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Abstract16

We present a methodology for solving the inverse-quantitative structure–activity relationship (QSAR) problem using the molecular
descriptor called signature. This methodology is detailed in four parts. First, we create a QSAR equation that correlates the occurrence of
a signature to the activity values using a stepwise multilinear regression technique. Second, we construct constraint equations, specifically
the graphicality and consistency equations, which facilitate the reconstruction of the solution compounds directly from the signatures.
Third, we solve the set of constraint equations, which are both linear and Diophantine in nature. Last, we reconstruct and enumerate the
solution molecules and calculate their activity values from the QSAR equation. We apply this inverse-QSAR method to a small set of
LFA-1/ICAM-1 peptide inhibitors to assist in the search and design of more-potent inhibitory compounds. Many novel inhibitors were
predicted, a number of which are predicted to be more potent than the strongest inhibitor in the training set. Two of the more potent
inhibitors were synthesized and tested in-vivo, confirming them to be the strongest inhibiting peptides to date. Some of these compounds
can be recycled to train a new QSAR and develop a more focused library of lead compounds.
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1. Introduction30

Current drug design is an iterative process, involving years31

of research, identification, synthesis, and subsequent testing32

of potential compounds that optimize a desired biological33

or chemical profile. Although, databases containing millions34

of molecules exist, the most time-consuming step is the se-35

lection of high-quality lead compounds for possible syn-36

thesis. This inefficiency can be resolved through the use of37

computational tools to expedite the screening of molecular38

databases for a particular activity or property.39

Virtual screening is a conventional computational tech-40

nique that can be used in conjunction with high-throughput41

screening to refine the search for molecules matching a42

∗ Corresponding author. Tel.:+1-925-294-3020; fax:+1-925-294-1279.
E-mail address: jfaulon@sandia.gov (J.-L. Faulon).

desirable property[1,2]. However, these tools are limited in43

that they can only provide solution molecules that are al-44

ready in the database. Ideally, one would like to remove this45

constraint and identify compounds that are not currently in46

databases, but from which a high-quality lead compound47

can be produced. Here we present a novel and exciting48

technique to do just that; namely develop focused libraries49

of compounds that are not in the database but are predicted50

to have a desired value. This technique is rooted in the use51

of a powerful molecular descriptor that we have recently52

developed, called signature, which, in essence, involves53

the solution of the inverse-quantitative structure–activity54

relationship (QSAR) problem. 55

To demonstrate our inverse-QSAR approach, we applied56

it to a small set of inhibitory peptides directed against leuko-57

cyte trafficking and localization whose synthesis and testing58

in clinical trials is limited. A crucial event in leukocyte 59

1 1093-3263/$ – see front matter © 2003 Published by Elsevier Inc.
2 doi:10.1016/j.jmgm.2003.10.002
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localization is, binding to endothelium and subsequent mi-60

