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1. Introduction

Variational multiscale concepts for Large Eddy Simulation (LES) were
introduced in Hughes et al., 2000. The basic idea was to use varia-
tional projections in place of the traditional filtered equations and to fo-
cus modeling on fine-scale equations rather than coarse-scale equations.
Avoidance of filters eliminates many difficulties associated with the tra-
ditional approach, namely, inhomogeneous non-commutative filters nec-
essary for wall-bounded flows, use of complex filtered quantities in com-
pressible flows, the closure problem, etc. In addition, modeling confined
to the fine-scale equations retains numerical consistency in the coarse-
scale equations and thus permits full rate-of-convergence of the underly-
ing numerical method in contrast with the usual approach which limits
convergence rate due to artificial viscosity effects in the fully resolved
scales (O(h4/3) in the case of Smagorinsky-type models). Initial ver-
sions of the variational multiscale method focused on dividing resolved
scales into coarse and fine designations, and eddy viscosities, inspired
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by traditional models, were only included in the fine scale equations,
and acted only on the fine scales. This version was studied in Hughes
et al., 2001a, Hughes et al., 2001b, Oberai and Hughes, 2002 and found
to work very well on homogeneous isotropic flows and fully-developed
equilibrium and non-equilibrium turbulent channel flows. Static eddy
viscosity models were employed in these studies but superior results were
subsequently obtained through the use of dynamic models, as reported
in Holmen et al., 2004 and Hughes et al., 2004b. Good numerical results
were obtained with the static approach by other of investigators, namely,
Collis, 2002, Jeanmart and Winckelmans, 2002 and Ramakrishnan and
Collis, 2002, Ramakrishnan and Collis, 2004c, Ramakrishnan and Collis,
2004b, Ramakrishnan and Collis, 2004a. Particular mention should be
made of the work of Farhat and Koobus, 2002, and Koobus and Farhat,
2004, who have implemented this procedure in an unstructured mesh,
finite volume, compressible flow code, and applied it very successfully
to a number of complex test cases and industrial flows. We believe
that this initial version of the variational multiscale concept has already
demonstrated its viability and practical utility and is, at the very least,
competitive with traditional LES turbulence modeling approaches.

Nevertheless, there is still significant room for improvement. The
use of traditional eddy viscosities to represent fine-scale dissipation is
an inefficient mechanism. Employing an eddy viscosity in the resolved
fine scales to represent turbulent dissipation introduces a consistency
error which results in the resolved fine scales being “sacrificed” to retain
full consistency in the coarse scales. (In our opinion, this is still better
than the traditional approach in which consistency in all resolved scales
is sacrificed to represent turbulent dissipation.) This procedure is felt
to be “inefficient” because approximately 7/8 of the resolved scales are
typically ascribed to the fine scales. Another shortcoming noted for the
initial version of the variational multiscale method is too small an energy
transfer to unresolved modes when the discretization is very coarse (see,
e.g., Hughes et al., 2004b). This phenomenon is also noted for some tra-
ditional models, such as the dynamic Smagorinsky model Hughes et al.,
2004b, but, by design is more pronounced for the multiscale version of
the dynamic model. The objectives of recent multiscale work have been
to capture all scales consistently and to avoid use of eddy viscosities alto-
gether. This holds the promise of much more accurate and efficient LES
procedures. In this work, we describe a new variational multiscale for-
mulation which makes considerable progress toward these goals. In what
follows, all resolved scales are viewed as coarse scales, which obviates the
issue of inefficiency ab initio.
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We begin by taking the view that the decomposition into coarse and
fine scales is exact. For example, in the spectral case, the coarse-scale
space consists of all Fourier modes beneath some cut-off wave number
and the fine-scale space consists of all remaining Fourier modes. Conse-
quently, the coarse-scale space has finite dimension whereas the fine-scale
space is infinite dimensional. The derivation of the coarse- and fine-scale
equations proceeds, first, by substituting the split of the exact solution
into coarse and fine scales into the Navier-Stokes equations, then, sec-
ond, by projecting this equation into the coarse- and fine-scale subspaces.
The projection into coarse scales is a finite dimensional system for the
coarse-scale component of the solution, which depends parametrically on
the fine-scale component. In the spectral case, in addition to the usual
terms involving the coarse-scale component, only the cross-stress and
Reynolds-stress terms involve the fine-scale component. In the case of
non-orthogonal bases, even the linear terms give rise to coupling between
coarse and fine scales. The coarse-scale component plays an analogous
role to the filtered field in the classical approach, but has the advantage
of avoiding all problems associated with homogeneity, commutativity,
walls, compressibility, etc. The projection into fine scales is an infinite-
dimensional system for the fine-scale component of the solution which
depends parametrically on the coarse-scale component. We also assume
the cut-off wave number is sufficiently large that the philosophy of LES
is appropriate. For example, if there is a well-defined inertial sub-range,
then we assume the cut-off wave number resides somewhere within it.
This assumption enables us to further assume that the energy content in
the fine scales is small compared with the coarse scales. This turns out
to be crucial in our efforts to analytically represent the solution of the
fine-scale equations. The strategy is to obtain approximate analytical
expressions for the fine scales then substitute them into the coarse-scale
equations which are, in turn, solved numerically. If the scale decom-
position is performed in space and time, the only approximation in the
procedure is the representation of the fine-scale solution. To provide a
framework for the fine-scale approximation, we assume an infinite per-
turbation series expansion to treat the fine-scale nonlinear term in the
fine-scale equation. By virtue of the smallness of the fine scales, this
expansion is expected to converge rapidly under the circumstances de-
scribed in many cases of practical interest. The remaining part of the
fine-scale Navier-Stokes system is the linearized operator which is for-
mally inverted through the use of a matrix Green’s function. The com-
bination of a perturbation series and Green’s function provides an exact
formal solution of the fine-scale Navier-Stokes equations. The driving
force in these equations is the Navier-Stokes system residual computed
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from the coarse scales. This expresses the intuitively obvious fact that
if the coarse scales constitute a good approximation to the solution of
the problem, the coarse-scale residual will be small and the resulting
fine-scale solution will be small as well. This is the case we have in
mind and it provides a rational basis for assuming the perturbation se-
ries converges rapidly. Note that one cannot use such an argument on
the original problem because in this case the perturbation series would
almost definitely fail to converge. (If we could have used this argu-
ment, we would have solved the Navier-Stokes equations analytically!
Unfortunately, it does not work.) The formal solution of the fine-scale
equations suggests various approximations may be employed in practical
problem solving. We are tempted to use the word “modeling” because
approximate analytical representations of the fine scales constitute the
only approximation and hence may be thought of as the “modeling”
component of the present approach but we want to emphasize that it
is very different from classical modeling ideas which are dominated by
the addition of ad hoc eddy viscosities. We will present numerical re-
sults that demonstrate these eddy-viscosity terms are unnecessary in the
present circumstances. There are two aspects to the approximation of
the fine scales: 1) Approximation of the matrix Green’s function for
the linearized Navier-Stokes system; and 2) approximation of the non-
linearities represented by the perturbation series. The first and obvious
thought for the latter aspect, nonlinearity, is to simply truncate the per-
turbation series. This idea is investigated, as well as another promising
idea, in conjunction with some simple approximations of the Green’s
function. It turns out there is considerable experience in local scaling
approximations of the Green’s function based on the theory of stabilized

