
Zoltan User's Guide

Zoltan Home Page

Zoltan User's Guide

Zoltan Developer's Guide

Zoltan Project Description

Papers and Presentations

How to Cite Zoltan

Download Zoltan

Report a Zoltan Bug

Contact Zoltan Developers

Zoltan:

Parallel Partitioning, Load Balancing and Data-
Management Services

User's Guide

The Zoltan Team
Sandia National Laboratories:
Erik Boman
Karen Devine
Robert Heaphy
Bruce Hendrickson
Vitus Leung
Lee Ann Riesen
Courtenay Vaughan

Ohio State University
Umit Catalyurek
Doruk Bozdag

National Institute of Standards and Technology
William F. Mitchell

Williams College
James D. Teresco

Zoltan User's Guide, Version 3.0

DOWNLOAD PDF VERSION
HERE.

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Using the Zoltan Library

System Requirements
Building the Library
Testing the Library
Reporting Zoltan Bugs
Incorporating Zoltan into Applications

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug.html (1 of 3) [5/21/07 12:06:02 PM]

1

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search/index.html
http://www.sandia.gov/news/index.html
http://www.sandia.gov/contact-us/index.html
http://www.sandia.gov/mission/index.html
http://www.sandia.gov/mission/ste/index.html
http://www.sandia.gov/about/index.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan_phil.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan_pubs.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan_cite.html
http://www.cs.sandia.gov/~web1400/1400_download.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan_bugreport.html
mailto: zoltan-dev@software.sandia.gov
http://www.sandia.gov/~egboman
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://bmi.osu.edu/~umit
http://www.ece.osu.edu/~bozdagd
http://math.nist.gov/~mitchell
http://www.teresco.org/~terescoj
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_pdf/ug.pdf
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_pdf/ug.pdf

Zoltan User's Guide

Building Applications
Data Types for Object IDs
C++ Interface
FORTRAN Interface

Zoltan Interface Functions

Error Codes
General Zoltan Interface Functions
Load-Balancing Functions
Functions for Adding Items to a Decomposition
Migration Functions
Ordering Functions
Coloring Functions

Application-Registered Query Functions

General Zoltan Query Functions
Migration Query Functions

Zoltan Parameters and Output Levels

General Parameters
Debugging Levels

Load-Balancing Algorithms and Parameters

Load-Balancing Parameters
Simple Partitioners for Testing

Block Partitioning
Random Partitioning

Geometric (Coordinate-based) Partitioners

Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve (HSFC) Partitioning
Refinement Tree Based Partitioning

Hypergraph Partitioning, Repartitioning and Refinement

PHG
PaToH

Graph Partitioning and Repartitioning

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug.html (2 of 3) [5/21/07 12:06:02 PM]

2

Zoltan User's Guide

Discussion of graph partitioning vs. hypergraph
partitioning
PHG
ParMETIS
Jostle

Ordering Algorithms

Nested Dissection by METIS/ParMETIS

Coloring Algorithms

Parallel Coloring

Data Services and Utilities

Building Utilities
Dynamic Memory Management
Unstructured Communication
Distributed Data Directories

Examples of Library Usage

General Usage
Load-Balancing
Migration
Query Functions

Zoltan Release Notes

Backward Compatibility with Earlier Versions of Zoltan

References

Index of Interface and Query Functions

Copyright (c) 2000-2007, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU Lesser General
Public License (LGPL). See the README file in the main Zoltan directory for more
information.

[Zoltan Home Page | Next: Introduction]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug.html (3 of 3) [5/21/07 12:06:02 PM]

3

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan.html

Zoltan User's Guide: Introduction

Zoltan User's Guide | Next | Previous

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Project Motivation

Over the past decade, parallel computers have been used with great success in many scientific simulations. While differing in their numerical
methods and details of implementation, most applications successfully parallelized to date are "static" applications. Their data structures and
memory usage do not change during the course of the computation. Their inter-processor communication patterns are predictable and non-
varying. And their processor workloads are predictable and roughly constant throughout the simulation. Traditional finite difference and finite
element methods are examples of widely used static applications.

However, increasing use of "dynamic" simulation techniques is creating new challenges for developers of parallel software. For example,
adaptive finite element methods refine localized regions the mesh and/or adjust the order of the approximation on individual elements to obtain
a desired accuracy in the numerical solution. As a result, memory must be allocated dynamically to allow creation of new elements or degrees
of freedom. Communication patterns can vary as refinement creates new element neighbors. And localized refinement can cause severe
processor load imbalance as elemental and processor work loads change throughout a simulation.

