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Abstract

We present a methodology for solving the inverse-quantitative structure–activity relationship (QSAR) problem using the molecular
descriptor called signature. This methodology is detailed in four parts. First, we create a QSAR equation that correlates the occurrence of
a signature to the activity values using a stepwise multilinear regression technique. Second, we construct constraint equations, specifically
the graphicality and consistency equations, which facilitate the reconstruction of the solution compounds directly from the signatures.
Third, we solve the set of constraint equations, which are both linear and Diophantine in nature. Last, we reconstruct and enumerate the
solution molecules and calculate their activity values from the QSAR equation. We apply this inverse-QSAR method to a small set of
LFA-1/ICAM-1 peptide inhibitors to assist in the search and design of more-potent inhibitory compounds. Many novel inhibitors were
predicted, a number of which are predicted to be more potent than the strongest inhibitor in the training set. Two of the more potent
inhibitors were synthesized and tested in-vivo, confirming them to be the strongest inhibiting peptides to date. Some of these compounds
can be recycled to train a new QSAR and develop a more focused library of lead compounds.
© 2003 Elsevier Inc. All rights reserved.

Keywords: QSAR; Inverse-QSAR; ICAM-1; LFA-1; Signature descriptor

1. Introduction

Current drug design is an iterative process, involving
years of research, identification, synthesis, and subsequent
testing of potential compounds that optimize a desired bio-
logical or chemical profile. Although databases containing
millions of molecules exist, the most time-consuming step
is the selection of high-quality lead compounds for pos-
sible synthesis. This inefficiency can be resolved through
the use of computational tools to expedite the screening of
molecular databases for a particular activity or property.

Virtual screening is a conventional computational tech-
nique that can be used in conjunction with high-throughput
screening to refine the search for molecules matching a

∗ Corresponding author. Tel.:+1-925-294-1279; fax:+1-925-294-3020.
E-mail address: jfaulon@sandia.gov (J.-L. Faulon).

desirable property[1,2]. However, these tools are limited in
that they can only provide solution molecules that are al-
ready in the database. Ideally, one would like to remove this
constraint and identify compounds that are not currently in
databases, but from which a high-quality lead compound
can be produced. Here we present a novel and exciting
technique to do just that; namely develop focused libraries
of compounds that are not in the database but are predicted
to have a desired value. This technique is rooted in the use
of a powerful molecular descriptor that we have recently
developed, called signature, which, in essence, involves
the solution of the inverse-quantitative structure–activity
relationship (QSAR) problem.

To demonstrate our inverse-QSAR approach, we applied
it to a small set of inhibitory peptides directed against leuko-
cyte trafficking and localization whose synthesis and testing
in clinical trials is limited. A crucial event in leukocyte
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localization is binding to endothelium and subsequent mi-
gration from the blood into tissue. Recently, identification
of cell surface adhesion molecules that mediate the adhe-
sion of leukocytes to the endothelium, such as leukocyte
functional antigen-1 (LFA-1) and its ligand intercellular
adhesion molecule-1 (ICAM-1), have allowed investigation
into leukocyte trafficking[3–5]. Collaborators at the Uni-
versity of New Mexico Health Sciences Center developed a
novel antagonist of ICAM-1 that has in-vivo efficacy[6–9],
and Kelly and coworkers[10,11] have developed a small
molecule antagonist of LFA-1, although toxicity effects
have limited its development as an in-vivo inhibitor. Using
our technique, we can predict compounds that provide the
proper inhibitory effect, some of which hopefully lack any
adverse toxicity effects.

The paper is set up in the following manner. First, we
will discuss QSARs in order to define the inverse problem.
Next, we will present the signature molecular descriptor and
review the various features of signature that have been pre-
viously investigated. Third, we will describe, in detail, the
methodology used to generate solutions to the inverse-QSAR
problem. Finally, we will provide an example demonstrat-
ing the use of signature in the solution of an inverse-QSAR
problem; namely the construction of a focused library of
compounds in rational peptide design.

2. Methodology

A quantitative structure–activity relationship is an em-
pirical relationship between a molecule’s structure and a
specific biological activity or physical property possessed
by that molecule. The independent variables in these equa-
tions are given in terms of molecular descriptors, which are
operators on the molecular graph that strive to character-
ize the properties of the molecule[12–16]. QSARs have
been used to quantify empirical data such as boiling points,
electric moments, chromatography retention times, IC50
values, lipophilicity, resonance, logP, and polarity[17–20].
QSARs are generally trained against a large data set (called
a training set) and validated through a subset not used in
the parameterization (called a test set) in order to test the
predictive ability of the QSAR. The quality and predictive
capacity of the QSAR equation depends on several factors,
including the size of the training set and the diversity of the
molecules used in the construction of the equation. If the
size of the training set is small, over-fitting of the QSAR
can easily occur making for a relationship that provides
poor predictions. If the molecules in the training set are of
a certain type, then the QSAR developed is ill-equipped to
predict properties of molecules of a type not included in the
training set.

