Zoltan Developer's Guide

-‘i-‘"__F_"*"- Sandia Zoltan:
|I|I.J" L‘ [uaat}::[:;ﬁ_!uies Data-Management Services for

Parallel Applications
About Sandia

Capabilifies Developer's Guide
Programs

Gontacting Us

News and Events Erik Boman (SNL)
Search Karen Devine (SNL)

Robert Heaphy (SNL)
Home Bruce Hendrickson (SNL)

William F. Mitchell (NIST)

Matthew St. John (SNL)
Courtenay Vaughan (SNL)

Sandia National Laboratories (SNL)
P.O. Box 5800
Albuquerque, NM 87185-1111

National Institute of Standards and Technology (NIST)
100 Bureau Dr. Stop 8910
Gaithersburg, MD 20899-8910

Zoltan Developer's Guide, Version 1.54

Introduction and General Principles

Philosophy of Zoltan
Coding Principlesin Zoltan

Includefiles

Global Variables

Function Names

Parallel Communication

Memory Management

Errors, Warnings and Return Codes

Zoltan Distribution

CVS
Layout of Directories
Compilation and Makefiles

Zoltan Interface and Data Structures

I nterface Functions

ID Data Types
Data Structures

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev.html (1 of 2) [7/29/2004 12:31:34 PM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan_cite.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan_cite.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://math.nist.gov/~mitchell

Zoltan Developer's Guide

Services (to simplify new algorithm development)

Parameter Setting Routines

Parallel Computing Routines

Common Functions for Querying Applications
Hash Function

Timing Routines

Debugging Services

Adding New Load-Balancing Algorithms to Zoltan

L oad-Balancing Interface Routines

L oad-Balancing Function Implementation
Data Structures

Memory Management

Parameters

Partition Remapping

Migration Tools

FORTRAN Interface

References

Appendix: Using the Test Drivers zdrive and zfdrive

Introduction
Running zdrive and zfdrive
Adding New Algorithms

Appendix: Using the Test Script test_zoltan

Appendix: Recursive Coordinate Bisection (RCB)

Appendix: Recursive Inertial Bisection (RIB)

Appendix: ParMETIS and Jostle

Appendix: Refinement Tree

Appendix: Hilbert Space_Filling Curve (HSFC)

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU L esser General

Public License (LGPL). See the README file in the main Zoltan directory for more
information.

[Zoltan Home Page | Next: Introduction and General Principles]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev.html (2 of 2) [7/29/2004 12:31:34 PM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html

Zoltan Developer's Guide: Introduction

Zoltan Developer's Guide | Next | Previous

Introduction and General Principles

The goal of the Zoltan project is to design a general-purpose tool for parallel data management for unstructured, dynamic
applications. Thistool includes a suite of load-balancing algorithms, an unstructured communication package, distributed
data directories, and dynamic debugging tools that can be used by avariety of applications. It will, thus, be used by many
application developers and be added to by many algorithm developers. Software projects of this scale need general
guidelines and principles so that the code produced is easily maintained and added to. We have tried to keep restrictions
on developersto aminimum. However, we do require that a few coding practices be followed. These guidelines are
described in the following sections:

Philosophy of Zoltan
Coding Principlesin Zoltan

[Table of Contents | Next: Philosophy of Zoltan | Previous. Table of Contents]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_intro.html [7/29/2004 12:31:36 PM]

Zoltan Developer's Guide: Philosophy

Zoltan Developer's Guide | Next | Previous

Philosophy of Zoltan

The Zoltan library is designed to be a general-purpose tool-kit providing avariety of parallel data management servicesto
awide range of scientific applications (see the Zoltan User's Guide). To enable general use of the library, the library does
not directly access the data structures of an application. Instead, the library obtains information it needs through an
object-oriented interface between Zoltan and the application. This interface uses call-back query functions to gather
information. An application developer must write and register these query functions before using Zoltan. The intent,
however, is that the number and complexity of these query functions are low, allowing applications to easily interface
with the library. In addition, new algorithm devel opment would use the same query functions as previous agorithms,
enabling applications to use new agorithms without changes to the query functions.

In developing new algorithms for Zoltan, the developer must write the code that calls the query functions to build the
needed data structures for the algorithm. However, the application need not change its query functions. Thus, new
algorithms can be added to the library and used by an application with minimal effort on the part of the application
developer.

[Table of Contents | Next: Coding Principles | Previous. Introduction]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_intro_philosophy.html [7/29/2004 12:31:36 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Coding Principles

Zoltan Developer's Guide | Next | Previous

Coding Principles in Zoltan

Includefiles

Global Variables

Function Names

Parallel Communication

Memory Management

Errors, Warnings and Return Codes

Include files

Include files should be used for function prototypes, macro definitions, and data structure definitions. The convention
used is that external function prototypes and data structure definitions required by more than one module are stored in
include filesnamed *_const.h (e.g., zz'zz_const.h). Include files with static function prototypes or static data structure
definitions (i.e., files that are included in only one modul€e) are named *.h (e.g., rch/rcb.h).

The include file include/zoltan.h contains the Zoltan interface; it should be included by application source files that call
Zoltan. The include file zz/zz_const.h describes the principle Zoltan data structures. As these data structures are used
heavily by the agorithmsin Zoltan, zz'zz_const.h should be included in most source files of Zoltan.

Global variables

The use of global variablesis highly discouraged in Zoltan. In limited cases, static global variables can be tolerated within
asource file of an algorithm. However, developers should keep in mind that several Zoltan structures may be used by an
application, with each structure using the same algorithm. Thus, global variables set by one invocation of aroutine may be
reset by other invocations, causing errors in the algorithms. Global variable names may also conflict with variables used
elsewherein the library or application, causing unintended side-effects and complicating debugging. For greatest
robustness, developers are asked NOT to use global variablesin their algorithms. See Data Structures for ideas on

avoiding the use of global variables.

Function Names

In order to avoid name conflicts with applications and other libraries, all non-static functions should be prepended with
Zoltan_. Moreover, function names should, in general, include their module names; e.g., Zoltan_ HSFC_Box_Assign is
part of the HSFC module of Zoltan. As ageneral rule, each new word in a function name should be capitalized (for
example, Zoltan_Invert_Lists). Static Zoltan functions do not have to follow these rules.

Parallel Communication

All communication in the Zoltan library should be performed through MPI communication routines. The MPI interface
was chosen to enable portability to many different platforms. It will be especially important as the code is extended to
heterogeneous computing systems.

Some useful communication utilities are provided within the library to perform unstructured communication and
synchronization. See Unstructured Communication Utilities and Parallel Computing.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_intro_coding.html (1 of 2) [7/29/2004 12:31:37 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html

Zoltan Developer's Guide: Coding Principles

Memory Management

It is strongly suggested that all memory alocation in the library is handled using the functions supplied in
UtilitiessMemory. Use of these functions will make debugging and maintenance of the library much easier asthe library
gets larger. See Memory Management Utilities for more information on these utilities.

For memory that is returned by Zoltan to an application, however, special memory allocation functions must be used to
maintain compatibility with both C and Fortran90 applications. See Memory Management in Zoltan Algorithms for more

information.

One of the few data types specified for usein the Zoltan interfaceisthe ZOLTAN _ID_PTR type used for global and
local object identifiers (IDs). Macros simplifying and providing error checking for 1D allocation and manipulation are
provided.

Errors, Warnings, and Return Codes

If an error or warning occursin the Zoltan library, a message should be printed to stderr (using one of the printing macros
below), all memory allocated in the current function should be freed, and an error code should be returned. The Zoltan
library should never "exit"; control should aways be returned to the application with an error code. The error codes are
defined in include/zoltan_types.h.

Currently, this philosophy is not strictly followed in all portions of Zoltan. Efforts are underway to bring existing code
up-to-date, and to follow thisrulein all future development.

ZOLTAN_PRINT_ERROR(int processor_number, char *function_name, char * message)
ZOLTAN_PRINT_WARN(int processor_number, char *function_name, char * message)

Macros for printing error and warning messages in Zoltan. The macros are defined in Utilities/shared/zoltan_util.h.

Arguments:
processor_number The processor's rank in the Zoltan communicator. The value -1 can be used if the rank is not
available.
function_name A string containing the name of the function in which the error or warning occurred.
message A string containing the error or warning message.

[Table of Contents | Next: Zoltan Distribution | Previous. Philosophy]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_intro_coding.html (2 of 2) [7/29/2004 12:31:37 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Distribution

Zoltan Developer's Guide | Next | Previous

Zoltan Distribution

The organization of the Zoltan software distribution is described in the following sections. Full pathnames are specific to
Sandia's 980 SON LAN.

CV S (source code control)

Layout of Directories

Compilation and Makefiles

[Table of Contents | Next: CVS | Previous. Coding Principles]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_dist.html [7/29/2004 12:31:37 PM]

Zoltan Developer's Guide: CVS

Zoltan Developer's Guide | Next | Previous

CVS

The source code and documentation for the Zoltan library is maintained under the Concurrent Versions System (CVYS)
software. CV S allows multiple developers to edit their own copies of the software and merges updated versions with the
developers own versions.
On Sandia's 980 SON LAN, CVSis accessed through the following path:

INet/local/gnu/bin/cvs for Sun workstations running Solaris.
Developers must set the CVSROOT environment variable to the repository directory:

setenv CV SROOT user name@software.sandia.gov:/space/CV S-Zoltan

where username is the devel oper's username on the CV S server software.sandia.gov. To get aworking copy of the Zoltan
software, the CV'S check-out facility is used:

cvs checkout -P Zoltan

Other useful CV S commands update a developer's working directory, merging the devel oper's changes with those in the
repository:

cvs update
and check into the repository a devel oper's changes:
cvs commit
The UNIX man page for cvs contains information on these and other useful CV'S commands.

[Table of Contents | Next: Layout of Directories | Previous: Zoltan Distribution]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_dist_cvs.html [7/29/2004 12:31:37 PM]

Zoltan Developer's Guide: Directory Layout

Zoltan Developer's Guide | Next | Previous

Layout of Directories

The source code is organized into several subdirectories within the Zoltan main directory. General interface routines are
stored in asingle directory. Communication and memory allocation utilities available to al agorithms are in separate
directories. Each load-balancing method (or family of methods) should be stored in its own directory. In addition, a
courtesy copy of the ParMETI S graph-partitioning package isincluded in the top-level directory ParMETIS.

In the following table, the source-code directories currently in the Zoltan directory are listed and described.

Directory | Description

z General Interface definitions, Zoltan data structure definitions, interface functions and
functions related to the interface See Interface Functions, D Data Types, and Data
Structures.

|Ib |Load-Bal ancing interface routines, and load-balancing data structure definitions.

|aJI !Special memory allocation functions for memory returned by Zoltan to an application.

|par !Parallel computing routines,

|param !Routi nes for changing parameter values at runtime.

Iparmetis |Routi nes to access the ParMETIS and Jostle partitioning libraries.

|rcb !Recursive Coordinate Bisection (RCB) and Recursive Inertial Bisection (RIB) algorithms.

|hsfc !Hi Ibert Space-Filling Curve partitioning agorithm.

|bsfc |Binned Space-Filling Curve partitioning algorithm.

|oct |Rensse| aer Polytechnic Ingtitute's octree partitioning algorithms.
William Mitchell's Refinement Tree Partitioning algorithm and refinement tree data

reftree
structure.

|timer |Timing routines.

|ch |Routi nesto read Chaco input files and build graphs for the driver program zdrive.

|ha |Routines to support heterogeneous architectures.

|fort !Fortran (F90) interface for Zoltan.

|Uti|ities/shared |S| mple functions and utilities shared by Zoltan and other Zoltan Utilities.

|Uti|itie£/Memory !Memory management utilities

|Uti|itie£/Communication !Unstructured communication utilities

|Uti|itie£/DDirectory !Distributed Data Directory utilities

|Uti|itie£/Config !Platform—specific makefile definitions for compiler, library and include-file paths.
|driver |T&et driver program, zdrive.

|fdriver |Fortran90 version of the test driver program.

|docs/ZoI tan_html |Zo| tan documentation and home page.

|docs/Zoltan_htmi/ug_html {User's quide in HTML format.
|docs/Zoltan_htmi/dev_html [Developer's quide in HTML forma.

|docs/Zoltan_pdf |PDF versions of the Zoltan User's Guide and Developer's Guide.
|docs/internal |SQA documents for the Zoltan project.

The directory structure of the Zoltan distribution.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_dist_dir.html (1 of 2) [7/29/2004 12:31:37 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_jostle.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_oct.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Directory Layout

[Table of Contents | Next: Compilation | Previous. CV S

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_dist_dir.html (2 of 2) [7/29/2004 12:31:37 PM]

Zoltan Developer's Guide: Compilation

Zoltan Developer's Guide | Next | Previous

Compilation and Makefiles

The Zoltan distribution includes a main (top-level) Makefile with targets for the Zoltan library and the test driver
programs. When the library is compiled for a specific target platform, A, the top-level Makefile obtains platform-specific
values for platform A from the configuration file Utilities/Config/Config.A. Thisfile should be edited to reflect the
environment of the target platform A. A subdirectory, Obj_A, is created, and Makefile_sub is copied into that directory
for use by gmake.

New source code files are added to the Zoltan Makefilesin two ways. Files added to existing directories are added to the
source fileslisted in the "<directory_name>_CSRC" and "<directory_name>_INC" variablesin Zoltan/Makefile, where
<directory_name> corresponds to the existing Zoltan directory name; the files will then be included in the compilation of
Zoltan. For new source code filesin new directories, new variables "<directory_name>_CSRC" and
"<directory_name>_INC" should be added to Zoltan/Makefile. These variables should also be included in the
"ZOLTAN_CSRC" variable and in the zscript target. The variables"ALL_CSRC" and "ALL_INC" can be used as
examples.

New algorithms can be added as separate libraries with which Zoltan may link. The implementation of the ParMETIS
interface in Zoltan can serve as an example. Within the Utilities/Config files, pathnames for the new libraries and their
include files can be specified. Within Zoltan/Makefile, tests should be added for the definition of these paths. If they are
defined, appropriate information should be added to the THIRD_PARTY _LIBS, THIRD_PARTY_LIBPATH, and
THIRD_PARTY_INCPATH variables in Zoltan/Makefile.

[Table of Contents | Next: Zoltan Interface and Data Structures | Previous. Layout of Directories]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_dist_compile.html [7/29/2004 12:31:38 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide: Load-Balancing

Zoltan Developer's Guide | Next | Previous

Zoltan Interface and Data Structures

The interface functions, data types and data structures for the Zoltan library are described in the following sections:

Interface Functions (files defining the interface)
ID Data Types (descriptions of data types used for global and local identifiers)
Data Structures (Zoltan data structures for storing information registered by an application)

[Table of Contents | Next: Interface Functions | Previous: Compilation]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib.html [7/29/2004 12:31:38 PM]

Zoltan Developer's Guide: Load-Balancing Interface

Zoltan Developer's Guide | Next | Previous

Interface Functions

The interface to the Zoltan library is defined in the file include/zoltan.h. Thisfile should be included in application
programs that use Zoltan. It is also included in zz/zz_const.h, which should be included by most Zoltan filesto provide
access to the Zoltan data structures described below.

In include/zoltan.h, the enumerated type ZOL TAN_FN_TY PE defines the application query function types (e.g.,
ZOLTAN NUM _OBJ FN TYPE and ZOLTAN_OBJ LIST _FN_TYPE). Theinterface query routines (e.g.,

ZOLTAN NUM OBJ FNand ZOLTAN OBJ LIST FN) and their argument lists are defined as C type definitions

(typedef). These type definitions are used by the application developer to implement the query functions needed for the
application to use Zoltan.

Prototypes for the Zoltan interface functions (e.g., Zoltan LB Partition and Zoltan Migrate) are also included in

include/zoltan.h. Interface functions are called by the application to register functions, select aload-balancing method,
invoke load balancing and migrate data.

For more detailed information on Zoltan's query and interface functions, please see the Zoltan User's Guide.

[Table of Contents | Next: 1D DataTypes | Previous. Zoltan Interface and Data Structures]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_interface.html [7/29/2004 12:31:38 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Data Types

Zoltan Developer's Guide | Next | Previous

ID Data Types

Within Zoltan, objects are identified by a global identification (ID) value provided by the application. This global ID must
be unique across all processors. The application may also provide alocal 1D value that it can use for faster location of
objects within its own data structure. For example, local array indicesto objects data may be provided astheloca IDs;
these indices can then be used to directly access datain the query functions. Zoltan does not use these local IDs, but since
it must pass them to the application in the interface query functions, it must store them with the objects data. ID data
types and macros for manipulating 1Ds are described below.

IDs and Arrays of IDs

Allocating IDs
Common Operations on IDs

IDs and Arrays of IDs

Zoltan stores each global and local 1D as an array of unsigned integers. Arrays of 1Ds are passed to the application as a
one-dimensional array of unsigned integers with size number_of_IDs* number_of_entries per_ID. A type definition
ZOLTAN ID PTR (ininclude/zoltan_types.h) pointsto an ID or array of 1Ds. The number of array entries per ID can be

set by the application usingthe NUM_GID ENTRIES and NUM _LID ENTRIES parameters.

Allocating IDs

Macros that simplify the allocation of global and local IDs are described in the table below. These macros provide
consistent, easy-to-use memory allocation with error checking and, thus, their use is highly recommended. Each macro
returns NULL if either amemory error occurs or the number of 1Ds requested is zero.

ZOLTAN ID PTRZOLTAN_MALLOC_GID(struct Zoltan _Struct *zz); |Allocates and returns a pointer to asingle

global ID.
ZOLTAN ID PTRZOLTAN _MALLOC LID(struct Zoltan_Struct *zz); |Allocates and returns a pointer to asingle
local ID.
ZOLTAN ID PTRZOLTAN_MALLOC _GID_ARRAY (struct Allocates and returns a pointer to an array
Zoltan_Struct * zz, int n); of n global IDs, where the index into the

array for theith global ID is
i*NUM_GID ENTRIES.

ZOLTAN ID PTRZOLTAN MALLOC LID ARRAY/((struct Allocates and returns a pointer to an array
Zoltan _Struct *zz, int n); of nlocal 1Ds, where the index into the
array for theithlocal 1D is

i*NUM LID ENTRIES.

ZOLTAN ID PTR ZOLTAN_REALLOC_GID_ARRAY (struct Reallocates and returns a pointer to an

Zoltan Struct *zz, ZOLTAN_ID_PTR ptr, int n); array of n global 1Ds, replacing the
current array pointed to by ptr.

ZOLTAN ID PTRZOLTAN_REALLOC_LID_ARRAY (struct Reall ocates and returns a pointer to an

Zoltan Struct *zz, ZOLTAN_ID_PTR ptr, int n); array of nlocal 1Ds, replacing the current
array pointed to by ptr.

