
Investigating Real Power Usage on Red Storm
James H. Laros III, Kevin T. Pedretti,

Suzanne M. Kelly, John P. Vandyke, Courtenay T. Vaughan
Sandia National Laboratories

Mark Swan - Cray Inc.

ABSTRACT: High Performance Computing (HPC) has histori-
cally been the impetus for new technologies. However, in dealing
with power related issues HPC has lagged behind. Power has
recently been recognized as one of the major obstacles to fielding
a Peta-Flop class system. In this paper we will discuss power
related topics by leveraging what is currently a rare capability
of examining real power usage at a very granular level on an
HPC platform. We will discuss what we have observed, initial
efforts to implement power conserving measures, quantifications
and comparisons between Light Weight and General Purpose
Operating Systems and, finally, areas of investigation that have
been enabled by this novel capability.

KEYWORDS: High Performance Computing (HPC), Power,
Power Efficiency, Cray XT3/XT4/XT5, Multi-Core

I. I NTRODUCTION

Power has become, and will likely remain, one of the pri-
mary considerations in architecting High Performance Com-
puting (HPC) platforms. The following is a selected list of
recent Capability1 class platforms and corresponding power
requirements.

• Red Storm, Sandia National Laboratories 2.506 Mega-
Watts[1], [2]

• Blue Gene/P Lawrence Livermore National Laboratories
2.330 Mega-Watts[3], [2]

• Jaguar, Oak Ridge National Laboratories 6.951 Mega-
Watts[4], [2]

• Road Runner, Los Alamos National Laboratories 2.483
Mega-Watts[5], [2]

While these platforms represent a range of theoretical peak
performance per watt, it is clear the amount of power required
to achieve capability class performance is substantial and
growing. Projections for multi-PetaFLOP platforms can exceed
tens of Mega-Watts. These facts provide clear motivation for
investigation in this area.

Power is proportional to the product of the Capacitance,
Frequency and Voltage squared. Manipulated individually or
in combination these factors affect power usage. Over time,
increasing CPU frequencies has necessitated voltage increases.
Leakage currents have grown proportionally to the increase
in processor frequencies, number of transistors, and decrease
in die size. To address these issues, industry has made a
conscious decision to continue to increase the number of

1Capability Class Platform - Systems designed to support applications that
use a significant fraction of the total resource in support ofa single cooperating
application.

transistors (in accordance with Moore’s Law) by delivering
multi-core sockets while keeping frequencies static, or in
many cases lowering them (on a per core basis). While the
sum performance continues to increase, exploiting the perfor-
mance requires greater levels of parallelism. This direction has
presented challenges to the HPC community in many areas
but provides some opportunity for power savings as we will
discuss.

The first step in addressing any issue is the ability to
quantify the problem. The Cray XT line of hardware provides
a rare opportunity for instrumentation and measurement that
will be discussed in Section II. Once able to see effect we
set out to affect a change. The results of our modification
of the Catamount[6] LWK OS and comparisons to Compute
Node Linux (CNL)2 are outlined in Section III. In addition
to observing OS power draw, this work has allowed us to
characterize application power use. In Section IV we will
discuss our observations related to HPC applications.

This new window has afforded a unique view that has
answered questions and posed many more. Sections V and
VI will present some concluding remarks and outline future
work in this area.

II. I NSTRUMENTATION

A. Hardware

Unlike typical commodity hardware, the Cray XT4/5 node
board provides hardware interfaces that can be exploited to
measure real power usage (current draw) over time. Each
node board has an embedded processor called an L0. The L0
has the ability to interface with many on board components.
For this effort, we will specifically leverage the i2c serial
bus interface from the L0 to the Voltage Regulator Modules
(VRM) (each processor socket has an associated VRM). In
addition to an L0 on each node board, every Cray XT cabinet
has an embedded processor at the cabinet level called the
L1. Each L1 acts as a parent, responsible for all the L0
components in the cabinet. At the top of the Reliability
Availability and Serviceability (RAS) hardware hierarchyis
the System Management Workstation (SMW) which in turn
provides the parent role for all the L1’s in the system. Our
goal is to collect per socket (node) current draw measurements
from each associated VRM. This foundation should provide
sufficient scalability for the collection of power data.