gration from the blood into tissue. Recently, identification61

of cell surface adhesion molecules that mediate the adhe-62

sion of leukocytes to the endothelium, such as leukocyte63

functional antigen-1 (LFA-1) and its ligand intercellular64

adhesion molecule-1 (ICAM-1), have allowed investigation65

into leukocyte trafficking[3–5]. Collaborators at the Uni-66

versity of New Mexico Health Sciences Center developed a67

novel antagonist of ICAM-1 that has in-vivo efficacy[6–9],68

and Kelly and coworkers[10,11] have developed a small69

molecule antagonist of LFA-1, although, toxicity effects70

have limited its development as an in-vivo inhibitor. Using71

our technique, we can predict compounds that provide the72

proper inhibitory effect, some of which hopefully lack any73

adverse toxicity effects.74

The paper is set up in the following manner. First, we75

will discuss QSARs in order to define the inverse problem.76

Next, we will present the signature molecular descriptor and77

review the various features of signature that have been pre-78

viously investigated. Third, we will describe, in detail, the79

methodology used to generate solutions to the inverse-QSAR80

problem. Finally, we will provide an example demonstrat-81

ing the use of signature in the solution of an inverse-QSAR82

problem; namely the construction of a focused library of83

compounds in rational peptide design.84

2. Methodology85

A quantitative structure–activity relationship is an em-86

pirical relationship between a molecule’s structure and a87

specific biological activity or physical property possessed88

by that molecule. The independent variables in these equa-89

tions are given in terms of molecular descriptors, which are90

operators on the molecular graph that strive to character-91

ize the properties of the molecule[12–16]. QSARs have92

been used to quantify empirical data such as boiling points,93

electric moments, chromatography retention times, IC5094

values, lipophilicity, resonance, logP, and polarity[17–20].95

QSARs are generally trained against a large data set (called96

a training set) and validated through a subset not used in97

the parameterization (called a test set) in order to test the98

predictive ability of the QSAR. The quality and predictive99

capacity of the QSAR equation depends on several factors,100

including the size of the training set and the diversity of the101

molecules used in the construction of the equation. If the102

size of the training set is small, over-fitting of the QSAR103

can easily occur making for a relationship that provides104

poor predictions. If the molecules in the training set are of105

a certain type, then the QSAR developed is ill-equipped to106

predict properties of molecules of a type not included in the107

training set.108

What is described above is called the forward-QSAR109

problem, which uses values for the independent variables of110

a particular compound in the QSAR to solve for the activ-111

ity of that compound (the dependent variable). In contrast,112

the goal of the inverse-QSAR problem is to determine val-113

ues for the independent variables given a desired activity.114

Note that the inverse-QSAR method discussed in this work115

applies to any property and not exclusively to activity. 116

The inverse-QSAR problem is quite challenging for a va-117

riety of reasons. First, one needs to be able to solve the118

QSAR for a given activity. This corresponds to generating119

the vectors of solutions (values for the independent variables,120

or descriptor values) that correspond to the given activity. If121

this first step can be completed, the generated solutions then122

need to be turned into actual compounds. 123

Reconstructing molecules that match molecular descrip-124

tor values is a long-standing problem. However, there are125

only a few reports in the literature providing solutions to this126

problem. Most of the proposed techniques are stochastic127

in nature and use either genetic algorithms or Monte Carlo128

methods to search for and construct chemical structures129

matching predefined descriptor values. Venkatasubramanian130

et al. [21] and Sheridan and Kearsley[22] were the first to 131

propose stochastic techniques based on genetic algorithms,132

while methods based on a Monte Carlo approach were re-133

ported later[23,24]. Although, other papers using stochastic134

techniques have appeared since then, there are still very135

few attempts to solve the reconstruction problem using a136

deterministic approach, i.e. using techniques that generate137

exhaustive lists of molecular structures matching prede-138

fined descriptor values. In a series of three papers Kier and139

coworkers[25–27] reconstructed molecular structures from140

the count of paths,lP , up to lengthl = 3. Their technique 141

essentially computes all the possible degree sequences142

matching the count of paths up to lengthl = 2. Then, for 143

each degree sequence, all the molecular structures are gen-144

erated using an isomer generator and the graphs that do not145

match the3P count are rejected. Skvortsova et al.[28] used 146

a similar technique, but from the count of paths they derived147

an edge sequence in addition to the degree sequence. An148

edge sequence counts the number of edges between each149

distinct pair of atom degrees. The two sequences are then150

fed to an isomer generator that produces all the structures151

matching the sequences. Regrettably, the authors do not pro-152

vide details on how the isomer generator deals with the edge153

sequence. 154

Owing to the limited progress offered by the above ap-155

proaches to the solution of the inverse problem, it is clear156

that the key to an effective solution methodology lies in the157

use of a molecular descriptor that facilitates reconstruction158

of the solutions into actual compounds. This descriptor159

needs to be information rich, have good correlation abilities160

in QSAR applications, and must also be computationally161

efficient. A computationally efficient descriptor should162

have a low degeneracy, that is, it should lead to a limited163

number of solutions when applied in inverse-QSAR. Next,164

we briefly present a descriptor that we believe matches165

the above criteria. The descriptor is called signature and166

is further detailed in two previous papers in this series167

[29,30]. 168
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2.1. The signature descriptor169

Signature is based on the molecular graph of a molecule,170

G = (VG, EG), where the elements inVG denote the atoms171

in the molecule, and the edges ofEG correspond to the172

bonds between those atoms. In this context, a molecule is173

characterized by a set of canonical subgraphs, each rooted174

on a different vertex with a predefined level of branching,175

which we refer to as the heighth. The branching of a ver-176

tex is an extended degree sequence that describes the local177

neighborhood, up to the distanceh away from the root.178

We define an atomic signature,hσG(x), as the canonical179

subgraph ofG consisting of all atoms a distanceh from180

the rootx. A molecular signature,hΣG, is then the set of181

all unique atomic signatures and the occurrence with which182

they appear in the molecular graph. Even though the atomic183

signatures are unique, they are, by construction, interre-184

lated allowing information about the overall structure of the185

molecule to be conveyed at the end.186

The atomic signatures make up the set of molecular de-187

scriptors for a molecule. These are expressed in terms of a188

string of characters that correspond to the canonized sub-189

graph in a breath-first order. Branch levels are indicated by190

a set of parenthesis following the parent vertex. An exam-191

ple of the molecular signature for nitroglycerine is given in192

Fig. 1.193

Signature is uniquely suited to address the issues related194

to the inverse-QSAR problem. First, signature produces195

QSARs on par with those obtained from conventional196

molecular descriptors. In fact, signature encapsulates in-197

formation from which other molecular descriptors can be198

computed. Its usefulness in QSAR analysis was previously199

established by comparison to a QSAR developed from200

the commercial package, Molconn-Z, with similar results201

[29,31]. Second, signature is shown to be less degenerate202

than many other popular descriptors. The degeneracy of a203

molecular descriptor depends on how well it is able to map204

one property to one descriptor. A molecular descriptor with205

a low degeneracy is vital in limiting the number of solu-206

tions to the inverse-QSAR problem. Ideally, the descriptors207

should be orthogonal to one another, such that only one208

descriptor corresponds to the information for a single struc-209

tural motif [32,33]. In a previous study, the degeneracy210

Fig. 1. Nitroglycerine and its corresponding height one molecular signa-
ture. The molecular signature is the sum of the atomic signatures.