Common Operations on IDs

In addition, macros are defined for common operations on global and local IDs. These macros include error checking
when appropriate and account for different values of NUM_GID ENTRIESand NUM _LID ENTRIES. Use of these

macros improves code robustness and simplifies code maintenance; their useis highly recommended.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_types.html (1 of 2) [7/29/2004 12:31:38 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide: Data Types

void ZOLTAN_INIT_GID(struct Zoltan_Struct * zz,
ZOLTAN ID PTRid);

Initializes all entries of the global 1D id to zero; id
must be allocated before calling
ZOLTAN_INIT_GID.

void ZOLTAN_INIT_LID(struct Zoltan Struct * zz,
ZOLTAN ID PTRid);

Initializes all entries of thelocal ID id to zero; id
must be allocated before calling
ZOLTAN_INIT_LID.

void ZOLTAN_SET_GID(struct Zoltan _Struct * zz,
ZOLTAN ID PTRtgt, ZOLTAN ID PTR src);

Copiesthe globa 1D srcinto the global 1D tgt.
Both src and tgt must be allocated before calling
ZOLTAN_SET_LID.

void ZOLTAN_SET_LID(struct Zoltan Struct * zz,
ZOLTAN ID PTRtgt, ZOLTAN ID PTR src);

Copiestheloca ID srcintotheloca ID tgt. Both
src and tgt must be allocated before calling
ZOLTAN_SET_LID.

intZZOLTAN_EQ_GID(struct Zoltan Struct * zz,
ZOLTAN ID PTR a, ZOLTAN ID PTR h);

Returns TRUE if global ID aisequal to global ID
b.

void ZOLTAN_PRINT_GID(struct Zoltan_Struct * zz,
ZOLTAN ID PTRid);

Prints all entries of asingle global 1D id.

void ZOLTAN_PRINT_LID(struct Zoltan_Struct *zz,
ZOLTAN ID PTR id);

Prints all entries of asinglelocal ID id.

I nterface Functions]

[Table of Contents | Next: Data Structures | Previous:

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_types.html (2 of 2) [7/29/2004 12:31:38 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs

Zoltan Developer's Guide: Load Balancing Data Structures

Data Structures

Zoltan Developer's Guide | Next | Previous

The Zoltan_Struct data structure is the main data structure for interfacing between Zoltan and the application. The

application creates an Zoltan_Struct data structure through acall to Zoltan_Create. Fields of the data structure are then
set through calls from the application to interface routines such as Zoltan Set Param and Zoltan Set Fn. The fields of
the Zoltan_Struct data structure are listed and described in the table below. See the Zoltan User's Guide for descriptions

of the function types used in the Zoltan_Struct.

An Zoltan_Struct data structure zz is passed from the application to Zoltan in the call to Zoltan LB _Partition. This data

structure is passed to the individual load-balancing routines. The zz->LB.Data_Structure pointer field should point to the
main data structures of the particular load-balancing algorithm so that the data structures may be preserved for future calls

to Zoltan LB Partition and so that separate instances of the same load-balancing algorithm (with different

Zoltan_Struct structures) can be used by the application.

| Fields of Zoltan_Struct

Description

MPI_Comm Communicator

The MPI communicator to be used by the Zoltan
structure; set by Zoltan Create.

int Proc The rank of the processor within Communicator;
setin Zoltan Create.

int Num_Proc The number of processorsin Communicator; setin
Zoltan Create.

int Num_GID The number of array entries used to represent a
global ID. Set viaacall to Zoltan Set Param for
NUM_GID _ENTRIES.

int Num_LID The number of array entries used to represent a
local ID. Set viaacall to Zoltan Set Param for
NUM LID ENTRIES.

int Debug_Level A flag indicating the amount of debugging
information that should be printed by Zoltan.

int Fortran A flag indicating whether or not the structure was

created by acall from Fortran.

PARAM_LIST * Params

A linked list of string pairs. Thefirst item in each
pair isthe name of a modifiable parameter. The
second string is the new value the parameter should
adopt. These string pairs are read upon invocation
of a Zoltan algorithm and the appropriate parameter
changes are made. This design alows for different
Zoltan structures to have different parameter
settings.

int Deterministic

Flag indicating whether algorithms used should be
forced to be deterministic; used to obtain
completely reproducible results. Set viaacall to
Zoltan_Set Param for DETERMINISTIC.

int Obj_Weight Dim

Number of weights per object. Set viaacall to
Zoltan_Set Param for OBJ WEIGHT DIM.

int Edge Weight Dim

For graph algorithms, number of weights per edge.
Set viaacall to Zoltan_Set Param for

EDGE WEIGHT DIM.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (1 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#DETERMINISTIC
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#EDGE_WEIGHT_DIM

Zoltan Developer's Guide: Load Balancing Data Structures

int Timer

Timer typethat is currently active. Set viaacall to
Zoltan_Set Param for TIMER.

ZOLTAN _NUM EDGES FN * Get_Num_Edges

A pointer to an application-registered function that
returns the number of edges associated with a given
object. Setin Zoltan Set Fn or

Zoltan Set Num Edges Fn.

void *Get_Num_Edges Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Num Edges. Setin Zoltan Set Fn or

Zoltan Set Num_ Edges Fn.

ZOLTAN_EDGE LIST FEN * Get_Edge List

A pointer to an application-registered function that
returns a given object's neighbors along its edges.
SetinZoltan Set Fn or

Zoltan Set Edge List Fn.

void *Get_Edge List Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_Edge List.
Setin Zoltan Set Fn or

Zoltan Set Edge List Fn.

ZOLTAN _NUM_GEOM_FN * Get_Num_Geom

A pointer to an application-registered function that
returns the number of geometry values needed to
describe the positions of objects. Set in
Zoltan Set Fnor Zoltan Set Num Geom_ Fn.

void *Get_Num_Geom Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Num_Geom. Setin Zoltan Set Fn or

Zoltan Set Num_ Geom Fn.

ZOLTAN_GEOM_FN * Get_Geom

A pointer to an application-registered function that
returns a given object's geometry information (e.g.,
coordinates). Set in Zoltan _Set Fn or

Zoltan_Set Geom_Fn.

void *Get_Geom Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_ Geom. Set
inZoltan Set Fn or Zoltan Set Geom Fn.

ZOLTAN_NUM_OBJ FN * Get_Num_Obj

A pointer to an application-registered function that
returns the number of objects assigned to the
processor before load balancing. Set in
Zoltan_Set Fnor Zoltan_Set Num_Obj Fn.

void *Get_Num_Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_ Num_Obj.
Setin Zoltan Set Fn or

Zoltan Set Num Obj Fn.

ZOLTAN_OBJ LIST FN * Get_Obj_List

A pointer to an application-registered function that
returns arrays of objects assigned to the processor
before load balancing. Setin Zoltan Set Fn or

Zoltan Set Obj List Fn.

void *Get_Obj_List Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_Obj_List.
SetinZoltan Set Fn or

Zoltan_Set Obj List Fn.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (2 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_EDGES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_EDGE_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

ZOLTAN FIRST OBJ FN * Get_First_Obj

A pointer to an application-registered function that
returns the first object assigned to the processor
before load balancing. Used with Get_Next_Obj as
an iterator over al objects. Setin Zoltan Set Fn

or Zoltan Set First Obj Fn.

void *Get_First Obj Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_First Obj.
Setin Zoltan Set Fn or

Zoltan Set First Obj Fn.

ZOLTAN_NEXT_OBJ EN * Get_Next_Obj

A pointer to an application-registered function that,
given an object assigned to the processor, returns
the next object assigned to the processor before
load balancing. Used with Get_First_Obj asan
iterator over all objects. Setin Zoltan Set Fn or

Zoltan_Set Next Obj Fn.

void *Get_Next_Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_Next_Obj.
Setin Zoltan Set Fn or

Zoltan Set Next Obj Fn.

ZOLTAN _NUM_BORDER OBJ EN *

Get_Num_Border_Obj

A pointer to an application-registered function that
returns the number of objects sharing a subdomain
border with a given processor. Set in
Zoltan Set Fnor

Zoltan Set Num Border Obj Fn.

void *Get_Num _Border_Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Num Border_Obj. Set in Zoltan_Set Fn or

Zoltan_Set Num_Border Obj Fn.

ZOLTAN BORDER OBJ LIST FN*

Get_Border_Obj List

A pointer to an application-registered function that
returns arrays of objects that share a subdomain
border with a given processor. Set in

Zoltan_Set Fn or

Zoltan Set Border Obj List Fn.

void *Get_Border_Obj_List Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Border_Obj_List. Setin Zoltan Set Fn or
Zoltan Set Border Obj List Fn.

ZOLTAN_FIRST BORDER OBJ EN *

Get_First_Border_Obj

A pointer to an application-registered function that
returns the first object sharing a subdomain border
with a given processor. Used with
Get_Next_Border_Obj as aniterator over objects
along borders. Setin Zoltan_Set Fn or

Zoltan_Set First Border Obj Fn.

void *Get_First_ Border_Obj Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_First_Border_Obj. Setin Zoltan Set Fn or

Zoltan Set First Border Obj Fn.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (3 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_BORDER_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_BORDER_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_BORDER_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

ZOLTAN NEXT BORDER OBJ FN *
Get_Next_Border_Obj

A pointer to an application-registered function that,
given an object, returns the next object sharing a
subdomain border with a given processor. Used
with Get_First_Border_Obj as an iterator over
objects along borders. Set in Zoltan Set Fn or

Zoltan Set Next Border Obj Fn.

void *Get_Next_Border Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Next_Border_Obj. Setin Zoltan Set Fn or
Zoltan Set Next Border Obj Fn.

ZOLTAN_NUM_COARSE OBJ FN *
Get_Num_Coarse_Obj

A pointer to an application-registered function that
returns the number of objectsin theinitial coarse
grid. Setin Zoltan_Set Fn or

Zoltan_Set Num_Coarse Obj Fn.

void *Get_Num_Coarse Obj Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Num_Coarse Obj. Setin Zoltan Set Fn or

Zoltan Set Num Coarse Obj Fn.

ZOLTAN _COARSE OBJ LIST FN*
Get_Coarse Obj_List

A pointer to an application-registered function that
returns arrays of objectsin theinitial coarse grid.
Setin Zoltan Set Fn or

Zoltan Set Coarse Obj List Fn.

void *Get_Coarse_Obj_List_Data

A pointer to data provided by the user that will be
passed to the function pointed to by

Get_Coarse Obj_List. Setin Zoltan_Set Fn or
Zoltan_Set Coarse Obj List Fn.

ZOLTAN FIRST COARSE OBJ FN *
Get_First Coarse Obj

A pointer to an application-registered function that
returns the first object of theinitial coarse grid.
Used with Get_Next_Coarse_Obj as an iterator
over al objectsin the coarse grid. Set in
Zoltan_Set Fn or

Zoltan Set First Coarse Obj Fn.

void *Get_First Coarse Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_First_Coarse Obj. Setin Zoltan Set Fn or
Zoltan Set First Coarse Obj Fn.

ZOLTAN_NEXT COARSE OBJ FN *
Get_Next_Coarse Obj

A pointer to an application-registered function that,
given an object in theinitial coarse grid, returns the
next object in the coarse grid. Used with
Get_First_Coarse_Obj as an iterator over all
objectsin the coarse grid. Set in Zoltan_Set Fn or

Zoltan_Set Next Coarse Obj Fn.

void *Get_Next_Coarse Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Next_Coarse Obj. Setin Zoltan Set Fn or

Zoltan Set Next Coarse Obj Fn.

ZOLTAN_NUM_CHILD_EN * Get_Num_Child

A pointer to an application-registered function that
returns the number of refinement children of an
object. Setin Zoltan Set Fn or

Zoltan Set Num_Child Fn.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (4 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_BORDER_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_COARSE_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_COARSE_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_COARSE_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_COARSE_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_CHILD_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Get_Num_Child_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Num Child. Setin Zoltan Set Fn or

Zoltan Set Num_ Child Fn.

ZOLTAN_CHILD LIST FN * Get_Child_List

A pointer to an application-registered function that
returns arrays of objects that are refinement
children of agiven object. Setin Zoltan Set Fn or

Zoltan Set Child List Fn.

void *Get_Child _List Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Child_List. Setin Zoltan Set Fn or
Zoltan_Set Child_List Fn.

ZOLTAN CHILD WEIGHT FN *
Get_Child_Weight

A pointer to an application-registered function that
returns the weight of an object. Setin
Zoltan_Set Fnor Zoltan_Set Child Weight Fn.

void *Get_Child_Weight_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Get_Child_Weight. Setin Zoltan Set Fn or

Zoltan Set Child Weight Fn.

ZOLTAN_OBJ SIZE FN * Get_Obj_Sze

A pointer to an application-registered function that
returns the size (in bytes) of data objectsto be
migrated. Called by Zoltan Migrate. Setin

Zoltan Set Fn or Zoltan Set Obj Size Fn.

void *Get_Obj_Sze Data

A pointer to data provided by the user that will be
passed to the function pointed to by Get_Obj_Sze.
SetinZoltan Set Fn or

Zoltan_Set Obj Size Fn.

ZOLTAN PACK OBJ EN * Pack_Obj

A pointer to an application-registered function that
packs all datafor agiven object into a
communication buffer provided by the migration
toolsin preparation for data-migration
communication. Called by Zoltan Migrate for
each object to be exported. Setin Zoltan Set Fn

or Zoltan_Set Pack Obj Fn.

void *Pack_Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by Pack _Obj. Set
inZoltan_Set Fn or Zoltan Set Pack Obj Fn.

ZOLTAN_UNPACK_OBJ EN * Unpack_Obj

A pointer to an application-registered function that
unpacks all datafor agiven object from a
communication buffer after the communication for
data migration is completed. Called by

Zoltan Migrate for each imported object. Setin

Zoltan_Set Fnor Zoltan_Set Unpack Obj Fn.

void *Unpack Obj_Data

A pointer to data provided by the user that will be
passed to the function pointed to by Unpack_Obj.
Setin Zoltan Set Fn or

Zoltan Set Unpack Obj Fn.

ZOLTAN_LB LB

A structure with data used by the load-balancing
tools. See the table below.

ZOLTAN_MIGRATE Migrate

A structure with data used by the migration tools.
See the table below.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (5 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_WEIGHT_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_OBJ_SIZE_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

Fields of the Zoltan_Struct data structure.

Each Zoltan_Struct data structure hasaZOLTAN_L B sub-structure. The ZOLTAN_L B structure contains data used by
the load-balancing tools, including pointers to specific |oad-bal ancing methods and |oad-balancing data structures. The
fields of the ZOLTAN_L B structure are listed and described in in the following table.

| Fieldsof ZOLTAN LB | Description

void * Data_Structure The data structure used by the selected load-balancing
agorithm; this pointer is cast by the algorithm to the
appropriate data type.

double Imbalance_Tol The degree of load balance which is considered

acceptable. Set viaacall to Zoltan Set Param for
IMBALANCE TOL.

int Num_Global _Parts Thetotal number of partitions to be generated. Set via
acall to Zoltan_Set Param for

NUM_GLOBAL_ PARTITIONS or through
summation of NUM_LOCAL PARTITIONS
parameters.

int Num_Local_Parts The number of partitions to be generated on this
processor. Set viaacal to Zoltan _Set Param for
NUM LOCAL PARTITIONS or (roughly) through
division of the NUM_GLOBAL PARTITIONS
parameter by the number of processors.

int Return_Lists A flag indicating whether the application wants

import and/or export lists returned by
Zoltan LB Partition. Set viaacall to

Zoltan Set Param for RETURN LISTS.

ZOLTAN_LB_METHOD Method An enumerated type designating which
load-balancing algorithm should be used with this
Zoltan structure; set viaacall to Zoltan_Set Param

for LB METHOD.

LB FN* LB Fn A pointer to the load-balancing function specified by
Method.

ZOLTAN_LB FREE DATA_FN *Free Sructure |[Pointer to afunction that freesthe Data_Structure
memory.

ZOLTAN LB POINT_ASSIGN_FN *Point_Assign |Pointer to the function that performs
Zoltan LB Point_Assign for the particular

|oad-balancing method.

ZOLTAN LB BOX_ASSIGN_FN *Box_Assign Pointer to the function that performs
Zoltan LB Box_Assign for the particular
|oad-balancing method.

Fields of the ZOLTAN_L B data structure.

Each Zoltan_Struct data structure hasaZOLTAN_MIGRATE sub-structure. The ZOLTAN_MIGRATE structure
contains data used by the migration tools, including pointers to pre- and post-processing routines. These pointers are set
through the interface routine Zoltan Set Fn and are used in Zoltan_Migrate. The fields of the ZOLTAN_MIGRATE

structure are listed and described in in the following table.

| Fieldsof ZOLTAN_MIGRATE | Description

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (6 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#IMBALANCE_TOL
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate

Zoltan Developer's Guide: Load Balancing Data Structures

int Auto_Migrate

A flag indicating whether Zoltan should perform
auto-migration for the application. If true, Zoltan
cals Zoltan_Migrate to move objects to their new

processors; if false, data migration is left to the user.
Setin Zoltan Set Param for AUTO MIGRATE.

ZOLTAN_PRE MIGRATE PP FN *
Pre_Migrate PP

A pointer to an application-registered function that
performs pre-processing for data migration. The
function iscalled by Zoltan Migrate before data
migration is performed. Set in Zoltan_Set Fn or
Zoltan_Set Pre Migrate PP _Fn.

void *Pre_Migrate PP_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Pre Migrate PP. Setin Zoltan Set Fn or

Zoltan Set Pre Migrate PP Fn.

ZOLTAN MID MIGRATE PP FN *
Mid_Migrate PP

A pointer to an application-registered function that
performs processing between the packing and
unpacking operationsin Zoltan Migrate. Setin
Zoltan Set Fn or

Zoltan_Set Mid_Migrate PP_Fn.

void *Mid_Migrate PP_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Mid_Migrate PP. Setin Zoltan Set Fn or

Zoltan Set Mid Migrate PP Fn.

ZOLTAN_ POST MIGRATE PP FN
*Post_Migrate PP

A pointer to an application-registered function that
performs post-processing for data migration. The
function iscalled by Zoltan Migrate after data
migration is performed. Set in Zoltan_Set Fn or
Zoltan Set Post Migrate PP Fn.

void *Post_Migrate PP_Data

A pointer to data provided by the user that will be
passed to the function pointed to by
Post_Migrate PP. SetinZoltan Set Fn or

Zoltan Set Post Migrate PP Fn.

ZOLTAN_PRE MIGRATE EN * Pre_Migrate

A pointer to an application-registered function that
performs pre-processing for data migration. The
functioniscalled by Zoltan Help Migrate before

datamigration is performed. Set in Zoltan_Set Fn
or Zoltan Set Pre Migrate Fn. Maintained for
backward compatibility with Zoltan v1.3 interface.

void *Pre_Migrate Data

A pointer to data provided by the user that will be
passed to the function pointed to by Pre_Migrate.
Setin Zoltan Set Fn or

Zoltan Set Pre Migrate Fn.

