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Abstract

Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from
its inception over thirty years ago. This paper develops a new computational formulation that
combines the advantages of discontinuous Galerkin methods with the data structure of their con-
tinuous Galerkin counterparts. The new method uses local, element-wise problems to project
a continuous finite element space into a given discontinuous space, and then applies a discon-
tinuous Galerkin formulation. The projection leads to parameterization of the discontinuous
degrees-of-freedom by their continuous counterparts and has a variational multiscale interpre-
tation. This significantly reduces the computational burden and, at the same time, little or
no degradation of the solution occurs. In fact, the new method produces improved solutions
compared with the traditional discontinuous Galerkin method in some situations.
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1 Introduction

The discontinuous Galerkin (DG) method was developed for problems of neutron transport over
thirty years ago by Reed and Hill [46]. Early works of note include Lesaint and Raviart [42],
Johnson, Nävert and Pitkäranta [40] who, in the context of advection-dominated processes,
synthesized DG with SUPG [10] and performed a complete mathematical analysis, and Johnson
and Pitkäranta [41], who proved that the DG formulation for pure advection problems enjoys
good stability properties, similar to the ones proved for SUPG. The interest in DG developed
very slowly but has accelerated significantly in recent years. The compendium of papers in [13]
provides a valuable summary of the current state-of-the-art and introduction to the literature.
Recent literature on DG methods includes [1, 2, 5, 12, 15–18, 25, 27–30, 43–45, 49, 50].

The DG method is felt to have advantages of robustness over the classical continuous Galerkin
(CG) method, especially for first-order differential operators associated with hyperbolic equa-
tions, and better conditioning of resultant linear equation systems leading to improved iterative
performance. There is also an opportunity to link DG with the numerical fluxes (i.e., solutions of
the one-dimensional Riemann problem) used in finite volume methods and develop higher-order
accurate procedures for wave-propagation. These attributes have led to numerous applications
in fluids where the CG method has often proved inadequate. There has also been recent interest
in applying DG to elliptic problems so that advective-diffusive phenomena can be modeled. For
a review of work in this area, see Arnold et al. [3]. Recent studies include Brezzi et al. [7],
Dawson [14], and Hughes, Masud and Wan [37]. There has been very little work in structural
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mechanics so far but interest is beginning to grow. See for example, Engel et al.[23], and Brezzi
and Marini [8].

Despite the increased interest in DG methods, there are shortcomings that limit their prac-
tical utility. Foremost among these is the size of the DG equation system for interpolations of
linear and higher order. By virtue of the fact that the trial functions are completely discontinu-
ous, there is no sharing of degrees-of-freedom at element boundaries. Consequently, the size of
the solution space “explodes.” For example, assuming about seven linear tetrahedral elements
per node, the DG system involves approximately 28 times the number of unknowns of the corre-
sponding CG system (see Hughes et al. [32]). Storage and solution cost are, obviously, adversely
affected, which seems the main reason for the small industrial impact the DG method has had
so far. In addition, it has been observed that the vaunted robustness of the DG method is
somewhat exaggerated. Simple, one-dimensional examples of pure advection and pure diffusion
were shown to give rise to spurious oscillations in Hughes et al. [32].

There are two perspectives on the proposed new method. One is to assume a given, continu-
ous finite element space, and then associate to it a completely discontinuous space by releasing
all continuity constraints at element interfaces. This viewpoint is somewhat restrictive but is
applicable to most situations of engineering interest and therefore is adopted in this paper.
Another, more general, view is to start with an arbitrary discontinuous finite element space
and then construct a continuous representation from it. This viewpoint will be developed in
a forthcoming work of the authors. Once the spaces are defined, a global DG formulation is
applied to the discontinuous space. The unique feature of our formulation is the use of local,
element-wise problems, to define the discontinuous field in terms of the degrees-of-freedom of
the continuous field. The local problems employ weakly imposed boundary conditions and the
solutions are still discontinuous but they are parameterized by the degrees-of-freedom of the
much smaller continuous space. The global problem has the equation size and structure of a
CG method but it is indeed a DG method. The local problems serve to project the solution into
a reduced-dimension manifold that expresses the partial-differential structure of the problem
considered. This aspect is seen to be related to methods used in wave propagation problems,
relying on numerical fluxes inspired by local Riemann solutions, but here the local problems are
solved numerically using simple basis functions. The interesting result is that the new method
is at least as accurate and robust as the global DG method, and, at the same time, the storage
and computational effort are dramatically reduced. As may be obvious from the description,
the method has a multiscale interpretation. For this reason, we refer to it as the multiscale DG
method (MDG).

The new method is demonstrated on simple test cases of advection-diffusion. However, the
ideas are quite general and may be applied to arbitrary partial-differential equation systems.
Section 2 is devoted to the introduction of the advection-diffusion problem, to prepare the ground
for the global DG formulation presented in Section 3. Three variants of the discretization of the
Laplace operator are considered: the symmetric, neutral, and skew-symmetric forms. The local
problem is described in Section 4. The weak formulation is similar to the one used for the global
problem, but an additional stabilization term is required. Numerical results are presented in
Section 5, and conclusions are drawn in Section 6.

2 Advection-Diffusion Equation

This section describes the boundary-value problem for the linear advection-diffusion equation
and introduces definitions and notations needed for the DG formulation presented subsequently.
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Figure 1: Boundary partitions.