methods Hughes, 1995, Hughes et al., 1998, Hughes et al., 2004a. The
Green’s function is typically approximated by locally defined algebraic
operators (i.e., the “τ ’s” of stabilized methods) multiplied by local val-
ues of the coarse-scale residual. With this approximation of the solution
of the linearized operator, nonlinearities can be easily accounted for in
perturbation series fashion. Another approach that accounts for nonlin-
earities in the fine-scale equations is to introduce a nonlinear algebraic
scaling of the Navier-Stokes equations. The resulting local nonlinear al-
gebraic system can be analytically solved. It possesses the reasonable
analytical property that if the coarse-scale residual is small, it converges
to the linearized solution.

These newer variational multiscale ideas, and the older variants, were
implemented in a finite volume code that has enjoyed widespread use
in turbulence simulations (see Pierce and Moin, 2001). Following along
the lines of Jacobs and Durbin, 2000, Jacobs and Durbin, 2001, who
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Lx 620 δ0

Ly 40 δ0

Lx 30 δ0

θ0 0.1336 δ0

Reδ0 795

Table 1. Bypass-transition parame-
ters

Designation Nx Ny Nz

Fine 2048 180 192
Medium 1024 90 96
Coarse 512 48 48

Table 2. Resolution of bypass-
transition meshes.

performed DNS investigations of bypass transition of a boundary layer,
we examine this difficult problem from the point of view of the variational
multiscale and classical LES. Our aim was to solve this problem as an
LES and demonstrate the efficacy of the new ideas in the process.

In our work we endeavor to show the effectiveness, or deficiencies,
of LES approaches by studying them over a range of resolutions, from
coarse to fine. In our studies of bypass transition we went as far as DNS
in the fine-scale end of the spectrum, and approximately 1/8 DNS res-
olution in each spatial direction. The coarsest LES mesh then involves
about 1/256 the number of equations as the DNS mesh and approxi-
mately 1/4,096 of the computational effort. We found, independent of
the LES method, that in order to accurately simulate bypass transition,
the decay of input homogeneous, isotropic, free-stream turbulence must
be the same for all meshes. A procedure was developed in which we were
able to simulate consistent energy decay with distance of the free-stream
turbulence across the range of meshes considered. We then compared
the methods to represent bypass transition. We found that the “1/8
DNS mesh” was incapable of representing either the laminar region of
the boundary layer or the free-stream turbulence evolution due to too
few points in the wall normal direction. We found that all methods
gave essentially the same solution at the DNS level, whereas the new
variational multiscale formulation was able to attain relatively mesh in-
dependent solutions without parameter adjustment for the 1/4, 1/2 and
full DNS mesh cases. The 1/4 DNS involves 1/64 the number of mesh
points as the DNS case and 1/256 the computational effort. We believe
that the new method offers a promising new path for turbulence re-
search in LES. However, it obviously needs testing on a wider variety of
flows and implementation in a variety of numerical frameworks, such as,
spectral, finite difference and finite element, before definitive conclusions
can be drawn. In our experience, the particular numerical discretization
method has an enormous impact on the results, and its influence is often
underestimated by practitioners evaluating models.
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Figure 1. Bypass transition. Problem description.

