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Abstract

In theory, it should be possible to infer realistic ge-
netic networks from time series microarray data. In prac-
tice, however, network discovery has proved problematic.
The three major challenges are 1) inferring the network; 2)
estimating the stability of the inferred network; and 3) mak-
ing the network visually accessible to the user. Here we de-
scribe a method, tested on publicly available time series mi-
croarray data, which addresses these concerns.

1. Introduction

The inference of genetic networks from genome-wide
experimental data is an important biological problem which
has received much attention. Approaches to this problem
have typically included application of clustering algorithms
[6]; the use of Boolean networks [12, 1, 10]; the use of
Bayesian networks [8, 11]; and the use of continuous mod-
els [21, 14, 19]. Overviews of the problem and general ap-
proaches to network inference can be found in [4, 3].

Our approach to network inference is similar to earlier
methods in that we use both clustering and Boolean net-
work inference. However, we have attempted to extend the
process to better serve the end-user, the biologist. In partic-
ular, we have incorporated a system to assess the reliabil-
ity of our network, and we have developed tools which al-
low interactive visualization of the proposed network.

2. Network Inference

The first step in our inference algorithm involves clus-
tering the time series microarray data. The clustering algo-
rithm uses force directed graph layout, and produces a two-
dimensional representation of the genes from the microar-

ray [2, 13]. In this representation, genes with similar expres-
sion profiles are placed near each other, and genes with dif-
ferent expression profiles are placed farther apart. We then
partition this representation using the well-known

�
-means

algorithm to provide
�

groups of co-regulated genes. Al-
together, this process not only simplifies the task of net-
work inference (by reducing the problem size), but also re-
sults in a network of gene groups, instead of actual genes.
These gene groups, which we call meta-genes, make the bi-
ological analysis and interpretation of the inferred network
tractable. Figure (1) illustrates the process of obtaining the
gene groups.

Figure 1. Gene map partitioned by
�
-means

for yeast time series microarray data in [18].



Since our network inference algorithm is Boolean, we
must first discretize our the expression levels of our meta-
genes. This discretization is accomplished in two steps.
First, Support Vector Regression [17] is used to obtain a
single continuous curve representing each meta-gene. Next,
and on/off expression profile is obtained by thesholding the
resulting continuous curve, as shown in Figure (2).
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Figure 2. Discretized meta-gene for a gene
group from Figure (1).

After discretizing the meta-genes, we infer a Boolean
network. The inference algorithm is based on previous work
in chemical reaction network generation [7] and contains
routines to count, enumerate, and sample Boolean networks
that match the clustered and discretized expression profiles.
The inference routines run in ���������	��

��� time, where � is
the number of meta-genes available, and

�
is the maximum

connectivity of a given gene.
In order to more easily interpret the results of our

Boolean network inference algorithm, we exploit avail-
able tools for electronic circuit analysis. In particular, we
perform a two-level Boolean minimization on the truth ta-
ble representation of the inferred gene network using
Espresso, a well-known logic simplification tool avail-
able from www-cad.eecs.Berkeley.edu. Espresso produces
a minimized truth table for each meta-gene. Since each
meta-gene is processed in the same manner, we get a min-
imized representation of the entire network. This new
version of the network simplifies the biological analy-
sis and interpretation.

3. Stability Assessment

Even though the number of possible logic clauses per
meta-gene is limited, a large number of possible networks
that can be inferred from the same meta-genes. To ex-
plore the distribution of possible networks, we expand our
logic clause calculation to a set of 1000 randomly sam-
pled networks. We use this calculation to generate statis-

tics which identify the most reliable meta-genes and associ-
ated clauses.

We also cluster the sampled networks according to their
dynamics. Briefly, we cluster two networks when one net-
work differs from another by a pre-defined hamming dis-
tance, as measured using its dynamic expression profile. In
other words, two networks having different topologies are
clustered if they have similar dynamics. Tests on random
networks with different sizes and hamming distance thresh-
olds indicated that for a number of unclustered networks
(ranging between 1 and ����� nodes), the number of clusters
was no greater than 500.

Finally, we simulate our inferred network using a con-
tinuous model called BioXyce, which is a parallel electric
circuit simulation tool adapted to biological problems [15].
Results are comparable to the original discretized signal.
We note that the simulation was not possible using tradi-
tional CMOS-based Boolean logic, but we found that a non-
CMOS based logic was successful [16].