2.1 Strong form of the problem

Let Ω be a bounded domain in R
nd , where nd is the number of space dimensions, let a be a

smooth, solenoidal, velocity vector field defined on Ω, and let κ be a positive, constant, diffusivity
coefficient. Consider the following partition of the boundary Γ = ∂Ω:

Γ− = {x ∈ Γ : a(x) · n(x) ≤ 0} (1)

Γ+ = {x ∈ Γ : a(x) · n(x) > 0} (2)

where n is the outward unit normal with respect to Γ. Γ− is referred to as the inflow boundary
and Γ+ as the outflow boundary. Another partition is given by Γ = Γh ∪ Γg, Γh ∩ Γg = ∅, and
thus

Γ∓
g = Γg ∩ Γ∓ (3)

Γ∓
h = Γh ∩ Γ∓ (4)

The setup is illustrated in Figure 1. The strong form of the boundary-value problem is:

Find φ : Ω → R, such that for all f : Ω → R, g : Γ → R, and h : Γ → R,

a · ∇φ − κ ∆φ = f in Ω (5)

φ = g on Γg (6)

(−aφχΓ−

h
+ κ∇φ) · n = h on Γh (7)

where χΓ−

h
is the characteristic function of the set Γ−

h . The meaning of the boundary condition

on Γh is that the total flux (advective plus diffusive) is imposed on the boundary Γ−
h and the

diffusive flux is specified on the boundary Γ+
h . For further insight into these boundary conditions,

see Hughes, Franca and Hulbert [34].

2.2 Definitions and notations for the discontinuous Galerkin

method

Let Th be a regular family of elements T generating a partition of Ω. For example, T can
be thought of as triangles/tetrahedra, or quadrilaterals/hexahedra, in two/three dimensions,
respectively. Let hT denote the diameter of T and h = maxT∈Th

hT . Let Eh be the set of element
edges (including edges on the boundary Γ) and Eo

h be the set of internal edges (excluding edges
on the boundary Γ). It follows that

Eh = Eo
h ∪ Γ (8)
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Figure 2: Schematic of the inflow and outflow boundaries for an element with respect to the convective
field a.

It is also helpful to define inflow and outflow partitions of the element boundary ΓT = ∂T (see
Fig. 2):

Γ−
T = {x ∈ ΓT : a(x) · n(x) ≤ 0} (9)

Γ+
T = {x ∈ ΓT : a(x) · n(x) > 0} (10)

In order to derive a DG formulation, jumps and averages of scalar and vector functions have to
be defined on Eh. We shall employ the Brezzi conventions for this purpose. For an interior edge
e ∈ Eo

h, let T+ and T− be the two elements sharing it, and let n+ and n− be their respective
outward-pointing unit normals (see Fig. 3). Accordingly, let ϕ be a scalar field, and ϕ± := ϕ|T±

.
For e ∈ Eo

h:

〈ϕ〉 :=
1

2
(ϕ+ + ϕ−) (11)

[[ϕ]] := ϕ+n+ + ϕ−n− (12)

Analogously, if τ is a vector field,

〈τ 〉 :=
1

2
(τ+ + τ−) (13)

[[τ ]] := τ+ · n+ + τ− · n− (14)

Notice that, by definition of “[[ · ]]”, the jump of a scalar quantity is a vector and the jump of
a vector quantity is a scalar. Definitions (12) and (14) do not depend on the ordering of the
elements. It is important to specialize the previous formulas to the edges on the boundary Γ:

[[ϕ]] = ϕ n, 〈τ 〉 = τ , ∀e ∈ Γ (15)

It will not be necessary to define 〈ϕ〉 and [[τ ]] on the boundary Γ, because they are never utilized.
Noting that

[[ϕτ ]] = ϕ+τ+ · n+ + ϕ−τ− · n−

=
1

2

(

2ϕ+τ+ · n+ + 2ϕ−τ− · n−
)

=
ϕ+ + ϕ−

2

(

τ+ · n+ + τ− · n−
)

+
τ+ + τ−

2
·
(

ϕ+n+ + ϕ−n−
)

= 〈ϕ〉[[τ ]] + 〈τ 〉 · [[ϕ]] (16)
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Figure 3: Schematic of the normals and +/− regions with respect to an edge.

and accounting for (15), it follows that

∑

T∈Th

∫

∂T

τ · n ϕ =
∑

e∈Eh

∫

e

〈τ 〉 · [[ϕ]] +
∑

e∈Eo
h

∫

e

[[τ ]]〈ϕ〉 (17)

Another important identity is

[[ϕτ ]] = ϕ+τ+ · n+ + ϕ−τ− · n−

= ϕ+τ+ · n+ + ϕ±τ∓ · n− + ϕ±τ∓ · n+ + ϕ−τ− · n−

= ϕ±[[τ ]] + [[ϕ]] · τ∓ (18)

which implies

∑

T∈Th

∫

∂T

τ · n ϕ =
∑

e∈Eo
h

(
∫

e

ϕ±[[τ ]] +

∫

e

[[ϕ]] · τ∓

)

+
∑

e∈Γ

∫

e

ϕ τ · n (19)

This last result will be used in the sequel to recover the Euler-Lagrange forms of variational
problems.

Following the perspective on the new method adopted in Section 1 we first introduce the
continuous finite element space

V
k
h = {v ∈ H1(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th} (20)

where Pk is the space of polynomials of degree less than or equal to k, and then associate with
it the discontinuous approximation space

V k
h = {v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th} . (21)

According to the interpretation in Section 1 we will view V k
h as being obtained from V

k
h by

releasing interelement continuity constraints.
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3 Global Weak Formulation

In this section a global DG method is presented which will serve as a framework for the solution
of the advection-diffusion problem. Skew-symmetric, neutral, and symmetric versions of the
DG method are considered. They will be integrated into the global formulation by introducing
a switch s, taking the values +1, 0, and -1, respectively. The symmetric version is the only
one which yields a symmetric discretization of the Laplace operator and is the only one that is
adjoint consistent, following the terminology of Arnold et al. [3].