Particle simulations and crash simulations are other examples of dynamic applications. In particle simulations, scalable parallel performance
depends upon a good assignment of particles to processors; grouping physically close particles within a single processor reduces inter-
processor communication. Similarly, in crash simulations, assignment of physically close surfaces to a single processor enables efficient
parallel contact search. In both cases, data structures and communication patterns change as particles and surfaces move. Re-partitioning of the
particles or surfaces is needed to maintain geometric locality of objects within processors.

We developed the Zoltan library to simplilfy many of the difficulties arising in dynamic applications. Zoltan is a collection of data
management services for unstructured, adaptive and dynamic applications. It includes a suite of parallel partitioning algorithms, data migration
tools, parallel graph coloring tools, distributed data directories, unstructured communication services, and dynamic memory management
tools. Zoltan's data-structure neutral design allows it to be used by a variety of applications without imposing restrictions on application data
structures. Its object-based interface provides a simple and inexpensive way for application developers to use the library and researchers to
make new capabilities available under a common interface.

The Zoltan Toolkit

The Zoltan Library contains a number of tools that simplify the development and improve the performance of parallel, unstructured and
adaptive applications. The library is organized as a toolkit, so that application developers can use as little or as much of the library as desired.
The major packages in Zoltan are listed below.

�● A suite of dynamic load balancing and parallel repartitioning algorithms, including geometric, hypergraph and graph methods;
switching between algorithms is easy, allowing straightforward comparisons of algorithms in applications.

�● Data migration tools for moving data from old partitions to new one.
�● Parallel graph coloring tools with both distance-1 and distance-2 coloring.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (1 of 4) [5/21/07 12:06:04 PM]

4

Zoltan User's Guide: Introduction

�● Distributed data directories: scalable (in memory and computation) algorithms for locating needed off-processor data.
�● An unstructured communication package that insulates users from the details of message sends and receives.
�● Dynamic memory management tools that simplify dynamic memory debugging on state-of-the-art parallel computers.
�● A sample application zdrive. It allows algorithm developers to test changes to Zoltan without having to run Zoltan in a large

application code. Application developers can use the zdrive code to see examples of function calls to Zoltan and the implementation
of query functions.

Terminology

Our design of Zoltan does not restrict it to any particular type of application. Rather, Zoltan operates on uniquely identifiable data items that
we call objects. For example, in finite element applications, objects might be elements or nodes of the mesh. In particle applications, objects
might be particles. In linear solvers, objects might be matrix rows or non-zeros.

Each object must have a unique global identifier (ID) represented as an array of unsigned integers. Common choices include global numbers
of elements (nodes, particles, rows, and so on) that already exist in many applications, or a structure consisting of an owning processor number
and the object's local-memory index. Objects might also have local (to a processor) IDs that do not have to be unique globally. Local IDs such
as addresses or local-array indices of objects can improve the performance (and convenience) of Zoltan's interface to applications.

We use a simple example to illustrate the above terminology. On the left side of the figure below, a simple finite element mesh is presented.

The blue and red shading indicates the mesh is partitioned for two processors. An application must provide information about the current mesh
and partition to Zoltan. If, for example, the application wants Zoltan to perform operations on the elements of the mesh, it must provide
information about the elements when Zoltan asks for object information.

In this example, the elements have unique IDs assigned to them, as shown by the letters in the elements. These unique letters can be used as
global IDs in Zoltan. In addition, on each processor, local numbering information may be available. For instance, the elements owned by a

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (2 of 4) [5/21/07 12:06:04 PM]

5

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_driver.html

Zoltan User's Guide: Introduction

processor may be stored in arrays in the processor's memory. An element's local array index may be provided to Zoltan as a local ID.

For geometric algorithms, the application must provide coordinate information to Zoltan. In this example, the coordinates of the mid-point of
an element are used.

For hypergraph- and graph-based algorithms, information about the connectivity of the objects must be provided to Zoltan. In this example,
the application may consider elements connected if they share a face. A hypergraph representing this problem is then shown to the right of the
mesh. A hyperedge exists for each object (squares labeled with lower-case letters corresponding to the related object). Each hyperedge
connects the object and all of its face neighbors. The hyperedges are passed to Zoltan with a label (in this example, a lower-case letter) and a
list of the object IDs in that hyperedge.

