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Abstract

We present a methodology for solving the inverse-quantitative structure—activity relationship (QSAR) problem using the molecular
descriptor called signature. This methodology is detailed in four parts. First, we create a QSAR equation that correlates the occurrence o
a signature to the activity values using a stepwise multilinear regression technique. Second, we construct constraint equations, specificall
the graphicality and consistency equations, which facilitate the reconstruction of the solution compounds directly from the signatures.
Third, we solve the set of constraint equations, which are both linear and Diophantine in nature. Last, we reconstruct and enumerate the
solution molecules and calculate their activity values from the QSAR equation. We apply this inverse-QSAR method to a small set of
LFA-1/ICAM-1 peptide inhibitors to assist in the search and design of more-potent inhibitory compounds. Many novel inhibitors were
predicted, a number of which are predicted to be more potent than the strongest inhibitor in the training set. Two of the more potent
inhibitors were synthesized and tested in-vivo, confirming them to be the strongest inhibiting peptides to date. Some of these compound:
can be recycled to train a new QSAR and develop a more focused library of lead compounds.
© 2003 Published by Elsevier Inc.

Keywords: QSAR; ICAM-1; Signature descriptor

1. Introduction desirable propertjl,2]. However, these tools are limited in43
that they can only provide solution molecules that are a4
Current drug design is an iterative process, involving years ready in the database. Ideally, one would like to remove this
of research, identification, synthesis, and subsequent testingconstraint and identify compounds that are not currently s
of potential compounds that optimize a desired biological databases, but from which a high-quality lead compound
or chemical profile. Although, databases containing millions can be produced. Here we present a novel and excitimg
of molecules exist, the most time-consuming step is the se-technique to do just that; namely develop focused libraries
lection of high-quality lead compounds for possible syn- of compounds that are not in the database but are predicted
thesis. This inefficiency can be resolved through the use of to have a desired value. This technique is rooted in the use
computational tools to expedite the screening of molecular of a powerful molecular descriptor that we have recentle

databases for a particular activity or property. developed, called signature, which, in essence, involves
Virtual screening is a conventional computational tech- the solution of the inverse-quantitative structure—activity
nique that can be used in conjunction with high-throughput relationship (QSAR) problem. 55

screening to refine the search for molecules matching a To demonstrate our inverse-QSAR approach, we appliesl
it to a small set of inhibitory peptides directed against leuka7

* Corresponding author. Tel:1-925-294-3020; fax3-1-925-294-1279. cyte trafficking and localization whose synthesis and testirsg
E-mail address: jfaulon@sandia.gov (J.-L. Faulon). in clinical trials is limited. A crucial event in leukocyte s9
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localization is, binding to endothelium and subsequent mi- the goal of the inverse-QSAR problem is to determine vais
gration from the blood into tissue. Recently, identification ues for the independent variables given a desired activity.
of cell surface adhesion molecules that mediate the adhe-Note that the inverse-QSAR method discussed in this wark
sion of leukocytes to the endothelium, such as leukocyte applies to any property and not exclusively to activity. 116
functional antigen-1 (LFA-1) and its ligand intercellular The inverse-QSAR problem is quite challenging for a va
adhesion molecule-1 (ICAM-1), have allowed investigation riety of reasons. First, one needs to be able to solve the
into leukocyte trafficking[3—-5]. Collaborators at the Uni- QSAR for a given activity. This corresponds to generating
versity of New Mexico Health Sciences Center developed a the vectors of solutions (values for the independent variables,

novel antagonist of ICAM-1 that has in-vivo efficaf9], or descriptor values) that correspond to the given activityf
and Kelly and coworker$10,11] have developed a small this first step can be completed, the generated solutions then
molecule antagonist of LFA-1, although, toxicity effects need to be turned into actual compounds. 123