3.1 Conservative formulation

One of the most important design requirements for DG formulations is conservation. In the
present formulation a new approach is taken to enforce conservation of the total flux σ :=
aφh − κ∇φh. The global DG formulation reads:

Find φh ∈ V k
h such that, ∀µh ∈ V k

h ,

0 =
∑

T∈Th

(

−

∫

T

∇µh · (aφh − κ∇φh) −

∫

T

µhf

)

+
∑

e∈Γg

(
∫

e

µh

(

a(χΓ−
g
g + χΓ+

g
φh) − κ∇φh

)

· n +

∫

e

(

ǫκ

h⊥
µh + sκ∇µh · n

)

(φh − g)

)

+
∑

e∈Γh

∫

e

µh

(

(aφh)χΓ+

h
· n − h

)

+
∑

e∈Eo
h

(
∫

e

(

[[µh]] · (aφ−h − κ∇φ−h ) + s κ∇µ−h · [[φh]]
)

+

∫

e

ǫκ

h⊥
[[µh]] · [[φh]]

)

(22)

The following definition will be used:

h⊥ =
meas(T+) + meas(T−)

2 meas(e)
(23)

where T−/T+ are, respectively, the upwind/downwind elements with respect to the edge e.
Roughly speaking, h⊥ is a length scale in the direction perpendicular to the edge e, close to the
length of the segment joining the barycenters of T− and T+ (see Fig. 4). The selection of the
value of the non-dimensional parameter ǫ will be described subsequently.

Remark

The effect of the parameter s has been extensively studied in the discontinuous Galerkin liter-
ature (see Arnold et al. [3], Baumann and Oden [4], and Hughes et al. [32]). The symmetric
formulation (i.e., s = −1) is adjoint-consistent, guaranteeing optimal L2-convergence rates in
the diffusive limit. Ostensibly, the skew formulation (i.e., s = +1) has superior stability prop-
erties but the ǫ-terms can be used to improve the stability behavior of the neutral (i.e., s = 0)
and symmetric formulations.
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h⊥

Figure 4: Definition of h⊥ for two adjacent triangular elements.

3.1.1 Conservation properties

In many applications global and/or local conservation is important. Our DG formulation (22)
possesses exactly the same global conservation as a continuous Galerkin method. To extract a
statement of conservation, consider the case Γg = ∅ and set the weighting function µh in (22)
equal to one throughout Ω. It is easily seen that the finite element solution φh satisfies

∫

Ω
f +

∫

Γ
h−

h− +

∫

Γ
h+

(−a · nφh + h+) = 0 . (24)

which identical with the conservation statement of a standard Galerkin method; see [39].
To extract a local conservation statement, consider for simplicity an element T that does

not have edges on the boundary Γ and a weight function µh that equals one on T and zero on
all other elements. Then, (22) reduces to

−

∫

T

f +
∑

e∈∂T

(
∫

e

(

aφ−h − κ∇φ−h
)

· n +

∫

e

εκ

h⊥
[[φh]] · n

)

= 0 , (25)

where we have used that for the given choice of µh the jump [[µh]] is simply the outer normal n

to ∂T . Without the stabilization term (25) specializes to

−

∫

T

f +
∑

e∈∂T

∫

e

(

aφ−h − κ∇φ−h
)

· n = 0 , (26)

i.e., the DG method (22) is locally conservative. When ǫ > 0 local conservation is exact to
order O(ǫ). This situation is typical of all DG methods that employ interior penalty terms
for stabilization. Then the strong local conservation is weakened in the sense that the element
conservation law involves terms from all surrounding elements, contributed by the last term
in (25). This is reminiscent of what occurs in CG methods, the ǫ-terms here enforcing a weak
continuity. It should be noted however, that local conservation is a topological property, while
stability and convergence are metric properties, and so, the weakened local conservation does
not imply inferior convergence or stability of the DG scheme.

As a final note, we point out that in most DG formulations advective fluxes are upwinded

while diffusive fluxes are centered. This leads to conservation of fluxes that are not located at

8



Figure 5: Local conservation of flux: inflow fluxes from the contiguous upwind elements (blue) are
balanced by the outflow flux on the outflow boundary of the element (red).

the same place. A unique property of our DG formulation is the upwinding of the total flux.
This results in locally conservative fluxes that are computed entirely in one place. To clarify
this important distinction let us assume that T and a are in the configuration shown in Fig. 5
and that the edges of T are numbered counterclockwise starting from the bottom edge. Let φT

h

denote the value of φh on T and φC
h denote the value of this function on the contiguous elements.

Then, the conserved flux is given by

aφ−h − κ∇φ−h =







aφC
h − κ∇φC

h on e1 ∪ e3

aφT
h − κ∇φT

h on e2
(27)

From this it is clear that in our formulation the outflow fluxes on the outflow boundary of the
element in question are balanced by the inflow fluxes from the contiguous upwind elements; see
Fig. 5. This consistent upwinding of the flux is reminiscent of the consistent weighting of the
residual in a stabilized method [10, 31, 34].