of signature was systematically probed and compared to a211

broad set of traditional molecular descriptors[30]. Signa- 212

ture proved to be less degenerate than the other descriptors,213

but more importantly, its degeneracy can be user controlled.214

Third, and foremost, signature provides a way to go from215

numerical solutions of the inverse-QSAR problem to actual216

structures that correspond to solutions. Indeed, the main217

advantage of signature versus other molecular descriptors218

is its readiness for inverse problems. An algorithm, to both219

enumerate and sample chemical structures corresponding to220

solution vectors (i.e. molecular signatures), has already been221

developed and tested for a variety of compounds including222

alkanes, fullerenes, and HIV-1 protease inhibitors[30]. 223

2.2. Inverse-QSAR scheme 224

The inverse-QSAR method can be broken into four steps.225

The first step is the QSAR analysis. Here, we generate every226

atomic signature of a desired height for the compounds in227

the training set. We then use those signatures to construct a228

QSAR equation relating compounds to their activities. The229

second step is to generate the set of constraint equations with230

integer coefficients (Diophantine equations) for the signa-231

tures. In the third step, we solve these equations for integer232

solutions using a Diophantine equation solver. The last step233

consists of building the molecular structures and predicting234

their activities using the QSAR equation. 235

2.2.1. QSAR analysis 236

Here, we outline the use of signature in the QSAR anal-237

ysis; for further details on the procedure, the reader is re-238

ferred to our two previous papers[29,30]. Construction of 239

the QSAR equation begins by expressing each compound in240

the training set in terms its molecular signature of heighth. 241

A list of the unique descriptors (atomic signatures) is com-242

piled and provides a descriptor database for the QSAR. This243

set contains the minimum number of descriptors needed to244

span the activity/property space of compounds in the train-245

ing set. Assuming, there arem compounds in the training246

set andn unique descriptors, ann×m “descriptor matrix” is 247

constructed by screening each compound against the set of248

unique descriptors and storing that descriptor’s occurrence249

number in the matrix. Perfectly correlated rows, i.e. descrip-250

tors with the same predictive capabilities, are removed from251

the matrix to avoid redundancies, which can skew the re-252

sults of the multiple linear regression analysis. This matrix253

and the corresponding property values determine the QSAR254

equation that will be developed. 255

In our studies, the QSAR equation is a linear equation256

of the form
∑

αixi − α0 = P , where αi represents the257

regression coefficients,xi represents the occurrence num-258

ber of the molecular descriptori, and P is the property 259

value of interest minus the regression constant. The number260

of molecular descriptors, unknown until the training set261

has been established, dictates the number of independent262

variables. To avoid the possibility of over-fitting the data,263
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which occurs when the number of independent variables is264