2Cray Inc custom port of Linux

CUG 2009 Proceedings 1 of 6



CUG 2009 Proceedings

The following figure (Figure 1) is a depiction of the CRMS
hardware hierarchy. A single SMW appears at the top of
the hierarchy. The 2nd level of the hierarchy depicts the L1
controllers at the cabinet level.3 The 3rd level depicts the
L0 controllers. Each L0 controller physically exists on a node
board. The figure depicts an L0 on a compute node board
responsible for four nodes and the associated VRM’s.

Fig. 1. CRMS Hardware Hierarchy

B. Software

Unfortunately, the ability to exploit the hardware (collect
current draw data) is not presently a feature provided by the
Cray Reliability Availability and ServiceabilityManagement
System (CRMS). While not currently a feature of the CRMS,
the existing software infrastructure can be leveraged to provide
the desired instrumentation.

The CRMS consists of a number of persistent daemons
which communicate in a hierarchical manner to provide a
wide range of control and monitoring capabilities. We have
augmented the base CRMS software with aprobing daemon
that runs on each L0 and a singlecoalescence daemon that runs
on the SMW. (See Figure 1) Theprobing daemon registers
a callback with the event loop executing in the main L0
daemon process (part of the standard CRMS) to interrogate
the VRM at a specific bus:device location (corresponding to
each individual processor socket). The results of a series of
timed probes are combined and communicated through the
event routers to thecoalescence daemon on the SMW, which
outputs the results. The output is a formated flat file with
timestamped hexadecimal current and voltage values for each
CPU socket monitored (results are per socket not per core).

By leveraging the existing hardware and software founda-
tion of the CRMS in this way we have been able to achieve
a per socket collection granularity at a frequency of up to

3The ellipses indicates additional devices at this level andat the L0 level

20 samples per second4. The accuracy of each sample is
approximately +/-2 amperes. While the accuracy of the sample
is not as precise as we would like, the data remains extremely
valuable for general magnitude observations and has proven
to be quite valuable for relative comparisons. In contrast with
most other platforms, measuring current draw is typically
limited to inserting a meter between a power cable and energy
source, resulting in a very coarse measurement capability at
best. The granularity and frequency of this sampling capability
has enabled us to observe real power usage in new and
powerful ways.

III. I DLE POWER DRAW

The LinuxTMcommunity has long been concerned with
power saving measures particularly in the mobile computing
sector. Linux has been quick to leverage architectural features
of microprocessors to reduce power consumption during idle
cycles. HPC makes great use of Linux on many of their
platforms but Light Weight Kernels (LWK) are often used
to deliver the maximum amount of performance at extreme
scale (Red Storm and Blue Gene/P for example). To achieve
greater performance at scale, LWK’s often have a selective
feature set when compared to general purpose Operating
Systems (OS) like Linux. As a result, LWK’s are a prime
area for investigating opportunities for power savings, aslong
as performance is not affected. In the area of idle power usage
Linux serves as an established benchmark. Our first effort will
be to match or beat the idle current draw of Linux.

Once in place, we applied the previously described instru-
mentation to examine the current draw of our Catamount
LWK. Catamount is the most recent generation of a long line
of LWK OS’s designed and developed at Sandia National Labs
(performance at scale, a key design point from the start). Our
initial findings were not surprising. As we suspected, but could
not previously quantify, idle cycles were consuming current as
Catamount is busily awaiting new work.

One of the advantages of most LWK’s (Catamount is not
an exception) is the relative simplicity of the OS. The last
two versions of Catamount (Catamount Virtual Node (CVN)
and Catamount N-Way(CNW)) have supported multi-core
sockets. The architecture of Catamount is such that there are
only two regions the OS enters during idle cycles. We first
addressed the region that cores greater than 0 (in a zero based
numbering scheme) enter during idle. (We will call core 0
the master core and cores greater than 0slave cores) We
modified Catamount to individually haltslave cores when idle
and awaken immediately when signaled by themaster core.
The result was a significant savings in current draw. As the
number of cores per socket increase the savings will likely
increase on Capability platforms. Capability class applications
are typically memory and/or communication bound. Adding
more cores, generally, provides little benefit and applications
often run on one or two of the available cores. It should be

4data included in this paper reflects a sampling frequency of one sample
per second

CUG 2009 Proceedings 2 of 6



CUG 2009 Proceedings

emphasized that eachslave core enters and returns from the
halted stated independently, resulting in very granular control
on multi and many core architectures. After these very positive
results we then modified the region of the OS the master
core enters during idle. While the master core is interrupted
on every timer tick (the slaves are not) we still observed
significant additional savings during idle periods.