3.1.2 Euler-Lagrange equations

To understand (22), it is instructive to derive the Euler-Lagrange equations by means of an
integration-by-parts. Use of (17) with τ = κ∇φh and (19) with τ = aφh yields:

0 =
∑

T∈Th

∫

T

µh (∇· (aφh − κ∇φh) − f)

+
∑

e∈Γg

∫

e

(

ǫκ

h⊥
µh + sκ∇µh · n − µhaχΓ−

g

)

(φh − g)

+
∑

e∈Γh

∫

e

µh

(

(−aφhχΓ−

h
+ κ∇φh) · n − h

)

+
∑

e∈Eo
h

(
∫

e

(

−µ+
h [[aφh − κ∇φh]] + s κ∇µ−h · [[φh]]

)

+

∫

e

ǫκ

h⊥
[[µh]] · [[φh]]

)

(28)
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Remarks

1. The first sum weakly enforces satisfaction of the advection-diffusion equation on each
element domain T .

2. The terms multiplied by the parameter ǫ serve the purpose of eliminating a kernel in the
discrete diffusive operator, in the limit a → 0.

3. In the second sum, Dirichlet boundary conditions are weakly enforced by weighting their
residual φh − g by the total flux at the inflow and the diffusive flux at the outflow. In
the advection-dominated limit, the outflow boundary condition is significantly relaxed,
whereas when diffusion dominates, it converges toward strong satisfaction everywhere.

4. In the third sum, Neumann conditions are imposed according to the same rationale as for
the Dirichlet conditions. The total flux aφh − κ∇φh is imposed at the inflow, while only
the diffusive flux is specified at the outflow.

5. The first term in the last sum weakly enforces continuity of the total flux across internal
element interfaces. It represents an upwinded total flux, since the jump of the fluxes
upwind and downwind of an edge are weighted by the downwind test function µ+

h . The
total flux is conserved and upwinded.

6. The terms involving [[φh]] weakly enforce the continuity of φh across element interfaces.

4 Local Weak Formulations

4.1 Local problem for the trial solution

The discontinuous field φh ∈ V k
h is linked to a continuous field φh ∈ V

k
h by the following local

(i.e., element-by-element) DG problem:

Find φh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

0 = −

∫

T

∇v · (aφh − κ∇φh) −

∫

T

vf + ǫ

∫

ΓT

κ̃

h⊥
v (φh − φh)

+

∫

Γ+

T

vφha · n +

∫

Γ−

T

vφha · n

+

∫

ΓT

s κ∇v · n(φh − φh) −

∫

ΓT

κ∇φh · nv (29)

where
κ̃ = κ+ δχΓ+

T
h⊥a · n (30)

and V k
h (T ) = Pk(T ). The parameter δ eliminates a kernel which can occur in the limit κ→ 0 in

isolated circumstances. Further discussion will be presented subsequently. The Euler-Lagrange
equations are:

0 =

∫

T

v (∇· (aφh − κ∇φh) − f) + ǫ

∫

ΓT

κ̃

h⊥
v (φh − φh)

+

∫

Γ−

T

va · n(φh − φh) −

∫

ΓT

s κ∇v · n(φh − φh) (31)
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Equation (29) can be succinctly expressed as:

Find φh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, φh) = F (v; f, φh) (32)

where

B(v, φh) = −

∫

T

∇v · (aφh − κ∇φh) −

∫

ΓT

v κ∇φh · n

+

∫

ΓT

(

ǫκ̃

h⊥
v +

(

s κ∇v + v χΓ+

T
a
)

· n

)

φh (33)

F (v; f, φh) =

∫

T

vf +BΓ(v, φh) (34)

and

BΓ(v, φh) =

∫

ΓT

(

ǫκ̃

h⊥
v +

(

s κ∇v − v χΓ−

T
a
)

· n

)

φh (35)

B(·, ·) and BΓ(·, ·) are bilinear forms and F (·; ·, ·) is linear with respect to its first argument and
affine with respected to its second and third arguments. Let nen denote the number of element
nodes and let {ψj}

nen

1 denote the nodal basis for the element in question. The basis functions
associated with the element boundary nodes are denoted {ψj}

nen

1 . Obviously, these are a subset
of {ψj}

nen

1 . We write

v =

nen
∑

j=1

vjψj (36)

φh =

nen
∑

j=1

Φjψj (37)

φh =

nen
∑

j=1

Φjψj (38)

f =

nen
∑

j=1

fjψj (39)

where vj , Φj, and Φj, and fj denote nodal values. The interpretation is that φh is the discon-
tinuous solution and φh is the continuous solution in which degrees-of-freedom are shared on
element boundaries. Substitution into (32) yields a local algebraic problem:

S Φ = SΓ Φ + M f (40)

Sij = B(ψi, ψj) (41)

(SΓ)ij = BΓ(ψi, ψj) (42)

Mij =

∫

T

ψiψj (43)

where Φ = [Φ1,Φ2, . . . ,Φnen ]t, Φ = [Φ1,Φ2, . . . ,Φnen ]t, and f = [f1, f2, . . . , fnen ]t. Provided S

is invertible, it is possible to express Φ in terms of Φ and f :

Φ = T h
φhφh

Φ + T h
φhf f (44)
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Discontinuous
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10 9 8 7
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nen=16
1

Continuous
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12 5

11 6

10 9 8 7
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1

Figure 6: Schematic illustration of the basis functions in the local problem. On the left is a 16-node
bicubic quadrilateral element. Its boundary nodes are identified on the right. The corresponding
basis functions satisfy ψj = ψj , j = 1, 2, . . . , 12. The internal degrees-of-freedom, corresponding to
ψ13, ψ14, ψ15, ψ16, are eliminated by the solution of the local problem. Only the unique, shared,
boundary degrees-of-freedom are retained in the global problem.

where T h
φhφh

= S−1 SΓ and T h
φhf = S−1 M . This mapping enables us to eliminate local

degrees-of-freedom in favor of global degrees-of-freedom. See Figure 6.