ZOLTAN_MID MIGRATE EN * Mid_Migrate

A pointer to an application-registered function that
performs processing between the packing and
unpacking operationsin Zoltan Help Migrate. Set
inZoltan Set Fn or

Zoltan Set Mid Migrate Fn. Maintained for

backward compatibility with Zoltan v1.3 interface.

void *Mid_Migrate Data

A pointer to data provided by the user that will be
passed to the function pointed to by Mid_Migrate.
Setin Zoltan Set Fn or

Zoltan Set Mid Migrate Fn.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (7 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#AUTO_MIGRATE
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_PP_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_PP_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_PP_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

'ZOLTAN POST_MIGRATE FEN *Post_Migrate

'A pointer to an application-registered function that

performs post-processing for data migration. The
function iscalled by Zoltan Help Migrate after

datamigration is performed. Set in Zoltan_Set Fn
or Zoltan Set Post Migrate Fn. Maintained for
backward compatibility with Zoltan v1.3 interface.

void *Post_Migrate Data

A pointer to data provided by the user that will be
passed to the function pointed to by Post_Migrate.
Setin Zoltan Set Fn or

Zoltan Set Post Migrate Fn.

Fields of the ZOLTAN_MIGRATE data structure.

For each pointer to an application registered function in the Zoltan_Struct and ZOLTAN_MIGRATE data structures

thereis also a pointer to a Fortran application registered function, of the form ZOLTAN_FUNCNAME_FORT_FN
*Get_Funcname_Fort. These are for use within the Fortran interface. The Zoltan routines should invoke the usual
application registered function regardless of whether the Zoltan structure was created from C or Fortran.

[Table of Contents | Next: Services | Previous: ID Data Types]|

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_Ib_structs.html (8 of 8) [7/29/2004 12:31:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Services

Zoltan Developer's Guide | Next | Previous

Services

Within Zoltan, several services are provided to simplify development of new algorithmsin the library. Each service
consists of aroutine or set of routines that is compiled directly into Zoltan. Use of these services makes debugging easier
and provides a uniform look to the algorithmsin the library. The services available are listed below.

Parameter Setting Routines
Parallel Computing Routines
Object List Function

Hash Function

Timing Routines

Debugging Services

[Table of Contents | Next: Parameter Setting Routines | Previous: Data Structures]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services.html [7/29/2004 12:31:41 PM]

Zoltan Developer's Guide: Parameter Setting Routines

Zoltan Developer's Guide | Next | Previous

Parameter Setting Routines

Zoltan allows applications to change a number of parameter settings at runtime. This facility supports debugging by, for
instance, alowing control over the type and quantity of output. It also alows users to modify some of the parameters that
characterize the partitioning algorithms. The design of the parameter setting routines was driven by several considerations.
First, we wanted to keep the user interface as simple as possible. Second, we wanted to allow different Zoltan structuresto
have different parameter settings associated with them. This second consideration precluded the use of C's static global
variables (except in afew specia places). The parameter routines described below allow devel opers to provide runtime
access to any appropriate variables. In some cases, it is appropriate to allow developersto tinker with parameters that will
never be documented for users.

Our solution to parameter setting is to have asingle interface routine Zoltan _Set Param. This function calls a set of
more domain-specific parameter setting routines, each of which is responsible for a domain-specific set of parameters.
Assuming there are no errors, the parameter name and new value are placed in alinked list of new parameters which is
maintained by the Zoltan structure. When a partitioning method is invoked on a Zoltan structure, it scans through this
linked list using the Zoltan Assign Param_Valsfunction, resetting parameter values that are appropriate to the method.

In addition to the method-specific parameters, Zoltan also has a set of so-called key parameters. These are normally
stored in the Zoltan structure and may be accessed by any part of the Zoltan code (including al the methods). A list of the
key parameters currently used in Zoltan can be found in the User's Guide.

The routines that control parameter setting are listed below. Note that these routines have been written to be as
independent of Zoltan as possible. Only afew minor changes would be required to use these routines as a separate library.
Zoltan Set Param: User interface function that calls a set of method-specific routines.
Zoltan Set Param Vec:. SameasZoltan Set Param, but for vector parameters.
Zoltan Check Param: Routineto check if parameter name and value are OK.
Zoltan Bind Param: Routine to associate a parameter name with avariable.
Zoltan Bind Param Vec: Same as Zoltan_Bind_Param, but for vector parameters.
Zoltan_Assign_Param_Vals: Scanslist of parameter names & values, setting relevant parameters
accordingly.
Zoltan Free Params: Frees a parameter list.

See also: Adding new parametersin Zoltan.

int Zoltan_Set_Param(struct Zoltan Struct *zz, char * param_name, char *new_val);

The Zoltan_Set_Param function isthe user interface for parameter setting. Its principle purposeisto call a sequence of

more domain-specific routines for setting domain-specific parameters (e.g., Zoltan_RCB_Set_Param). If you are adding
algorithmsto Zoltan, you must write one of these domain-specific parameter routines and modify Zoltan_Set_Param to
call it. Zoltan_RCB_Set_Param can serve as atemplate for this task. The arguments to this routine are two strings
param_name and new_val. The domain-specific routines return an integer value with the following meaning.

0 - The parameter name was found, and the value passed al error checks.

1 - The parameter name was not found among the parameters known by the domain-specific routine.
2 - The parameter name was found, but the value failed the error checking.

3 - Same as 0, but do not add parameter and value to linked list.

Other - More serious error; valueis an error code.

If one of the domain-specific parameter routines returns with a0, Zoltan_Set Param adds the parameter and the value
(both strings) to alinked list of such pairs that is pointed to by the Params field of the zz structure.

Arguments:
zz The Zoltan structure whose parameter value is being modified.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_params.html (1 of 4) [7/29/2004 12:31:42 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parameter Setting Routines

param_name A string containing the name of the parameter being modified. It is automatically converted to
all upper-case letters.
new_val The new value desired for the parameter, expressed as a string.
Returned Value:
int Error code.

int Zoltan_Set_Param_Vec(struct Zoltan Struct *zz, char *param_name, char *new_val, int index);

This routine works the same way as Zoltan_Set Param, but is used for vector parameters. A vector parameter isa
parameter that in addition to a name also has a set of indices, usualy starting at 0. Each entry (component) may have a
different value. This routine sets asingle entry (component) of avector parameter. If you want all entries (components) of
avector parameter to have the same value, set the parameter using Zoltan Set Param asiif it were a scalar parameter.

int Zoltan_Check_Param(char *param_name, char *new_val, PARAM_VARS *params, PARAM _UTY PE *resullt,
int *matched_index);

The Zoltan_Check_Param routine simplifies the task of writing your own domain-specific parameter setting function.
Zoltan_Check Param compares the param_name string against alist of strings that you provide, and if amatch isfound
it extracts the new value from the new_val string. See Zoltan_RCB_Set_Param for an example of how to use this

routine.
Arguments:
param_name A capitalized string containing the name of the parameter being modified.
new_val The new value desired for the parameter, expressed as a string.
params The data structure (defined in params/params_const.h) describing the domain-specific

parameters to be matched against. The data structure is an array of items, each of which consists
of four fields. Thefirst field is astring that is a capitalized name of a parameter. The second
field is an address that is unused in Zoltan_Check_Param, but isused in

Zoltan Assign Param Vals. Thethird field is another capitalized string that indicates the type

of the parameter from the first field. Currently supported typesare"INT", "INTEGER",
"FLOAT", "REAL", "DOUBLE", "LONG", "STRING" and "CHAR". It is easy to add
additional types by ssmple modifications to Zoltan_Check_Param and

Zoltan Assign Param Vals. Thefourth field is an integer that gives the dimension (length) of

the parameter, if it isavector parameter. Scalar parameters have dimension 0. The array is
terminated by an item consisting of four NULL fields. See Zoltan_RCB_Set_Param for an
example of how to set up this data structure.

result Structure of information returned by Zoltan_Check _Param (defined in
params/params_const.h). If param_name matches any of the parameter names from the first
field of the params data structure, Zoltan_Check Param attempts to decode the valuein
new_val. Thetype of the value is determined by the third field in the params data structure. If
the value decodes properly, it isreturned in result.

matched_index If param_name matches, then matched_index returns the index into the params array that
corresponds to the matched parameter name. The matched_index and result values alow the
developer to check that values being assigned to parameters are valid.

Returned Value:
int 0 - param_name found in params data structure and new_val decodes OK.
1 - param_name not found in params data structure.
2 - param_name found in params data structure but new_val doesn't decode properly.

int Zoltan_Bind_Param (PARAM_VARS *params, char * name, void *var);

Thisroutine is used to associate the name of a parameter in the parameter array params with a variable pointed to by var.
Note that since the variable to be bound can be of an arbitrary type, the pointer should be cast to avoid pointer.
Zoltan_Bind_Param must be called before Zoltan_Assign_Param_Vals, where the actual assignment of values takes

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_params.html (2 of 4) [7/29/2004 12:31:42 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parameter Setting Routines

place.

Arguments:
params The data structure describing the domain-specific parameters to be matched against. The data
structureis an array of items, each of which consists of four fields. Thefirst field is a string that
is acapitalized name of a parameter. The second field is an address that is unused in
Zoltan Check Param, butisusedin Zoltan Assign Param Vals. The third field is another

capitalized string that indicates the type of the parameter from the first field. Currently
supported typesare "INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG",
"STRING" and "CHAR". It is easy to add additional types by simple modificationsto
Zoltan Check Param and Zoltan Assign Param Vals. The fourth field is an integer that
gives the dimension (length) of the parameter, if it is avector parameter. Scalar parameters have
dimension 0. The array isterminated by an item consisting of four NULL fields.

name A capitalized string containing the name of the parameter being modified.

var A pointer to the variable you wish to associate with the parameter name name. The pointer
should be type cast to avoid pointer. The user is responsible for ensuring that the pointer really
pointsto avariable of appropriate type. A NULL pointer may be used to "unbind" avariable
such that it will not be assigned a value upon future callsto Zoltan Assign Param Vals.

Returned Value:
int Error code.

int Zoltan_Bind_Param_Vec(PARAM _VARS *params, char *name, void *var, int dim);

Same as Zoltan_Bind_Param, but for vector parameters. The additional parameter dim gives the dimension or length of
the vector parameter.

int Zoltan_Assign_Param_Vals(PARAM_LIST *change list, PARAM_VARS *params, int debug_level, int my_proc,
int debug_proc);

This routine changes parameter values as specified by the list of names and new values which is associated with a Zoltan
structure. To use this routine, parameter values should first be set to their defaults, and then Zoltan_Assign_Param_Vals
should be called to alter the values as appropriate. See Zoltan_RCB for atemplate.

Arguments:
change _list Thelinked list of parameter names and values which is constructed by Zoltan Set Param and
isafield of an Zoltan Struct data structure (defined in params/param_const.h).
params The data structure (defined in params/params_const.h) describing the domain-specific
parameters to be matched against. The data structureis an array of items, each of which consists
of three fields. Thefirst field is a string which is a capitalized name of a parameter. The second
field is an address of the parameter which should be atered. The third field is another
capitalized string which indicates the type of the parameter being altered. Currently supported
typesare"INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG", "STRING" and
"CHAR". It is easy to add additional types by simple modificationsto Zoltan Check Param
and Zoltan_Assign_Param_Vals. The array isterminated by an item consisting of three NULL
fields.
debug_level Zoltan debug level. (Normally thisis zz->Debug_Level.)
my_proc Processor number. (Normally thisis zz->Proc.)
debug_proc Processor number for debugging. (Normally thisis zz->Debug_Proc.)
Returned Value:
int Error code.

The last three input parameters may seem strange. They are present to support Zoltan's debugging features. If the
parameter utility code is used outside of Zoltan, these parameters may be removed or simply set these input values to zero
in the function call.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_params.html (3 of 4) [7/29/2004 12:31:42 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parameter Setting Routines

void Zoltan_Free Params (PARAM_LIST **param list);

This routine frees the parametersin the list pointed to by param list.

Arguments:

param list A pointer to alist (array) of parametersto be freed. PARAM _LIST isdefined in
params/param_const.h.

[Table of Contents | Next: Parallel Computing Routines | Previous. Services)

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_params.html (4 of 4) [7/29/2004 12:31:42 PM]

Zoltan Developer's Guide: Parallel Routines

Zoltan Developer's Guide | Next | Previous

Parallel Computing Routines

Parallel computing utilities are described in this section.
Zoltan Print_Sync Start/ Zoltan Print Sync End: provide synchronization of processorsfor 1/0

(with example).
Zoltan Print_ Stats: print statistics about a paralel variable.

void Zoltan_Print_Sync_Start(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_Start function is adapted from work of John Shadid for the MPSalsa project at Sandia National
Laboratories. With Zoltan _Print Sync End, it provides synchronization so that one processor in the Zoltan
communicator can complete its 1/O before the next processor beginsits 1/0. This synchronization utility is useful for
debugging algorithms, asit allows the output from processors to be produced in an organized manner. It is, however, a
serializing process, and thus, does not scale well to large number of processors.

Zoltan_Print_Sync_Start should called by each processor in the MPI communicator before the desired 1/0 is performed.
Zoltan Print_Sync End iscalled by each processor after the 1/O is performed. No communication can be performed

between callsto Zoltan_Print_Sync_Start and Zoltan Print Sync End. See the example below for usage of
Zoltan_Print_Sync_Start.

Arguments:
communicator The MPI communicator containing all processors to participate in the synchronization.
do_print_line A flag indicating whether to print aline of "#" characters before and after the synchronization

block. If do_print_lineis TRUE, alineis printed; no lineis printed otherwise.

void Zoltan_Print_Sync_End(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_End function is adapted from work of John Shadid for the MPSalsa project at Sandia National
Laboratories. With Zoltan Print Sync Start, it provides synchronization so that one processor in the Zoltan
communicator can completeits I/O before the next processor beginsits I/O. This synchronization utility is useful for
debugging algorithms, as it alows the output from processors to be produced in an organized manner. It is, however, a
serializing process, and thus, does not scale well to large number of processors.

Zoltan Print_Sync Start should called by each processor in the MPI communicator before the desired 1/0 is performed.

Zoltan_Print_Sync_End is called by each processor after the 1/O is performed. No communication can be performed
between callsto Zoltan Print_Sync Start and Zoltan_Print_Sync_End. See the example below for usage of

Zoltan_Print_Sync_End.

Arguments:
communi cator The MPI communicator containing all processors to participate in the synchronization.
do_print_line A flag indicating whether to print aline of "#" characters before and after the synchronization

block. If do_print_lineis TRUE, alineis printed; no lineis printed otherwise.

void Zoltan_Print_Stats(MPI_Comm comm, int debug_proc, double x, char * msg);

Zoltan_Print_Statsisavery simple routine that computes the maximum and sum of the variable x over all processors

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_parallel.html (1 of 2) [7/29/2004 12:31:42 PM]

Zoltan Developer's Guide: Parallel Routines

associated with the MPI communicator comm. It also computes and prints the imbalance of x, that is, the maximum value
divided by the average minus one. If x has the same value on all processors, the imbalance is zero.

Arguments:
comm The MPI Communicator to be used in maximum and sum operations.
debug_proc The processor from which output should be printed.
X The variable of which one wishesto display statistics.
msg A string that typically describes the meaning of x.

Example Using Zoltan_Print_Sync_Start/Zoltan_Print_Sync_End

i f (zz->Debug_Level >= ZOLTAN DEBUG ALL) {
int i;
Zoltan_Print_Sync_Start(zz->Comruni cator, TRUE);
printf("Zoltan: Cbjects to be exported fromProc %l\n", zz->Proc);
for (i = 0; i < *numexport_objs; i++) {
printf(" oj: "),
ZOLTAN_PRINT_QA D(zz, &((*export_global _ids)[i*zz->Num G D]));
printf(" Destination: %d\n",
(*export_procs)[i]);
}
Zoltan_Print_Sync_End(zz->Comuni cator, TRUE);

Example usage of Zoltan Print_Sync_Sart and Zoltan Print_Sync_End to synchronize output among
processors. (Taken from Zoltan LB Partition in Ib/Ib_balance.c.)

[Table of Contents | Next: Object List Function | Previous. Parameter Setting Routines]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_parallel.html (2 of 2) [7/29/2004 12:31:42 PM]

Zoltan Developer's Guide: Object List function

Zoltan Developer's Guide | Next | Previous

Common Functions for Querying Applications

Many Zoltan algorithms need to query applications for similar data. The following functions provide simple, uniform
query functionality for algorithm devel opers:

Zoltan Get Obj List

Zoltan Get Coordinates

These functions provide a uniform method of calling the query functions registered by an application. Their use simplifies
new algorithm devel opment and code maintenance. Usage examples are in rch/shared.c.

Zoltan Get Obj List can be called from any Zoltan algorithm to obtain alist of object IDs, weights, and partition
assignments.

Given alist of object IDs, Zoltan Get Coor dinates can be called from any Zoltan algorithm to obtain alist of
coordinates for those I Ds.

Note that, contrary to most Zoltan functions, these functions allocate memory for their return lists.

int Zoltan_Get_Obj_List(
struct Zoltan Struct *zz,
int *num_obj,
ZOLTAN ID PTR *global_ids,
ZOLTAN ID PTR *local_ids,
int wdim,
float ** objwgts,
int **parts);

Zoltan_Get_Obj_List returns arrays of global and local IDs, partition assignments, and object weights (if
OBJ WEIGHT DIM isnot zero) for al objects on aprocessor. It isa convenient function that frees algorithm

developers from calling ZOLTAN_OBJ LIST FN,ZOLTAN_FIRST OBJ FN,ZOLTAN_NEXT_OBJ FN, and
ZOLTAN_ PARTITION_FN query functions directly.

Arguments:
z A pointer to the Zoltan structure created by Zoltan Create.
num_aobj Upon return, the number of objects.
global _ids Upon return, an array of global 1Ds of objects on the current processor.
local_ids Upon return, an array of local 1Ds of objects on the current processor. NULL is returned when
NUM LID ENTRIESiszero.
wdim The number of weights associated with an object (typically 1), or O if weights are not requested.
objwgts Upon return, an array of object weights. Weights for object i are stored in
objwgtg[i*wdim:(i+1)*wdim-1], for i=0,1,...,num_obj-1. If wdimis zero, the return value of
objwgts is undefined and may be NULL.
parts Upon return, an array of partition assignments. Object i is currently in partition parts[i].
Returned value:
Error code.
Required Query
Functions:

ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FNor ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_objlist.html (1 of 2) [7/29/2004 12:31:43 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN

Zoltan Developer's Guide: Object List function

Optional Query
Functions:
ZOLTAN PARTITION FN

int Zoltan_Get_Coordinates(
struct Zoltan Struct *zz,

int num_obj,

ZOLTAN ID PTR global_ids,
ZOLTAN ID PTR local ids,
int *num_dim,

double **coords);

Given lists of object IDs, Zoltan_Get_Coor dinates returns the dimensionality of the problem and an array of coordinates
of the objects. It is a convenient function that frees algorithm developers from calling ZOLTAN NUM GEOM FN,

ZOLTAN GEOM _MULTI _FN, and ZOLTAN _GEOM FN query functions directly.