What is described above is called the forward-QSAR
problem, which uses values for the independent variables of
a particular compound in the QSAR to solve for the activity
of that compound (the dependent variable). In contrast, the

goal of the inverse-QSAR problem is to determine values for
the independent variables given a desired activity. It is very
important to note that the inverse-QSAR method discussed
in this work applies toany property and not exclusively to
activity.

The inverse-QSAR problem is quite challenging for a va-
riety of reasons. First, one needs to be able to solve the
QSAR for a given activity. This corresponds to generating
the vectors of solutions (values for the independent variables,
or descriptor values) that correspond to the given activity. If
this first step can be completed, the generated solutions then
need to be turned into actual compounds.

Reconstructing molecules that match molecular descrip-
tor values is a long-standing problem. However, there are
only a few reports in the literature providing solutions to this
problem. Most of the proposed techniques are stochastic
in nature and use either genetic algorithms or Monte Carlo
methods to search for and construct chemical structures
matching predefined descriptor values. Venkatasubramanian
et al. [21] and Sheridan and Kearsley[22] were the first to
propose stochastic techniques based on genetic algorithms,
while methods based on a Monte Carlo approach were re-
ported later[23,24]. Although other papers using stochastic
techniques have appeared since then, there are still very
few attempts to solve the reconstruction problem using a
deterministic approach, i.e. using techniques that generate
exhaustive lists of molecular structures matching prede-
fined descriptor values. In a series of three papers Kier and
coworkers[25–27] reconstructed molecular structures from
the count of paths,lP , up to lengthl = 3. Their technique
essentially computes all the possible degree sequences
matching the count of paths up to lengthl = 2. Then, for
each degree sequence, all the molecular structures are gen-
erated using an isomer generator and the graphs that do not
match the3P count are rejected. Skvortsova et al.[28] used
a similar technique, but from the count of paths they derived
an edge sequence in addition to the degree sequence. An
edge sequence counts the number of edges between each
distinct pair of atom degrees. The two sequences are then
fed to an isomer generator that produces all the structures
matching the sequences. Regrettably, the authors do not pro-
vide details on how the isomer generator deals with the edge
sequence.

Owing to the limited progress offered by the above ap-
proaches to the solution of the inverse problem, it is clear
that the key to an effective solution methodology lies in
the use of a molecular descriptor that facilitates reconstruc-
tion of the solutions into actual compounds. This descriptor
needs to be information rich, have good correlation abilities
in QSAR applications, and must also be computationally ef-
ficient. A computationally efficient descriptor should have a
low degeneracy, that is, it should lead to a limited number of
solutions when applied in inverse-QSAR. Next, we briefly
present a descriptor that we believe matches the above crite-
ria. The descriptor is called signature and is further detailed
in two previous papers in this series[29,30].
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2.1. The signature descriptor

Signature is based on the molecular graph of a molecule,
G = (VG, EG), where the elements inVG denote the atoms
in the molecule, and the edges ofEG correspond to the
bonds between those atoms. In this context, a molecule is
characterized by a set of canonical subgraphs, each rooted
on a different vertex with a predefined level of branching,
which we refer to as the heighth. The branching of a ver-
tex is an extended degree sequence that describes the local
neighborhood, up to the distanceh away from the root.

We define an atomic signature,hσG(x), as the canonical
subgraph ofG consisting of all atoms a distanceh from
the rootx. A molecular signature,hΣG, is then the set of
all unique atomic signatures and the occurrence with which
they appear in the molecular graph. Even though the atomic
signatures are unique, they are, by construction, interre-
lated allowing information about the overall structure of the
molecule to be conveyed at the end.

The atomic signatures make up the set of molecular de-
scriptors for a molecule. These are expressed in terms of a
string of characters that correspond to the canonized sub-
graph in a breath-first order. Branch levels are indicated by a
set of parenthesis following the parent vertex. An example of
the molecular signature for nitroglycerine is given inFig. 1.