Figure 2 depicts measurements obtained running three ap-
plications (HPL[7], PALLAS[8] and HPCC[9]) on a Dual Core
AMD Opteron Processor5 using CNL. Figure 3, in contrast,
illustrates the results obtained when executing the same three
applications on the same CPU using Catamount. (In our
testing we typically compare results from using the same exact
hardware in an attempt to limit variability of measure results)

Fig. 2. Compute Node Linux (CNL)

Fig. 3. Catamount Virtual Node (CVN)

5AMD Opteron 280 AMD Dual-Core Opteron 2.4GHz 2M Cache Socket
940 OSA280FAA6CB

The most noticeable difference between the two graphs
is the idle power wattage. CNL uses approximately 40W
when idle in contrast to Catamount which uses approximately
10W (prior to our OS modifications Catamount used approx-
imately 60W). Later results obtained on quad core AMD
Opteron6 sockets showed nearly identical idle power wattage
use for both CNL and Catamount7(delta within accuracy of
measurement). On this particular dual core architecture the
instructionsMONITOR and MWAIT are not supported. Both
instructions are supported on the quad core architecture used
in subsequent testing. Linux can be configured to poll, halt or
use MONITOR/MWAIT during idle. It is possible that what
we are observing in Figure 2 is a polling loop which in Linux
is optimized to conserve power. Later observations on the
quad core architecture were likely the result of CNL exploiting
MONITOR/MWAIT. Regardless, these results are intended to
show the ability to observe and contrast. These measurements
have demonstrated our first goal of equaling the idle power
savings of Linux.

These results also provided our first look at what we have
termed Application Power Signatures (see Section IV ). Each
application has a characteristic signature. While small differ-
ences in the signature can be observed, even when running
the same application on a different OS the signature is easily
recognized.

A few more subtle points should be made. Without the abil-
ity to examine power usage at this level we could only guess
that Catamount was inefficient during idle periods, we could
not quantify the efficiency. Additionally, we would not have
been able to so easily measure the effect of our modifications
and determine, definitively, when or if we reached our goal.
Likewise when using CNL, we could make the assumption that
CNL benefits from power saving features of Linux but without
this capability we would not have recognized the differencein
power use between the two CPU architectures.

Using the information obtained we can make some simple
calculations for a hypothetical system. For the purposes ofthis
calculation we make the following assumptions: a 13,000 node
(dual core), 80% utilized, 20% idle, ignoring downtime. The
idle node hours for this system over a year would be:

(1300 nodes ∗ 0.2) ∗ (365 days/year ∗ 24 hours/day)

= 22.776 ∗ 106 node hours/year (1)

If we calculate the idle Kilo-Watt hours saved based on
50W per node (based on the delta between the pre-modified
Catamount idle wattage and the modified Catamount idle
wattage) we get:

6AMD Opteron Budapest 2.2 GHz socket AM2
7CVN was enhanced to support more than two cores, the resultingCata-

mount version was named CNW. Unless otherwise specfied all results shown
after Figure 3 were obtained running CNW.

CUG 2009 Proceedings 3 of 6



CUG 2009 Proceedings

(22.776 ∗ 106 node hours/year ∗ 50 Watts/node) ÷ 1000

= 1.1388 ∗ 106 KW hours/year (2)

Assuming 10 cents per Kilo-Watt hour based on Department
of Energy averages for 2008[10] we can calculate real dollar
savings for this hypothetical system.