Arguments:
z A pointer to the Zoltan structure created by Zoltan_Create.
num_obj The number of objects.
global_ids An array of global IDs of objects on the current processor.
local_ids An array of local IDs of objects on the current processor. local_idsis NULL when
NUM_LID ENTRIESis zero.
num_dim Upon return, the number of coordinates for each object (typically 1, 2 or 3).
coords Upon return, an array of coordinates for the objects. Coordinates for object i are stored in
coordg[i* num_dim:(i+1)*num_dim-1], for i=0,1,...,num_obj-1.
Returned value:
Error code.
Required Query
Functions:

ZOLTAN NUM GEOM FN
ZOLTAN GEOM MULTI FN or ZOLTAN GEOM FN

[Table of Contents | Next: Hash Function | Previous. Parallel Routines]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_objlist.html (2 of 2) [7/29/2004 12:31:43 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN

Zoltan Developer's Guide: Hash function

Zoltan Developer's Guide | Next | Previous

Hash Function

Zoltan provides a hash function for global and local 1Ds. The hash function computes a non-negative integer valuein a
certain range from an ID.

Zoltan Hash : hash aglobal or local 1D into non-negative integers

unsigned int Zoltan_Hash(ZOLTAN ID PTR key, int num _id_entries, unsigned int n);

Zoltan_Hash computes a hash value for aglobal or loca I1D. Note that this hash function has been optimized for 32-bit
integer systems, but should work on any machine. The current implementation uses a simple multiplicative hash function
based on Don Knuth's golden ratio method; see The Art of Computer Programming, vol. 3.

Arguments:
key A pointer to the ID to be hashed.
num_id_entries Thelength of the ID (asgivenby NUM_GID ENTRIESor NUM_LID _ENTRIES).
n The computed hash value will be between 0 and n-1.
Return Value:
unsigned int The hash value (between 0 and n-1).

[Table of Contents | Next: Timing Routines | Previous: Object List Function]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html [7/29/2004 12:31:43 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide: Timing Routines

Zoltan Developer's Guide | Next | Previous

Timing Routines

To assist in performance measurements and profiling, several timing routines are included in the Zoltan library. The main
timer function, Zoltan Time, provides access to at least two portable timers: one CPU clock and one wall clock. On most

systems, user time can also be measured.

Theroutinesincluded in the utility are listed below.

Zoltan Time: Returns the time (in seconds) after some fixed reference point in time.
Zoltan Time Resolution: Theresolution of the specified timer.

Currently, the following timers are supported:

o« ZOLTAN TIME_WALL : wall-clock time.
On most systems, thistimer calls MPI_Wtime.

o« ZOLTAN_TIME_CPU : cpu time.
On most systems, thistimer callsthe ANSI C function clock(). Note that thistimer may roll over at just 71
minutes. Zoltan Time attempts to keep track of the number of roll-overs but this feature will work only if

Zoltan Timeiscalled at least once during every period between roll-overs.

o ZOLTAN_TIME_USER: user time.
On most systems, this timer calls times(). Note that times() is required by POSIX and iswidely available, but it is
not required by ANSI C so may be unavailable on some systems. Compile Zoltan with -DNO_TIMES in this
case.
Within Zoltan, it is recommended to select which timer to use by setting the TIMER general parameter via
Zoltan Set Param. The default value of TIMER iswall. Zoltan stores an integer representation of the selected timing
method in zz->Timer. This value should be passed to Zoltan Time, asin Zoltan Time(zz->Timer).

double Zoltan_Time(int timer);

Zoltan_Timereturns the time in seconds, measured from some fixed reference time. Note that the timeis not
synchronized among different processors or processes. The time may be either CPU time or wall-clock time. The timer is
selected through Zoltan Set Param.

Arguments:
timer Thetimer type (e.g., wall or cpu) represented as an integer. See top of page for alist of valid
values.
Returned Value:
double The timein seconds. The time is aways positive; a negative value indicates an error.

double Zoltan_Time_Resolution(int timer) ;

Zoltan_Time_Resolution returns the resolution of the current timer. The returned resolution is alower bound on the
actual resolution.

Arguments:
timer Thetimer type (e.g., wall or cpu) represented as an integer. See top of page for alist of valid
values.
Returned Value:
double The timer resolution in seconds. If the resolution is unknown, -1 is returned.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_time.html (1 of 2) [7/29/2004 12:31:43 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Timing Routines

Example:

Here is asimple example for how to use the timer routines:

double t0O, t1, t2;
Zol tan_Set Paramzz,

"TI MER",
t0 = Zoltan_Ti me(zz->Timer);
/* code segnent 1 */

tl = Zoltan_Ti me(zz->Timer);
/* code segnent 2 */

t2 = Zoltan_Ti me(zz->Timer);
/[* Print tinming results */

"wal l");

Zoltan_Print_Stats(zz->Comuni cator, zz->Debug_Proc,

1:");

Zoltan_Print_Stats(zz->Comuni cator, zz->Debug_Proc,

2:");

Zoltan_Print_Stats(zz->Comuni cator, zz->Debug_Proc,

t1-t0,
t2-t1,

t2-t0,

"Tinme for

"Tinme for

"Tot al

tine

part

part

"),

[Table of Contents | Next: Debugging Services| Previous. Hash Function]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_time.html (2 of 2) [7/29/2004 12:31:43 PM]

Zoltan Developer's Guide: Debugging Services

Zoltan Developer's Guide | Next | Previous

Debugging Services

Execution of code for debugging can be controlled by algorithm specific parameters or by the Zoltan key parameter
DEBUG LEVEL. Thevalue of the Debug_Level field of the Zoltan_Struct structure can be tested to determine whether
the user desires debugging information. Severa constants (ZOLTAN_DEBUG_*) are defined in zz7zz_const.h; the
Debug_Level field should be compared to these values so that future changes to the debugging levels can be made easily.
An exampleisincluded below.

Several macros for common debugging operations are provided. The macros can be used to generate function trace
information, such as when control enters or exits a function or reaches a certain point in the execution of afunction.
ZOLTAN TRACE ENTER
ZOLTAN TRACE EXIT
ZOLTAN TRACE DETAIL

These macros produce output depending upon the value of the DEBUG LEVEL parameter set in Zoltan by acall to
Zoltan Set Param. The macros are defined in zz/zz_const.h.

Examples of the use of these macros can be found below and in Ib/Ib_balance.c and rch/rcb.c.

ZOLTAN_TRACE_ENTER(struct Zoltan_Struct *zz, char *function_name);

ZOLTAN_TRACE_ENTER printsto stdout a message stating that a given processor is entering afunction. The call to
the macro should be included at the beginning of major functions for which debugging information is desired. Output
includes the processor number and the function name passed as an argument to the macro. The amount of output
produced is controlled by the value of the DEBUG LEVEL parameter set in Zoltan by acall to Zoltan_Set Param.

Arguments:

z Pointer to a Zoltan structure.

function_name Character string containing the function's name.
Output:

ZOLTAN (Processor #) Entering function_name

ZOLTAN_TRACE_EXIT(struct Zoltan_Struct *zz, char *function_name);

ZOLTAN_TRACE_EXIT printsto stdout a message stating that a given processor is exiting afunction. The call to the
macro should be included at the end of major functions (and before return statements) for which debugging information is
desired. Output includes the processor number and the function name passed as an argument to the macro. The amount
of output produced is controlled by the value of the DEBUG LEVEL parameter set in Zoltan by acall to

Zoltan Set Param.

Arguments:

z Pointer to a Zoltan structure.

function_name Character string containing the function's name.
Output:

ZOLTAN (Processor #) Leaving function_name

ZOLTAN_TRACE_DETAIL((struct Zoltan Struct *zz, char *function_name, char * message);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_debug.html (1 of 2) [7/29/2004 12:31:44 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Debugging Services

ZOLTAN_TRACE_DETAIL printsto stdout a message specified by the developer. It can be used to indicate how far
execution has progressed through aroutine. It can also be used to print values of variables. See the example below.
Output includes the processor number, the function name passed as an argument to the macro, and a user-defined message
passed to the macro. The amount of output produced is controlled by the value of the DEBUG LEVEL parameter set in
Zoltan by acall to Zoltan Set Param.

Arguments:
z Pointer to a Zoltan structure.
function_name Character string containing the function's name.
message Character string containing a message defined by the developer.
Output:
ZOLTAN (Processor #) function_name: message
Example:

An example using the debugging macros in shown below.

#i ncl ude "zol tan. h"
voi d exanpl e(struct Zoltan Struct *zz)

{
char *yo = "exanple";
char tnp[80];
int a, b;
ZOLTAN TRACE ENTER(zz, yoO);
a = function_one(zz);
ZO.TAN TRACE DETAIL(zz, yo, "After function_one");
b = function_two(zz);
sprintf(tnp, "b = % a = %", b, a);
ZO.TAN TRACE DETAIL(zz, yo, tnp);
if (zz->Debug_Level >= ZOLTAN DEBUG ALL)
printf("Total = %\ n", a+b);
ZOLTAN TRACE EXIT(zz, yo);
}

[Table of Contents | Next: Adding New L oad-Balancing Algorithms| Previous: Timing Routines]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_debug.html (2 of 2) [7/29/2004 12:31:44 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Adding Algorithms

Zoltan Developer's Guide | Next | Previous

Adding New Load-Balancing Algorithms to Zoltan

The Zoltan library is designed so that adding new load-balancing algorithms to the library is simple. In many cases,
existing code can be easily modified to use the interface query functions to build the data structures needed for the
algorithm. The process for adding new algorithmsto the library is described below; more detail is provided at each link.

1. Make sure you follow the Philosophy of Zoltan and the Coding Principlesin Zoltan.

Add the algorithm to the L oad-Balancing Interface Routines.

Use the Data Structures provided by Zoltan.

Implement a Load-Balancing Function front-end to the algorithm.

a > D

Add the Parameters needed by the algorithm. Also make sure that the algorithm uses the General Parametersin
Zoltan properly, in particular Imbalance Tol and Debug_L evel.

6. If necessary, write aroutine to free your dynamically allocated data structures. See tips on memory management
in Zoltan.

7. Add partition remapping to your algorithm using Zoltan_L B_Remap.

8. Update the Fortran interface, if necessary.

9. Document your new method. The documentation should be written in aformat that can easily be converted into
HTML and PDF.

10. Please contact the Zoltan team if you would like your method to be distributed with future versions of Zoltan.

[Table of Contents | Next: Load-Balancing Interface Routines | Previous. Debugging Services)

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add.html [7/29/2004 12:31:44 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#LB Parameters
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

Zoltan Developer's Guide: Adding Interface Routines

Zoltan Developer's Guide | Next | Previous

Load-Balancing Interface Routines

Any new method that you wish to add to the Zoltan library must have an interface that conforms to the prototype LB _FN.

Note that the load balancing function may return either import lists, export lists, or both. All processes must return the
same type of list. If import (export) lists are not computed, then the variable num_import (num_export) must be set to a
negative number (typically -1) upon return. Full support of the RETURN _LISTS parameter is not required. If
RETURN_LISTSis not set to NONE, the new algorithm may return either import or export lists; the Zoltan interface will
then build the lists requested by RETURN_LISTS.

A new agorithm must be added to the load-balancing interface for use with parameter LB METHOD. An entry for the
new algorithm must be added to the enumerated type Zoltan_LB_Method in Ib/lb_const.h. An external LB FN

prototype for the load-balancing function must also be added to Ib/Ib_const.h; see the prototype for function Zoltan_RCB
as an example. A character string describing the new agorithm should be chosen to be used as the parameter value for
LB _METHOD. Infunction Zoltan_LB_Set L B_Method, atest for this string should be added and the Method and

LB _Fnfields of the Zoltan Struct should be set to the new enumerated type value and new load-bal ancing function
pointer.

[Table of Contents | Next: Load-Balancing Function Implementation | Previous. Adding New Algorithms]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_interface.html [7/29/2004 12:31:44 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

Zoltan Developer's Guide: Adding Load-Balancing Functions

Zoltan Developer's Guide | Next | Previous

Load-Balancing Function Implementation

The new load-balancing algorithm should be implemented asan ZOLTAN_LB_FN. The type definition for an
ZOLTAN_LB_FNisinlIb/lb_const.h and is described below. When the new agorithm is selected, the LB_Fn field of the
Zoltan_Struct is set to point to the ZOL TAN_L B_FN function for the new algorithm. This pointer is then used in
invoking load balancing in Zoltan_LB_Partition.

typedef int ZOLTAN_LB_FN (struct Zoltan_Struct *zz, float *part_sizes, int *num_import,
ZOLTAN_ID PTR *import_global_ids, ZOLTAN_ID_PTR *import_local_ids, int **import_procs,
int **import_to_parts, int *num_export, ZOLTAN ID PTR *export_global ids,

ZOLTAN ID PTR *export_local_ids, int **export_procs, int **export_to_parts);

TheZOLTAN_LB_FN function type describes the arguments passed to aload-balancing function. The input to the
functionisaZoltan Struct containing pointers to application-registered functions to be used in the load-balancing

algorithm. The remaining arguments are output parameters listing the objects to be imported or exported to the processor
in the new decomposition. The arrays for global and local 1Ds and source processors must be allocated by the
load-balancing function. The load-balancing function may return either the import arrays, the export arrays, or both. If no
import datais returned, *num_import must be set to a negative number, and similarly with *num_export. Full support of
the RETURN_LISTS parameter isnot required. If RETURN_LISTSis not set to NONE, the new algorithm may return

either import or export lists; the Zoltan interface will then build the lists requested by RETURN LISTS.

Arguments:
z A pointer to the Zoltan_Struct to be used in the load-balancing a gorithm.
part_sizes Input: an array of partition sizes for each weight component. Entry

part sizeqi*obj_weight dim+j] contains the user-requested partition size for partition i with
respect to object weight j for i=0,1,...,number of partitions-1, and j=0,1,...,0b] weight dim-1. If
the application sets parameter OBJ_ WEIGHT _DIM, obj_weight_dimisthe set value of
OBJ_WEIGHT_DIM; otherwise, obj_weight_dimisone.

num_import Upon return, the number of objects to be imported to the processor for the new decomposition.
A negative number indicates that no import data has been computed and the import arrays
should be ignored.

import_global_ids Upon return, an array of num_import global 1Ds of objects to be imported to the processor for
the new decomposition. If thisarray is non-null, it must be allocated by
Zoltan Special Malloc.

import_local_ids Upon return, an array of num_import local 1Ds of objects to be imported to the processor for the
new decomposition. If thisarray is non-null, it must be allocated by Zoltan Special Malloc.

import_procs Upon return, an array of size num_import containing the processor 1Ds of processors owning (in
the old decompoasition) the objects to be imported for the new decomposition. If thisarray is
non-null, it must be allocated by Zoltan Special Malloc.

import_to_parts Upon return, an array of size num_import containing the partition I1Ds of partitions to which
objects will be imported in the NEW decomposition. If this array isnon-null, it must be allocated
by Zoltan_Special Malloc.

num_export Upon return, the number of objects to be exported from the processor for the new
decomposition. A negative number indicates that no export data has been computed and the
export arrays should be ignored.

export_global_ids Upon return, an array of num_export global 1Ds of objects to be exported from the processor for
the new decomposition. If thisarray is non-null, it must be allocated by
Zoltan Special Malloc.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_lb.html (1 of 2) [7/29/2004 12:31:45 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM

Zoltan Developer's Guide: Adding Load-Balancing Functions

export_local_ids Upon return, an array of num_export local 1Ds of objects to be exported from the processor for
the new decomposition. If thisarray is non-null, it must be allocated by
Zoltan_Special Malloc.

export_procs Upon return, an array of size num_export containing the processor I1Ds of processors owning (in
the old decomposition) the objects to be exported for the new decomposition. If thisarray is
non-null, it must be allocated by Zoltan Special Malloc.

export_to_parts Upon return, an array of size num_export containing the partition 1Ds of partitions to which the
objects will be exported for the new decomposition. If thisarray isnon-null, it must be
alocated by Zoltan Special Malloc.

Returned Value:
int Error code.

[Table of Contents | Next: Data Structures | Previous: Load-Balancing Interface Routines]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_lb.html (2 of 2) [7/29/2004 12:31:45 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Adding Data Structures

Zoltan Developer's Guide | Next | Previous

Data Structures

The main data structures for the algorithm should be pointed to by the LB.Data_Structure field of the Zoltan Struct. This

requirement allows reuse of data structures from one invocation of the new load-balancing algorithm to the next. It also
prevents the use of global data structures for the algorithm so that multiple instances of the algorithm may be used (i.e.,
the same algorithm can be used for multiple Zoltan Struct structures). An example showing the construction of data

structures for the Recursive Coordinate Bisection (RCB) algorithm isincluded in the figure below.

/* Allocate RCB data structure for this Zoltan structure.

* |f the previous data structure still exists, free the Dots first;
* the other fields can be reused.
*/

if (zz->LB.Data_Structure == NULL) {
rcb = (RCB_STRUCT *) ZOLTAN MALLOC(si zeof (RCB_STRUCT));
zz->LB. Data_Structure = (void *) rchb;
rcb->Tree_Ptr = (struct rch_tree *)
ZOLTAN MALLOC(zz->Num Proc*si zeof (struct rcb_tree));

rcb->Box = (struct rcb_box *) ZOLTAN MALLOC(si zeof (struct rcb_box));

}

el se {
rcb = (RCB_STRUCT *) zz->LB. Data_Structure;
ZOLTAN _FREE(&(rcb->Dots));

}

Example demonstrating allocation of data structures for the RCB algorithm. (Taken from rcb/rcb_util.c.)

The data needed for the algorithm is collected through calls to the query functions registered by the application.
Algorithms should test the query function pointers for NULL and report errors when needed functions are not registered.
The appropriate query functions can be called to build the algorithm's data structures up front, or they can be called during
the algorithm's execution to gather data only asit is needed. The figure below shows how the Dots data structure needed

by RCB isbuilt. Thecall to zz->Get_Num_Obj invokesan ZOLTAN NUM OBJ FN query function to determine the
number of objects on the processor. Space for the Dots data structure is allocated through callsto ZOLTAN MALLOC,
ZOLTAN MALLOC GID ARRAY,and ZOLTAN MALLOC LID ARRAY. The Dotsinformation is obtained
through a call to the Zoltan service function Zoltan Get Obj List; thisfunction calls either an

ZOLTAN OBJ LIST FNoranZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair to get the object IDs

and weights. The data for each Dot is set in the function initialize_dot, which includes callsto zz->Get_Geom, an
ZOLTAN GEOM FN query function.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_struct.html (1 of 3) [7/29/2004 12:31:45 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN

Zoltan Developer's Guide: Adding Data Structures

/*

* Al'locate space for objects. Allow extra space

* for objects that are inported to the processor.