have limited its development as an in-vivo inhibitor. Using Reconstructing molecules that match molecular descrip-
our technique, we can predict compounds that provide thetor values is a long-standing problem. However, there are
proper inhibitory effect, some of which hopefully lack any only a few reports in the literature providing solutions to thiss
adverse toxicity effects. problem. Most of the proposed techniques are stochastic
The paper is set up in the following manner. First, we in nature and use either genetic algorithms or Monte Carle
will discuss QSARs in order to define the inverse problem. methods to search for and construct chemical structurgs
Next, we will present the signature molecular descriptor and matching predefined descriptor values. Venkatasubramangan
review the various features of signature that have been pre-et al.[21] and Sheridan and Kearsl§®?2] were the first to 131
viously investigated. Third, we will describe, in detail, the propose stochastic techniques based on genetic algorithmas,
methodology used to generate solutions to the inverse-QSARwhile methods based on a Monte Carlo approach were is-
problem. Finally, we will provide an example demonstrat- ported lateff23,24] Although, other papers using stochastics
ing the use of signature in the solution of an inverse-QSAR techniques have appeared since then, there are still uesy
problem; namely the construction of a focused library of few attempts to solve the reconstruction problem usingza
compounds in rational peptide design. deterministic approach, i.e. using techniques that genetate
exhaustive lists of molecular structures matching predes
fined descriptor values. In a series of three papers Kier asud
2. Methodology coworkers[25-27]reconstructed molecular structures fromo
the count of paths,P, up to lengthl = 3. Their technique 141
A quantitative structure—activity relationship is an em- essentially computes all the possible degree sequeneges
pirical relationship between a molecule’s structure and a matching the count of paths up to lendte= 2. Then, for 143
specific biological activity or physical property possessed each degree sequence, all the molecular structures are gen-
by that molecule. The independent variables in these equa-erated using an isomer generator and the graphs that da4sot
tions are given in terms of molecular descriptors, which are match the? P count are rejected. Skvortsova et[28] used 146
operators on the molecular graph that strive to character-a similar technique, but from the count of paths they derived
ize the properties of the molecu[@2-16] QSARs have an edge sequence in addition to the degree sequenceisé\n
been used to quantify empirical data such as boiling points, edge sequence counts the number of edges between each
electric moments, chromatography retention times;olC  distinct pair of atom degrees. The two sequences are then
values, lipophilicity, resonance, 16y and polarity{17—20] fed to an isomer generator that produces all the structuras
QSARs are generally trained against a large data set (calledmatching the sequences. Regrettably, the authors do not gro-
a training set) and validated through a subset not used invide details on how the isomer generator deals with the edge
the parameterization (called a test set) in order to test thesequence. 154
predictive ability of the QSAR. The quality and predictive Owing to the limited progress offered by the above afs
capacity of the QSAR equation depends on several factors,proaches to the solution of the inverse problem, it is cleas
including the size of the training set and the diversity of the that the key to an effective solution methodology lies in ther
molecules used in the construction of the equation. If the use of a molecular descriptor that facilitates reconstructica
size of the training set is small, over-fitting of the QSAR of the solutions into actual compounds. This descriptes
can easily occur making for a relationship that provides needs to be information rich, have good correlation abilities
poor predictions. If the molecules in the training set are of in QSAR applications, and must also be computationalbz
a certain type, then the QSAR developed is ill-equipped to efficient. A computationally efficient descriptor shoulgs2
predict properties of molecules of a type not included in the have a low degeneracy, that is, it should lead to a limited
training set. number of solutions when applied in inverse-QSAR. Nexés
What is described above is called the forward-QSAR we briefly present a descriptor that we believe matches
problem, which uses values for the independent variables ofthe above criteria. The descriptor is called signature awel
a particular compound in the QSAR to solve for the activ- is further detailed in two previous papers in this series
ity of that compound (the dependent variable). In contrast, [29,30] 168
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2.1. The signature descriptor of signature was systematically probed and compared ta:a
broad set of traditional molecular descript¢89]. Signa- 212

Signature is based on the molecular graph of a molecule,ture proved to be less degenerate than the other descriptats,
G = (Vg, Eg), where the elements Mg denote the atoms  but more importantly, its degeneracy can be user controlled.
in the molecule, and the edges Bf correspond to the  Third, and foremost, signature provides a way to go frams
bonds between those atoms. In this context, a molecule isnumerical solutions of the inverse-QSAR problem to actua
characterized by a set of canonical subgraphs, each rootedtructures that correspond to solutions. Indeed, the main
on a different vertex with a predefined level of branching, advantage of signature versus other molecular descriptass
which we refer to as the height The branching of a ver-  is its readiness for inverse problems. An algorithm, to bati

tex is an extended degree sequence that describes the loc&inumerate and sample chemical structures correspondingoto

neighborhood, up to the distanheaway from the root. solution vectors (i.e. molecular signatures), has already began
We define an atomic signatursg (x), as the canonical ~ developed and tested for a variety of compounds including

subgraph ofG consisting of all atoms a distandefrom alkanes, fullerenes, and HIV-1 protease inhibit&@]. 223

the rootx. A molecular signature’ X, is then the set of

all unique atomic signatures and the occurrence with which 2.2. Inverse-QSAR scheme 224

they appear in the molecular graph. Even though the atomic
signatures are unique, they are, by construction, interre- The inverse-QSAR method can be broken into four steps.
lated allowing information about the overall structure of the The first step is the QSAR analysis. Here, we generate evesy
molecule to be conveyed at the end. atomic signature of a desired height for the compoundsin
The atomic signatures make up the set of molecular de- the training set. We then use those signatures to construcka
scriptors for a molecule. These are expressed in terms of aQSAR equation relating compounds to their activities. Th®
string of characters that correspond to the canonized sub-second step is to generate the set of constraint equations msith
graph in a breath-first order. Branch levels are indicated by integer coefficients (Diophantine equations) for the signa:
a set of parenthesis following the parent vertex. An exam- tures. In the third step, we solve these equations for integer
ple of the molecular signature for nitroglycerine is given in solutions using a Diophantine equation solver. The last step