(1.1388 ∗ 106 KW hours/year ∗ 10 cents/KW hour)

÷ 100 cents/dollar = 113880 dollars/year (3)

For a capability system using a figure of 80% utilization
in the way we have characterized is probably very optimistic.
Capability systems are typically intended to support one to
a few large applications at one time which tends to drive
the total resource utilization numbers down. Additionally,
this calculation does not consider idle cores resulting from
applications that use less than the maximum cores available
per node (as previously discussed). In the case of dual core
sockets half of the resource remains idle (in power saving
mode) when the system is considered to be 100% utilized. In
the case of quad core sockets three fourths of the resource
remains idle. Figure 4 illustrates incremental power usageon
a quad core socket.

Fig. 4. Catamount N-Way Per Core Power Utilization

Even though our measurements are on a per node basis we
can see the incremental rise in power usage when additional
cores are enlisted. These results provide both a nice illustration
of per core savings and a confirmation that our OS modifica-
tions properly handle per core idle states.

In addition, we have not considered the 30-40% additional
power savings as a result of not having to remove the addi-
tional heat generated by higher idle wattages. By exploiting
power saving measures, as we have illustrated, significant
savings can be realized by targeting idle cores alone.

IV. A PPLICATION POWER SIGNATURES

Application Power Signature is a term we have applied to
the measured power usage of an application over the duration
of that application. The term signature is used since each
application exhibits a repeatable and somewhat distinct shape
when graphed. We have found that a user knowledgeable
of the application flow can easily distinguish phases of the
application simply by viewing the signature. While simply
graphing the resulting data can be useful, we have extended
this by calculating the energy used over the duration of the
application. We call this application energy. To calculatethis
metric we simply calculate the area under the curve. To
accomplish this we enhanced our post processing code to
approximate the definite integral using the trapezoidal rule.
The following graphs (Figures 5 and 6) depict the data
collected while running HPCC on CNL and Catamount. HPCC
was executed using the same input file on the same physical
hardware. Each run used 16 processors (four nodes, four cores
per node).

Fig. 5. HPCC on Catamount, Application Power Signature and Application
Energy

In the upper right hand corner of each graph is the energy
used by the application (on a single node, all four cores).
Again, notice the similarity of the signatures regardless of
the underlying OS. In this case HPCC finished more quickly
on Catamount than CNL. HPCC and other applications have
been shown to execute more quickly on Catamount [11]. It is
not surprising that an application that takes longer to execute,
given similar power draw during execution, will consume more
power. In this case HPCC ran 16% faster on Catamount. The
amount of energy used by HPCC is 13% less using Catamount
than CNL. We also tested HPCC on quad core nodes using
two cores per node (HPCC ran 15% faster on Catamount
and used 13% less power) and on dual core nodes using two
cores per node (HPCC ran 10% faster on Catamount and used
10% less power). The salient point is that performance is not
only important in reducing the run time of an application but

CUG 2009 Proceedings 4 of 6



CUG 2009 Proceedings

Fig. 6. HPCC on CNL, Application Power Signature and Application Energy

also in increasing the power efficiency of that application.
Additionally, without the ability to examine real power useat
this granularity the power efficiency of an application could
not be sufficiently quantified.

In Section VI we will discuss our plans for applying some
of these concepts.

V. CONCLUSIONS

Our results have shown that once observation is enabled,
beneficial effects can be achieved with relatively little effort
and subsequently quantified. This capability has provided new
insight into operating system and application analysis. Itis our
intent to employ this capability in future efforts (sectionVI)
to increase the efficiency of current and future platforms.

We feel the most important aspect presented in this paper
is the ability to measure the actual current draw at a high
level of granularity and frequency. Without this ability, the
work described would have to be done without the ability to
see effect or quantify results. It is also important to note that
without the underlying hardware capability to measure current
draw the instrumentation would not be possible. It is our hope
that this capability, both hardware and software, will be found
on more platforms in the future.

VI. FUTURE WORK

This initial work has inspired additional efforts in a num-
ber of related areas. In addition to reducing idle power
consumption, reductions during application execution might
prove valuable. Even on the most well balanced system,
capability class applications experience periods where nodes
are waiting for information from cooperating nodes of the
same application. We are investigating ways for applications
to signal the operating system to enter power saving states
(or lower frequency levels), while blocked, and quickly return
to a running state when prepared to continue. The ability
to measure power draw during these periods will help us
implement, subsequently test and quantify this ability.