Graph connections, or edges, across element faces may also specified. Connectivity information is passed to Zoltan by specifying a neighbor
list for an object. The neighbor list consists of the global IDs of neighboring objects and the processor(s) currently owning those objects.
Because relationships across faces are bidirectional, the graph edge lists and hypergraph hyperedge lists are nearly identical. If, however,
information flowed to, say, only the north and east edge neighbors of an element, the hypergraph model would be needed, as the graph model
can represent only bidirectional relationships. In this case, the hyperedge contents would include only the north and east neighbors; they would
exclude south and west neighbors.

The table below summarizes the information provided to Zoltan by an application for this finite element mesh. Information about the objects
includes their global and local IDs, geometry data, hypergraph data, and graph data.

Object IDs Geometry Data Graph Data

Processor Global Local (coordinates) Neighbor Global ID List Neighbor Processor List

Red A 0 (2,10) B,D Blue

Blue B 0 (1,7) A,C,D Red,Blue,Blue

C 1 (1,5) B,E,F Blue,Blue,Blue

D 2 (3,7) A,B,E Red,Blue,Blue

E 3 (3,5) C,D,F Blue,Blue,Blue

F 4 (2,2) C,E Blue,Blue

Hyperedge Data

Hyperedge ID Hyperedge contents

a A,B,D

b A,B,C,D

c B,C,E,F

d A,B,D,E

e C,D,E,F

f C,E,F

Zoltan Design

To make Zoltan easy to use, we do not impose any particular data structure on an application, nor do we require an application to build a
particular data structure for Zoltan. Instead, Zoltan uses a callback function interface, in which Zoltan queries the application for needed data.
The application must provide simple functions that answer these queries.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (3 of 4) [5/21/07 12:06:04 PM]

6

Zoltan User's Guide: Introduction

To keep the application interface simple, we use a small set of callback functions and make them easy to write by requesting only information
that is easily accessible to applications. For example, the most basic partitioning algorithms require only four callback functions. These
functions return the number of objects owned by a processor, a list of weights and IDs for owned objects, the problem's dimensionality, and a
given object's coordinates. More sophisticated graph-based partitioning algorithms require only two additional callback functions, which return
the number of edges per object and edge lists for objects.

[Table of Contents | Next: Zoltan Usage | Previous: Table of Contents]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (4 of 4) [5/21/07 12:06:04 PM]

7

Zoltan User's Guide: Library Usage

Zoltan User's Guide | Next | Previous

Using the Zoltan library

This section contains information needed to use the Zoltan library with applications:

System requirements.
Building the Zoltan library.
Testing the Zoltan library.
Reporting bugs in Zoltan.
Incorporating Zoltan into Applications
Building applications that use Zoltan.
Data types for global and local IDs.
C++ interface.
F90 interface.

System Requirements

Zoltan was designed to run on parallel computers and clusters of workstations. In order to build and use Zoltan, you will need:

�● ANSI C or C++ compiler.
�● MPI library for message passing (version 1.1 or higher), such as MPICH or LAM.
�● A Unix-like operating system (e.g., Linux or Solaris) and gmake (GNU Make) are recommended to build the library.
�● A Fortran90 compatible compiler is required if you wish to use Zoltan with Fortran applications.

Zoltan has been tested on a variety of platforms, including Linux, Solaris, Irix, Mac OS X, and Sandia's ASC RedStorm machine. If you wish
to use Zoltan on a non-Unix operating system, for example Windows NT or 2000, you will have to port Zoltan yourself.

Building the Zoltan Library

The Zoltan library is implemented in ANSI C and can be compiled with any ANSI C compiler. Makefiles are included with the source code;
these makefiles require the GNU Make (gmake) utility. The top-level Makefile defines targets for the Zoltan library, test driver programs in C,
C++ and Fortran90, and two graphical utilities useful for visualization of geometric partitions. (The test drivers and utilities are primarily
intended for use by developers.) This Makefile need not be edited to build Zoltan. Instead, environment-specific definitions are specified in
the configuration file, Utilities/Config/Config.<platform>, where <platform> specifies the particular platform for which Zoltan is being built.
Paths to compilers, include files, and libraries are defined in this file and are then read by the top-level Makefile. Examples of configuration
files for Solaris, Sandia's ASC RedStorm computer, SGI workstations, Macs running OS X, and PCs running Linux are included in the
Utilities/Config subdirectory. A well-commented version of the configuration file, Utilities/Config/Config.generic, is also included; this file
can be used as a template for new environment-specific files. The variables in these files should be edited to reflect the new system's
environment.