equal to or exceeds the number of dependent variables, a265

forward selection procedure[34] was used in the multilin-266

ear regression. The forward selection adds variables one by267

one, according to those that have the most impact on the268

model, as determined byr2 and F statistics. This method269

is computationally efficient and can control the number of270

independent variables of the QSAR equation[34].271

To test the accuracy of the model, a plot of the experimen-272

tal values versus the QSAR correlated values is constructed.273

For a good, correlative model, the points on the graph should274

lie close to a 45◦ angle, which is quantitatively described by275

theR2 value. If this is not the case, then adjustments can be276

made to modify the number of independent variables; the277

resultant equation is inhomogeneous with unknown occur-278

rence values,xi.279

2.2.2. Production of constraint equations280

In addition to the QSAR equation, constraints are needed281

to ensure the ability to reconstruct compounds from the so-282

lutions. There are two types of constraint equations, namely283

the graphicality equation and the consistency equations.284

285

2.2.2.1. Graphicality equation. The graphicality equation286

ensures that at least one connected graph can be constructed287

from the molecular descriptors. This equation, taken directly288

from graph theory, uses only the degree of the vertices in289

the graph. In order to build a connected graph, we require290

that (1) the sum of all the vertex degrees must be even and291

(2) the number of vertices of odd degree must be even. The292

resulting equation can be expressed in terms of a degree293

sequenceN = {n1, n2, . . . , nk} whereni is the number of294

vertices of degreei. In this case, the degree sequenceN is295

graphical if and only if there exists an integerz ≥ 0 such296

that297

k∑
i=2

(i − 2)ni − n1 + 2 = 2z. (1)
298

The graphicality equation can be computed directly from299

the height zero molecular signature.300

301

2.2.2.2. Consistency equations. The next set of equations302

is collectively referred to as the consistency equations. Re-303

call that a molecular signature is a collection of interrelated304

atomic signatures, where each atomic signature describes305

a particular atom and its neighboring atoms to a predeter-306

mined height. In constructing the signature of a molecule, it307

is guaranteed that a bond in one atomic signature will match308

up with a bond in another atomic signature, albeit in re-309

verse order. However, blind reconstruction of the molecule310

requires equations to enforce these conditions of interdepen-311

dency among the atomic signatures. This is done by match-312

ing bonds between two atoms of one signature to the bonds313

involving the same atoms in all other signatures.314

Fig. 2. Graphical depiction of the bond occurrence (2σi → 2σj). Here,2σi

supplies the height one bond between the carbon root and the last carbon
atom child. If a root swap is performed with this last carbon atom, then
the resulting height one signature is C(H H C C ), which we designate
as1σi. Similarly, if a root swap is performed on2σj and its carbon atom
child, then truncated to height one, its signature will match that of1σi.

We will use the notationhσi to describe the atomic sig-315

nature of heighth of an arbitrary atomi. Using hσi as a 316

reference, any bond between the root and one of its children317

must be sought in all other atomic signatures in which the318

positions of the root and child are the transpose ofhσi. We 319

use the notation #(h−1σi → h−1σj), to depict the number320

of bond typeshσi has in common withhσj. Clearly, then 321

#(h−1σi → h−1σj) = #(h−1σj → h−1σi). As depicted in 322

Fig. 2, it is important to note that the signature of a bond is323

one height less than the height of the molecular signature.324

The reason is that when #(h−1σi → h−1σj) is computed, 325

one has to transpose the rooti with a child j. While the 326

neighborhood ofi was initially probed up to heighth, the 327

transposed signature with new rootj probes the neighbor-328

hood of j only up to heighth−1. In the case wherei = j, 329

then #(h−1σi → h−1σi) must be even. 330

For example inFig. 3 we calculate the number of331

oxygen–carbon single bonds and compare it to the number332

of carbon–oxygen single bonds in nitroglycerine. Here, the333

first signature supplies the bond type, in this case an oxygen334

Fig. 3. Illustration of how a consistency equation for nitroglycerine is
calculated. In particular, the number of oxygen–carbon single bonds must
equal the number of carbon–oxygen single bonds. Only one atomic sig-
nature contains a single bonded oxygen root connected to a single bonded
carbon with an occurrence of three. On the other hand, there are two
atomic signatures with a single bonded carbon root. In each case, the
carbon root is connected to a single bonded oxygen atom shown with a
dashed line. There is only one instance of a carbon–oxygen single bond in
both signatures, so the occurrence number is the sum of these, which is 3.
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atom single bonded to a carbon atom. To make sure bond335

types match up, we need to find all instances of a carbon336

atom single bonded to an oxygen atom in the other signa-337

tures. This is done by searching the list of unique signatures338

for all those that contain a single bonded carbon atom (c)339

as the root. For each matching signature, an algorithm is340

called to re-root the tree, such that a child is now the root.341

This procedure is reiterated for each of the first children.342

Because the carbon in this example has four children, there343

will be four restructured graphs. If the signature contained344

a carbon–oxygen bond, then upon restructuring, that oxy-345

gen should appear as the root. A quick check is performed346

and if any oxygen atom exists as the roots, then the oc-347

currence number of the original signature is returned. All348

matches are then summed to give a total for the number of349

carbon–oxygen bonds, which should equal the number of350

oxygen–carbon bonds, in this case three.351

The consistency equations can be summarized as follows:352

a molecular signature of heighth (hΣ) is consistent if and353

only if the two following conditions are verified:354

(i) For all atomic signaturesh−1σi and h−1σj in355
h−1Σ, #(h−1σi → h−1σj) = #(h−1σj → h−1σi).356

(ii) For all h−1σi in h−1Σ, #(h−1σi → h−1σi) is even val-357

ued.358

In the nitroglycerine example inFig. 1, the occur-359

rence numbers of the signatures were known quantities360

and should be consistent by construction. However, in the361

inverse-QSAR, the occurrence numbers are represented by362

unknown quantities,xi. Construction of these equations363

will produce relationships that quantitatively convey the364

interdependencies of one signature on another in the set.365

366

2.2.2.3. Equation solver. Together, the QSAR and con-367

straint equations form a system of equations with unknown368

occurrence numbersxi corresponding to atomic signaturei.369

These solutions must represent quantities meaningful to sig-370

nature and hence, the occurrence numbers should take on371

non-negative integer values. Equations in which only pos-372

itive integer solutions are allowed are called Diophantine373

equations. Research on algorithms for solving linear inte-374

ger equations has been widely investigated starting from the375

Fig. 4. A molecular signature may correspond to multiple structural configurations. Both 1,3-dinitroglycerine and 1,2-dinitroglycerine have the same height
one molecular signature given at the right. Increasing the height of the signatures will decrease the number of structural configurations that correspond
to a molecular signature.