4.1.1 Multiscale interpretation

Let φh = φh + φ′h. We think of φh ∈ V
k
h as the coarse-scale component of the solution, and

φ′h ∈ V k
h as the fine-scale component. By virtue of the fact that φh is continuous, φ′h may be

thought of as the discontinuous part of the solution. Thus, the local problem can be stated as:

Find φ′h ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, φ′h) = R(v; f, φh) (45)

where

R(v; f, φh) = F (v; f, φh) −B(v, φh)

=

∫

T

(

∇v ·
(

aφh − κ∇φh

)

+ vf
)

−

∫

ΓT

v(aφh − κ∇φh) · n

= −

∫

T

v
(

a · ∇φh − κ∆φh − f
)

(46)

is the residual of the coarse-scale solution. Comparing (46) with (33) and (34), it is immedi-
ately realized that the local problem for the discontinuous correction φ′h corresponds to a local
DG method with weakly-enforced homogeneous Dirichlet boundary conditions, driven by the
residual. The relationship with the multiscale analysis presented in Hughes [31] and Hughes et

al. [33] is then evident.
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The local algebraic problem becomes

S Φ′ = SΓ Φ − S Φ + M f (47)

where
Sij = B(ψi, ψj) (48)

leading to

Φ′ = T h
φ′

h
φh

Φ + T h
φhf f (49)

in which

T h
φ′

h
φh

= T h
φhφh

− S−1S (50)

Remark

If there are no element internal degrees-of-freedom, that is if ψj = ψj, ∀j, which is typically the

case for low-order elements, then S = S.

4.2 Local problem for the weighting function

The discontinuous weighting function µh ∈ V k
h is also linked to the continuous weighting function

µh ∈ V
k
h as follows:

Find µh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, µh) = F (v; 0, µh) (51)

The multiscale version is given by

Find µ′h ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, µ′h) = R(v; 0, µh) (52)

Remarks

1. The introduction of the local problems is seen to eliminate the fine-scale degrees-of-freedom
in favor of the coarse-scale degrees-of-freedom. The combination of the local and global
weak formulations defines the new MDG method.

2. The present approach has some similarities to the variational multiscale method [31, 33]
and the residual-free bubble (RFB) method [6, 9]. There are many variants of these pro-
cedures. Perhaps the one which is the closest to the present work is the discontinuous
residual-free bubble (DRFB) method of Sangalli [47]. As is typical in RFB methods, San-
galli begins with the standard weak form. Both the finite element and bubble spaces are
normally assumed to be conforming but, inspired by [9], in which a discontinuous approxi-
mation of the exact bubble is shown to work well in the advection-dominated limit, Sangalli
proposes a discontinuous Galerkin formulation of the local problem. There are three os-
tensible differences between DRFB and the present approach: (1) The global formulation
in DRFB derives from the continuous Galerkin method, whereas ours derives from the
discontinuous Galerkin method; (2) DRFB focuses only on the advection-dominated case
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and does not deal with some of the issues concerning the local problem that we considered,
namely, the diffusion-dominated regime, and transition regime where both advective and
diffusive mechanisms are important; and (3) the treatment of the weighting function in
equation (52) has a substantial effect in the present approach but has no effect whatsoever
in the RFB method. Despite these differences, the similarities are intriguing and warrant
further investigation.

5 Numerical Results

5.1 One-dimensional advection-diffusion

We assume the advective velocity, a, is positive and constant, and the force, f is constant. The
exact solution of the strong form (7) is easily derived:

φ(x) = φ0 + (φL − φ0)
1 − ePeL

x
L

1 − ePeL
+

2F

PeL

(

x

L
−

1 − ePeL
x
L

1 − ePeL

)

(53)

where φ0 and φL are Dirichlet boundary conditions imposed at x = 0 and x = L, PeL = aL/κ
is the Péclet number, and F = fL2/(2κ) is the source. In the limit PeL → 0, (53) yields:

φ(x) = φ0 + (φL − φ0 + F)
x

L
−F

(x

L

)2
(54)

5.1.1 Weak formulation

It is now worthwhile to recast (22) for the case at hand because many simplifications arise.

Find φh ∈ V k
h ([xe, xe+1]), e ∈ {1, 2, . . . , nel}, such that, ∀µh ∈ V k

h ([xe, xe+1]):

0 = −

nel
∑

e=1

∫ xe+1

xe

( ∂xµh (aφh − κ ∂xφh) + µhf)

+

nel
∑

e=2

{

(−µ+
h + µ−h )(aφ−h − κ ∂xφ

−
h ) +

(

s κ ∂xµ
−
h + ǫ

κ

h⊥
(−µ+

h + µ−h )

)

(−φ+
h + φ−h )

}

x=xe

+

{

+µhaφh + ǫ
κ

h⊥
µh(φh − φL) + s κ ∂xµh(φh − φL) − κ ∂xφh µh

}

x=L

+

{

−µhaφ0 + ǫ
κ

h⊥
µh(φh − φ0) − s κ ∂xµh(φh − φ0) + κ ∂xφh µh

}

x=0

(55)

where the notation {η}x=x̃ stands for η evaluated at x̃, e ∈ {1, 2, . . . , nnp} are the nodes of the
mesh, and {xe| e = 2, . . . , nnp − 1 = nel} is the set of interior nodes.