4. Network Visualization

After the network has been inferred, converted into a
minimal set of logical clauses, and been assessed for qual-
ity, we present the results in a format amenable to interac-
tive viewing. First, we draw the network using the dot graph
drawing tool [9], as shown in Figure (3). This tool was pro-
grammed to use various colors and shapes to encode infor-
mation specific to the particular application.

To make the drawing interactive, we displayed it using a
web-browser, where each meta-gene is hot-linked and has
mouse-over capability. In particular, clicking a meta-gene
opens a spreadsheet containing the annotation for the genes
in that group, and when a meta-gene is under the mouse, a
window pops up to show the original gene expression pat-
terns and corresponding discretization, as shown in Figure
(2).

5. Results

We have applied our method to the publicly available
yeast time series microarray data in [18]. The steps in the
process have been illustrated in Figures (1-3).

In Figure (1), we used the clustering of the time series
data previously performed in [20], along with the partition-
ing by

�
-means. In this case, we used

���������
, and dis-

carded clusters with fewer than 20 genes, leaving 81 meta-
genes.

In Figure (2), we used Support Vector Regression with a
Gaussian kernel ( � � � ) and an � -tube width of one and a
half times the average standard deviation of the expression
values at each time point.
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Figure 3. Visualization of final network using
the yeast time series data from [18].

In Figure (3), we used different color lines for inhibitory
and activation connections, and different color nodes for es-
sential genes. We used circular nodes for genes involved
in the cell-cycle, oval nodes for gene not involved in the
cell-cycle, and circles around a node to indicate confidence
in the relationships for that node. We computed the con-
fidence bands for a given meta-gene in the network using
the cumulative distribution of logical clauses from 1000
networks. We found that 14% of the activation/inhibition
clauses appeared in all networks, while 45% of the clauses
were present in half of the networks. This result indicates
that even while a large number of networks can be inferred,
there is some consistency across networks.

Finally, the real proof that our method is useful must
come from the analysis and interpretation of the final net-
work. Working with our biological collaborators, we have
developed two testable hypothesis based on our proposed
network. First, we discovered that the meta-gene module in
the upper right corner of Figure (3) consists almost entirely
of genes involved in exit from alpha-arrest. These cells were
exposed to alpha mating factor, which stops the cell-cycle
at a checkpoint until it is removed, thereby providing a way
to synchronize the cells in the growth medium. The gene
groups in the upper right of the drawing seem to be involved
in this synchronization process.

Second, we noticed that many of the links in the drawing
are inhibitory. This unexpectedly large number of inhibitory
controls goes counter to the currently accepted regulatory
model and may suggest that genetic networks are more

tightly controlled than has been previously assumed. Fur-
ther experiments, both laboratory and computational, will
be necessary to test these hypotheses.

6. Future Work

We have two primary objectives for the immediate fu-
ture. First, we have already starting analyzing the stability
of our methods in greater detail. In particular, the circles
around the nodes in Figure (3) are meant to give an indica-
tion of likelihood that a given meta-gene will have the same
relationships to other meta-genes in alternate networks gen-
erated by the network inference algorithm. We plan to make
these computations much more robust by using bootstrap-
ping methods [5] to assess the variance caused by changes
in our sampling algorithms. These changes include alter-
ing the curve-fitting and discretization parameters as well
as considering even more alternate inferences provided by
the network inference algorithm.

Second, we intend to perform a full and thorough analy-
sis of time series microarray data that has been collected by
a collaborator (A. Martino) in order to infer T-cell regula-
tory networks. In particular, we will study T-cell regulatory
networks triggered through tyrosine kinase receptor activa-
tion.

7. Conclusions

The development of this network and visualization en-
vironment has required the collaboration of researchers in
math (JLF, SM), computer sciences (GD, EM), and yeast
genomics (MWW). From the beginning we have focused
on the entire network inference process. We have devel-
oped clustering, discretization, and inference algorithms,
and have attempted to validate their output. Finally, we have
presented the results using an interactive network browser
for accessible biological interpretation. Although we will
continue to improve our process, it has already yielded two
testable biological hypotheses, one concerning exit from ar-
rested states, and one concerning the level of control present
in genetic networks.
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