ancient Greeks[35]. Such systems arise in various areas of376

computer science and efficient algorithms are well-known377

for solving these systems over real numbers, rational num-378

bers, and even integers. Unfortunately, restricting the domain379

to the natural numbers (positive integers) makes the prob-380

lem much more difficult and the algorithms in the previous381

class are no longer suitable. 382

In the recent past, several techniques, to directly solve383

linear Diophantine systems have been proposed. We have384

implemented such an algorithm adapted from Contejean385

and Devie[36]. This algorithm uses a geometric interpre-386

tation of Fortenbacher’s algorithm[37], which efficiently 387

solves homogeneous and inhomogeneous linear Diophan-388

tine equations. The output of the Diophantine solver is a set389

of basis vectors that spans the solution space of the system390

of equations. 391

Our system is comprised of three types of linear equations:392

inhomogeneous, homogeneous, and modulus equations. The393

modulus equations can be re-written in terms of a homo-394

geneous equation by adding a dummy variable to enforce395

modularity. This equation can then be included into the sys-396

tem of equations that eventually feed into the Diophantine397

solver. Incorporation of the inhomogeneous QSAR equation398

has been found to slow the time it takes for the Diophantine399

solver to produce results. For this reason, we purposefully400

leave out the QSAR equation when determining the feasible401

solutions from the system of homogeneous equations and402

then use the QSAR equation to predict the activity values of403

the solutions. 404

405

2.2.2.4. Structure generator. Once a solution has been406

found, the corresponding molecule needs to be constructed407

from the molecular signature. As can be seen inFig. 4, it is 408

possible that more than one structure may exist that corre-409

sponds to the molecular signature. As a result, an enumer-410

ation routine was developed to find all possible structures411

with a given molecular signature. A brief overview of the412

enumeration routine is given here, but the reader is referred413

to a previous paper[30] for a more detailed description of414

the algorithm. 415

Starting with a molecular graph,G, composed of iso- 416

lated vertices and no edges, the edges are added in every

JMG 5389 1–11
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possible combination to produce all non-isomorphic satu-417

rated graphs matching the molecular signature. There are418

two primary steps: (1) determine the orbits or atoms with419

equivalent atomic signatures ofG, and (2) saturate each420

atom of a chosen orbit. Once the orbits have been defined,421

then one is selected that contains unsaturated vertices and422

is saturated in an orderly manner. This process is repeated423

until all the vertices have been saturated and the resulting424

bonds are compatible with the target signatures and it does425

not create a saturated subgraph ofG. This algorithm was426

proven to be complete[30], meaning only the set of unique427

non-isomorphic graphs are produced.428

3. Inverse-QSAR OF ICAM-1 inhibitory peptides429

The inhibitory compound that UNM tested was a cyclic430

peptide composed of nine amino acids that bind to ICAM-1,431

thereby inhibiting LFA-1/ICAM-1 binding. Using alanine432

replacement and homologous amino acid substitutions, we433

identified residues strategic to the antagonist activity. A434

small set of such derived peptides was used as a training set435

for the inverse-QSAR. The activity or potency of the pep-436

tides is associated to an IC50 value, which measures the con-437

centration that leads to half-maximal inhibition of receptor438

to ligand.Table 1lists the amino acid sequence of sixteen439

such derived peptides with their IC50 values (given in�M),440

determined using a cellular aggregation blocking assay[7,8].441

In brief, the aggregation of a cell line dependent on LFA-1442

binding to ICAM-1 was used to measure the inhibitory ca-443

pacity of each peptide. Inhibitory peptides and cells were444

Table 1
Training and test set for the ICAM-1/LFA-1 inhibitory peptides

Peptide sequence Experimental
IC50 (�M)a

Inhibitor
strength

1 CLLRMRSAC 480 Strong
2 CILRMRSAC 190 Strong
3 CVLRMRSAC >1000 Non
4 CLIRMRSAC* 720 Weak
5 CLVRMRSAC >1000 Non
6 CLLKMRSAC 105 Strong
7 CLLRMKSAC 90 Strong
8 CLLRMRSLC >1000 Non
9 CLLRMRSVC 700 Weak

10 CLLRMRSIC 580 Weak
11 CALRMRSIC >1000 Non
12 CLARMRSIC >1000 Non
13 CLLRARSIC* >1000 Non
14 CLLRMASIC >1000 Weak
15 CLLRMRAIC 710 Weak
16 CILKMKSAC 40 Strong