5.1.2 Local problem for the trial solution

The local problem reads:

B(v, φh) = F (v; f, φh) (56)
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with

B(v, φh) = −

∫ xe+1

xe

∂xv (aφh − κ ∂xφh)

+

{

v aφh + ǫ
κ̃

h⊥
v φh + s κ ∂xv φh − κ ∂xφh v

}

x=xe+1

+

{

ǫ
κ̃

h⊥
v φh − s κ ∂xv φh + κ ∂xφh v

}

x=xe

(57)

F (v; f, φh) =

∫

T

vf +BΓ(v, φh) (58)

BΓ(v, φh) = +

{

ǫ
κ̃

h⊥
v φh + s κ ∂xv φh

}

x=xe+1

+

{

−v aφh + ǫ
κ̃

h⊥
v φh − s κ ∂xv φh

}

x=xe

(59)

Piecewise linear interpolation is assumed. Let

Φ =

[

φl
h

φr
h

]

, Φ =

[

φ
l
h

φ
r

h

]

, f =

[

f l

f r

]

(60)

where the superscripts l and r stand for the left and right nodal values. Straightforward calcu-
lations yield

T h
φhφh

=
1

∆

[

t11 t12
t21 t22

]

(61)

with

∆ = (Peh)2(1 + δǫ) + (s+ ǫ)(1 + δǫ)Peh + ǫ/2(2s + ǫ) (62)

t11 = (Peh)2(1 + 2δǫ) + (s(2 + δǫ) + ǫ/2(3 + 2δǫ))Peh + ǫ/2(2s + ǫ) (63)

t12 = −Peh(Pehδǫ+ s+ ǫ/2) (64)

t21 = Peh(Pehδǫ+ s+ ǫ/2) (65)

t22 = ǫ((Peh)2δ + Peh(1/2 + δ(s + ǫ)) + s+ ǫ/2) (66)

Peh =
ah

2κ
(67)

and

T h
φhf =

h2

12κ∆

[

Peh(1 + δǫ) + 3s+ 2ǫ −Peh(1 − 2δǫ) + 3s+ ǫ
3Peh + 3s + ǫ 3Peh + 3s+ 2ǫ

]

(68)

Special care has to be taken because, for s = −1, the determinant, ∆, can vanish for certain
combinations of Peh and ǫ. An analysis of the sign of the determinant is presented in Table 1.
The locus of ∆ = 0 in the Peh, ǫ-plane is shown in Figure 7, together with an elevation plot of
the function ∆(Peh, ǫ). In the multiscale version, T h

φ′
h
φh

= T h
φhφh

− I2×2.
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s = +1 s = 0 s = −1
∆ Peh(Peh + 1) (Peh)

2 Peh(Peh − 1)
+ǫ(Peh + 1) + ǫ2/2 +(Peh + ǫ)2 +ǫ(Peh − 1) + ǫ2/2

∆ > 0? always always for ǫ > 1−Peh+
√

1−Pe2h
for ǫ > 0 for ǫ > 0 and ǫ < 1−Peh−

√

1−Pe2h

Table 1: Analysis of the sign of the determinant ∆ for δ = 0.
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Figure 7: Locus of ∆ = 0 for s = −1 and δ = 0 on the Peh, ǫ-plane (left) and on an elevation plot of
the function ∆. It is seen that ǫ > 2 prevents the determinant from vanishing for all Péclet numbers.

5.1.3 Limit behavior

Taking limits, Peh → 0 and ∞, we have:

lim
Peh→0

T h
φhφh

=

[

1 0
0 1

]

(69)

lim
Peh→∞

T h
φhφh

=
1

1 + δǫ

[

1 + 2δǫ −2δǫ
1 δǫ

]

(70)

lim
Peh→0

T h
φhf =

h

6κǫ(2s + ǫ)

[

3s+ 2ǫ 3s+ ǫ
3s + ǫ 3s+ 2ǫ

]

(71)

lim
Peh→∞

T h
φhf = 02×2 (72)

From (69) it is seen that, if f = 0, φh → φh in the diffusive limit, while from (70) it is seen that,
in the advective limit, full upwinding is performed up to the perturbation of the parameter δ,
that is φh|[xe,xe+1] → φh(xe)χ|[xe,xe+1], for a positive. Notice also that, due to the fact that in the

diffusive limit T h
φhf does not vanish, the continuous solution, φh, will not in general be equal to

the discontinuous solution, φh, when f is present. The behavior of the method is schematically
illustrated in Figure 8.

Note that, in the advective limit, Peh → ∞, without the δ-term, the transformation Tφhφh

becomes singular and the global coefficient matrix entries corresponding to the degree-of-freedom
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PeL → ∞

φh φh

0 L

PeL → 0

φh and φh

0 L

Figure 8: Schematic of the behavior of the new method. In the advective limit, the solution exhibits
upwind influence, whereas in the diffusive limit the solution behaves like the continuous solution
although it is not identical to it in the case f 6= 0.

φ
r

h will receive no contribution from the element under consideration. If the node associated
with this degree-of-freedom is an outflow node with respect to all elements connected to it,
the global coefficient matrix will have a zero row and column corresponding to this degree-of-
freedom. Situations where this can occur are schematically illustrated in Figure 9. The role of
the δ-term is to provide stabilization in these circumstances. In all numerical tests, this strategy
has proved effective.

5.1.4 Local problem for the weighting function

Given that the problem of linking µh to µh is the same as for linking φh to φh, except f = 0,
the result is

[

µl
h

µr
h

]

= T h
µhµh

[

µl
h

µr
h

]

(73)

or
[

µ′lh
µ′rh

]

= T h
µ′

h
µh

[

µl
h

µr
h

]

(74)

with T h
µhµh

= T h
φhφh

and T h
µ′

h
µh

= T h
φ′

h
φh

.