Signature is uniquely suited to address the issues related
to the inverse-QSAR problem. First, signature produces
QSARs on par with those obtained from conventional
molecular descriptors. In fact, signature encapsulates in-
formation from which other molecular descriptors can be
computed. Its usefulness in QSAR analysis was previously
established by comparison to a QSAR developed from
the commercial package, Molconn-Z, with similar results
[29,31]. Second, signature is shown to be less degenerate
than many other popular descriptors. The degeneracy of a
molecular descriptor depends on how well it is able to map
one property to one descriptor. A molecular descriptor with
a low degeneracy is vital in limiting the number of solu-
tions to the inverse-QSAR problem. Ideally, the descriptors
should be orthogonal to one another, such that only one
descriptor corresponds to the information for a single struc-
tural motif [32,33]. In a previous study, the degeneracy

Fig. 1. Nitroglycerine and its corresponding height one molecular signa-
ture. The molecular signature is the sum of the atomic signatures. Note
the different atom types between the single and double bonded oxygen
atoms.

of signature was systematically probed and compared to a
broad set of traditional molecular descriptors[30]. Signa-
ture proved to be less degenerate than the other descriptors,
but more importantly, its degeneracy can be user controlled.
Third, and foremost, signature provides a way to go from
numerical solutions of the inverse-QSAR problem to actual
structures that correspond to solutions. Indeed, the main
advantage of signature versus other molecular descriptors
is its readiness for inverse problems. An algorithm to both
enumerate and sample chemical structures corresponding to
solution vectors (i.e. molecular signatures), has already been
developed and tested for a variety of compounds including
alkanes, fullerenes, and HIV-1 protease inhibitors[30].

2.2. Inverse-QSAR scheme

The inverse-QSAR method can be broken into four steps.
The first step is the QSAR analysis. Here, we generate every
atomic signature of a desired height for the compounds in
the training set. We then use those signatures to construct a
QSAR equation relating compounds to their activities. The
second step is to generate the set of constraint equations with
integer coefficients (Diophantine equations) for the signa-
tures. In the third step, we solve these equations for integer
solutions using a Diophantine equation solver. The last step
consists of building the molecular structures and predicting
their activities using the QSAR equation.

2.2.1. QSAR analysis
Here, we outline the use of signature in the QSAR anal-

ysis; for further details on the procedure, the reader is re-
ferred to our two previous papers[29,30]. Construction of
the QSAR equation begins by expressing each compound in
the training set in terms its molecular signature of heighth.
A list of the unique descriptors (atomic signatures) is com-
piled and provides a descriptor database for the QSAR. This
set contains the minimum number of descriptors needed to
span the activity/property space of compounds in the train-
ing set. Assuming, there arem compounds in the training
set andn unique descriptors, ann×m “descriptor matrix” is
constructed by screening each compound against the set of
unique descriptors and storing that descriptor’s occurrence
number in the matrix. Perfectly correlated rows, i.e. descrip-
tors with the same predictive capabilities, are removed from
the matrix to avoid redundancies, which can skew the re-
sults of the multiple linear regression analysis. This matrix
and the corresponding property values determine the QSAR
equation that will be developed.

In our studies, the QSAR equation is a linear equation
of the form

∑
αixi − α0 = P , where αi represents the

regression coefficients,xi represents the occurrence num-
ber of the molecular descriptori, and P is the property
value of interest minus the regression constant. The number
of molecular descriptors, unknown until the training set
has been established, dictates the number of independent
variables. To avoid the possibility of over-fitting the data,
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which occurs when the number of independent variables is
equal to or exceeds the number of dependent variables, a
forward selection procedure[34] was used in the multilin-
ear regression. The forward selection adds variables one by
one, according to those that have the most impact on the
model, as determined byr2 and F statistics. This method
is computationally efficient and can control the number of
independent variables of the QSAR equation[34].

To test the accuracy of the model, a plot of the experimen-
tal values versus the QSAR correlated values is constructed.
For a good, correlative model, the points on the graph should
lie close to a 45◦ angle, which is quantitatively described by
theR2 value. If this is not the case, then adjustments can be
made to modify the number of independent variables; the
resultant equation is inhomogeneous with unknown occur-
rence values,xi.

2.2.2. Production of constraint equations
In addition to the QSAR equation, constraints are needed

to ensure the ability to reconstruct compounds from the so-
lutions. There are two types of constraint equations, namely
the graphicality equation and the consistency equations.

2.2.2.1. Graphicality equation. The graphicality equation
ensures that at least one connected graph can be constructed
from the molecular descriptors. This equation, taken directly
from graph theory, uses only the degree of the vertices in
the graph. In order to build a connected graph, we require
that (1) the sum of all the vertex degrees must be even and
(2) the number of vertices of odd degree must be even. The
resulting equation can be expressed in terms of a degree
sequenceN = {n1, n2, . . . , nk} whereni is the number of
vertices of degreei. In this case, the degree sequenceN is
graphical if and only if there exists an integerz ≥ 0 such
that

k∑
i=2

(i − 2)ni − n1 + 2 = 2z. (1)

The graphicality equation can be computed directly from
the height zero molecular signature.