Fig. L consists of building the molecular structures and predictirg
Signature is uniquely suited to address the issues relatedtheir activities using the QSAR equation. 235

to the inverse-QSAR problem. First, signature produces

QSARs on par with those obtained from conventional 2.2.1. QSAR analysis 236

molecular descriptors. In fact, signature encapsulates in- Here, we outline the use of signature in the QSAR anadz
formation from which other molecular descriptors can be Ysis; for further details on the procedure, the reader is zes
computed. Its usefulness in QSAR analysis was previously ferred to our two previous papef29,30]. Construction of 239
established by comparison to a QSAR developed from the QSAR equation begins by expressing each compoungkén
the commercial package, Molconn-Z, with similar results the training set in terms its molecular signature of helght2a1
[29,31] Second, signature is shown to be less degenerateA list of the unique descriptors (atomic signatures) is coms
than many other popular descriptors. The degeneracy of apiled and provides a descriptor database for the QSAR. This
molecular descriptor depends on how well it is able to map set contains the minimum number of descriptors needed4o
one property to one descriptor. A molecular descriptor with span the activity/property space of compounds in the trains
a low degeneracy is vital in limiting the number of solu- ing set. Assuming, there ara compounds in the trainingz4s
tions to the inverse-QSAR problem. Ideally, the descriptors set andh unique descriptors, anx m “descriptor matrix” is 247
should be orthogonal to one another, such that only one constructed by screening each compound against the setef
descriptor corresponds to the information for a single struc- unique descriptors and storing that descriptor’'s occurrenge
tural motif [32,33] In a previous study, the degeneracy number inthe matrix. Perfectly correlated rows, i.e. descrips
tors with the same predictive capabilities, are removed frasn
the matrix to avoid redundancies, which can skew the re>

o 's (Nitroglycerin) sults of the multiple linear regression analysis. This mateis
0= i 0 30(mc) and the corresponding property values determine the QSAR
\O O_Nﬁ’ 6 o=(n_) equation that will be developed. 255
Y 3 n_(o_o=0=) In our studies, the QSAR equation is a linear equatiexs
0 5h(c) of the form Y a;x; — ag = P, wherea; represents thezs
0 2c(ohhec) regression coefficients; represents the occurrence numss
\N= le(ohece) ber of the molecular descriptd; and P is the property 259
O// value of interest minus the regression constant. The numiser

of molecular descriptors, unknown until the training st
Fig. 1. Nitroglycerine and its corresponding height one molecular signa- has been established, dictates the number of independent
ture. The molecular signature is the sum of the atomic signatures. variables. To avoid the possibility of over-fitting the datags
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which occurs when the number of independent variables is )
equal to or exceeds the number of dependent variables, a

(o)
forward selection procedui@4] was used in the multilin- C //C\\
A -

ear regression. The forward selection adds variables one by

H C
one, according to those that have the most impact on the //C\ /C\\ H/ \H\C
model, as determined by and F statistics. This method HHHHHC
is computationally efficient and can control the number of
independent variables of the QSAR equatjiid4].

To test the accuracy of the model, a plot of the experimen-

tal values versus the QSAR correlated values is constructed. c

For a good, correlative model, the points on the graph should // \\
lie close to a 45angle, which is quantitatively described by H H ¢C c
the R? value. If this is not the case, then adjustments can be (6= o)

made to modify the number of independent variables; the

resultant equation is inhomogeneous with unknown occur- Fig. 2. Graphical depiction of the bond occurrenge; ( 20 ;). Here,2o;
rence valuesy;. supplies the height one bond between the carbon root and the last carbon
atom child. If a root swap is performed with this last carbon atom, then

the resulting height one signature is(B.H_C_C_), which we designate

222 Prpgjuctlon of constraint equ_atlons . aslo;. Similarly, if a root swap is performed o%_/ and its carbon atom
In addition to the QSAR equation, constraints are needed chiig, then truncated to height one, its signature will match thakopf

to ensure the ability to reconstruct compounds from the so-
lutions. There are two types of constraint equations, namely

S . : : We will use the notatioffo; to describe the atomic sig-s1s
the graphicality equation and the consistency equations.

nature of height of an arbitrary atomi. Usingo; as a 316

L . L . reference, any bond between the root and one of its childgen
2:2.2.1. Graphicality equation. - The graphicality equation ¢ he sought in all other atomic signatures in which the

ensures that at least one connected graph can be construct%sitions of the root and child are the transposéwf We 319
from the molecular descriptors. This equation, taken directly use the notation ¢ o; — 1o, to depict the numberazo
1 Eal

from graph theory, uses _onIy the degree of the vertices_in of bond types'o; has in common witH%rj. Clearly, then a1
the graph. In order to build a connected graph, we require #( 1o, — o)) = #("1o; — "~1o;). As depicted in 222
that (1) the sum of all the vertex degrees must be even andgy 5 it i important to note that the signature of a bondss
(2) the number of vertices of odd degree must be even. They,q hajght less than the height of the molecular signatue.
resulting equation can be expressed in terms of a degree]-he reason is that when(# 1o, — h—lgj) is computed, 325
sequenceV = {ny, nz, ..., ng} wheren; is the number of 0 has 1o transpose the rdowith a child j. While the a2
vert|c¢s Of degree. In 'th|s case,.the degree sequence neighborhood of was initially probed up to height, the 327
graphical if and only if there exists an integee= 0 sUCh . anqhased signature with new rgoprobes the neighbor-azs

that hood ofj only up to heighth—1. In the case where= j, 329

. then #"~15; — "~15;) must be even. 330

Z(i—Z)n i t+2=2z 1) For example inFig. 3 we calculate the number of;s;
i = 2z.