5.1.5 Numerical results

We compare the continuous and discontinuous representations of the solution for the MDG
formulation (i.e., φh and φh, resp.) with the solution of the global DG method. We examine
the effect of the parameter s on monotonicity of the solution, and convergence rates. The value
ǫ = 2.001 was used in the calculations. This value is essential for the good behavior of the
symmetric case (i.e., s = −1). The parameter δ = 0.01 was used throughout. Smaller values
were not as effective.

In Figures 10 and 11, results are presented for a fixed, uniform mesh of four elements, and
various Péclet numbers. One notices oscillations for the discontinuous representation of the
solution, φh, for skew and neutral cases at intermediate Péclet numbers. The discontinuous
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Figure 9: In the advective limit, outflow and sink nodes are stabilized by the δ-term. Strictly
speaking, the sink-node cases are precluded by our assumption that a is solenoidal. Nevertheless, in
numerical calculations a will also be a discrete approximation and therefore it will typically not be
exactly solenoidal. See Hughes and Wells [38] for a discussion of this issue.

solutions for the symmetric case are oscillation-free and monotone for all Péclet numbers. The
global DG solution is about the same quality as the discontinuous solution of the MDG method.

In Figure 12 and 13, results are presented for a fixed Péclet number, PeL, and varying mesh
size. The conclusions to be drawn are similar to those of Figures 10 and 11. In all cases, the
continuous representation of the solution for the MDG method, φh, tends to be somewhat better
behaved than the discontinuous representation.

L2-convergence rates for the case f = 0 are presented in Figures 14–16. The first thing one
notices is that in Figures 14–15, for the skew and neutral versions, the L2-convergence rates for
the global DG method are first-order. This is to be expected because these methods are not
adjoint consistent (see Arnold et al. [3]). The symmetric version is adjoint consistent, and so it
converges at optimal L2-rate, as seen in Figure 16. For the present formulation, for all values
of s, optimal L2-convergence is attained. This is seen to be a consequence of the fact that,
in the diffusive limit, the discontinuous solution converges to the continuous solution, which is
well-known to attain optimal L2-rate of convergence. The local problem has beneficial effect
and compensates for the lack of adjoint consistency of the skew and neutral versions.

L2, H1, and L1, convergence rates are presented in Figures 17–19 for the case f = 1 and the
symmetric version. By H1-convergence we mean convergence in the “broken” H1-seminorm,
namely,

∑

T∈Th

∫

T
|∇ · |2.

18



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

P
e L

=
1;

 P
e h =

 0
.1

25
Skew (s=+1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

P
e L

=
24

; P
e h =

 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

P
e L

=
64

0;
 P

e h =
 8

0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Neutral (s=0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Symmetric (s=−1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Figure 10: Solution plots in terms of varying Péclet number, on a uniform mesh of 4 elements, with
f = 0. Red, exact solution; blue, MDG φh; light blue, MDG φh; magenta, global DG solution without
local condensation.
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Figure 11: Solution plots in terms of varying Péclet number, on a uniform mesh of 4 elements, with
f = 1. Red, exact solution; blue, MDG φh; light blue, MDG φh; magenta, global DG solution without
local condensation.
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Figure 12: Solution plots in terms of varying mesh size, on uniform meshes of 2, 8, and 32 elements,
PeL = 24, with f = 0. Red, exact solution; blue, MDG φh; light blue, MDG φh; magenta, global DG
solution without local condensation.
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Figure 13: Solution plots in terms of varying mesh size, on uniform meshes of 2, 8, and 32 elements,
PeL = 24, with f = 1. Red, exact solution; blue, MDG φh; light blue, MDG φh; magenta, global DG
solution without local condensation.
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Figure 14: Convergence rates, skew (s = +1) version, with f = 0. Blue, MDG φh; light blue, MDG
φh; magenta, global DG solution without local condensation; red, (Peh)
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Figure 15: Convergence rates, neutral (s = 0) version, with f = 0. Blue, MDG φh; light blue, MDG
φh; magenta, global DG solution without local condensation; red, (Peh)
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Figure 16: Convergence rates, symmetric (s = −1) version, with f = 0. Blue, MDG φh; light blue,
MDG φh; magenta, global DG solution without local condensation; red, (Peh)
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Figure 17: Convergence rates in the L2-norm of the error, symmetric (s = −1) version, with f = 1.
Blue, MDG φh; light blue, MDG φh; magenta, global DG solution without local condensation; red,
(Peh)
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Figure 18: Convergence rates in the H1 broken seminorm of the error, symmetric (s = −1) version,
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Figure 19: Convergence rates in the L1-norm of the error, symmetric (s = −1) version, with f = 1.
Blue, MDG φh; light blue, MDG φh; magenta, global DG solution without local condensation; red,
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Figure 20: Advection skew to the mesh, θ = 30o. Left, continuous representation of the MDG
solution, φh; center, discontinuous representation, φh; right, solution of the global DG method without
local condensation.

5.2 Two-dimensional advection equation

Two-dimensional simulations were performed to test the robustness and accuracy of the MDG
method in the advection-dominated limit, κ→ 0. Comparisons are again made with the global
DG method. Bilinear quadrilateral elements are employed resulting in the number of equations
for the global DG method being approximately four times that for the MDG method. The
symmetric version of the DG method was used (s = −1), and the values of ε and δ were again
taken to be 2.001 and 0.01, respectively.