2.2.2.2. Consistency equations. The next set of equations
is collectively referred to as the consistency equations. Re-
call that a molecular signature is a collection of interrelated
atomic signatures, where each atomic signature describes
a particular atom and its neighboring atoms to a predeter-
mined height. In constructing the signature of a molecule, it
is guaranteed that a bond in one atomic signature will match
up with a bond in another atomic signature, albeit in re-
verse order. However, blind reconstruction of the molecule
requires equations to enforce these conditions of interdepen-
dency among the atomic signatures. This is done by match-
ing bonds between two atoms of one signature to the bonds
involving the same atoms in all other signatures.

Fig. 2. Graphical depiction of the bond occurrence (2σi → 2σj). Here,2σi

supplies the height one bond between the carbon root and the last carbon
atom child. If a root swap is performed with this last carbon atom, then
the resulting height one signature is C(H H C C ), which we designate
as1σi. Similarly, if a root swap is performed on2σj and its carbon atom
child, then truncated to height one, its signature will match that of1σi.

We will use the notationhσi to describe the atomic sig-
nature of heighth of an arbitrary atomi. Using hσi as a
reference, any bond between the root and one of its children
must be sought in all other atomic signatures in which the
positions of the root and child are the transpose ofhσi. We
use the notation #(h−1σi → h−1σj), to depict the number
of bond typeshσi has in common withhσj. Clearly, then
#(h−1σi → h−1σj) = #(h−1σj → h−1σi). As depicted in
Fig. 2, it is important to note that the signature of a bond is
one height less than the height of the molecular signature.
The reason is that when #(h−1σi → h−1σj) is computed,
one has to transpose the rooti with a child j. While the
neighborhood ofi was initially probed up to heighth, the
transposed signature with new rootj probes the neighbor-
hood of j only up to heighth−1. In the case wherei = j,
then #(h−1σi → h−1σi) must be even.

For example inFig. 3 we calculate the number of
oxygen–carbon single bonds and compare it to the number
of carbon–oxygen single bonds in nitroglycerine. Here, the

Fig. 3. Illustration of how a consistency equation for nitroglycerine is
calculated. In particular, the number of oxygen–carbon single bonds must
equal the number of carbon–oxygen single bonds. Only one atomic sig-
nature contains a single bonded oxygen root connected to a single bonded
carbon with an occurrence of three. On the other hand, there are two
atomic signatures with a single bonded carbon root. In each case, the
carbon root is connected to a single bonded oxygen atom shown with a
dashed line. There is only one instance of a carbon–oxygen single bond in
both signatures, so the occurrence number is the sum of these, which is 3.
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first signature supplies the bond type, in this case an oxygen
atom single bonded to a carbon atom. To make sure bond
types match up, we need to find all instances of a carbon
atom single bonded to an oxygen atom in the other signa-
tures. This is done by searching the list of unique signatures
for all those that contain a single bonded carbon atom (c)
as the root. For each matching signature, an algorithm is
called to re-root the tree, such that a child is now the root.
This procedure is reiterated for each of the first children.
Because the carbon in this example has four children, there
will be four restructured graphs. If the signature contained
a carbon–oxygen bond, then upon restructuring, that oxy-
gen should appear as the root. A quick check is performed
and if any oxygen atom exists as the roots, then the oc-
currence number of the original signature is returned. All
matches are then summed to give a total for the number of
carbon–oxygen bonds, which should equal the number of
oxygen–carbon bonds, in this case three.

The consistency equations can be summarized as follows:
a molecular signature of heighth (hΣ) is consistent if and
only if the two following conditions are verified:

(i) For all atomic signaturesh−1σi and h−1σj in
h−1Σ, #(h−1σi → h−1σj) = #(h−1σj → h−1σi).

(ii) For all h−1σi in h−1Σ, #(h−1σi → h−1σi) is even valued.

In the nitroglycerine example inFig. 1, the occur-
rence numbers of the signatures were known quantities
and should be consistent by construction. However, in the
inverse-QSAR, the occurrence numbers are represented by
unknown quantities,xi. Construction of these equations
will produce relationships that quantitatively convey the
interdependencies of one signature on another in the set.