oxygen—carbon single bonds and compare it to the numfgr
of carbon—oxygen single bonds in nitroglycerine. Here, thg
first signature supplies the bond type, in this case an oxyggn

i=2

The graphicality equation can be computed directly from
the height zero molecular signature.
's (Nitroglycerine)

2.2.2.2. Consistency equations. The next set of equations 22;((2—3—) #lo_—>c)=#_—>o)

is collectively referred to as the consistency equations. Re- 3, (o= 30, = 2¢c +  lc
call that a molecular signature is a collection of interrelated s5h (¢ ) /\\ A\ 'ﬂ\
atomic signatures, where each atomic signature describes 2c¢_(o_h_h_c) . ‘ ‘

a particular atom and its neighboring atoms to a predeter- !c¢(0hcc) n. e ohhc ohhec

_mmed helght. In construct!ng the Slgngtur.e ofa mOI?CUIe' it Fig. 3. lllustration of how a consistency equation for nitroglycerine is

is guaranteed that a bond in one atomic signature will match caiculated. in particular, the number of oxygen—carbon single bonds must
up with a bond in another atomic signature, albeit in re- equal the number of carbon—oxygen single bonds. Only one atomic sig-
verse order. However, blind reconstruction of the molecule nature contains a single bonded oxygen root connected to a single bonded
requires equations to enforce these conditions of interdepen_carbon with an occurrence of three. On the other hand, there are two
d h L This is d b t h_atomic signatures with a single bonded carbon root. In each case, the
) ency among the atomic signatures. . IS IS done by matc carbon root is connected to a single bonded oxygen atom shown with a
ing bonds between two atoms of one signature to the bondsgashed line. There is only one instance of a carbon-oxygen single bond in

involving the same atoms in all other signatures. both signatures, so the occurrence number is the sum of these, which is 3.
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atom single bonded to a carbon atom. To make sure bondancient Greek§35]. Such systems arise in various areas ©6
types match up, we need to find all instances of a carboncomputer science and efficient algorithms are well-known
atom single bonded to an oxygen atom in the other signa-for solving these systems over real numbers, rational nung-
tures. This is done by searching the list of unique signaturesbers, and even integers. Unfortunately, restricting the domain
for all those that contain a single bonded carbon atomh (¢ to the natural numbers (positive integers) makes the predo-
as the root. For each matching signature, an algorithm islem much more difficult and the algorithms in the previous:
called to re-root the tree, such that a child is now the root. class are no longer suitable. 382
This procedure is reiterated for each of the first children. In the recent past, several techniques, to directly sotee
Because the carbon in this example has four children, therelinear Diophantine systems have been proposed. We have
will be four restructured graphs. If the signature contained implemented such an algorithm adapted from Contejean
a carbon-oxygen bond, then upon restructuring, that oxy- and Devie[36]. This algorithm uses a geometric interpress
gen should appear as the root. A quick check is performedtation of Fortenbacher’'s algorithii87], which efficiently ssz
and if any oxygen atom exists as the roots, then the oc-solves homogeneous and inhomogeneous linear Dioplsas-
currence number of the original signature is returned. All tine equations. The output of the Diophantine solver is a s®t
matches are then summed to give a total for the number of of basis vectors that spans the solution space of the sysiem
carbon-oxygen bonds, which should equal the number of of equations. 391
oxygen—carbon bonds, in this case three. Our system is comprised of three types of linear equatioss:
The consistency equations can be summarized as follows:inhomogeneous, homogeneous, and modulus equations.zéhe
a molecular signature of height(" X) is consistent if and ~ modulus equations can be re-written in terms of a homes
only if the two following conditions are verified: geneous equation by adding a dummy variable to enfozee
modularity. This equation can then be included into the syss
tem of equations that eventually feed into the Diophantise
solver. Incorporation of the inhomogeneous QSAR equation
has been found to slow the time it takes for the Diophantise
solver to produce results. For this reason, we purposefutly
In the nitroglycerine example irFig. 1, the occur- leave out the QSAR equation when determining the feasilale
rence numbers of the signatures were known quantitiessolutions from the system of homogeneous equations and
and should be consistent by construction. However, in the then use the QSAR equation to predict the activity valuessaf
inverse-QSAR, the occurrence numbers are represented byhe solutions. 404
unknown quantitiesx;. Construction of these equations 405
will produce relationships that quantitatively convey the 2.2.24. Sructure generator. Once a solution has beemos
interdependencies of one signature on another in the set. found, the corresponding molecule needs to be construeted
from the molecular signature. As can be seefim 4, itis 4o0s
2.2.2.3. Equation solver. Together, the QSAR and con- possible that more than one structure may exist that cone-
straint equations form a system of equations with unknown sponds to the molecular signature. As a result, an enumer-
occurrence numbers corresponding to atomic signature ation routine was developed to find all possible structures
These solutions must represent quantities meaningful to sig-with a given molecular signature. A brief overview of thaz
nature and hence, the occurrence numbers should take omnumeration routine is given here, but the reader is refersed
non-negative integer values. Equations in which only pos- to a previous pap€i80] for a more detailed description ofi4
itive integer solutions are allowed are called Diophantine the algorithm. 415
equations. Research on algorithms for solving linear inte-  Starting with a molecular graphG, composed of iso- 416
ger equations has been widely investigated starting from thelated vertices and no edges, the edges are added in every

(i) For all atomic signatures”"~lo; and "~lo; in
h_lz, #(h_lo’l‘ — h_lO'j) = #(h_lo‘j — h_lO',').