We also plan on experimenting with frequency scaling
during application execution. Our primary goal here is to
reduce frequency such that application performance remains
unaffected. If this is not possible, a small impact on application
performance may be acceptable given a large increase in
application power efficiency. Again, the ability to measureour
impact during implementation and testing will be critical to
success in this area.

Finally, we plan to apply our ability to calculate ap-
plication energy to areas such as resource scheduling. For
example, as stated previously, capability class systems are
destined to require huge amounts of power. While running
High Performance Linpack requires a large percentage of the
maximum CPU power, typical applications require less than
75% of maximum power (our estimates are as low as 60%
supported by [12]). A platform that requires a peak power
of 10 Mega-Watts could be scheduled in such a way as to
maintain a maximum power draw of 7.5 Mega-Watts, for
example, with no impact on application performance or run-
time. We could likely maintain an even lower percentage of
peak. Related work has been done in this area for real-time
and embedded systems [13], [14]. Other work [15] targets
similar efforts using dynamic voltage and frequency scaling
(previously mentioned as another area of future interest).

ACKNOWLEDGEMENTS

We would like to thank Sudip Dosanjh, James Ang and
Doug Doerfler for their support of this research. Additionally,
the local Cray staff (Dick Dimock, Jason Repik, Victor Kuhns,
Barry Oliphant, Bob Purdy) and Jeff Sampson, provided
valuable help and hardware insight that assisted these efforts.

ABOUT THE AUTHOR

James H. Laros III is a Principle Member of the Technical
staff at Sandia National Laboratories. His current interests
include research and development in operating systems and
systems software.

REFERENCES

[1] RedStorm. Sandia National Labs. [Online]. Available:
http://www.cs.sandia.gov/platforms/RedStorm.html

[2] (2008, Nov) Top500. [Online]. Available:
http://www.top500.org/list/2008/11/100

[3] Blue-Gene/L. Lawrence Livermore National Labs. [Online]. Available:
https://asc.llnl.gov/computingresources/bluegenel

[4] Jaguar. Oak Ridge National Laboratories. [Online]. Available:
http://www.nccs.gov/jaguar/

[5] RoadRunner. Los Alamos National Laboratories. [Online]. Available:
http://www.lanl.gov/roadrunner/

[6] S. M. Kelly and R. B. Brightwell, “Software Architectureof the Light
Weight Kernel, Catamount,” inCray User Group, May 2005.

[7] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart,
“High Performance Linpack HPL,” 1989. [Online]. Available:
http://www.netlib.org/benchmark/hpl/references.html

[8] PALLAS. [Online]. Available:
http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/mpi/219848.htm

[9] HPCC. [Online]. Available: http://icl.cs.utk.edu/hpcc/
[10] DOE Energy Statistics. Department of Energy. [Online].Available:

http://www.eia.doe.gov/cneaf/electricity/epm/table56 a.html

CUG 2009 Proceedings 5 of 6



CUG 2009 Proceedings

[11] C. T. Vaughan, J. P. VanDyke, and S. M. Kelly, “Application Perfor-
mance under Different XT Operating Systems,” inCray User Group,
May 2008.

[12] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a
Warehouse-sized Computer,” inThe 34th ACM International Symposium
on Computer Architecture, 2007.

[13] H. hung Lin and C.-W. Hsueh, “Power-Aware real-Time Scheduling
using Pinwheel Model and Profiling Technique,” in11th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, Aug 2005.

[14] J. Liu, P. H. Chou, N. Bagherzardeh, and F. Kurdahi, “Power-Aware
Scheduling under Timing Constraints for Mission-Critical Embedded
Systems,” inProceedings of the 38th conference on Design automation.
Dept. of Electrical & Computer Engineering, University of California at
Irvine, Irvine, CA, 2001.

[15] C. hsing Hsu and W. chun Feng, “Power-Aware Run-Time System for
High-Performance Computing,” inConference on High Performance
Networking and Computing, 2005.

CUG 2009 Proceedings 6 of 6