*/
*num obj] = zz->Get _Num Obj (zz->CGet _Num Obj _Data, & err);
if (ierr) {

ZOLTAN PRI NT_ERROR(zz->Proc, Yo,

"Error returned from Get_Num Obj.");

return(ierr);

}

*max_obj = (int)(1.5 * *numobj) + 1;
*gl obal _ids = ZOLTAN MALLOC G D ARRAY(zz, (*max_obj));
*local _ids = ZOLTAN MALLOC LID ARRAY(zz, (*max_obj));
*dots = (struct Dot Struct *)
ZOLTAN MALLOC((*max_obj) *si zeof (struct Dot _Struct));

if (!'(*global _ids) || (zz->Num LID && !(*local _ids)) || !'(*dots)) {
ZO.TAN PRI NT_ERROR(zz->Proc, yo, "lnsufficient nenory.");
return(ZO.TAN MEMERR) ;

}
if (*numobj > 0) {

if (wgtflag) {

/*
* Allocate space for object weights.
*/

objs wgt = (float *) ZOLTAN MALLOC((*num obj)*si zeof (fl oat));

if ('objs_wgt) {
ZOLTAN PRI NT_ERROR(zz->Proc, yo, "lnsufficient nenory.");

return(ZOLTAN MEMERR) ;

}
for (i =0; i < *numobj; i++) objs wgt[i] = 0.;
}
/-k
* Get list of objects' IDs and weights.
*/

Zoltan Get_Obj List(zz, *global _ids, *local _ids, wgtfl ag,
objs wgt, & err);

if (ierr) {
ZOLTAN PRI NT_ERROR(zz->Proc, Yo,

"Error returned from Zoltan_Get_Obj _List.");
ZOLTAN_FREE(&obj s_wgt) ;

return(ierr);

}

ierr = initialize_dot(zz, *global __ids, *local _ids, *dots,
*num obj, wgtflag, objs wgt);

if (ierr == ZOLTAN _FATAL || ierr == ZOLTAN MEMERR) ({

ZOLTAN PRI NT_ERROR(zz- >Proc, yo,
"Error returned frominitialize dot.");

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_struct.html (2 of 3) [7/29/2004 12:31:45 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free

Zoltan Developer's Guide: Adding Data Structures

ZOLTAN FREE(&obj s_wgt) ;
return(ierr);

}
ZOLTAN_FREE(&bj s_wgt) ;

}

Example demonstrating how data structures are built for the RCB algorithm. (Taken fromrcb/shared.c.)

The data structures pointed to by zz->LB.Data_Structure must also be freed. A function that frees these structures and
resets zz->1LB.Data_Structure to NULL should be written. The function should be called when the |oad-balancing

agorithm exits, either normally or due to an error condition. The function Zoltan_RCB_Free Structurein rcb/rcb_util.c
may be used as an example.

[Table of Contents | Next: Memory Management | Previous. L oad-Balancing Function Implementation]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_struct.html (3 of 3) [7/29/2004 12:31:45 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

Zoltan Developer's Guide | Next | Previous

Memory Management in Zoltan Algorithms

Zoltan uses a memory management package to simplify debugging of memory problems. It is strongly recommended that
algorithm devel opers use the routinesin this package, suchasZOLTAN MALLOC ,ZOLTAN CALLOC and
ZOLTAN FREE, instead of the standard C routines for most memory management.

Macros that simplify the allocation of global and local identifiers (IDs) are defined in zz/zz_id_const.h. These macros are
described in the ID Data Types section. The macros include error checking for the allocations and, thus, their use is highly
recommended.

When a dynamic structure needs to be returned to the application, special memory allocation routines are needed. For
example, the import and export lists of datato migrate are returned to an application from Zoltan LB Partition and

Zoltan Invert Lists. There are two special routines for managing memory for such situations, called
Zoltan_Special Malloc and Zoltan_Special_Free. Algorithms must use these functions to maintain compatibility with

both C and Fortran90 applications; these special routines manage memory in away that is compatible with both
languages.

Some load-balancing algorithms may contain persistent data structures, that is, data structures that are preserved between
callsto the load-balancing routine. The Zoltan Struct structure contains afield LB.Data_Structure for this purpose,
allowing multiple Zoltan structures to preserve their own decomposition data. The developer should write a function that
freesthis data structure. Use Zoltan_RCB_Free Structure as an example.

int Zoltan_Special_Malloc(struct Zoltan Struct *zz, void **array, int size,
ZOLTAN_SPECIAL_MALLOC_TY PEtype);

The Zoltan_Special_Malloc routine allocates memory to be returned to the application by Zoltan (e.g., the result arrays
of Zoltan LB Partition and Zoltan Invert Lists). Returned memory must be alocated by Zoltan_Special Malloc to
insureit is allocated by the same language as the application. Memory alocated by Zoltan_Special_Malloc must be
deallocated by Zoltan_Special Free.

Arguments:
z The Zoltan structure currently in use.
array Upon return, a pointer to the allocated space. Usudly of typeint** or ZOLTAN ID PTR*.
size The number of elements (not bytes) to be allocated.
type Thetype of array to alocate. Must be one of ZOLTAN_SPECIAL_MALLOC_INT,
ZOLTAN_SPECIAL_MALLOC_GID or ZOLTAN_SPECIAL_MALLOC_LID for
processor numbers, global IDs and local |Ds, respectively.
Returned Value:
int 1if the allocation succeeded; O if it failed.
Example:

ierr = Zoltan_Special _Mlloc(zz, (void **)inport_gid,

num_i mport,

ZOLTAN_SPECI AL_MALLOC G D) ;
Allocates an array with num_import global 1Ds and returns a pointer to the alocated spacein
import_gid.

int Zoltan_Special_Free(struct Zoltan Struct *zz, void **array, ZOLTAN_SPECIAL_MALLOC_TYPE type);

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_memory.html (1 of 2) [7/29/2004 12:31:46 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Calloc
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

Zoltan_Special_Free freesmemory alocated by Zoltan Special Malloc. The array pointer is set to NULL upon return.

Arguments:
z
array

type

Returned Value:

int
Example:

The Zoltan structure currently in use.
The array to be freed. Upon return, the pointer is set to NULL.
Thetype of the array. Must be one of ZOLTAN_SPECIAL_MALLOC_INT,

ZOLTAN_SPECIAL_MALLOC GID or ZOLTAN_SPECIAL_MALLOC_LID for
processor numbers, global 1Ds and local |Ds, respectively.

1if the deallocation succeeded; O if it failed.

ierr = Zoltan_Special _Free(zz, (void **)inport_gid,
ZOLTAN_SPECI AL_NVALLCC G D);
Freesthe global | Ds array import_gid and setsit to NULL.

[Table of Contents | Next: Parameters | Previous: Data Structures]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_memory.html (2 of 2) [7/29/2004 12:31:46 PM]

Zoltan Developer's Guide: Adding Parameters

Zoltan Developer's Guide | Next | Previous

Adding new parameters

All parameters in Zoltan should be set and accessed through the parameter setting routines. To add a new parameter to an
existing method, you need to do the following:

« Inthe source code for the desired method, search for the place where the static array of parametersis defined. It
will look something like: static PARAM_VARS Method_params[] = { ... }. Add aline with the name of the new
parameter, a pointer to the variable you want to associate (usually NULL), and its type.

« Inthe method source code, bind the parameter to alocal variable through Zoltan Bind Param. Make sure you
do thisbefore Zoltan Assign Param Valsisinvoked.

« Update the parameter function for the method in question. Thisroutineistypically called
Zoltan_Method Set_ Param. Thisroutine checksif agiven string isavalid parameter for that method. It may
also verify the values.

When you add a new method to Zoltan, you also need to:

« Write aparameter function for your method that checks whether a given string and value is avalid parameter pair
for your method. See Zoltan_RCB_Set_Param in rch/rcb.c for an example.

« Let your method access the parametersviaZoltan Bind Param and Zoltan Assign Param Vals.

« Change the parameter function array in params/set_params.c to include your parameter function. Simply add a
new entry to the static array that looks like: static ZOLTAN_SET_PARAM_FN * Param func[] = {...}.

» Make sure your method uses the key parametersin Zoltan correctly.
One useful convention is to put your method routine and your corresponding parameter function in the same source file.

Thisway you can define the parametersin a static array. This convention eliminates the risk of bugs caused by duplicate
declarations (that are, incorrectly, not identical).

[Table of Contents | Next: Partition Remapping | Previous. Memory Management]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_params.html [7/29/2004 12:31:46 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters

Zoltan Developer's Guide: Partition Remapping

Zoltan Developer's Guide | Next | Previous

Partition Remapping

Partition remapping can be incorporated into |oad-balancing algorithms. The partition remapping algorithm works as

follows:

« After partitioning withinan ZOLTAN LB FN but before import or export lists are built, the partitioning
algorithm calls Zoltan_L B _Remap.

« Zoltan LB Remap builds a bipartite graph based on local import or export information (depending on which is

available in the partitioning al gorithm). Vertices of the graph are processor or partition numbers used in the old
(input to the partitioner) and new (computed by the partitioner) decompositions. Edges connect old and new
vertices; edge weight for edge g; is the number of objectsin old partition i that are also in new partition j. The

bipartite graph is stored as a hypergraph, so that Zoltan's hypergraph matching routines may be applied.
« Zoltan LB Remap gathersthe local hypergraph edges onto each processor and performs a serial matching of the

vertices. This matching defines the remapping.
» Zoltan_LB_Remap remaps the input processor and partition information to reflect the remapping and returns the

result to the application. It aso builds array zz->LB.Remap that is used in other functions (e.g.,
Zoltan LB Box PP _Assign and Zoltan LB _Point_PP_Assign).

« Using the remapping information returned from Zoltan LB Remap, the partitioning algorithm builds the import

or export lists to return to the application. Note: if the partition algorithm builds import lists, data may have to be
moved to appropriate processors before building import liststo reflect the remapping; see rch/shared.c for an

example.

int Zoltan_LB_Remap (struct Zoltan Struct *zz, int *new_map, int num_obyj, int *procs, int *old_parts, int *new_parts,

int export_list_flag);

Zoltan_L B_Remap remaps computed partition (or processor) numbersin an attempt to maximize the amount of data that
does not have to be migrated to the new decomposition. It isincorporated directly into partitioning algorithms, and should
be called after the new decomposition is computed but before return lists (import or export lists) are created.

Zoltan_L B_Remayp should be invoked when Zoltan parameter REMAP is one. Even when REMAP is one, remapping is

not done under a number of conditions; these conditions are listed with the description of REMAP.

Arguments:
z

new_map

num_aobj

procs

old_parts

A pointer to the Zoltan_Struct used in the partitioning algorithm.

Upon return, aflag indicating whether remapping was actually done. Remapping is not done
under anumber of conditions (described with parameter REMAP) or when the computed remap

gives aworse or equivalent result than the decomposition computed by the partitioning
algorithm.

Input: the number of objects the processor knows about after computing the decomposition. If
the partitioning a gorithm computes export lists, num_obj is the number of objects stored on the
processor; if it computes import lists, num_obj is the number of objects that will be stored on the
processor in the new decomposition.

Upon input: an array of size num_obj containing processor assignments for the objects; if
export_list_flag == 1, procs contains processor assignments in the NEW decomposition
(computed by the partitioner); otherwise, procs contains processor assignments in the OLD
decomposition (input by the application). Upon return, procs contains remapped processor
assignments for the NEW decomposition, regardless of the value of export_list_flag.

Upon input: an array of size num_obj containing partition assignments for the objectsin the
OLD decomposition (input by the application).

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_remap.html (1 of 2) [7/29/2004 12:31:46 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_PP_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_PP_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#REMAP

Zoltan Developer's Guide: Partition Remapping

new_parts

export_list_flag

Returned Value:
int

Upon input: an array of size num_obj containing partition assignments for the objectsin the
NEW decomposition (computed by the partitioning algorithm). Upon return: new_parts contains
remapped partition assignments in the NEW decomposition.

Flag indicating whether the partitioning algorithm computes export lists or import lists. The
procedure for building the bipartite graph depends on whether the partitioning algorithm knows
export or import information.

Error code.

[Table of Contents | Next: Migration Tools | Previous. Adding new parameters]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_add_remap.html (2 of 2) [7/29/2004 12:31:46 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Migration Tools

Zoltan Developer's Guide | Next | Previous

Migration Tools

The migration tools in the Zoltan library perform communication necessary for data migration in the application. The
routine Zoltan Migrate cals application-registered packing routines to gather data to be sent to other processors. It sends
the data using the unstructured communication package. It then calls application-registered unpacking routines for each
imported object to add received data to the processor's data structures. See the Zoltan User's Guide for more details on the
use of and interface to the migration tools.

In future releases, the migration tools will be updated to use MPI data types to support heterogeneous computing
architectures.

[Table of Contents | Next: FORTRAN Interface | Previous. Partition Remapping]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_mig.html [7/29/2004 12:31:47 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: FORTRAN Interface

Zoltan Developer's Guide | Next | Previous

FORTRAN Interface

With any change to the user API of Zoltan, the Fortran interface should be modified to reflect the change. This section
contains information about the implementation of the Fortran interface which should cover most situations.

Structures

Modifications to an existing Zoltan interface function

Removing a Zoltan interface function

Adding anew Zoltan interface function

Query functions
Enumerated types and defined constants

If you have questions or need assistance, contact william.mitchell @nist.gov.

If changes are made to functions that are called by zdrive, then the changes should also be made to zfdrive. Changesto the
Fortran interface can be tested by building and running zfdrive, if the changes are in functions called by zfdrive. The
Zfdrive program works the same way as zdrive except that it is restricted to the Chaco examples and simpler input files.

Any changesin the interface should also be reflected in the Fortran API definitions in the Zoltan User's Guide.

Structures

All structures in the API have a corresponding user-defined type in the Fortran interface. If anew structure is added, then
modifications will be required to fort/fwrap.fpp and fort/cwrap.c. In these files, search for Zoltan Struct and "do like it

does."

An explanation of how structures are handled may help. The Fortran user-defined type for the structure simply contains
the address of the structure, i.e., the C pointer returned by a call to create the structure. Note that the user does not have
access to the components of the structure, and can only pass the structure to functions. Within the Fortran structure, the
addressis stored in avariable of type(Zoltan_PTR), which is a character string containing one character for each byte of
the address. This gives the best guarantee of portability under the Fortran and C standards. Also, to insure portability of
passing character strings, the character string is converted to an array of integers before passing it between Fortran and C.
The process of doing thisis most easily seen by looking at Zoltan Destroy, which haslittle else to clutter the code.

Modifications to an existing Zoltan interface function

If the argument list or return type of a user-callable function in Zoltan changes, the same changes must be made in the
Fortran interface routines. Thisinvolves changes in two files: fort/fwrap.fpp and fort/cwrap.c. In these files, search for the
function name with the prefix Zoltan_ omitted, and maodify the argument list, argument declarations, return type, and call
to the C library function as appropriate. When adding a new argument, if there is not already an argument of the same
type, look at another function that does have an argument of that type for guidance.

Removing a Zoltan interface function

If auser callable function is removed from the Zoltan library, edit fort/fwrap.fpp and fort/cwrap.c to remove all references
to that function.

Adding a new Zoltan interface function

Adding a new function involves changes to the two files fort/fwrap.fpp and fort/cwrap.c. Perhaps the easiest way to add a
new function to these filesis to pick some existing function, search for all occurrences of it, and use that code as a guide
for the implementation of the interface for the new function. Zoltan LB Point_ Assign isanice minimal function to use

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_fortran.html (1 of 3) [7/29/2004 12:31:47 PM]

mailto:william.mitchell@nist.gov
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Destroy
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign

Zoltan Developer's Guide: FORTRAN Interface

as an example. Use a case insensitive search on the name of the function without the Zoltan_LB__ prefix, for example
point_assign.

Here are the items in fwrap.fpp:
« public statement: The name of the function should be included in the list of public entities.

« interface for the C wrapper: Copy one of these and modify the function name, argument list and declarations for
the new function. The name is of the form Zfw_L B_Point_Assign (fw stands for Fortran wrapper).

« generic interface: This assigns the function name to be a generic name for one or more modul e procedures.

« module procedure(s): These are the Fortran-side wrapper functions. Usually there is one module procedure of the
form Zf90_L B_Point_Assign. If one argument can have more than one type passed to it (for example, it istype
void in the C interface), then there must be one module procedure for each type that can be passed. These are
distinguished by appending a digit to the end of the module procedure name. If n arguments can have more than
one type, then n digits are appended. See Zoltan LB Free Part for example. Generally the module procedure

just calls the C-side wrapper function, but in some cases it may need to coerce data to a different type (e.g.,
Zoltan Struct), or may actually do real work (e.g., Zoltan LB Free Part).

Here are theitemsin cwrap.c:

» name mangling: These are macros to convert the function name from the case sensitive C name (for example,
Zfw_LB_Point_Assign) to the mangled name produced by the Fortran compiler. There are four of these for each
function:

lowercase (zfw_lb_point_assign),
uppercase (ZFW_LB_POINT_ASSIGN),
o lowercase with underscore (zfw_Ib_point_assign), and

o lower case with double underscore (zZfw_point_assign__ but the second underscore is appended only if
the name already contains an underscore, which will always be the case for names starting with Zfw).

« C-sidewrapper function: Usually thisjust calls the Zoltan library function after coercing the form of the data (for
example, constructing the pointer to Zoltan Struct and call-by-reference to call-by-value conversions).

[}

O

Query functions

If aquery function is added, deleted or changed, modifications must be made to fort/fwrap.fpp and fort/cwrap.c, similar to
the modifications for interface functions, and possibly also include/zoltan.h and zz/zz_const.h.

Here are the places query functions appear in fwrap.fpp:
« public statement for the ZOLTAN _FN_TYPE argument: These are identical to the C enumerated type.

o definition of the ZOLTAN_FN_TY PE arguments: There are two groups of these, one containing subroutines

(void functions) and one containing functions (int functions). Put the new symbol in the right category. The value
assigned to the new symbol must agree exactly with where the symbol appearsin the order of the enumerated

type.
Here are the places query functions appear in cwrap.c:

« reverse wrappers. These are the query functions that are actually called by the Zoltan library routines when the
guery function was registered from Fortran. They are just wrappersto call the registered Fortran routine, coercing
argument types as necessary. Look at Zoltan_Num_Edges Fort_Wrapper for an example.

o Zfw_Set_Fn: Thishas aswitch based on the value of the ZOLTAN _FN_TY PE argument to set the Fortran
guery function and wrapper in the Zoltan Struct.