(i) Forall "~lg; in "—1x #("~1o; - "~1o;) is even val-
ued.

0
1,3-dinitroglycerine I O_EE_Cig
N o(hec
= L
0 0 0¥ ™o o=(n_)

n_(o_o=0=)
h_ (o)
h_(c)

==
i
o
5
O
/
=
%
(=)
»—‘NUI»—‘N-lk'—'qu—

OH 1,2-dinitroglycerine  ©

Fig. 4. A molecular signature may correspond to multiple structural configurations. Both 1,3-dinitroglycerine and 1,2-dinitroglycerine lave keight
one molecular signature given at the right. Increasing the height of the signatures will decrease the number of structural configurationgptimat corres
to a molecular signature.
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possible combination to produce all non-isomorphic satu- seeded in flat-bottomed microtitier plates and allowed to ags
rated graphs matching the molecular signature. There aregregate. The number of aggregates and total number of fzee
two primary steps: (1) determine the orbits or atoms with (single) cells were counted using inverted phase microscopy.

equivalent atomic signatures @, and (2) saturate each The percent aggregatioR, was determined as 448
atom of a chosen orbit. Once the orbits have been defined, P

then one is selected that contains unsaturated vertices angp = 100(1 — _> (2)

is saturated in an orderly manner. This process is repeated I 449

until all the vertices have been saturated and the resultingyhereF is the final number of free cells arids the initial so

bonds are compatible with the target signatures and it doespmper of free cells. This percent aggregation was then ugad
not create a saturated subgraphGfThis algorithm was to calculate the percent inhibitioR; as follows 452

proven to be completB80], meaning only the set of unique
non-isomorphic graphs are produced. P = 100( _ ﬂ) 3)

c 453

wherePjj is the percent aggregation with inhibitory peptidea
andP¢ is the percent aggregation in the control experiments
o . The IGsg values were calculated from a line fit to the percensb

The inhibitory compound that UNM tested was a cyclic jnpibition data as a function of inhibitory peptide concems?
peptide composed of nine amino acids that bind to ICAM-1, ration over the range from 30M to 1 mM. Each condition 4ss

thereby inhibiting LFA-1/ICAM-1 binding. Using alanine \yag performed in duplicate while each experiment was pes-
replacement and homologous amino acid substitutions, Wefgrmed a minimum of three times. 460

identified residues strategic to the antagonist activity. A Tne first and last amino acids in the sequence are can-
small sgt of such derived peptiqe_s was used as a training sehected to one another via a disulfide bridge, making the
for the inverse-QSAR. The activity or potency of the pep- syryctures cyclic. In addition, the peptides are classified a-
tides is associated to andgvalue, which measures the con-  coding to their inhibitory capabilities: peptides withgC 44
centration that leads to half-maximal inhibition of receptor 5 es less than or equal to 500 are considered strong:éa-
to ligand. Table 1lists the amino acid sequence of sixteen pipjtors, peptides with 1§, values between 500 and 1008ss
such dgnved peptldes with thelrg;@vglues (gl\(en inuM), are considered weak inhibitors and peptides witkpNalues 467
determined using a cellular aggregation blocking afg . greater than or equal to 1000 are said to be non-inhibitosss
In brief, the aggregation of a cell line dependent on LFA-1 ~ £oyteen of these peptides were used as a training setdor
binding to ICAM-1 was used to measure the inhibitory ca- he inverse-QSAR process; peptides 4 and 13 were usegras
pacity of each peptide. Inhibitory peptides and cells were {hg test set. Here, the goal was to find any other compounds
within the property space of the training set that similardy2

3. Inverse-QSAR OF ICAM-1 inhibitory peptides

Table 1 inhibit the binding of LFA-1/ICAM-1, but with greater effi-473
Training and test set for the ICAM-1/LFA-1 inhibitory peptides cacy, i.e. a lower 16 value. 474
Peptide sequence Experimental Inhibitor ]
ICs0 (LM)?2 strength 3.1. QSAR analysis 475

1 CLLRMRSAC 480 Strong

2 CILRMRSAC 190 Strong The training set contained 14 cyclic peptides composgsl
3 CVLRMRSAC >1000 Non of nine amino acids, which were expressed in terms ofi7a
4 CLIRMRSAC* 720 Weak i lett ! id Following th