2.2.2.3. Equation solver. Together, the QSAR and con-
straint equations form a system of equations with unknown
occurrence numbersxi corresponding to atomic signaturei.
These solutions must represent quantities meaningful to sig-
nature and, hence, the occurrence numbers should take on
non-negative integer values. Equations in which only pos-
itive integer solutions are allowed are called Diophantine
equations. Research on algorithms for solving linear inte-
ger equations has been widely investigated starting from the

Fig. 4. A molecular signature may correspond to multiple structural configurations. Both 1,3-dinitroglycerine and 1,2-dinitroglycerine have the same height
one molecular signature given at the right. Increasing the height of the signatures will decrease the number of structural configurations that correspond
to a molecular signature.

ancient Greeks[35]. Such systems arise in various areas of
computer science and efficient algorithms are well-known
for solving these systems over real numbers, rational num-
bers, and even integers. Unfortunately, restricting the domain
to the natural numbers (positive integers) makes the prob-
lem much more difficult and the algorithms in the previous
class are no longer suitable.

In the recent past, several techniques to directly solve lin-
ear Diophantine systems have been proposed. We have im-
plemented such an algorithm adapted from Contejean and
Devie [36]. This algorithm uses a geometric interpretation
of Fortenbacher’s algorithm[37], which efficiently solves
homogeneous and inhomogeneous linear Diophantine equa-
tions. The output of the Diophantine solver is a set of basis
vectors that spans the solution space of the system of equa-
tions.

Our system is comprised of three types of linear equations:
inhomogeneous, homogeneous, and modulus equations. The
modulus equations can be re-written in terms of a homo-
geneous equation by adding a dummy variable to enforce
modularity. This equation can then be included into the sys-
tem of equations that eventually feed into the Diophantine
solver. Incorporation of the inhomogeneous QSAR equation
has been found to slow the time it takes for the Diophantine
solver to produce results. For this reason, we purposefully
leave out the QSAR equation when determining the feasible
solutions from the system of homogeneous equations and
then use the QSAR equation to predict the activity values of
the solutions.

2.2.2.4. Structure generator. Once a solution has been
found, the corresponding molecule needs to be constructed
from the molecular signature. As can be seen inFig. 4, it is
possible that more than one structure may exist that corre-
sponds to the molecular signature. As a result, an enumer-
ation routine was developed to find all possible structures
with a given molecular signature. A brief overview of the
enumeration routine is given here, but the reader is referred
to a previous paper[30] for a more detailed description of
the algorithm.

Starting with a molecular graph,G, composed of iso-
lated vertices and no edges, the edges are added in every
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possible combination to produce all non-isomorphic satu-
rated graphs matching the molecular signature. There are
two primary steps: (1) determine the orbits or atoms with
equivalent atomic signatures ofG, and (2) saturate each
atom of a chosen orbit. Once the orbits have been defined,
then one is selected that contains unsaturated vertices and
is saturated in an orderly manner. This process is repeated
until all the vertices have been saturated and the resulting
bonds are compatible with the target signatures and it does
not create a saturated subgraph ofG. This algorithm was
proven to be complete[30], meaning only the set of unique
non-isomorphic graphs are produced.

3. Inverse-QSAR OF ICAM-1 inhibitory peptides

The inhibitory compound that UNM tested was a cyclic
peptide composed of nine amino acids that bind to ICAM-1,
thereby inhibiting LFA-1/ICAM-1 binding. Using alanine
replacement and homologous amino acid substitutions, we
identified residues strategic to the antagonist activity. A
small set of such derived peptides was used as a training set
for the inverse-QSAR. The activity or potency of the pep-
tides is associated to an IC50 value, which measures the con-
centration that leads to half-maximal inhibition of receptor
to ligand.Table 1lists the amino acid sequence of sixteen
such derived peptides with their IC50 values (given in�M),
determined using a cellular aggregation blocking assay[7,8].
In brief, the aggregation of a cell line dependent on LFA-1
binding to ICAM-1 was used to measure the inhibitory ca-
pacity of each peptide. Inhibitory peptides and cells were

Table 1
Training and test set for the ICAM-1/LFA-1 inhibitory peptides

Peptide sequence Experimental
IC50 (�M)a

Inhibitor
strength

1 CLLRMRSAC 480 Strong
2 CILRMRSAC 190 Strong
3 CVLRMRSAC >1000 Non
4 CLIRMRSAC* 720 Weak
5 CLVRMRSAC >1000 Non
6 CLLKMRSAC 105 Strong
7 CLLRMKSAC 90 Strong
8 CLLRMRSLC >1000 Non
9 CLLRMRSVC 700 Weak

10 CLLRMRSIC 580 Weak
11 CALRMRSIC >1000 Non
12 CLARMRSIC >1000 Non
13 CLLRARSIC* >1000 Non
14 CLLRMASIC >1000 Weak
15 CLLRMRAIC 710 Weak
16 CILKMKSAC 40 Strong