Peptides indicated with an asterisk (peptides 4 and 13) indicate compounds
in the test set. Listed are the amino acid sequences, the experimentally
determined IC50 value and the potency of the peptide in inhibiting the
ICAM-1/LFA-1 complex.

aIC50 values determined using cellular assay described in Sillerud
et al. [8].

seeded in flat-bottomed microtitier plates and allowed to ag-445

gregate. The number of aggregates and total number of free446

(single) cells were counted using inverted phase microscopy.447

The percent aggregation,P, was determined as 448

P = 100

(
1 − F

I

)
(2)

449

whereF is the final number of free cells andI is the initial 450

number of free cells. This percent aggregation was then used451

to calculate the percent inhibition,Pi as follows 452

Pi = 100

(
1 − Pip

Pc

)
(3)

453

wherePip is the percent aggregation with inhibitory peptide454

andPc is the percent aggregation in the control experiment.455

The IC50 values were calculated from a line fit to the percent456

inhibition data as a function of inhibitory peptide concen-457

tration over the range from 10�M to 1 mM. Each condition 458

was performed in duplicate while each experiment was per-459

formed a minimum of three times. 460

The first and last amino acids in the sequence are con-461

nected to one another via a disulfide bridge, making the462

structures cyclic. In addition, the peptides are classified ac-463

cording to their inhibitory capabilities: peptides with IC50 464

values less than or equal to 500 are considered strong in-465

hibitors, peptides with IC50 values between 500 and 1000466

are considered weak inhibitors and peptides with IC50 values 467

greater than or equal to 1000 are said to be non-inhibitors.468

Fourteen of these peptides were used as a training set for469

the inverse-QSAR process; peptides 4 and 13 were used as470

the test set. Here, the goal was to find any other compounds471

within the property space of the training set that similarly472

inhibit the binding of LFA-1/ICAM-1, but with greater effi-473

cacy, i.e. a lower IC50 value. 474

3.1. QSAR analysis 475

The training set contained 14 cyclic peptides composed476

of nine amino acids, which were expressed in terms of a477

linear, one letter amino acid sequence. Following the pro-478

cedure previously outlined, 47 unique atomic signatures of479

height one were used, each of which was given an unknown480

occurrence numberxi (SeeTable 2). 481

Once the compounds in the training set were expressed in482

terms of their signatures, a linear QSAR equation could be483

created. First, a 47× 14 descriptor matrix was constructed,484

then screened for perfectly correlated rows, or rows contain-485

ing identical entries. Recall that equivalent variables distort486

the multiple linear regression results if included in the anal-487

ysis. In addition, rows containing a single or double entry488

were discarded in an attempt to generalize the signatures489

in the QSAR so that none would map to a specific activ-490

ity. Second, the actual IC50 value for non-binding peptides491

(IC50 > 1000) was not experimental measured, thus we as-492

signed them a value of 1000. Furthermore, to make all the493
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Table 2
Height one amino acid signatures for the ICAM-1/LFA-1 training set

x1 A(CL) x17 L(AC) x33 R(AM)
x2 A(CS) x18 L(AR) x34 R(AS)
x3 A(IR) x19 L(CI) x35 R(IM)
x4 A(LR) x20 L(CL) x36 R(LM)
x5 A(MS) x21 L(CS) x37 R(MS)
x6 A(RR) x22 L(CV) x38 R(MV)
x7 C(AC) x23 L(IK) x39 S(AI)
x8 C(CI) x24 L(IR) x40 S(AK)
x9 C(CL) x25 L(KL) x41 S(AR)
x10 C(CV) x26 L(LR) x42 S(IR)
x11 I(AC) x27 L(RV) x43 S(LR)
x12 I(CL) x28 M(AR) x44 S(RV)
x13 I(CS) x29 M(KK) x45 V(CL)
x14 I(LR) x30 M(KR) x46 V(CS)
x15 K(LM) x31 M(RR) x47 V(LR)
x16 K(MS) x32 R(AL)

values of the dependent variables the same order of magni-494

tude, we used the base ten logarithm of each IC50 value in495

the QSAR. Last, a forward stepping algorithm was applied496

to select the most statistically significant signatures, one at497

a time. We chose to use a QSAR equation with six vari-498

ables, where the variablesxi are the occurrence numbers of499

the signatures listed inTable 2.500501

log10(IC50) = 2.81− 0.739x2 − 0.574x8 + 0.662x13502

+ 0.728x31 + 0.727x41 − 0.644x37 (4)503

The training set contained biased activities; almost half504

of the compounds had activities equal to 1000, the other505

majority of compounds contained activities less than 500.506

Fig. 5. Accuracy of the QSAR equation (Eq. (4)) for the LFA-1/ICAM-1 training set. The points lie near a 45◦ line and the points in the test set are
accurately predicted, indicating that the QSAR equation is a good correlation of signatures to the IC50 values.