5.2.1 Advection skew to the mesh

The first problem is a robustness test. The domain of the problem is Ω = [0, L] × [0, L] with
L = 1. Dirichlet boundary conditions are set as follows:

g =







1 if y = 0
1 if x = 0 and y ≤ L/5
0 otherwise

(75)

The boundary conditions are enforced weakly for both the global and multiscale DG methods.
The advective velocity a is constant and forms an angle θ with the x-axis. Three configurations
are considered: θ = 30o, θ = 45o and θ = 60o degrees.

Numerical results for a 30 × 30 mesh are presented in Figures 20–25. Note that the con-
tinuous representation of the solution, φh, is slightly better behaved than the discontinuous
representation, φh, in that oscillations about the internal layer are somewhat less for the for-
mer. Comparison of the MDG solution with the global DG solution reveals that the multiscale
method is similar in accuracy to the global method. The main attribute of both methods is that
there are no spurious oscillations in the vicinity of the outflow boundary conditions. This is an
advantage attributable to weakly enforced outflow boundary conditions, and one not shared by
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Figure 21: Advection skew to the mesh, θ = 30o. Left, solution at y/L = .5; right, solution
at x/L = 0. Blue, MDG φh; light blue, MDG φh; magenta, global DG solution without local
condensation.

strong enforcement (see Brooks and Hughes [10]). However, weak enforcement of inflow Dirich-
let boundary conditions offers no similar advantage over strong enforcement. Both the global
and multiscale DG methods give rise to oscillations at the inflow discontinuity that attenuates
somewhat in the interior of the domain. These oscillations are caused by the L2-projection
structure of DG methods for data perpendicular to characteristics, such as the inflow boundary
condition in the present problem. It is conceivable that, by appropriately restructuring the local
problem, more monotone behavior might have been obtained but this was not pursued in the
present study.

5.2.2 Rotating flow

This problem is an accuracy test. Classical upwind procedures exhibit excessive crosswind
diffusion on this problem (see Brooks and Hughes [10]). The domain is again Ω = [0, L]× [0, L]
with L = 1. The two velocity components are:

ax = y − 1/2 (76)

ay = 1/2 − x (77)

The solution is prescribed along the slit x = L/2, y ∈ [0, L/2], as follows:

φ(1/2, y) = sin2 (2πy/L) (78)

Numerical results on a 30 × 30 mesh are shown in Figure 26. There is little to differentiate
between the φh and φh in this case. Both representations are very accurate and there is no
appearance of crosswind diffusion.
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Figure 22: Advection skew to the mesh, θ = 45o. Left, continuous representation of the MDG
solution, φh; center, discontinuous representation, φh; right, solution of the global DG method without
local condensation.
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Figure 23: Advection skew to the mesh, θ = 45o. Left, solution at y/L = .5; right, solution
at x/L = 0. Blue, MDG φh; light blue, MDG φh; magenta, global DG solution without local
condensation.
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Figure 24: Advection skew to the mesh, θ = 60o. Left, continuous representation of the MDG
solution, φh; center, discontinuous representation, φh; right, solution of the global DG method without
local condensation.
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Figure 25: Advection skew to the mesh, θ = 60o. Left, solution at y/L = .5; right, solution
at x/L = 0. Blue, MDG φh; light blue, MDG φh; magenta, global DG solution without local
condensation.
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Figure 26: Rotating flow. Left, continuous representation of the MDG solution, φh; center, discon-
tinuous representation φh; right, solution at y/L = .5, in which the continuous and discontinuous
solutions are seen to overlap.
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6 Conclusions and Future Directions

The objective of the present work was to develop a discontinuous Galerkin method with the
reduced computational cost of a corresponding continuous Galerkin method. The method de-
veloped achieves this objective and, at the same time, at least attains, and even somewhat
improves upon, the performance of the associated continuous Galerkin method. This represents
a solution to a fundamental and long-standing problem in discontinuous-Galerkin technology,
namely, restraining the proliferation of degrees-of-freedom. Having accomplished this, there is
still room for improvement. The discontinuous Galerkin method is certainly more robust than
the continuous Galerkin method but, in itself, is not sufficiently robust for many industrial ap-
plications. Its improved stability exists primarily along characteristics but not perpendicular to
characteristics. The “advection skew to the mesh” problem is illustrative of this fact. There
are no oscillations present in the vicinity of the outflow Dirichlet boundary conditions but the
internal layer gives rise to transverse oscillations. This deficiency is also present in SUPG (see
Brooks and Hughes [10]), and it has long been recognized that additional mechanisms are nec-
essary to produce sufficiently smooth solutions for industrial purposes. In the context of SUPG,
this has motivated the development of “discontinuity capturing operators.” See Hughes, Mallet
and Mizukami [36] and Hughes and Mallet [35] for the initial conceptions. Numerous improved
variants have been developed subsequently by other researchers (see, e.g., [11, 19–22, 24, 26, 48]).
Within the framework of the multiscale discontinuous Galerkin method, the local problem pro-
vides a vehicle for incorporating desired features. There seems to be a potential connection
here with ideas from wave propagation methods based on solutions of the Riemann problem.
This would appear to be a fruitful direction for further research, especially in the context of
complex nonlinear problems. Other research challenges involve the mathematical basis of the
multiscale discontinuous Galerkin method. Its structure is somewhat non-traditional in that
solutions involve two distinct representations: the coarse-scale, continuous representation, φh,
and the coarse-scale plus fine-scale discontinuous representation, φh = φh +φ′h. In addition, the
multiscale method requires stabilization terms to control the solution at outflow and sink nodes
in the advection-dominated limit. This raises additional mathematical questions.
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