Peptides indicated with an asterisk (peptides 4 and 13) indicate compounds
in the test set. Listed are the amino acid sequences, the experimentally
determined IC50 value and the potency of the peptide in inhibiting the
ICAM-1/LFA-1 complex.

a IC50 values determined using cellular assay described in Sillerud
et al. [8].

seeded in flat-bottomed microtitier plates and allowed to ag-
gregate. The number of aggregates and total number of free
(single) cells were counted using inverted phase microscopy.
The percent aggregation,P, was determined as

P = 100

(
1 − F

I

)
(2)

whereF is the final number of free cells andI is the initial
number of free cells. This percent aggregation was then used
to calculate the percent inhibition,Pi as follows

Pi = 100

(
1 − Pip

Pc

)
(3)

wherePip is the percent aggregation with inhibitory peptide
andPc is the percent aggregation in the control experiment.
The IC50 values were calculated from a line fit to the percent
inhibition data as a function of inhibitory peptide concen-
tration over the range from 10�M to 1 mM. Each condition
was performed in duplicate while each experiment was per-
formed a minimum of three times.

The first and last amino acids in the sequence are con-
nected to one another via a disulfide bridge, making the
structures cyclic. In addition, the peptides are classified ac-
cording to their inhibitory capabilities: peptides with IC50
values less than or equal to 500 are considered strong in-
hibitors, peptides with IC50 values between 500 and 1000
are considered weak inhibitors and peptides with IC50 values
greater than or equal to 1000 are said to be non-inhibitors.

Fourteen of these peptides were used as a training set for
the inverse-QSAR process; peptides 4 and 13 were used as
the test set. Here, the goal was to find any other compounds
within the property space of the training set that similarly
inhibit the binding of LFA-1/ICAM-1, but with greater effi-
cacy, i.e. a lower IC50 value.

3.1. QSAR analysis

The training set contained 14 cyclic peptides composed
of nine amino acids, which were expressed in terms of a
linear, one letter amino acid sequence. Following the pro-
cedure previously outlined, 47 unique atomic signatures of
height one were used, each of which was given an unknown
occurrence numberxi (SeeTable 2).

Once the compounds in the training set were expressed in
terms of their signatures, a linear QSAR equation could be
created. First, a 47× 14 descriptor matrix was constructed,
then screened for perfectly correlated rows, or rows con-
taining identical entries. Recall that equivalent variables
distort the multiple linear regression results if included in
the analysis. In addition, rows containing a single or double
entry were discarded in an attempt to generalize the sig-
natures in the QSAR so that none would map to a specific
activity. Second, the actual IC50 value for non-binding pep-
tides (IC50 > 1000) was not experimental measured, thus
we assigned them a value of 1000. Furthermore, to make
all the values of the dependent variables the same order of



C.J. Churchwell et al. / Journal of Molecular Graphics and Modelling 22 (2004) 263–273 269

Table 2
Height one amino acid signatures for the ICAM-1/LFA-1 training set

x1 A(CL) x17 L(AC) x33 R(AM)
x2 A(CS) x18 L(AR) x34 R(AS)
x3 A(IR) x19 L(CI) x35 R(IM)
x4 A(LR) x20 L(CL) x36 R(LM)
x5 A(MS) x21 L(CS) x37 R(MS)
x6 A(RR) x22 L(CV) x38 R(MV)
x7 C(AC) x23 L(IK) x39 S(AI)
x8 C(CI) x24 L(IR) x40 S(AK)
x9 C(CL) x25 L(KL) x41 S(AR)
x10 C(CV) x26 L(LR) x42 S(IR)
x11 I(AC) x27 L(RV) x43 S(LR)
x12 I(CL) x28 M(AR) x44 S(RV)
x13 I(CS) x29 M(KK) x45 V(CL)
x14 I(LR) x30 M(KR) x46 V(CS)
x15 K(LM) x31 M(RR) x47 V(LR)
x16 K(MS) x32 R(AL)

magnitude, we used the base ten logarithm of each IC50
value in the QSAR. Last, a forward stepping algorithm was
applied to select the most statistically significant signatures,
one at a time. We chose to use a QSAR equation with six
variables, where the variablesxi are the occurrence numbers
of the signatures listed inTable 2.

log10(IC50) = 2.81− 0.739x2 − 0.574x8 + 0.662x13

+ 0.728x31 + 0.727x41 − 0.644x37 (4)

The training set contained biased activities; almost half
of the compounds had activities equal to 1000, the other
majority of compounds contained activities less than 500.
This trend was inevitably captured in the QSAR equations,

Fig. 5. Accuracy of the QSAR equation (Eq. (4)) for the LFA-1/ICAM-1 training set. The points lie near a 45◦ line and the points in the test set are
accurately predicted, indicating that the QSAR equation is a good correlation of signatures to the IC50 values.