5 CLVRMRSAC >1000 Non inear, one letter amino acid sequence. Following the pres
6 CLLKMRSAC 105 Strong ce(_jure previously outlined, 47 unique atom|c signaturessaf
7 CLLRMKSAC 90 Strong height one were used, each of which was given an unknoamn
8 CLLRMRSLC >1000 Non occurrence numbes; (SeeTable 2. 481
9 CLLRMRSVC 700 \eak Once the compounds in the training set were expressegkin
10 CLLRMRSIC 580 Weak ¢ ¢ their sianat i SAR " ld
1 CALRMRSIC ~1000 Non erms of their signatures, a linear Q \R equation could 43e
12 CLARMRSIC >1000 Non created. First, a 4% 14 descriptor matrix was constructedss
13 CLLRARSIC* >1000 Non then screened for perfectly correlated rows, or rows contaigs-
14 CLLRMASIC >1000 Weak ing identical entries. Recall that equivalent variables distast
15 CLLRMRAIC 710 ideak the multiple linear regression results if included in the anads
16 CILKMKSAC 40 Strong

ysis. In addition, rows containing a single or double entsgs
Peptides indicated with an asterisk (peptides 4 and 13) indicate compoundsyere discarded in an attempt to generalize the signatuses

in the t_est set. Listed are the amino acid sequences, Fhe_ e)_(p_e_rlmentallyin the QSAR so that none would map to a specific actase
determined 1@ value and the potency of the peptide in inhibiting the

ICAM-1/LFA-1 complex. ity. Second, the actual Kg va!ue for non-binding peptidesso1
3|y values determined using cellular assay described in Sillerud (ICso > 1000) was not experimental measured, thus we &s-
et al.[8]. signed them a value of 1000. Furthermore, to make all the
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Table 2 Table 3

Height one amino acid signatures for the ICAM-1/LFA-1 training set Overall statistics for the QSAR equation with six signatures

x1 A(CL) x17 L(AC) X33 R(AM) F R? & & (test set)
X2 A(CS) x18 L(AR) X34 R(AS)

x3 A(IR) x19 L(CI) xas R(IM) 16.9 0.935 0.015 0.011

X4 A(LR) X20 L(CL) X36 R(LM)

x5 A(MS) X21 L(CS) x37 R(MS) Table 4

s A(RR) xz2 L(CV) X8 R(MV) Individual descriptor statistics for the QSAR equation with six signatures
x7 C(AC) %23 L(IK) X39 S(Al)

xg C(Cl) %24 L(IR) Xa0 S(AK) Descriptor R2 Variable inflation P-value
X9 C(CL) %25 L(KL) xa1 S(AR) factor

x10 C(CV) X26 L(LR) Xa2 S(IR) X2 0.3735 1.5962 0.0202
x11 I(AC) x27 L(RV) Xa3 S(LR) Xg 9.55e-7 1.00000095 0.9974
X2 I(CL) %28 M(AR) X4 S(RV) X13 0.1692 1.2037 0.1439
x13 I(CS) %29 M(KK) xa5 V(CL) Xa1 0.4726 1.8961 0.0066
X14 I(LR) x30 M(KR) Xs6 V(CS) X37 0.1609 1.1918 0.1551
x15 K(LM) x31 M(RR) Xa7 V(LR) Xa1 0.0057 1.0057 0.7976
X16 K(MS) X32 R(AL)

This trend was inevitably captured in the QSAR equations;

values of the dependent variables the same order of magniWhere the added signatures simply distinguished betwesn

tude, we used the base ten logarithm of eaciy Malue in

strong and non-inhibitory compounds. Thus, the coefficiesis

the QSAR. Last, a forward stepping algorithm was applied in the QSAR equation are not as stable as we would likes
to select the most statistically significant signatures, one atideally, they should exhibitlittle to no variation when another:
a time. We chose to use a QSAR equation with six vari- descriptor is added. However, since our data set is small,sf2e

ables, where the variables are the occurrence numbers of
the signatures listed ifable 2

log;o(ICs0) = 2.81 — 0.739r, — 0.574vg + 0.662v13

+0.728r31 + 0.727x41 — 0.644x37 (4)

QSAR will be sensitive to perturbations, i.e. the addition afs
new signatures. 514

Fig. 5 illustrates the ability ofEq. (4) to correlate the sis
ICs50 values of the training set as well as predict the vals
ues of the peptides in the test set. Although, the statistics
in Table 3could be higher, the key is to choose a QSAd=s

The training set contained biased activities; almost half equation that not only correlates the signatures to the actie-
of the compounds had activities equal to 1000, the other ities, but one that is also predictive. We chose our QSAR
majority of compounds contained activities less than 500. based on the statistics ifable 4 (which show our QSAR

32 . ' - -

+ Training
3r O Test

221

Predicted Log,,(ICs,) Value

+

Strong
1 1 : 1 1

1.4 : ; '

