρ,e∂•e+ ρ,p∂•p, with ρ,e = ∂ρ

∂e

∣

∣

∣

p
, and ρ,p = ∂ρ

∂p

∣

∣

∣

e
.

A.1.1 The “standard”, non-invariant approach

Defining f̃ρ = ρ(e, p)/e, the quasi-linear vector form reads

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (132)

with

Â
(NG)
0 = Ĵ













ρ,e 0 0 0 ρ,p

v1ρ,e ρ 0 0 v1ρ,p

v2ρ,e 0 ρ 0 v2ρ,p

v3ρ,e 0 0 ρ v3ρ,p

Eρ,e+ρ ρv1 ρv2 ρv3 Eρ,p













, (133)
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Ĉ
(NG)

= Ĵ















0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ −ρg1 −ρg2 −ρg3 0















, (134)

and, for i = 1, 2, 3,

Â
(NG)
i =



































Ĵwiρ,e ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i Ĵwiρ,p

Ĵwiv1ρ,e Ĵρwi+ Ĵwiv1ρ,p

ρv1cofF̂1i ρv1cofF̂2i ρv1cofF̂3i +cofF̂1i

Ĵwiv2ρ,e Ĵρwi+ Ĵwiv2ρ,p

ρv2cofF̂1i ρv2cofF̂2i ρv2cofF̂3i +cofF̂2i

Ĵwiv3ρ,e Ĵρwi+ Ĵwiv3ρ,p

ρv3cofF̂1i ρv3cofF̂2i ρv3cofF̂3i +cofF̂3i

ĴwiEρ,e Ĵρwiv1+ Ĵρwiv2+ Ĵρwiv3+ ĴEwiρ,p+

+Ĵwiρ (ρE+p)cofF̂1i (ρE+p)cofF̂2i (ρE+p)cofF̂3i cofF̂kivk
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Remark 26 These definitions of the Jacobians of the Euler fluxes are not invariant, since they contain
components of the velocity vector v. The conclusions to be drawn are therefore virtually identical to the
previous case of density-pressure variables.

A.1.2 Galilean invariant approach

Casting the Euler equations in advective form, the following set of invariant flux Jacobians is readily
obtained:

Â
(Gal)
0 = Ĵ













ρ,e 0 0 0 ρ,p

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
ρ 0 0 0 0













, Ĉ
(Gal)

= Ĵ















0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ 0 0 0 0
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and, for i = 1, 2, 3,

Â
(Gal)
i =















Ĵwiρ,e ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i Ĵwiρ,p

0 Ĵρwi 0 0 cofF̂1i

0 0 Ĵρwi 0 cofF̂2i

0 0 0 Ĵρwi cofF̂3i

Ĵρwi p cofF̂1i p cofF̂2i p cofF̂3i 0
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A.1.3 The Lagrangian limit

Standard, non-invariant approach
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Â
(NG)
0 =













Jρ,e 0 0 0 Jρ,p

Jv1ρ,e ρ0 0 0 Jv1ρ,p

Jv2ρ,e 0 ρ0 0 Jv2ρ,p

Jv3ρ,e 0 0 ρ0 Jv3ρ,p

JEρ,e+ρ0 ρ0v1 ρ0v2 ρ0v3 JEρ,p













, (138)

Ĉ
(NG)

=















0 0 0 0 0

−Jg1f̃ρ 0 0 0 0

−Jg2f̃ρ 0 0 0 0

−Jg3f̃ρ 0 0 0 0

−Jsf̃ρ −ρ0g1 −ρ0g2 −ρ0g3 0















, (139)

and, for i = 1, 2, 3,

Â
(NG)
i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0

0 ρv1cofF1i ρv1cofF2i ρv1cofF3i cofF1i

0 ρv2cofF1i ρv2cofF2i ρv2cofF3i cofF2i

0 ρv3cofF1i ρv3cofF2i ρv3cofF3i cofF3i

0 (ρE+p)cofF1i (ρE+p)cofF2i (ρE+p)cofF3i cofF̂kivk
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Galilean invariant approach

Â
(Gal)
0 =













J 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
ρ0 0 0 0 0













, Ĉ
(Gal)

=















0 0 0 0 0

−Jg1f̃ρ 0 0 0 0

−Jg2f̃ρ 0 0 0 0

−Jg3f̃ρ 0 0 0 0

−Jsf̃ρ 0 0 0 0
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and, for i = 1, 2, 3,

Â
(Gal)
i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 0 0 0 cofF1i

0 0 0 0 cofF2i

0 0 0 0 cofF3i

0 p cofF1i p cofF2i p cofF3i 0
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A.1.4 The Eulerian limit

Standard, non-invariant approach

Â
(NG)
0 =













ρ,e 0 0 0 ρ,p

v1ρ,e ρ 0 0 v1ρ,p

v2ρ,e 0 ρ 0 v2ρ,p

v3ρ,e 0 0 ρ v3ρ,p

Eρ,e+ρ ρv1 ρv2 ρv3 Eρ,p
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Ĉ
(NG)

=















0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ −ρg1 −ρg2 −ρg3 0
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and, for i = 1, 2, 3,

Â
(NG)
i =

















viρ,e ρδ1i ρδ2i ρδ3i viρ,p

viv1ρ,e ρ(vi+v1δ1i) ρv1δ2i ρv1δ3i δ1i + viv1ρ,p

viv2ρ,e ρv2δ1i ρ(vi+v2δ2i) ρv2δ3i δ2i + viv2ρ,p

viv3ρ,e ρv2δ1i ρv3δ2i ρ(vi+v3δ3i) δ3i + viv3ρ,p

vi(Eρ,e+ρ) ρviv1+ ρviv2+ ρviv3+ viEρ,p

(ρE + p)δ1i (ρE + p)δ2i (ρE + p)δ3i +vi
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Galilean invariant approach