Table 3
Overall statistics for the QSAR equation with six signatures

F R2 s2 s2 (test set)

16.9 0.935 0.015 0.011

Table 4
Individual descriptor statistics for the QSAR equation with six signatures

Descriptor R2 Variable inflation
factor

P-value

x2 0.3735 1.5962 0.0202
x8 9.55e−7 1.00000095 0.9974
x13 0.1692 1.2037 0.1439
x31 0.4726 1.8961 0.0066
x37 0.1609 1.1918 0.1551
x41 0.0057 1.0057 0.7976

This trend was inevitably captured in the QSAR equations,507

where the added signatures simply distinguished between508

strong and non-inhibitory compounds. Thus, the coefficients509

in the QSAR equation are not as stable as we would like;510

ideally, they should exhibit little to no variation when another511

descriptor is added. However, since our data set is small, the512

QSAR will be sensitive to perturbations, i.e. the addition of513

new signatures. 514

Fig. 5 illustrates the ability ofEq. (4) to correlate the 515

IC50 values of the training set as well as predict the val-516

ues of the peptides in the test set. Although, the statistics517

in Table 3could be higher, the key is to choose a QSAR518

equation that not only correlates the signatures to the activ-519

ities, but one that is also predictive. We chose our QSAR520

based on the statistics inTable 4(which show our QSAR
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Table 5
The predicted IC50 values and their differences for peptides in the test
set usingEq. (4).

Peptide
sequence

Experimental
IC50

Predicted
IC50

Difference

4 CLIRMRSAC 720 727.8 7.8
13 CLLRARSIC >1000 790.7 209.3

has not been overly affected by multicolinearity) as well the521

QSAR’s ability to predict the IC50 values for compounds in522

the test set.Table 5lists the differences of the predicted and523

experimental IC50 values for the compounds in the test set524

usingEq. (4).525

3.2. Construction of constraint equations526

The amino acids can be regarded as vertices of degree 2.527

Consequently, the graphicality equation will always be sat-528

isfied and need not be calculated for this particular training529

set.530

The consistency equations were calculated from the531

unique signature set as described inSection 2. In addition,532

we wanted the resulting compounds to be cyclic structures533

composed of nine amino acids. To capture this requirement,534

we added a constraint that the number of amino acids in any535

solution was to total 9. These equations are listed inTable 6.536

Notice that the individual constraint equations do not con-537

tain the majority of the variables. The two modulus equa-538

tions (Table 6, Eqs. (16) and (23)) were incorporated into539

the system of equations by adding dummy variables (one540

for each modulus equation) to make them homogeneous.541
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Fig. 6. Distribution of IC50 values for the solutions of the inverse-QSAR using six signatures. Solutions are grouped according to their IC50 values:
0–100, 101–200, 201–300, and so on, up to 1000.

Table 6
Constraint equations for the height one amino acid signatures in the
training set

(1) −x44 + x46 = 0
(2) −x38 + x47 = 0
(3) −x22 − x27 + x45 + x47 = 0
(4) −x10 + x45 + x46 = 0
(5) −x34 − x37 + x41 + x42 + x43 + x44 = 0
(6) −x21 + x43 = 0
(7) −x16 + x40 = 0
(8) −x13 + x39 + x42 = 0
(9) −x2 − x5 + x39 + x40 + x41 = 0
(10) −x28 − x30 − 2x31 + x33 + x35 + x36 + x37 + x38 = 0
(11) −x18 − x24 − x26 − x27 + x32 + x36 = 0
(12) −x14 + x35 = 0
(13) −x3 − x4 − 2x6 + x32 + x33 + x34 = 0
(14) −x15 − x16 + 2x29 + x30 = 0
(15) −x5 + x28 = 0
(16) (x20 + x25 + x26)%2 = 0
(17) −x15 + x23 + x25 = 0
(18) −x12 − x14 + x19 + x23 + x24 = 0
(19) −x9 + x17 + x19 + x20 + x21 + x22 = 0
(20) −x1 − x4 + x17 + x18 = 0
(21) −x8 + x11 + x12 + x13 = 0
(22) −x3 + x11 = 0
(23) (x7 + x8 + x9 + x10)%2 = 0
(24) −x1 − x2 + x7 = 0

Eqs. (16) and (23) are modulus equations, which can be expressed as ho-
mogeneous equations by adding a dummy variable. For example Eq. (16)
would readx20 + x25 + x26 − 2z1 = 0. The % sign indicates the modulus
is to be used.