Figure 2. Bypass transition. Decay of free-stream turbulence.

2. Bypass Transition

The problem description is presented in figure 1. Parameters used in
the calculations are defined in table 1. δ0 is the boundary layer thick-
ness at the inlet, Lx, Ly, and Lz are the lengths of the domain in the
streamwise, wall-normal, and spanwise directions, respectively, θ0 is the
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Figure 3. Bypass transition. Decay of free-stream turbulence. Turbulent kinetic
energy versus streamwise position.

Figure 4. Bypass transition. Velocity fluctuation isosurfaces. The red and blue
streaks are streamwise velocity fluctuations. The decay of free-stream turbulence is
shown on the left and the fully-developed turbulent boundary layer is seen on the
right.
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Figure 5. Bypass transition. Numerical results for the 2048 × 180 × 192 mesh.

momentum thickness at the inlet, and Reδ0(= U0δ0/ν) is the Reynolds
number based on the free-stream velocity and length-scale δ0. The meth-
ods tested were incorporated in the program developed by Pierce and
Moin, 2001, which employs a second-order central difference scheme on
a staggered mesh, an explicit-implicit second-order time-stepping algo-
rithm (Akselvoll and Moin, 1995), and an approximate factorization
technique which decouples the velocity and pressure equations (Le and
Moin, 1994). The meshes employed in the calculations are described in
table 2. The fine mesh corresponds to the DNS mesh case 1 of Jacobs
and Durbin, 2000, Jacobs and Durbin, 2001. Synthetic homogeneous
isotropic turbulent fluctuations are generated at the inlet in a manner
similar to that described in Jacobs and Durbin, 2000, Jacobs and Durbin,
2001. The decay of the free-stream turbulence is illustrated in figure 2.
It is essential that the free-stream turbulence, quantified by the turbu-
lent kinetic energy, Tu, decays in a consistent fashion across all meshes
and methods. Otherwise, there is no chance of accurately capturing the
transition process which is characterized by the formation of “turbulent
spots”. The procedure employed to achieve this end requires a somewhat
lengthy description (omitted here) but results are shown in figure 2 in
which Tu is plotted versus Rex, the Reynolds number based on stream-
wise position from the inlet. It is important to accurately represent
the interaction between the free-stream turbulence and the longitudinal
streaks in the laminar boundary layer. The streaks are shown in figure 4
in the form of isosurfaces of streamwise velocity fluctuations. Also shown
are the free-stream turbulence (to the left, in the form of isosurfaces of
spanwise fluctuations), the fully-developed turbulent boundary layer (to
the right), and, in the detail, spot initiation. Time- and span-averaged
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Figure 6. Bypass transition. Skin-friction coefficient for coarse, medium, and fine
meshes.
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Figure 7. Bypass transition. Velocity fluctuations.
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results are shown in figure 5 for the fine mesh (2048×180×192). Results
are presented for the DNS case (no model), dynamic Smagorinsky, origi-
nal (dynamic) multiscale, and the new residual-based multiscale models.
Skin-friction coefficient is presented in figure 5(a), and shape factor, the
ratio of the displacement thickness to the momentum thickness, is pre-
sented in figure 5(b). At this level of resolution, all the models are very
close to each other and there is good agreement with the experimental
results of Roach and Brierley, 1992. In figure 6, skin-friction coeffi-
cient results are presented for the no-model case and the new multiscale
method for coarse, medium, and fine meshes. In the no-model case, fig-
ure 6(a), the coarse and medium meshes produce premature transitions
and do not achieve correct turbulent correlations in the fully-developed
region to the right. On the other hand, the new multiscale method, fig-
ure 6(b), attains accurate turbulent correlations in the fully-developed
region for all meshes, and the transition region is also fairly accurately
captured across meshes. There is discrepancy in the laminar region for
the coarsest mesh because, to achieve the correct evolution of Tu, high
levels of Tu needed to be specified at the inlet which, in combination
with the coarse resolution, perturbed the laminar boundary layer, result-
ing in departure from the laminar correlation. In figure 7, streamwise
and spanwise velocity fluctuation isosurfaces are shown for the DNS case
(fine mesh, no model). The plan view corresponds to y+

≈ 2, where plus
units are calculated based on the maximum wall shear stress from the
DNS. The formation of turbulent spots is clearly apparent.
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