1.4 1.6 1.8 2 2.2

24 2.6 2.8 3 32

Experimental Log,(ICs,) Value

Fig. 5. Accuracy of the QSAR equatioftq. (4) for the LFA-1/ICAM-1 training set. The points lie near a°4bne and the points in the test set are
accurately predicted, indicating that the QSAR equation is a good correlation of signatures tggthvali@s.
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Table 5 Table 6
The predicted 16 values and their differences for peptides in the test Constraint equations for the height one amino acid signatures in the
set usingEq. (4) training set
Peptide Experimental Predicted Difference (1) —x4a+x46=0
sequence 1Cs0 1Cs0 (2) —x38+x47=0
4  CLIRMRSAC 720 727.8 7.8 (3) —x22 — x27 + xa5 + x47 = 0
13 CLLRARSIC  >1000 790.7 209.3 (4) —x10+ x45 + x46 = 0

(5) —x34 — x37+ x41+ x42 + x43+ x44 =0
(6) —x21+x43=0

o 7) - -0
521 has not been overly affected by multicolinearity) as well the 58; _ﬁz I i;‘g txa=0

522 QSAR'’s ability to predict the 16 values for compounds in - (9) —x, — x5 + x30 + x40 + xa1 = 0
523 the test setTable 5lists the differences of the predicted and (10) —x2g — x30 — 2x31 + x33 + X35 + x36 + x37 + x33 = 0
524 experimental 1Gy values for the compounds in the test set (11) —x18 —x24 — x26 — x27 + x32 + x36 = 0

; (12) —x14+x35=0
525 UsingEaq. (4) (13) —x3 — x4 — 2x6 + x32 + x33+ x34 = 0

; ; . (14) —x15 — x16 + 2x29 + x30 = 0
506 3.2. Construction of constraint equations (15) —x5 +x28 =0
(16) (x20 + x25 + x26)%2 =0

i i ; (17) —x15+ x23+ x25 =0
527 The amino acids can be regarded as vertices of degree 2(18) 1y xia b x1o b 23t xpa— O

528 Consequently, the graphicality equation will always be sat- (19) _ ;& v17 4 x19 + x20 + x21 + x22 = 0

509 iSfied and need not be calculated for this particular training (20) —x; — x4 + x17+x15 =0

530 Set. (21) —xg +x11+x12+x13=0

ss1  The consistency equations were calculated from the (22 —xa +xu=0

s3> Unigque signature set as describedSiection 2 In addition, gi; (_’C;1+_x§2++"i7+=xa°) "R’

533 We wanted the resulting compounds to be cyclic structures

534 composed of nine amino acids. To capture this requirement,EqS- (16) and (23)_ are moduIL_Js equations, Whi_ch can be expressed as ho-
. . S mogeneous equations by adding a dummy variable. For example Eq. (16)

535 We added a constraint that the numper of amino aqu INNY\001d readioo -+ 125 + x26— 221 = 0. The % sign indicates the modulus

536 Solution was to total 9. These equations are listethible 6 is to be used.

537 Notice that the individual constraint equations do not con-

s3g tain the majority of the variables. The two modulus equa- 3.3. Equation solver 542

539 tions (Table 6§ Eqgs. (16) and (23)) were incorporated into

540 the system of equations by adding dummy variables (one As mentioned previously, the inhomogeneous equatiaas

541 for each modulus equation) to make them homogeneous. were intentionally excluded from the system in order to

60

50

40 —

30 — —

# of Solutions

20 — —

0 T T T T T T T T T T

0-100 101- 201- 301- 401- 501- 601- 701- 801- 901- >1000
200 300 400 500 600 700 800 900 1000

Predicted ICs, Value

Fig. 6. Distribution of 1Go values for the solutions of the inverse-QSAR using six signatures. Solutions are grouped according tosgheglu€s:
0-100, 101-200, 201-300, and so on, up to 1000.
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obtain results in a reasonable amount of time. Thus, only Table 7
the constraint equations were solved using the DiophantinePeptide sequences of the twenty lowestd@alues as predicted by the
solver. Due to the size constraint of the peptides, only those MVerse-QSAR with six signatures

solutions containing nine or less amino acids were kept, the Peptide sequence Predicted Actual
rest were discarded. Solutions with less than nine amino ICso value ICs0 value
acids were used in making linear combinations, again, 1 CASKMKSAC 21.48
adhering to the size constraint of nine amino acids. By 2 CASKMRSAC 24.83 23
leaving out the QSAR equation, all solutions were obtained 3 CASKMRSVC 2553
aving out ~ equation, 4 CASKMRSLC 25.53
V\/.Ith.aCt!VItIeS spanning a vyu_jg range ofgj@yalues. The 5 CASKMRSIC 31.26
distribution of predicted activities is given ifig. 6, where 6 CASKMRLIC 31.41
the solutions were divided into bins of 100 ranging up 7 CASKMKLIC 3141
to 1000 8 CASKMRAIC 31.41
' 9 CASRMKLIC 36.31
10 CILKMRSVC 37.33 28
3.4. Sructure generator 11 CILKMRSLC 37.33
12 CASICCLIC 38.46
The reconstruction of the peptides was straightforward in 13 CILKMRSIC 45.71
this case. By construction, each peptide only contained nine> CILKMRLIC 45.92
_ - BY » €ach pep y 15 CILKMKLIC 45.92
amino acids that formed a cyclic structure. Therefore, once 14 CILRARLIC 45.92
the amino acid sequence of the peptide was known, the struc-17 CILKMRAIC 45.92
ture would also be known. From a solution, we start building 18 CASKMKLLC 117.8
the amino acid sequence by selecting a descriptor—it doest? CASKMRVLE 117.8
20 CASKMRLVC 117.8