3.3. Equation solver 542

As mentioned previously, the inhomogeneous equations543

were intentionally excluded from the system in order to
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obtain results in a reasonable amount of time. Thus, only544

the constraint equations were solved using the Diophantine545

solver. Due to the size constraint of the peptides, only those546

solutions containing nine or less amino acids were kept, the547

rest were discarded. Solutions with less than nine amino548

acids were used in making linear combinations, again,549

adhering to the size constraint of nine amino acids. By550

leaving out the QSAR equation, all solutions were obtained551

with activities spanning a wide range of IC50 values. The552

distribution of predicted activities is given inFig. 6, where553

the solutions were divided into bins of 100 ranging up554

to 1000.555

3.4. Structure generator556

The reconstruction of the peptides was straightforward in557

this case. By construction, each peptide only contained nine558

amino acids that formed a cyclic structure. Therefore, once559

the amino acid sequence of the peptide was known, the struc-560

ture would also be known. From a solution, we start building561

the amino acid sequence by selecting a descriptor—it does562

not matter which one since the structure is cyclic. The chil-563

dren of each amino acid are used as guides to tell us what564

the previous and following amino acids are in the sequence.565

Fig. 7illustrates how a sample solution is reconstructed from566

the amino acid signatures. Here we pick a signature, in this567

case C(AC), since we know that the first and last amino568

acids form a disulfide linkage. We know that it is connected569

to another signature with root A and a signature with root C,570

both of which should have C as their child. So, we choose571

the signature A(CS) as the next residue in the sequence. C572

is already connected to an A, so the next residue must be573

a signature with root S. This process is reiterated until no574

more amino acids are left and the last amino acid should be575

a child of the first one and vice versa.576

Table 7lists 20 sequences corresponding to compounds577

with the lowest predicted IC50 values. Even though some578

Fig. 7. Reconstruction of a solution peptide from the amino acid signature.
Since the structure is cyclic, it does not matter which signature is used to
start of the sequence. Here we choose a C(AC) to start. This is connected
to both an A and a C. Selecting the signature A(CS) we know that
it is already connected to a C, so the next signature must be S(AK).
Continuing in this manner, the last signature should match up the first.

Table 7
Peptide sequences of the twenty lowest IC50 values as predicted by the
inverse-QSAR with six signatures

Peptide sequence Predicted
IC50 value

Actual
IC50 value

1 CASKMKSAC 21.48
2 CASKMRSAC 24.83 23
3 CASKMRSVC 25.53
4 CASKMRSLC 25.53
5 CASKMRSIC 31.26
6 CASKMRLIC 31.41
7 CASKMKLIC 31.41
8 CASKMRAIC 31.41
9 CASRMKLIC 36.31
10 CILKMRSVC 37.33 28
11 CILKMRSLC 37.33
12 CASICCLIC 38.46
13 CILKMRSIC 45.71
14 CILKMRLIC 45.92
15 CILKMKLIC 45.92
16 CILRARLIC 45.92
17 CILKMRAIC 45.92
18 CASKMKLLC 117.8
19 CASKMRVLC 117.8
20 CASKMRLVC 117.8

of the peptides are predicted to be strong inhibitors, they579

may not be viable candidates for synthesis. For example580

peptide 12, which has the sequence CASICCLIC, contains581

two cysteine residues in the middle of the compound. These582

residues contain sulfur atoms which may form undesired583

disulfide bonds that potentially distort the three dimensional584

structure. 585

4. Discussion 586

From the inversion process, a total of 223 compounds587

were found, including the 14 original compounds in the588

training set and the two test set compounds. The trends found589

in the training set reappear inFig. 6. Recall that activities 590

in the training set are biased towards either the strong or591

non-inhibitory groups. A similar trend emerges in the pre-592

dicted activities of the solution set, with a gap in IC50 values 593

ranging between 300 and 600. This can be controlled with594

a larger training set. 595

The goal of the inverse-QSAR method was to predict, if596

any, novel inhibitory compounds possessing a lower IC50 597

value than those in the training set. There were 77 new598

peptides classified as strong inhibitors. Of these, 12 represent599

peptides with predicted IC50 values less than 40—the IC50 600

value of peptide 16, which was the strongest inhibitor in601

the training set. To provide feedback on these predictions,602

we synthesized two of these peptides, sequences 2 and 10,603

using cellular assays. Their experimental IC50 values were 604

very close to our predicted values (seeTable 7), and to our 605

knowledge are the strongest inhibiting peptides to date that606

work in-vivo as well. 607
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Although, our training set was relatively small, it was608

nevertheless a sufficient basis from which the inverse-QSAR609

produced promising results. If possible, the training set610

should be larger with more diverse activities, but this611

is a challenge for experimental researchers who need to612

work with what they already have. Some of the predicted613

compounds exhibiting the desired activity can be used to614

construct another more focused training set from which615

higher-quality lead compounds can be designed. In this616

manner, old and new data can be exploited to refine the617

design process of more potent compounds.618
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