In zz/zz_const.h, if anew field is added to the structures for a new query function, it should be added in both C and Fortran
forms. In include/zoltan.h, if anew typedef for a query function is added, it should be added in both C and Fortran forms.
See these files for examples.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_fortran.html (2 of 3) [7/29/2004 12:31:47 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part

Zoltan Developer's Guide: FORTRAN Interface

Enumerated types and defined constants

Enumerated types and defined constants that the application uses as the value for an arguments must be placed in
fwrap.fpp with the same value. See ZOLTAN OK for an example.

[Table of Contents | Next: References | Previous. Migration Tools]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_fortran.html (3 of 3) [7/29/2004 12:31:47 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: References

Zoltan Developer's Guide | Next | Previous

References

1. M. J. Berger and S. H. Bokhari. "A partitioning strategy for nonuniform problems on multiprocessors." |IEEE
Trans. Computers, C-36 (1987), 570-580.

2. K. Devine, B. Hendrickson, M. St.John, E. Boman, and C. Vaughan. "Zoltan: A Dynamic L oad-Balancing
Library for Parallel Applications, User's Guide." Sandia National Laboratories Tech. Rep. SAND99-1377,
Albuqguerque, NM, 1999.

3. H. C. Edwards. A Parallel Infrastructure For Scalable Adaptive Finite Element Methods and Its Application To
Least Sguares C\(inf) Collocation. Ph.D. Dissertation, University of Texas at Austin, May, 1997.

4. B. Hendrickson and K. Devine. "Dynamic Load Balancing in Computational Mechanics." Comp. Meth. Appl.
Mech. Engrg., 184 (2000) 484-500.

5. B. Hendrickson and R. Leland. ""The Chaco User's Guide, version 2.0." Sandia National Laboratories Tech. Rep.
SAND94-2692, Albuquerque, NM, 1994. http://www.cs.sandia.gov/CRF/chac.html

6. G. Karypisand V. Kumar. ~"ParMETIS: Parallel graph partitioning and sparse matrix ordering library." Tech.
Rep. 97-060, Dept. of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

7. C. Washaw. "Parallel Jostle Library Interface: Version 1.1.7." Tech. Rep., Univ. of Greenwich, London, 1995.
http://www.gre.ac.uk/jostle

[Table of Contents | Next: Using Test Driver | Previous: FORTRAN Interface]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_refs.html [7/29/2004 12:31:47 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

Zoltan Developer's Guide | Next | Previous

Appendix: Using the Test Drivers: zdrive and zfdrive

Introduction

In order to facilitate devel opment and testing of the Zoltan library, simple driver programs, zdrive (C) and Zfdrive
(Fortran90), are included with the library distribution. The concept behind the driversisto read in mesh or graph
information from files, run Zoltan, and then output the new assignments for each processor to another file. The test driver
zdrive reads Exodusl I/Nemesisl parallel FEM files and Chaco input files. Parallel Nemesisl files can be created from

Exodusl| or Genesisfile using the Nemesisl utilities nem_slice and nem_spread. The Fortran90 program zfdrive reads
only Chaco input files.

Source code for zdrive isin the driver and ch directories of the Zoltan distribution. Source code for zfdrive isin the fdriver
directory.
To compile the test drivers, use the following commands:
gmake [options] zdrive
gmake YES_FORTRAN=1 [optiong| zfdrive
where the options are described below.

Optionsto gmake:

Specify the target architecture. A corresponding file, Utilities/Config/Config.< platform>,
ZOLTAN_ARCH=<platform> containing environment definitions for <platform>, must be created in the Utilities’/Config
directory.

The drivers are placed in the Obj_<platform> directory.

Running zdrive and zfdrive

The programs zdrive and zfdrive are run using an input command file. A fully commented example of thisfile and the
possible options can be found in zdrive.inp. The default name for the command file is zdrive.inp, and the drivers will look

for thisfile in the execution directory if an alternate name is not given on the command line. If another filename is being
used for the command file, it should be specified as the first argument on the command line. (Note: zfdrive cannot read a
command line argument; its input file must be named zdrive.inp.)

For an example of asimple input file, see the figure below. In this problem, the method being used for dynamic load
balancing isRCB. Input datais read from Chaco input files simple.graph and simple.coords. Zoltan's DEBUG LEVEL

parameter is set to 3; default values of all other parameters are used. (Note: zfdrive can read only asimplified version of
the input file. See the zfdrive notes in zdrive.inp for more details.)

Deconposition nmethod = rcb

Zol tan Paraneters = Debug Level =3
File Type = Chaco

File Name = sinple
Parallel Disk Info = nunber =0

Example zdrive.inp file

The zdrive programs creates ascii files named "file_name.out.p.n", where file_name is the file name specified in
zdrive.inp, p isthe number of processors on which zdrive was run, and n=0,1,...,p-1 is the processor by which the file was
created. (For Zfdrive, the files are named "file_name.fout.p.n".) These files are in the same directory where the input graph
file was located for that processor. Each file contains alist of global ids for the elements that are assigned to that processor
after running Zoltan. The input decomposition can also be written in this format to files "file_name.in.p.n"; see "zdrive
debug level" in zdrive.inp for more details.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_driver.html (1 of 2) [7/29/2004 12:31:48 PM]

http://www.cs.sandia.gov/CRF/chac.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

Decompositions for 2D problems can also be written to files that can be plotted by gnuplot. See "gnuplot output” in
zdrive.inp for more information.

Adding New Algorithms

The driver has been set up in such away that testing new algorithms that have been added to Zoltan is relatively simple.
The method that isin theinput fileis passed directly to Zoltan. Thus, this string must be the same string that the parameter
LB _METHOD is expecting.

[Table of Contents | Next: Using the Test Script | Previous. References]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_driver.html (2 of 2) [7/29/2004 12:31:48 PM]

http://www.gnuplot.org/
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

BHUHHBHIEHH B HBHH BB R R R R R R R R R R R

Zoltan Library for Parallel Applications
Copyright (c) 2000, 2001, 2002, Sandi a National Laboratories.
This docunment is released under the GNU Lesser Ceneral Public License.
For nore info, see the README file in the top-level Zoltan directory.

HHHA R HHH R AR AR R
HHHA R HHHR AR AR R
CVS File Information

$RCSfile: zdrive.inp,v $

$Aut hor: eboman $

$Dat e: 2003/05/29 15:14:50 $

$Revision: 1.28 $

HHHA R HHHR AR HH AR AR
#

EXAMPLE OF zdrive.inp INPUT FILE FOR zdrive AND zfdrive.

#

HHHARHHHR AR AR R AR R R R R R R R R R R R R R R R R R R AR R R AR
GENERAL NOTES

H

1) Any line beginning with a "#" is considered a comment and will be
ignored by the file parser.

2) The order of the lines I'S NOT significant.

3) Any lines that are optional are marked as such in this file. Unless
otherwise noted a line is required to exist in any input file.

to "FILE" or "File", etc.

5) The ampunt of bl ank space in between words IS significant. Each
word should only be separated by a single space.

#
#
#
#
#
#
#
#
#
4) The case of words IS NOT significant, e.g., "file" IS equivalent
#
#
#
#
#
6) Blank lines are ignored.

#

#

#

HHBHEHHBHE R H BB R R R R R R R R R R R R

#+++++++++H R
Deconposition Method = <net hod>

This line is used to specify the algorithmthat Zoltan will use
for load balancing. Currently, the follow ng nethods that are acceptable:
rcb - Reverse Coordi nate Bisection
octpart - Octree/ Space Filling Curve
parnmetis - ParMETIS graph partitioning
jostle - Jostle graph partitioning
reftree - Refinenent tree partitioning

Deconposi ti on Met hod =rcb

HHEIFHFEHFHHHER

e S L e o e L L
Zoltan Paraneters = <options>

#

This line is OPTIONAL. If it is not included, no user-defined paraneters
will be passed to Zoltan.
#
#

This line is used to to specify paraneter values to overwite the default

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (1 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

paraneter values used in Zoltan. These paraneters will be passed to Zoltan
through calls to Zoltan_Set _Paran(). Paraneters are set by entries consisting
of pairs of strings "<paranmeter string>=<val ue string>".

The <paraneter string> should be a string that is recognized by the
particul ar | oad-bal anci ng met hod bei ng used.

The paraneter entries should be separated by comras.

VWhen many paraneters nust be specified, nultiple

"Zol tan Paraneters” |lines may be included in the input file.

NOTE: The Fortran90 driver zfdrive can read only one parameter per |ine.
Zol tan Paraneters DEBUG LEVEL=3
Zol tan Paraneters RCB_REUSE=0

HHEIFHFEHFHHHEHR

e e L e s e L B
File Type = <file type><, chaco options>

This line is OPTIONAL. If it is not included, then it is assuned that
the file type is parallel nenesis.

This line contains tells which format the file is in. The current

file types for this Iine are:
Nenesi sl - parallel Exodusll/Nenesisl files (1 per processor)
Chaco - Chaco graph and/or geonetry file(s)

For Nenesisl input, the initial distribution of data is given in the
Nenesis files. For Chaco input, however, an initial deconposition is
i nposed by the zdrive. Two initial distribution nmethods are provided.
The nmethod to be used can be specified in the chaco options:

initial distribution = <option>
where <option> is

linear -- gives the first n/p objects to proc 0, the
next n/p objects to proc 1, etc.

cyclic -- assigns the objects to processors as one woul d
deal cards; i.e., gives the first object to proc O,
the second object to proc 1, ..., the pth object to

proc (p-1),the (p+1l)th object to proc 0, the (p+2)th
object to proc 1, etc.
file -- reads an initial distribution fromthe input file
<fil enanme>. assign, where File Nanme is specified by
the "File Nanme" command |ine bel ow
If an initial distribution is not specified, the default is |inear.

A second Chaco option is to distribute the objects over a subset

of the processors, not all processors. The syntax for this is:
initial procs = k

where k is an integer between 1 and the nunber of processors.

The objects will be evenly distributed anong the k first

processors, using the distribution nmethod optionally specified by

the "initial distribution" option.

Exanpl e:
File Type = chaco, initial distribution = cyclic, initial procs = 2
will give proc O objects 1, 3, 5, ... and proc 1 objects 2, 4, 6,
whil e procs 2 and hi gher get no objects.
NOTE: The Fortran90 driver zfdrive does not read Nenesisl files.
NOTE: The Fortran90 driver zfdrive does not accept any Chaco options.

File Type = Nemesi sl

HHEIFHFHFHFFEHFEHFFHFHFHFHEFEHFHFEFHFEHFHEFEFHF R FHREFEHFHEEHFH AR

o o

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (2 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

File Name = <fil enanme>
This line contains the filename for the input finite el enent nesh.

If the file type is Nemesisl then this nanme refers to the base nane
of the parallel Exodusll files that contain the results. The base
nane is the parallel filenane without the trailing .<# proc>. <file #>
onit. This file nmust contain the Nemesis global information.

If the file type is Chaco, this nane refers to the base nanme of the

Chaco files containing graph and/or coordinates information. The

file <filename>.graph will be read for the Chaco graph information

The file <fil ename>. coords will be read for Chaco geonetry information

The optional file <filename>.assign may be read for an initial deconposition
by specifying "initial distribution=file" on the "File Type" input |ine.

For nore informati on about the fornmat of these files, see

t he Chaco user's guide.

Fil e Nanme = testa. par

HHEIFHFHFHFFEHFEHFHFEHFHFHEHEHFH

e e L e L s o e a2 S L o
Parallel Disk Info = <options>

#

This line is OPTIONAL. If this line is left blank, then it is assunmed

that there is no parallel disk information, and all of the files are

#in a single directory. This line is used only for Nenesis files.

#

This line gives all of the information about the parallel file system

being used. There are a nunber of options that can be used with it,

al though for nobst cases only a couple will be needed. The options are:

nunber=<i nteger> - this is the nunber of parallel disks that the
results files are spread over. This nunber mnust
be specified, and nust be first in the options
list. If zero (0) is specified, then all of the
files should be in the root directory specified
bel ow.

list={list} - OPTIONAL, If the disks are not sequential, then a

list of disk nunbers can be given. This |ist should

be enclosed in brackets "{}", and the di sk nunbers

can be seperated by any of the follow ng conmg,

bl ank space, tab, or senicol on

OPTIONAL, This is the offset fromzero that the

di sk nunbers begin with. If no nunber is specified,

this defaults to 1. This option is ignored if

"list" is specified.

zer os - OPTIONAL, This specifies that |eading zeros are
used in the parallel file nam ng convention. For
exanpl e, on the Paragon, the file name for the
first pfs disk is "/pfs/tnp/io_01/". If this is
specified, then the default is not to have | eadi ng
zeros in the path nane, such as on the terafl op
machine "/pfs/tnp_1/".

of f set =<i nt eger >

HHEIFHFHFHFEHFEHFHFFEHFHFHEFEHFHFEFEHFHERER

NOTE: The Fortran90 driver zfdrive ignores this input |ine.
Hoe o o o o o e e o o o e e o o e e o o e
Parallel Disk Info = nunber =4, zer os

e S L e o e L L
Parallel file location = <options>

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (3 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

This line is OPTIONAL, only if the above line is excluded as well, or
the nunber of raids is specified as zero (0). If this line is excluded,
then the root directory is set to the execution directory, ".", and al
files should be in that directory. This line is used only for Nenesis
files.

This line gives all of the information about where the parallel files are
| ocated. There are only two options for this line, and both nmust be
specified. The options are:
r oot =<root directory nane>
This line is used to specify what the nane of the root directory is
on the target machine. This can be any valid root directory
nane. For exanple, if one is running on an SE@ workstation and
using the "tfl op" nunbering schenme then you coul d use sonet hi ng
simlar to "/usr/tnmp/pio_" in this field so that files would be
witten to root directories named:
fusr/tnp/pio_1
fusr/tnp/pio_2

/usr/tnp}pio_<ParaIIeI Di sk I nfo, nunber>

subdi r =<subdi rect ory nane>
This line specifies the nane of the subdirectory, under the root
directory, where files are to be witten. This is tacked onto
the end of the "root" after an appropriate integer is added to

"root". Continuing with the exanple given for "root", if "subdir"
had a value of "runl/input" files would be witten to directories
named:

fusr/tnp/pio_1/runl/i nput/
fusr/tnp/pio_1/runl/i nput/

/usr/tnp}pio_<ParaIIeI Di sk I nfo, nunber>/runl/input/

HHEHFHFHFHFHFEHFEHFHFEFHFHFFEHEHFHFEFHFHFFEFEHFHRFEFHFHEEHFHEFEHFEES

NOTE: The Fortran90 driver zfdrive ignores this input |ine.

Parallel File Location = root=/pfsiio, subdirzmmstjohn
Hoe o o o o o f e o o o e e o o e e e o e o
Zdrive debug | evel = <integer>

ﬁ This line is optional. It sets a debug level within zdrive (not within

Zoltan) that determ nes what output is witten to stdout at runtime.
The currently defined values are listed below For a given debug | evel

value i, all debug output for levels <=1i is printed.

#

0 -- No debug output is produced.

1 -- Evaluation of the initial and final partition is done

through calls to driver_eval and Zoltan_LB Eval

2 -- Function call traces through major driver functions are

printed.

3 -- Generate output files of initial distribution

Debug Chaco input files.

4 -- Entire distributed mesh (el enments, adjacencies, conmunication
maps, etc.) is printed. This output is done serially and can
be big and sl ow.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (4 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

#
Default value is 1.

Zdrive debug level =1

gnhupl ot out put = <i nteger>

This line is optional. |If the integer specified is greater than zero,
zdrive produces files that can be plotted using gnuplot. Each processor
generates files containing its deconposition; these files are naned
simlarly to the standard output filenanes generated by zdrive but they
include a "gnu" field. A file containing the gnuplot commands to actually
pl ot the deconposition is also generated; this file has a ".gnul oad" suffix.
To plot the results, start gnuplot; then type

| oad "fil enane. gnul oad"

The decomnposition can be based on processor assignnent or partition
assignment. See zdrive input line "plot partitions".

For Chaco input files, edges are not drawn between nei ghboring subdomains (
as Chaco input is balanced with respect to graph nodes). Data style
"linespoints" is used; this style can be changed using gnuplot's

"set data style ..." command.

In addition, processor assignments are witten to the parallel Nenesis files
to be viewed by ot her graphics packages (avs, mustafa, blot, etc.). Note
that the parallel Nenesis files nust have space allocated for at |east one
el enmental variable; this allocation is done by nem spread.

Ghupl ot capability currently works only for 2D probl ens.

Default value is O.

HHEIFHFHFHFHFHFEHFHFEHFEHFHEHFEHFHEFEHFHEFEHFHFEEHFS

gnupl ot output =0

o
nenesi s output = <integer>

#

This line is optional. |If the integer specified is greater than zero,

zdrive wites subdomain assignnent information to parallel nenmesis files.

These files match the input nenesis file nanes, but contain a ".blot" suffix.
The SEACAS utility nemjoin can conbine these files into a single Exodus file
for plotting by blot, avs, nustafa, etc. Note that the input parallel

Nenesis files nmust have space allocated for at |east one

elemental variable; this allocation is done by nem spread.

#

The deconposition can be based on processor assignment or partition

assignment. See zdrive input line "plot partitions”.

#

This option does nothing for Chaco input files.

#

Default value is O.
o
nenesi s output =0
o
plot partitions = <integer>

#

This line is optional. |If the integer specified is greater than zero,

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (5 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

zdrive wites partition assignnments to the gnuplot or nenesis output files;
one file per partition is generated.

O herwi se, zdrive wites processor assignnents to the gnuplot or nenesis
output files, with one file per processor generated.

See zdrive input lines "gnuplot output” and "nemesis output"”.

Default value is O (processor assignnents witten).

HHEHFHHFEHFEHHH

o
print nmesh info file = <integer>
#
This line is optional. |If the integer specified is greater than zero,
zdrive produces files describing the mesh connectivity. Each processor
generates a file containing its vertices (with coordi nates) and el ements
(wWth vertex connectivity); these files are named
simlarly to the standard output fil enames generated by zdrive but they
include a ".nmesh" suffix.
#
Default value is O.
g
print nesh info file =0
Chaco i nput assignnent inverse = <integer>
This line is optional. It sets the IN_ASSIGN INV flag, indicating that
the "inverse" Chaco assignnent format should be used if a Chaco assi gnment
file is read for the initial deconposition. |If this flag is 0, the assignment
file lists, for each vertex, the processor to which it is assigned. If this

flag is 1, the assignnment file includes, for each processor, the nunber of
vertices assigned to the processor followed by a |list of those vertices.
See the Chaco User's guide for a nore detailed description of this paraneter

Default value is O.