not matter which one since the structure is cyclic. The chil-
dren of each amino acid are used as guides to tell us what
the previous and following amino acids are in the sequence.
Fig. 7illustrates how a sample solution is reconstructed from Of the peptides are predicted to be strong inhibitors, they
the amino acid signatures. Here we pick a signature, in thisMay not be viable candidates for synthesis. For examgpie
case C(AC), since we know that the first and last amino Peptide 12, which has the sequence CASICCLIC, contaias
acids form a disulfide linkage. We know that it is connected tWo cysteine residues in the middle of the compound. These
to another signature with root A and a signature with root C, residues contain sulfur atoms which may form undesired
both of which should have C as their child. So, we choose disulfide bonds that potentially distort the three dimensiosa
the signature A(CS) as the next residue in the sequence. CStructure. 585
is already connected to an A, so the next residue must be
a signature with root S. This process is reiterated until no ) )
more amino acids are left and the last amino acid should be# Discussion 586
a child of the first one and vice versa.
Table 7lists 20 sequences corresponding to compounds From the inversion process, a total of 223 compounds
with the lowest predicted 1§ values. Even though some Wwere found, including the 14 original compounds in thes
training set and the two test set compounds. The trends foskad
2 A(CS) + 2 C(AC) + K(MS) + M(KR) + R(MS) + S(AK) + S(AR), in the tral'm.ng set reappear IFig. 6. Reca!l that activities 590
prodicted ICso value = 24.83 1M in the training set are biased towards either the strongsar
non-inhibitory groups. A similar trend emerges in the presx
« dicted activities of the solution set, with a gap inshvalues 593
CA0) AN ranging between 300 and 600. This can be controlled with
/ R(MS) a larger training set. 595
, The goal of the inverse-QSAR method was to predictsi
L, a0 CASKMRSAC ‘\ an | inhibit d ing a loweyo!G
y, novel inhibitory compounds possessing a lowefp|Go7?
\ M(KR) value than those in the training set. There were 77 new
/V peptides classified as strong inhibitors. Of these, 12 represent
K(MS) peptides with predicted kg values less than 40—the 4& 600
T sax) — value of peptide 16, which was the strongest inhibitor ém
the training set. To provide feedback on these predictioas,
Fig. 7. Reconstruction of a solution peptide from the amino acid signature. ywe synthesized two of these peptides, sequences 2 anddk0,
Since the structure is cyclic, it does not matter which signat_urg is used to using cellular assays. Their experimentakd@alues were eos
start of the sequence. Here we choose a C(AC) to start. This is connected .
to both an A and a C. Selecting the signature A(CS) we know that very close to our predicted va}lue.s.(.sﬁole D_’ and to our 6os
it is already connected to a C, so the next signature must be S(AK). Knowledge are the strongest inhibiting peptides to date tkat
Continuing in this manner, the last signature should match up the first. work in-vivo as well. 607

A(CS) <— g3(AR)

A(CS)

JMG 5389 1-11



608
609
610
611
612
613
614
615
616
617
618

619

620
621
622
623
624
625
626
627
628
629

630

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

10 C.J. Churchwell et al./Journal of Molecular Graphics and Modelling xxx (2003) xxX—xxX

Although, our training set was relatively small, it was [12] N. Trinajstic, Chemical graph theory, in: D.J. Klein, M. Randies3
nevertheless a sufficient basis from which the inverse-QSAR  (Eds.), Mathematical Chemistry, second ed., CRC Press, Boca Raton,

produced promising results. If possible, the training set - Elé 13_92.| . o eeular shase from chemical araoh A;‘SS
. . L . .b. Kler, Indexes oI molecular shape from chemical grapns, 66
should be larger with more diverse activities, but this Pharm. Jugos!. 36 (1986) 171. 667

IS a ch_allenge for experimental researchers who ne_ed to[14] L.H. Hall, L.B. Kier, The molecular and connectivity chi indexes68
work with what they already have. Some of the predicted and kappa shape indexes in structure—property modeling, In: KeBo
compounds exhibiting the desired activity can be used to Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational Chemistrg70

construct another more focused training set from which  VCH Publishers, New York, 1991, p. 367-422. 671
higher-quality lead compounds can be designed. In this [*°] :V'% Rca”d'c' tGrSaF’h 4"1""'(62%?1)523”73 ggomc"e"“'ar descriptors, J. Chera.
. . nf. Comput. Sci. —630. 673

manner’ old and new data can be epr0|ted to refine the[16] A.T. Balaban, Topological index J for heteroatom-containirgy4
design process of more potent compounds. molecules taking into account periodicities of element propertiegs
Math. Chem. (MATCH) 21 (1986) 115-122. 676

[17] R.R. Parakulam, M.L. Lesniewski, K.J. Taylor-McCabe, C. Tsa&77
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