Table 3
Overall statistics for the QSAR equation with six signatures

F R2 s2 s2 (test set)

16.9 0.935 0.015 0.011

Table 4
Individual descriptor statistics for the QSAR equation with six signatures

Descriptor R2 Variable inflation factor P-value

x2 0.3735 1.5962 0.0202
x8 9.55e−7 1.00000095 0.9974
x13 0.1692 1.2037 0.1439
x31 0.4726 1.8961 0.0066
x37 0.1609 1.1918 0.1551
x41 0.0057 1.0057 0.7976

where the added signatures simply distinguished between
strong and non-inhibitory compounds. Thus, the coefficients
in the QSAR equation are not as stable as we would like;
ideally, they should exhibit little to no variation when another
descriptor is added. However, since our data set is small, the
QSAR will be sensitive to perturbations, i.e. the addition of
new signatures.

Fig. 5 illustrates the ability ofEq. (4) to correlate the
IC50 values of the training set as well as predict the val-
ues of the peptides in the test set. Although the statistics
in Table 3could be higher, the key is to choose a QSAR
equation that not only correlates the signatures to the activ-
ities, but one that is also predictive. We chose our QSAR
based on the statistics inTable 4(which show our QSAR
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Table 5
The predicted IC50 values and their differences for peptides in the test
set usingEq. (4).

Peptide
sequence

Experimental
IC50 (�m)

Predicted
IC50 (�m)

Difference

4 CLIRMRSAC 720 727.8 7.8
13 CLLRARSIC >1000 790.7 209.3

has not been overly affected by multicolinearity) as well the
QSAR’s ability to predict the IC50 values for compounds in
the test set.Table 5lists the differences of the predicted and
experimental IC50 values for the compounds in the test set
usingEq. (4).

3.2. Construction of constraint equations

The amino acids can be regarded as vertices of degree 2.
Consequently, the graphicality equation will always be sat-
isfied and need not be calculated for this particular training
set.

The consistency equations were calculated from the
unique signature set as described inSection 2. In addition,
we wanted the resulting compounds to be cyclic structures
composed of nine amino acids. To capture this requirement,
we added a constraint that the number of amino acids in any
solution was to total 9. These equations are listed inTable 6.
Notice that the individual constraint equations do not con-
tain the majority of the variables. The two modulus equa-
tions (Table 6, Eqs. (16) and (23)) were incorporated into
the system of equations by adding dummy variables (one
for each modulus equation) to make them homogeneous.
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Fig. 6. Distribution of IC50 values for the solutions of the inverse-QSAR using six signatures. Solutions are grouped according to their IC50 values:
0–100, 101–200, 201–300, and so on, up to 1000.

Table 6
Constraint equations for the height one amino acid signatures in the
training set

(1) −x44 + x46 = 0
(2) −x38 + x47 = 0
(3) −x22 − x27 + x45 + x47 = 0
(4) −x10 + x45 + x46 = 0
(5) −x34 − x37 + x41 + x42 + x43 + x44 = 0
(6) −x21 + x43 = 0
(7) −x16 + x40 = 0
(8) −x13 + x39 + x42 = 0
(9) −x2 − x5 + x39 + x40 + x41 = 0
(10) −x28 − x30 − 2x31 + x33 + x35 + x36 + x37 + x38 = 0
(11) −x18 − x24 − x26 − x27 + x32 + x36 = 0
(12) −x14 + x35 = 0
(13) −x3 − x4 − 2x6 + x32 + x33 + x34 = 0
(14) −x15 − x16 + 2x29 + x30 = 0
(15) −x5 + x28 = 0
(16) (x20 + x25 + x26)%2 = 0
(17) −x15 + x23 + x25 = 0
(18) −x12 − x14 + x19 + x23 + x24 = 0
(19) −x9 + x17 + x19 + x20 + x21 + x22 = 0
(20) −x1 − x4 + x17 + x18 = 0
(21) −x8 + x11 + x12 + x13 = 0
(22) −x3 + x11 = 0
(23) (x7 + x8 + x9 + x10)%2 = 0
(24) −x1 − x2 + x7 = 0

Eqs. (16) and (23) are modulus equations, which can be expressed as ho-
mogeneous equations by adding a dummy variable. For example Eq. (16)
would readx20 + x25 + x26 − 2z1 = 0. The % sign indicates the modulus
is to be used.