Chaco i nput assignnent inverse =0

HHEIFHHFHFHHEHFEHHHR

e
Nunber of Iterations = <integer>

#

This line is optional. It indicates the nunber of tinme the | oad-bal ancing
nmet hod should be run on the input data. The original input data is passed
to the nethod for each invocation.

Miultiple iterations are useful primarily for testing the RCB_REUSE paraneter.
#

Default value is 1.

#

NOTE: The Fortran90 driver zfdrive ignores this input |ine.
o
Nunber of Ilterations =1
o
zdrive action = <integer>

#

This line is optional. It indicates the action the driver should take,

typically | oad-bal ancing or ordering. Valid values are:

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (6 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

#

0 -- No action.

1 -- Load bal ance.

2 -- Oder.

3 -- First | oad bal ance, then order.

#

Default value is 1 (load bal ance).

#

NOTE: The Fortran90 driver zfdrive ignores this input |ine.
o

Test Drops = <integer>

This line signals that zdrive should exercise the box- and point-assign
capability of Zoltan. Note that the partitioning nethod nust support

box- and point-drop, and appropriate paraneters (e.g., Keep_Cuts) must also
be passed to Zoltan; otherw se, an error is returned fromthe box- and

poi nt -assi gn functions.

Default value is O.
NOTE: The Fortran90 driver zfdrive ignores this input |ine.

Test Drops = 0

HHEIFHHFHFHHEHFEHHHR

Test DDirectory = <integer>

This line signals that zdrive should exercise the Distributed Directory
utility of Zoltan. Conparisons between zdrive-generated conmunicati on maps
and DDirectory-generated conmuni cati on maps are done. |If a difference is
found, a diagnostic nessage containing "DDirectory Test" is printed as

out put from zdrive.

Default value is O.

NOTE: The Fortran90 driver zfdrive ignores this input |ine.

HHEIFHHFHFHHEHFEHHHER

Test DDirectory =0

g
Test Null Inport Lists = <integer>

#

This line signals that zdrive should test Zoltan's capability to accept

NULL inport lists to Zoltan_Help_Mgrate. It allows the driver to pass NULL
inmport lists. This flag's value should not affect the output of zdrive.

#

Default value is O.

#

NOTE: The Fortran90 driver zfdrive ignores this input line.
o
Test Null Inport Lists =0
o
Test Multi Callbacks = <integer>

#

This line signals that zdrive should test the |list-based (MILTI) call back

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (7 of 8) [7/29/2004 12:31:16 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

functions. If this line is set to 1, zdrive registers list-based call back
functions. Oherw se, callbacks on individual functions are registered.

This flag's value should not affect the output of zdrive.

#

Default value is O.

Test Multi Callbacks =0

Test Local Partitions = <integer>

This line signals that zdrive should test Zoltan using various val ues

of the NUM LOCAL_PARTI TI ONS paramet er and/ or nonuniform partition sizes.
VWil e setting NUM LOCAL_PARTI TIONS using a "Zoltan Paraneter" above
woul d make all processors have the same nunber of |ocal partitions,

this flag allows different processors to have different values for
NUM_LOCAL_PARTI Tl ONS.

Valid values are integers fromO to 7.

0: NUMLOCAL_PARTITIONS is not set (unless specified as a
"Zol tan Paraneter" above).

1: Each processor sets NUM LOCAL_PARTITIONS to its processor number;
e.g., processor 0 requests zero local partitions; processor 1
requests 1 local partition, etc.

2: Each odd-nunbered processor sets NUM LOCAL_PARTITIONS to its
processor nunber; even-nunbered processors do not set
NUM_LOCAL_PARTI Tl ONS.

3: One partition per proc, but variable partition sizes.

Only set partition sizes for upper half of procs
(using Zoltan_LB Set _Part_Sizes and gl obal partition nunbers).

4: Variabl e nunber of partitions per proc, and variable
partition sizes. Proc i requests i partitions, each
of size 1/i.

5: One partition per proc, but variable partition sizes.

Same as case 3, except all sizes are increased by one to
avoi d possible zero-sized partitions.

6: One partition per proc, but variable partition sizes.

VWhen nprocs >= 6, zero-sized partitions on processors >= 2.
(This case is of particular interest for HSFC.)

7: One partition per proc, but variable partition sizes.

VWhen nprocs >= 6, zero-sized partitions on processors <= 3.
(This case is of particular interest for HSFC.)

HHEHFHHFHFHFHFEHFEHFFHFHFHFEHFEHFFEFEFHFHFEFEHFHEFEHFHREFEHFRHEES

Default value is O.

Test Local Partitions =0

Test Generate Files = <integer>

This line signals that zdrive should test Zoltan using Zoltan_GCenerate_Files
to produce output files that describe the geonetry, graph, or hypergraph
used in the | oad-bal ancing. Such files may be useful for debuggi ng.

0: Do not generate files.
1: Cenerate files.

Default value is O.

Test Generate Files =0

HHEIFHHFEHFHFHEHEHHH

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp (8 of 8) [7/29/2004 12:31:16 PM]

Zoltan Developer's Guide: Running test_zoltan

Zoltan Developer's Guide | Next | Previous

Appendix: Using the test script test_zoltan

The purpose of the Zoltan test script isto run the test driver zdrive (or zfdrive) on a set of test problems to verify that the

Zoltan library works correctly. The script compares the output of actual runs with precomputed output. The assumption is
that if the outputs are identical, then the current implementation isislikely to be correct. Small differences may occur
depending on the architectures used; developers should examine the output and use their judgement in determining its
correctness. It is strongly recommended that devel opers run test_zoltan to verify correctness before committing changes to
existing code!

How to run test_zoltan

First make sure you have compiled the driver zdrive (or Zfdrive). Then go to the Zoltan directory Zoltan/tests and type

test_zoltan with suitable options as described below. Thiswill run the test script in interactive mode. The output from the
driver will be sent to stdout and stderrstdout and stderr with a summary of results. The summary of resultsis also saved in
alogfile. If an error occured, look at the log file to find out what went wrong. The script currently assumes that runs are
deterministic and reproducible across all architectures, which is not necessarily true. Hence false alarms may occur.

Syntax

test_zoltan [-arch arch-type] [-cmd command] [other options as listed below]

It isrequired to use either the -arch or the -cmd option. The other arguments are optional.

Options:

-arch arch-type The architecture on which the driver isto run. For alist of currently supported
architectures, type test_zoltan with no arguments.

-cmd command The command is the command that the script uses to launch the driver. One must include
an option to specify the number of processors as part of the command. Use quotes
appropriately; for example, -cmd 'mpirun -np'. Default settings have been provided for all
the supported architectures.

-logfile filename The name of thelog file. The default istest_zoltan.log. If an old log file exists, it will be
moved to test_zoltan.log.old.

-no_parmetis Do not run any ParMETIS methods.

-N0_nemesis Do not run test problems in Nemesis format.

-no_chaco Do not run test problemsin Chaco format.

-yes fortran Run the Fortran90 driver zfdrive instead of zdrive.

The default behavior isto run zdrive all methods on al types of input format.

Test problems

The test problems are included in subdirectories of the Zoltan/test directory. Problems using Chaco input filesare in

subdirectories ch_*; problems using Nemesisinput files are in subdirectories nem *. Please see the README files
located in each test directory for more details on these test problems.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_test_script.html (1 of 2) [7/29/2004 12:31:49 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
http://www.cs.sandia.gov/CRF/chac.html
http://www.cs.sandia.gov/CRF/chac.html

Zoltan Developer's Guide: Running test_zoltan

Load balancing methods

Many different load-balancing methods are currently tested in test_zoltan. Input files for the methods are found in the test
problem subdirectories. The input files are named zdrive.inp.<method>, where <method> indicates which load-balancing
method is passed to Zoltan. To run only a subset of the methods, edit the test_zoltan script manually; searching for "rcb”
shows which lines of the script must be changed.

Number of processors

The script test_zoltan runs each test problem on a predetermined number of processors, currently ranging from 3 to 9.

[Table of Contents | Next: RCB | Previous. Using the test driver zdrive]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_test_script.html (2 of 2) [7/29/2004 12:31:49 PM]

Zoltan Developer's Guide: RCB

Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Coordinate Bisection (RCB)

Outline of Algorithm

The implementation of Recursive Coordinate Bisection (RCB) in Zoltan is due to Steve Plimpton of Sandia National
Laboratories and was modified by Matt St. John and Courtenay Vaughan. In thisimplementation of RCB, the paralléel
computer isfirst divided into two pieces and then the computational domain is divided into two pieces such that the
proportion of work in each piece is the same as the proportion of computational power. The division of the parallel
machine is done by a subroutine which is part of the support for heterogenous architectures that is being built into the
Zoltan library. This processis repeated recursively on each subdomain and its associated part of the computer. Each of
these divisions are done with a cutting plane that is orthogonal to one of the coordinate axes.

At each of these stages, each subdomain of processors and the objects that are contained on those processors are divided
into two sets based on which side of the cutting plane each object is on. Either or both of these sets may be empty. On
each processor, the set of objects which are on the same side of the cut as the processor are retained by the processor,
while the other objects are sent to processors on the other side of the cut. In order to minimize the maximum memory
usage in each set of processors, the objects that are being sent to each set of processors are distributed such that each each
processor in a set has about the same humber of objects after the objects from the other set of processors are sent. In the
case when a processor has more objects that it will retain than the average number of objects that the rest of the processors
havein its set, then that processor will not receive any objects. Thus each processor may send and receive objects from
several (or no) processors in the other set. The process of determining which outgoing objects are sent to which processors
is determined in the subroutine Zoltan_Create Proc_List. Once this hew distribution of objectsis determined, the
unstructured communication packagein Zoltan is used to determine which processors are going to receive which

objects and actually move the objects.

For applications that wish to add more objects to the decomposition at alater time (e.g., through Zoltan LB Box Assign
or Zoltan LB _Point_Assign), information to do this can be retained during the decomposition phase. Thisinformationis
kept if the parameter KEEP_CUTS is set during the decomposition (see the RCB section in the Zoltan User's Guide).
This information about the decomposition can be thought of as a tree with the nodes which have children representing the
cut information and the nodes with no children representing processors. An object is dropped through the tree starting
with the root node and uses the cut information at each node it encounters to determine which subtree it traverses. When it
reaches aterminal node, the node contains the processor number that the object belongs to. The information to construct
the tree is saved during the decomposition. At each step in the decomposition, when each set is divided into two sets, the
set with the lowest numbered processor is designated to be the | eft set and the information about the cut is stored in the
lowest numbered processor in the other set of processors which isthe right set. Asaresult of this process, each processor
will store information for, at most, one cut, since once a processor stores information about a cut, by being the lowest
numbered processor in theright set, it will always bein aleft set after each subsequent cut since it will be the lowest
numbered processor in the set being cut and the set it is put into will be the left set. The processor which stores the cut
information also stores the root node as its parent. After the end of the division process, al of the information is collected
onto all of the processors. The parent information is then used to establish the |leaf information for the parent. When this
information is gathered, the tree structure is stored in arrays with the array position determined by the processor number
that was storing the information. There is an array which stores the position of the cut information for the left set and one
for the right set aswell as arrays for the cut information. Given that the lowest numbered processor after acut isin the left
set, the cut information is stored in the right set, and there is one fewer cut than the total number of processors, processor
0 has no cut information, so the 0 position of the right set array is empty and is used to store the position in the array that
thefirst cut is stored. When thisinformation is used to process an object, array position 0 in theright set array is used to
determine the array position of the first cut. From there, which side of the cut the object is on is determined and that
information is used to determine which cut to test the object against next. This processis repeated recursively until a
terminal node is encountered which contains the processor number that the object belongs to.

When the parameter RCB_REUSE is specified, the RCB algorithm attempts to use information from a previous RCB
decomposition to generate an "initial guess' at the new decomposition. For problems that change little between

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_rcb.html (1 of 2) [7/29/2004 12:31:49 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html

Zoltan Developer's Guide: RCB

invocations of RCB, using RCB_REUSE can reduce the amount of data movement in RCB, improving the performance of
the algorithm. When RCB_REUSE is true,the coordinates of all objects obtained through query functions are passed
through Zoltan LB Point Assign to determine their processor assignment in the previous RCB decomposition. The
information for the objects is then sent to the new processor assignments using the unstructured communication utilities to
generate an initial condition matching the output of the previous RCB decomposition. The normal RCB algorithm isthen
applied to this new initial condition.

Data Structure Definitions

There are three major data structuresin RCB and they are defined in rcb/rch.h and rcb/shared.h. The points which are
being load balanced are represented as a structure Dot_Struct which contains the location of the point, its weight, and its
originating processor number. The nodes on the decomposition tree are represented by the structure rch_tree which
contains the position of the cut, the dimension that the cut is perpendicular to, and the node's parent and two children (if
they exist) in the tree. The structure RCB_Struct is the RCB data structure which holds pointersto al of the other data
structures needed for RCB. It contains an array of Dot_Struct to represent the points being load balanced, global and local
IDsfor the points, and an array of rcb_tree (whose length is the number of processors) which contains the decomposition
tree.

Parameters

The parameters used by RCB and their default values are described in the RCB section of the Zoltan User's Guide. These
can be set by use of the Zoltan_RCB_Set_Param subroutine in the file rcb/rcb.c.

Main Routine

The main routine for RCB is Zoltan_RCB in thefilerch/rcb.c.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous:. Using the Test Script]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_rcb.html (2 of 2) [7/29/2004 12:31:49 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: RIB

Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Inertial Bisection (RIB)

Outline of Algorithm

The implementation of Recursive Inertia Bisection (RIB) in Zoltan is due due to Bruce Hendrickson and Robert Leland
of Sandia National Laboratories for use in Chaco and was modified by Courtenay Vaughan. RIB is an algorithm similar to

RCB (see the appendix on RCB for a description of RCB) in that it uses the coordinates of the objects to be balanced to

do the load balancing. Similarly to RCB, the domain is recursively divided into two pieces until the number of
subdomains needed is reached. In each stage of the division, the direction of the principle axis of the domain to be divided
is calculated by determining an eigenvector of the inertial matrix. This direction vector is used to define anormal to a
plane which is used to divide the domain into two pieces. This processis repeated until the desired number of subdomains
is reached.

The communication of objects being divided is handled by the same routine as is used by RCB. For applications which
wish to add more objects to the decomposition at alater time (e.g., through Zoltan LB Box Assign or

Zoltan_LB_Point_Assign), information to do this can be retained during the decomposition phase. Thisinformation is
kept if the parameter KEEP_CUTS is set during the decomposition. The processis similar to that used for RCB, but the

information kept is different. For each RIB cut, the center of mass of the subdomain which is cut, the direction vector, and
adistance from the center of mass to the cutting plane have to be saved.

Data Structure Definitions

There are three magjor data structuresin RIB and they are defined in rcb/rib.h and rcb/shared.h. The points which are
being load balanced are represented as a structure Dot_Struct which contains the location of the point, its weight, and the
originating processor's number. The nodes on the decomposition tree are represented by the structure rib_tree which
contains the position of the cut, the center of mass of the subdomain which is being cut, the direction vector of the
principle axis of the subdomain, and the node's parent and two children (if they exist) in the tree. The structure RIB_Struct
isthe RIB data structure which holds pointersto all of the other data structures needed for RIB. It contains an array of
Dot_Struct to represent the points being load balanced, globa and local 1Ds of the points, an array of rib_tree (whose
length is the number of processors) which contains the decomposition tree, and the dimension of the problem.

Parameters

The parameters used by RIB and their default values are described in the RIB section of the Zoltan User's Guide. These
can be set by use of the Zoltan_RIB_Set_Param subroutine in the file rch/rib.c.

Main Routine

The main routine for RIB is Zoltan_RIB in thefilercb/rib.c.

[Table of Contents | Next: ParMETIS and Jostle | Previous. Recursive Coordinate Bisection (RCB)]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_rib.html [7/29/2004 12:31:49 PM]

http://www.cs.sandia.gov/CRF/chac.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: ParMETIS/Jostle

Zoltan Developer's Guide | Next | Previous

Appendix: ParMETIS and Jostle

Overview of structure (algorithm)

This part of Zoltan provides an interface to various graph-based load-balancing algorithms. Currently two libraries are
supported: ParMETIS and Jostle. Each of these libraries contain several algorithms.

Interface algorithm

The structure of the code is as follows. Each package (ParMETIS, Jostle) has its own wrapper routine that performs
initialization and sets parameters. The main routineis Zoltan_ParMetis_Jostle, which constructs an appropriate graph
data structure using Zoltan's query functions. After the graph structure has been constructed, the appropriate library is
called and the import/export list is created and returned.

Please note that ParMETIS and Jostle are not integral parts of Zoltan. These libraries must be obtained and installed
separately. (ParMETIS may be bundled with Zoltan, but it is an independent package developed at Univ. of Minnesota.)
Zoltan merely provides an interface to these libraries.

The most complex task in the interface code is the construction of the graph data structure. This structure is described in
the next section. The routine uses the Zoltan query functionsto get alist of objects and edges on each processor. Each
object has a unique global ID which is mapped into a unigue (global) number between 1 and n, where nisthe total
number of objects. The construction of the local (on-processor) part of the graph is straightforward. When an edge goes
between objects that reside on different processors, global communication is required. We use Zoltan's unstructured
communication library for this. A hash function (Zoltan Hash) is used to efficiently map global IDsto integers. The

graph construction algorithm has parallel complexity O(max; {n;+my+p}), where n; is the number of objects on processor
j, my isthe number of edges on processor j, and p is the number of processors.

One other feature of the interface code should be mentioned. While Zoltan allows objects and edges to have real (float)
weights, both ParMETIS and Jostle currently require integer weights. Therefore, Zoltan first checks if the object weights
areintegers. If not, the weights are automatically scaled and rounded to integers. The scaling is performed such that the
weights become large integers, subject to the constraint that the sum of (any component of) the weightsis less than alarge
constant MAX_WGT_SUM < INT_MAX. The scaled weights are rounded up to the nearest integer to ensure that nonzero
weights never become zero. Note that for multidimensional weights, each weight component is scaled independently.

(The source code is written such that this scaling is simple to change.)

Currently Zoltan constructs and discards the entire graph structure every time a graph-based method (ParMETIS or Jostle)
iscalled. Incremental update of the graph structure may be supported in the future.

The graph construction code in Zoltan_ParMetis_Jostle can also be used to interface with other graph-based algorithms.
Please contact the Zoltan developersif you have a paralld partitioning or load-balancing code and would like assistance

with interfacing it to Zoltan.

Algorithms used in ParMETIS and Jostle libraries

There are two main types of algorithmsused in ParMETIS and Jostle. The first is multilevel graph partitioning. The main
ideaisto take alarge graph and construct a sequence of smaller and simpler graphs that in some sense approximate the
origina graph. When the graph is sufficiently small it is partitioned using some other method. This smallest graph and the
corresponding partition is then propagated back through all the levels to the original graph. A popular local refinement
strategy known as Kernighan-Lin is employed at some or every level.