Â
(Gal)
0 =













ρ,e 0 0 0 ρ,p

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
ρ 0 0 0 0













, Ĉ
(Gal)

=















0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ 0 0 0 0
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and, for i = 1, 2, 3,

Â
(Gal)
i =













viρ,e ρδ1i ρδ2i ρδ3i viρ,p

0 ρvi 0 0 δ1i

0 0 ρvi 0 δ2i

0 0 0 ρvi δ3i

ρvi p δ1i p δ2i p δ3i 0













(147)

A.2 Density-internal energy variables

It is of interest, especially for the community developing hydrocodes, the set of variables Y = [ρ vT e]T ).
The derivations of the non-invariant and invariant Jacobians for the quasi-linear vector form

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (148)

are reported below. Also in this case, the invariant approach was obtained using the advective form of the
Euler equations.

A.2.1 The “standard”, non-invariant approach

Â
(NG)
0 =















Ĵ 0 0 0 0

Ĵv1 Ĵρ 0 0 0

Ĵv2 0 Ĵρ 0 0

Ĵv3 0 0 Ĵρ 0

ĴE Ĵρv1 Ĵρv2 Ĵρv3 Ĵρ















, (149)
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Ĉ
(NG)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs −Ĵρg1 −Ĵρg2 −Ĵρg3 0
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and, for i = 1, 2, 3,

Â
(NG)
i =

































Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

p,ρ cofF̂1i ρv1cofF̂1i ρv1cofF̂2i ρv1cofF̂3i p,e cofF̂1i

+Ĵwiv1 +Ĵρwi

p,ρ cofF̂2i ρv2cofF̂1i ρv2cofF̂2i ρv2cofF̂3i p,e cofF̂2i

+Ĵwiv2 +Ĵρwi

p,ρ cofF̂3i ρv3cofF̂1i ρv3cofF̂2i ρv3cofF̂3i p,e cofF̂3i

+Ĵwiv3 +Ĵρwi

ĴwiE+ Ĵρwiv1+ Ĵρwiv2+ Ĵρwiv3+ Ĵρwi+

p,ρcofF̂kivk (ρE (ρE (ρE p,ecofF̂kivk+p)cofF̂1i +p)cofF̂2i +p)cofF̂3i
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A.2.2 Galilean invariant approach

Â
(Gal)
0 =















Ĵ 0 0 0 0

0 Ĵρ 0 0 0

0 0 Ĵρ 0 0

0 0 0 Ĵρ 0

0 0 0 0 Ĵρ















, Ĉ
(Gal)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs 0 0 0 0
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and, for i = 1, 2, 3,

Â
(Gal)
i =















Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

p,ρ cofF̂1i Ĵρwi 0 0 p,e cofF̂1i

p,ρ cofF̂2i 0 Ĵρwi 0 p,e cofF̂2i

p,ρ cofF̂3i 0 0 Ĵρwi p,e cofF̂3i

0 p cofF̂1i p cofF̂2i p cofF̂3i Ĵρwi
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B Proof of the Reynolds transport theorem

Theorem 1 Let Ω be a material domain displacing with velocity v. Let Γ be the boundary of Ω, and f a
scalar. Let Ω̂ be the inverse image of Ω through the invertible mapping ϕ̂, that is, Ω = ϕ̂(Ω̂). Then, the
following formula holds:

d

dt

∫

Ω
f dΩ =

d

dt

∫

Ω̂
fĴ dΩ̂ =

∫

Ω̂

∂(fĴ)

∂t

∣

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂=∂Ω̂
fw · n̂ Ĵ dΓ̂ (154)

Proof:
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Ω is a material domain, and deforms according to the material velocity v. Espressing the integral over
Ω̂ in the Lagrangian frame, with Ω̂ = ψ(Ω0),

d

dt

∫

Ω̂
fĴ dΩ̂ =

∫

Ω0=ψ−1(Ω̂)

∂(f̂ J̃)

∂t

∣

∣

∣

∣

∣

X

dΩ0 =

∫

Ω0

˙̂
fJ̃ + f̂ ˙̃J dΩ0 (155)

where J̃ = det (∂Xψ(X , t)), χ = ψ(X , t), and f̂ = Ĵf . Let us focus on the term ˙̃J :

˙̃J =
∂

∂t

∣

∣

∣

∣

X

det (∂Xψ(X , t))

= J̃ tr

((

∂

∂t

∣

∣

∣

∣

X

∂Xψ(X, t)

)

(∂Xψ(X , t))−1

)

= J̃ tr

((

∂

∂t

∣

∣

∣

∣

X

∂ψ

∂X

)

∂X

∂χ

)

= J̃ tr

((

∂

∂X

∂ψ

∂t

∣

∣

∣

∣

X

)

∂X

∂χ

)

= J̃ tr

(

∂w

∂X

∂X

∂χ

)

= J̃ ∇χ·w (156)

Now,

˙̂
fJ̃ + f̂ ˙̃J =

˙̂
fJ̃ + J̃ ∇χ·w

= J̃





∂f̂

∂t

∣

∣

∣

∣

∣

χ

+w · ∇χ f̂ + ∇χ·w





= J̃





∂f̂

∂t

∣

∣

∣

∣

∣

χ

+ ∇χ· (wf̂)



 (157)

Mapping back to the domain Ω̂,

d

dt

∫

Ω̂
fĴ dΩ̂ =

∫

Ω̂





∂(fĴ)

∂t

∣

∣

∣

∣

∣

χ

+ ∇χ· (wf̂)



 dΩ̂ (158)

A straighforward application of the Gauss divergence theorem yields (154). 2

40