3.3. Equation solver

As mentioned previously, the inhomogeneous equations
were intentionally excluded from the system in order to
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obtain results in a reasonable amount of time. Thus, only
the constraint equations were solved using the Diophantine
solver. Due to the size constraint of the peptides, only those
solutions containing nine or less amino acids were kept, the
rest were discarded. Solutions with less than nine amino
acids were used in making linear combinations, again,
adhering to the size constraint of nine amino acids. By
leaving out the QSAR equation, all solutions were obtained
with activities spanning a wide range of IC50 values. The
distribution of predicted activities is given inFig. 6, where
the solutions were divided into bins of 100 ranging up
to 1000.

3.4. Structure generator

The reconstruction of the peptides was straightforward in
this case. By construction, each peptide only contained nine
amino acids that formed a cyclic structure. Therefore, once
the amino acid sequence of the peptide was known, the struc-
ture would also be known. From a solution, we start building
the amino acid sequence by selecting a descriptor—it does
not matter which one since the structure is cyclic. The chil-
dren of each amino acid are used as guides to tell us what
the previous and following amino acids are in the sequence.
Fig. 7illustrates how a sample solution is reconstructed from
the amino acid signatures. Here we pick a signature, in this
case C(AC), since we know that the first and last amino
acids form a disulfide linkage. We know that it is connected
to another signature with root A and a signature with root C,
both of which should have C as their child. So, we choose
the signature A(CS) as the next residue in the sequence. C
is already connected to an A, so the next residue must be
a signature with root S. This process is reiterated until no
more amino acids are left and the last amino acid should be
a child of the first one and vice versa.

Table 7lists 20 sequences corresponding to compounds
with the lowest predicted IC50 values. Even though some

Fig. 7. Reconstruction of a solution peptide from the amino acid signature.
Since the structure is cyclic, it does not matter which signature is used to
start of the sequence. Here we choose a C(AC) to start. This is connected
to both an A and a C. Selecting the signature A(CS) we know that
it is already connected to a C, so the next signature must be S(AK).
Continuing in this manner, the last signature should match up the first.

Table 7
Peptide sequences of the twenty lowest IC50 values as predicted by the
inverse-QSAR with six signatures

Peptide sequence Predicted IC50

value (�m)
Actual IC50

value (�m)

1 CASKMKSAC 21.48
2 CASKMRSAC 24.83 23
3 CASKMRSVC 25.53
4 CASKMRSLC 25.53
5 CASKMRSIC 31.26
6 CASKMRLIC 31.41
7 CASKMKLIC 31.41
8 CASKMRAIC 31.41
9 CASRMKLIC 36.31
10 CILKMRSVC 37.33 28
11 CILKMRSLC 37.33
12 CASICCLIC 38.46
13 CILKMRSIC 45.71
14 CILKMRLIC 45.92
15 CILKMKLIC 45.92
16 CILRARLIC 45.92
17 CILKMRAIC 45.92
18 CASKMKLLC 117.8
19 CASKMRVLC 117.8
20 CASKMRLVC 117.8

of the peptides are predicted to be strong inhibitors, they
may not be viable candidates for synthesis. For example
peptide 12, which has the sequence CASICCLIC, contains
two cysteine residues in the middle of the compound. These
residues contain sulfur atoms which may form undesired
disulfide bonds that potentially distort the three dimensional
structure.

4. Discussion

From the inversion process, a total of 223 compounds
were found, including the 14 original compounds in the
training set and the two test set compounds. The trends found
in the training set reappear inFig. 6. Recall that activities
in the training set are biased towards either the strong or
non-inhibitory groups. A similar trend emerges in the pre-
dicted activities of the solution set, with a gap in IC50 values
ranging between 300 and 600. This can be controlled with
a larger training set.

The goal of the inverse-QSAR method was to predict, if
any, novel inhibitory compounds possessing a lower IC50
value than those in the training set. There were 77 new
peptides classified as strong inhibitors. Of these, 12 represent
peptides with predicted IC50 values less than 40—the IC50
value of peptide 16, which was the strongest inhibitor in
the training set. To provide feedback on these predictions,
we synthesized two of these peptides, sequences 2 and 10,
using cellular assays. Their experimental IC50 values were
very close to our predicted values (seeTable 7), and to our
knowledge are the strongest inhibiting peptides to date that
work in-vivo as well.
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Although our training set was relatively small, it was nev-
ertheless a sufficient basis from which the inverse-QSAR
produced promising results. If possible, the training set
should be larger with more diverse activities, but this
is a challenge for experimental researchers who need to
work with what they already have. Some of the predicted
compounds exhibiting the desired activity can be used to
construct another more focused training set from which
higher-quality lead compounds can be designed. In this
manner, old and new data can be exploited to refine the
design process of more potent compounds.
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