The second main strategy is diffusion. This method assumes that an initial partition (balance) is given, and load balance is

achieved by repeatedly moving objects (nhodes) from partitions (processors) that have too heavy load to neighboring
partitions (processors) with too small load.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_parmetis.html (1 of 2) [7/29/2004 12:31:50 PM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_jostle.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
mailto:zoltan@cs.sandia.gov

Zoltan Developer's Guide: ParMETIS/Jostle

For further details about the algorithmsin a specific library, please refer to the documentation that is distributed with that
library.

Data structures

We use the ParMETIS parallel graph structure. Thisisimplemented using 5 arrays:
vixdist: gives the distribution of the objects (vertices) to processors

xadj: indices (pointers) to the adjncy array

adjncy: neighbor lists

adjwgt: edge weights

5. wwgt: vertex (object) weights

The vixdist array is duplicated on al processors, while the other arrays are local.
For more details, see the PaArMETIS User's Guide.

> w DD

Parameters

Zoltan supports the most common parametersin ParMETIS and Jostle. These parameters are parsed in the
package-specific wrapper routine (Zoltan_ParMetis or Zoltan_Jostle) and later passed on to the desired library via
Zoltan_ParMetis Jostle.

In addition, Zoltan has one graph parameter of itsown: CHECK GRAPH. This parameter isset in

Zoltan_ParMetis_Jostle and specifies the amount of verification that is performed on the constructed graph. For
example, it isrequired that the graph is symmetric and that the weights are non-negative.

Main routine

Themain routineis Zoltan_ParMetis_Jostle but it should aways be accessed through either Zoltan_ParMetis or
Zoltan_Jostle.

[Table of Contents | Next: Refinement Tree | Previous: Recursive Inertial Bisection (RIB)]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_parmetis.html (2 of 2) [7/29/2004 12:31:50 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide: Refinement Tree

Zoltan Developer's Guide | Next | Previous

Appendix: Refinement Tree

Overview of structure (algorithm)

The refinement tree based partitioning algorithm was developed and implemented by William Mitchell of the National

Institute of Standards and Technology. It is similar to the Octree method except that it uses a tree representation of the
refinement history instead of a geometry based octree. The method generates a space filling curve which is cut into K
appropriately-sized pieces to define contiguous partitions, where the size of apieceisthe sum of the weights of the
elementsin that piece. K, the number of partitions, is not necessarily equal to P, the number of processors. Itisan
appropriate load balancing method for grids that are generated by adaptive refinement when the refinement history is
available. Thisimplementation consists of two phases. the construction of the refinement tree, and the definition of the
partitions.

Refinement Tree Construction

The refinement tree consists of aroot node and one node for each element in the refinement history. The children of the
root node are the elements of the initial coarse grid. The children of all other nodes are the elements that were formed
when the parent element was refined. Upon first invocation, the refinement tree isinitialized. This creates the root node
and initializes a hash table that maps global IDs into nodes of the refinement tree. It also queries the user for the elements
of theinitial grid and creates the children of the root node. Unless the user provides the order through which to traverse
the elements of the initial grid, a path is determined through the initial elements along with the"in" vertex and "out"
vertex of each element, i.e., the vertices through which the path passes to move from one element to the next. The
refinement tree isrequired to have all initial coarse grid elements, not just those that reside on the processor. However,
this requirement is not imposed on the user; a communication step fills in the elements from other processors. This much
of the tree persists throughout execution of the program. The remainder of the tree is reconstructed on each invocation of
the refinement tree partitioner. The remainder of the tree is built through atree traversal. At each node, the user is queried
for the children of the corresponding element. If there are no children, the user is queried for the weight of the element. If
there are children, the order of the children is determined such that a tree traversal produces a space filling curve. The user
indicates what type of refinement was used to produce the children (bisection of triangles, quadrasection of quadrilaterals,
etc.). For each supported type of refinement, atemplate based ordering isimposed. The template also maintains an "in"
and "out" vertex for each element which are used by the template to determine the beginning and end of the space filling
curve through the children. If the refinement is not among the types supported by templates, an exhaustive search is
performed to find an appropriate order, unless the user provides the order.

Partition algorithm

The agorithm that determines the partitions uses four traversals of the refinement tree. The first two traversals sum the
weightsin thetree. In the first traversal, each node gets the sum of the weights of all the descendant nodes that are
assigned to this processor. The processors then exchange information to fill in the partial sumsfor the leaf elements that
are not owned by this processor. (Note that an unowned leaf on one processor may be the root of alarge subtree on
another processor.) The second traversal compl etes the summation of the weights. The root now has the sum of all the
weights, which, in conjunction with an array of relative partition sizes, determines the desired weight of each partition.
Currently the array of partition sizes are al equal, but in the future the array will be input to reflect heterogeneity in the
system. The third traversal determines the partitioning by adding subtrees to a partition until the size of the partition meets
the desired weight, and counts the number of elements to be exported. Finaly, the fourth traversal constructs the export
list.

Data structures

The implementation of the refinement tree algorithm uses three data structures which are contained in reftree/reftree.h.
Zoltan_Reftree data_struct is the structure pointed to by zz->LB.Data_Structure. It contains a pointer to the refinement
tree root and a pointer to the hash table. Zoltan_Reftree_hash_nodeis an entry in the hash table. It consists of aglobal 1D,
apointer to arefinement tree node, and a"next" pointer from which linked lists at each table entry are constructed to
handle collisions. Zoltan_Reftree_Struct is a node of the refinement tree. It contains the global 1D, local 1D, pointers to the

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_reftree.html (1 of 2) [7/29/2004 12:31:50 PM]

http://math.nist.gov/~mitchell

Zoltan Developer's Guide: Refinement Tree

children, weight and summed weights, vertices of the element, "in" and "out" vertex, aflag to indicate if thiselement is
assigned to this processor, and the new partition number.

Parameters

Thereis one parameter, REFTREE HASH_SIZE, which determines the size of the hash table and is set by
Zoltan_Reftree Set Param.

Main routine

Themain routineis Zoltan_Reftree Part infilereftree/reftree_part.c.

[Table of Contents | Next: Hilbert Space-Filling Curve (HSFC) | Previous:. Parmetis/Jostl€]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_reftree.html (2 of 2) [7/29/2004 12:31:50 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html

Zoltan Developer's Guide: HSFC

Zoltan Developer's Guide | Previous

Appendix: Hilbert Space Filling Curve (HSFC)

Outline of Algorithm

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in Octree and on the BSFC partitioning
implementation by Andrew C. Bauer, Department of Engineering, State University of New Y ork at Buffalo, ashis
summer project at SNL in 2001. Please refer to the corresponding section in the Zoltan User's guide, Hilbert Space
Filling Curve (HSFC), for information about how to use this module and its parameters. Note: the partitioning, point
assign and box assign functionsin this code module can be trivially extended to any space filling curve for which we have
a state table definition of the curve.

First, the weights and inverse Hilbert coordinates for each object are determined. If the objects do not have weights, unit
weights are assigned. If the objects have multiple weights, only the first weight is currently used. The smallest
axis-aligned box isfound that contains al of the objects using their two or three dimensional spatial coordinates. This
bounding box is dlightly expanded to ensure that all objects are strictly interior to the boundary surface. The bounding box
is necessary in order to calculate the inverse Hilbert Space Filling curve coordinate. The bounding box is used to scale the
problem coordinates into the [0,1]d unit volume (d represents the number of dimensionsin the problem space.) The
inverse Hilbert coordinate is calculated and stored as a double precision floating point value for each object. This code
works on problems with one, two or three dimensions (the 1-D Inverse Hilbert coordinate is simply the problem
coordinate itself, after the bounding box scaling.)

The agorithm seeks to cut the unit interval into P segments containing equal weights of objects associated to the segments
by their inverse Hilbert coordinates. The code allows a user vector to specify the desired fraction of the total weight to be
assigned to each interval. Note, a zero weight fraction prevents any object being assigned to the corresponding interval.
The unit interval isdivided into N bins, N=k(P-1)+1, where k isasmall positive constant.) Each bin has an left and right
endpoint specifying the half-open interval [l,r) associated with the bin. The bins form a non-overlapping cover of [0,1]
with the right endpoint of the last bin forced to include 1. The bins are of equal size on the first loop. (Hence each interval
or part of the partition is a collection of hins.)

For each loop, an MPI_Allreduce call is made to globally sum the weights in each bin. This call also determines the
maximum and minimum (inverse Hilbert) coordinate found in each bin. A greedy algorithm sums the weights of the bins
from |eft to right until the next bin would cause an overflow for the current partition. This resultsin new partition of P
intervals. The location of each cut (just before an "overflowing" bin) and the size of its "overflowing" bin are saved. The
"overflowing" bin's maximum and minimum are compared to determine if the bin can be practically subdivided. (If the
bin's maximum and minimum coordinates are too close relative to double precision resolution, the bin can not be
practically subdivided.) If at least one bin can be further refined, then looping will continue. In order to prevent a
systematic bias, the greedy algorithm is assumed to exactly satisfy the weight required by each partition.

Before starting the next loop, the P intervals are again divided into N bins. The P-1 "overflow" bins are each subdivided
into k-1 equal bins. The intervals before and after these new bins determine the remaining bins. This process maintains a
fixed number of bins. No bin is"privileged." Specifically, any binis subject to later refinement, as necessary, on future
loops.

The loop terminates when there is no need to further divide any "overflow" bin. A dlightly different greedy algorithmis
used to determine the final partition of P intervals from the N bins. In this case, when the next bin would cause an
overflow, the tolerance is computed for both underfilling (excluding this last bin) and overfilling (including the last bin).
Thetolerance closest to the target tolerance is used to select the dividing point. The tolerance obtained at each dividing
point is compared to the user's specified tolerance. An error is returned if the user's tolerance is not satisfied at any cut.
After each cut is made, a correction is calculated as the ratio of the actual weight to the target weight used up to this point.
This correction is made to the target weight for the next partition. This correction fixes the subsequent partitions when a
"massive" weight object is on the border of acut and its assignment creates an excessive imbalance.

Generally, the number of loopsis small (proportional to log(number of objects)). A maximum of MAX_LOOPS is used to

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_hsfc.html (1 of 3) [7/29/2004 12:31:51 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html

Zoltan Developer's Guide: HSFC

prevent an infinite looping condition. A user-defined function is used in the MPI_Allreduce call in order to
simultaneously determine the sum, maximum, and minimum of each bin. The message length in the MPI_Allreduceis
proportional to the P, the number of partitions.

Note, when abin is encountered that satisfies more than two partitions, that bin isrefined into a multiple of k-1 intervals
which maintains atotal of N bins.

Hilbert Transformations

The HSFC now uses table driven logic to convert from spatial coordinates (2 or 3 dimensions) (the Inverse Hilbert
functions) and from the unit interval into spatial coordinates (Hilbert functions). In each case there are two associated
tables: the data table and the state table. In all cases, the table logic can be extended to any required precision. Currently,
the precision is determined for compatibility with the the double precision used in the partitioning algorithm.

The inverse transformation is computed by taking the highest order bit from each spatial coordinate and packing them
together as 2 or 3 bits (as appropriate to the dimensionality) in the order xyz (or xy) where x is the highest bit in the word.
Theinitial state is 0. The data table lookup finds the value at the column indexed by the xyz word and the row 0
(corresponding to theinitial state value.) This data are the 3 (or 2) starting bits of the Hilbert coordinate. The next state
valueisfound by looking up the corresponding element of the state table (xyz column and row 0.)

The table procedure continues to loop (using loop counter i, for example) until the required precision isreached. At loop i,
theith bits from each spatial dimension are packed together as the xyz column index. The data table lookup finds the
element at column xyz and the row determined by the last state table value. This is appended to the Hilbert coordinate.
The state table is used to find the next state value at the element corresponding to the xyz column and row equal to the last
state value.

The inverse transformation is analogous. Here the 3 (or 2 in the 2-d case) bits of the Hilbert coordinate are extracted into a
word. Thisword is the column index into the data table and the state value is the row. Thisword found in the datatableis
interpreted as the packed xyz bits for the spatial coordinates. These hits are extracted for each dimension and appended to
that dimension's coordinate. The corresponding state table is used to find the next row (state) used in the next loop.

Point Assign

The user can use Zoltan_L B_Point_Assign to add a new point to the appropriate partition. The bounding box

coordinates, the final partition, and other related information are maintained after partitioning if the KEEP_CUTS
parameter is set by the user. The KEEP_CUTS parameter must be set by the user for Point Assign! The extended bounded
box is used to compute the new point'sinverse Hilbert coordinate. Then the routine performs a binary search on the final
partition to determine the partition (interval) which includes the point. The routine returns the partition number assigned
to that interval.

The Point Assign function now works for any point in space, even if the point is outside the original bounding box. If the
point is outside the bounding box, it isfirst scaled using the same equations that scale the interior points into the unit
volume. The point is projected onto the unit volume. For each spatial dimension, if the scaled coordinate is less than zero,
itisreplace by zero. If it is greater than one, it is replaced by one. Otherwise the scaled coordinate is directly used.

Box Assign

The user can use Zoltan LB Box_Assign to determine the partitions whose corresponding subdomains intersect the
user's query box. Although very different in implementation, the papers by Lawder and King ("Querying Multi-
dimensional Data Index Using the Hilbert Space-Filling Curve", 2000, etc.) were the original inspiration for this
algorithm. The Zoltan_ HSFC_Box_Assign routine primarily scales the user query region and determines its intersection
with the Hilbert's bounding box. Points exterior to the bounding box get projected along the coordinate axis onto the
bounding box. A fuzzy region is built around query points and lines to create the boxes required for the search. It also
handles the trivial one-dimensional case. Otherwise it repeatedly calls the 2d and 3d query functions using the next

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_hsfc.html (2 of 3) [7/29/2004 12:31:51 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign

Zoltan Developer's Guide: HSFC

highest partition's left end point to start the search. These query routines return the next point on the Hilbert curve to enter
the query region. A binary search finds the partition associated with this point. The query functions are called one more
time than the number of partitions that have pointsinterior to the query region.

The query functions decompose the unit square (or cube) level by level like the Octree method. Each level dividesthe
remaining region into quadrants (or octetsin 3d). At each level, the quadrant with the smallest inverse Hilbert coordinate
(that is, occurring first along the Hilbert curve) whose inverse Hilbert coordinate is equal or larger than the starting
inverse Hilbert coordinate and which intersects with query region is selected. Thus, each level calculates the next 2 bits (3
bitsin 3d) of the inverse Hilbert coordinate of the next point to enter the query region. No more than once per call to the
guery function, the function may backtrack to a nearest previous level that has another quadrant that intersects the query
region and has a higher Hilbert coordinate.

In order to determine the intersection with the query region, the next 2 bits (3 in 3 dimensions) of the Hilbert
transformation are also computed (by table lookup) at each level for the quadrant being tested. These bits are compared to
the the bits resulting from the intersection of the query region with the region determined by the spatial coordinates
computed to the precision of the previous levels.

If the user query box has any side (edge) that is "too small" (effectively degenerate in some dimension), it is replaced by a
minimum value and the corresponding vertex coordinates are symmetrically expanded. Thisisrefered to asa"fuzzy"
region.

This function requires the KEEP_CUTS parameter to be set by the user. The Box Assign function now works for any box
in space, even if it has regions outside the original bounding box. The box vertices are scaled and projected exactly like
the pointsin the Point Assign function described above. However, to allow the search to use a proper volumn, projected
points, lines, and planes are converted to a usable volume by the fuzzy region process described above.

This algorithm will work for any space filling curve. All that is necessary is to provide the tables (derieved from the
curve's state transition diagram) in place of the Hilbert Space Filling Curve tables.

Data Structure Definitions

The data structures are defined in hsfc/hsfe.h. The objects being load balanced are represented by the Dots Structure which
holds the objects spacia coordinates, the corresponding inverse Hilbert coordinate, the processor owning the object, and
the object's weight(s). The Partition structure holds the left and right endpoints of the interval represented by this element
of the partition and the index to the processor owning this element of the partition. The structure HSFC_Data holds the
"persistant” data needed by the point assign and box assign routines. This includes the bounding box, the number of loops
necessary for load balancing, the number of dimensions for the problem, a pointer to the function that returns the inverse
Hilbert Space-Filling Curve coordinate, and the final Partition structure contents.

Parameters

The parameters used by HSFC and their default values are described in the HSFC section of the Zoltan User's Guide.
These can be set by use of the Zoltan_HSFC_Set_Param subroutine in the file hsfc/hsfc.c.

Main Routine

The main routine for HSFC is Zoltan_HSFC in the file hsfc/hsfe.c.

[Table of Contents | Previous: Refinement Tree]

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_hsfc.html (3 of 3) [7/29/2004 12:31:51 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html

	Local Disk
	Zoltan Developer's Guide
	Zoltan Developer's Guide: Introduction
	Zoltan Developer's Guide: Philosophy
	Zoltan Developer's Guide: Coding Principles
	Zoltan Developer's Guide: Distribution
	Zoltan Developer's Guide: CVS
	Zoltan Developer's Guide: Directory Layout
	Zoltan Developer's Guide: Compilation
	Zoltan Developer's Guide: Load-Balancing
	Zoltan Developer's Guide: Load-Balancing Interface
	Zoltan Developer's Guide: Data Types
	Zoltan Developer's Guide: Load Balancing Data Structures
	Zoltan Developer's Guide: Services
	Zoltan Developer's Guide: Parameter Setting Routines
	Zoltan Developer's Guide: Parallel Routines
	Zoltan Developer's Guide: Object List function
	Zoltan Developer's Guide: Hash function
	Zoltan Developer's Guide: Timing Routines
	Zoltan Developer's Guide: Debugging Services
	Zoltan Developer's Guide: Adding Algorithms
	Zoltan Developer's Guide: Adding Interface Routines
	Zoltan Developer's Guide: Adding Load-Balancing Functions
	Zoltan Developer's Guide: Adding Data Structures
	Zoltan Developer's Guide: Adding Algorithms: How to handle memory
	Zoltan Developer's Guide: Adding Parameters
	Zoltan Developer's Guide: Partition Remapping
	Zoltan Developer's Guide: Migration Tools
	Zoltan Developer's Guide: FORTRAN Interface
	Zoltan Developer's Guide: References
	Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive
	zdrive.pdf
	Local Disk
	file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/zdrive.inp

	Zoltan Developer's Guide: Running test_zoltan
	Zoltan Developer's Guide: RCB
	Zoltan Developer's Guide: RIB
	Zoltan Developer's Guide: ParMETIS/Jostle
	Zoltan Developer's Guide: Refinement Tree
	Zoltan Developer's Guide: HSFC