The command for building Zoltan is shown below:

gmake [options] zoltan

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (1 of 4) [5/21/07 12:06:05 PM]

8

http://www-unix.mcs.anl.gov/mpi/
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_driver.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_view.html

Zoltan User's Guide: Library Usage

where the options that may be specified are listed below.

Options to gmake:

 ZOLTAN_ARCH=<platform> Specify the target architecture for the Zoltan library. A corresponding file, Utilities/Config/Config.
<platform>, containing environment definitions for <platform>, must be created in the Utilities/Config
directory.

 YES_FORTRAN=1 Include Fortran support in the Zoltan library. By default, the Zoltan library is built without the interface
that allows use from Fortran applications. If this option is specified, the Fortran interface is compiled
and included in the library. Use of this option requires that a Fortran 90 (or 95, or later) compiler is
available.

As an alternative to typing the options on the gmake command line, they may be set as environment variables; e.g., if you are using a C-shell
(csh or tcsh), type

setenv ZOLTAN_ARCH <platform>

or if you are using a Bourne-type shell (e.g., sh or bash), type

ZOLTAN_ARCH = <platform>; export ZOLTAN_ARCH

The resulting library libzoltan.a, object files, and dependency files are stored in the directory Obj_<platform>.

Testing the Zoltan Library

The examples directory contains simple C and C++ examples which use the Zoltan library. The Makefile in this directory has three targets:

gmake ZOLTAN_ARCH=<platform> C_Examples
This builds simple C language examples that use the Zoltan library to perform load balancing.

gmake ZOLTAN_ARCH=<platform> CPP_Examples
This builds simple C++ language examples that use the Zoltan library to perform load balancing. To build C++ applications, define
CPPC to point to your C++ compiler in the Config.<platform> file.

gmake ZOLTAN_ARCH=<platform> all
Build both C and C++ examples. Don't forget to define CPPC in your Config.<platform> file.

Some of these examples make use of a small library of support routines found in the examples/lib directory. These routines create simple test
meshes of varying sizes, perform error checking across the parallel application, and define Zoltan call backs.

The "right" answer for these tests depends on the number of processes with which you run the tests. In general, if they compile successfully,
run quickly (in seconds), and produce reasonable looking output, then you have been successful in building Zoltan.

Reporting Bugs in Zoltan

Zoltan uses Bugzilla to collect bug reports. Please read the instructions for reporting bugs through the Zoltan Bugzilla database.

Incorporating Zoltan into Applications

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (2 of 4) [5/21/07 12:06:05 PM]

9

http://www.bugzilla.org/
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan_bugreport.html

Zoltan User's Guide: Library Usage

Incorporating Zoltan into applications requires three basic steps:

�● Writing query functions that return information about the application to Zoltan.
�● Initializing Zoltan, creating a Zoltan object, and setting appropriate parameters.
�● Calling Zoltan tools to perform partitioning, ordering, migration, coloring, etc.

The set of query functions needed by an application depends on the particular tools (e.g., partitioning, ordering) used and on the algorithms
selected within the tools. Not all query functions are needed by every application. See documentation on tools and algorithms to determine
which query functions are needed.

Building Applications that use Zoltan

The C library interface is described in the include file include/zoltan.h; this file should be included in all C application source files that call
Zoltan library routines.

The C++ interface to Zoltan is implemented in header files which define classes that wrap the Zoltan C library. The file include/zoltan_cpp.h
defines the Zoltan class which encapsulates a load balancing data structure and the Zoltan load balancing functions which operate upon it.
Include this header file instead in your C++ application. Note that C++ applications should call the C function Zoltan_Initialize before
creating a Zoltan object.

Fortran applications must USE module zoltan and specify Zoltan/Obj_<platform> as a directory to be searched for module information files.

The C, C++ or Fortran application should then be linked with the Zoltan library (built with Fortran support in the Fortran case) and its utility
libraries by including

-lzoltan

in the linking command for the application. Communication within Zoltan is performed through MPI, so appropriate MPI libraries must be
linked with the application. Third-party libraries, such as ParMETIS and PaToH, must be also be linked with the application if they were
included in compilation of the Zoltan library. (A courtesy copy of ParMETIS is included with the Zoltan distribution; PaToH must be
obtained directly from http://bmi.osu.edu/~umit/software.html.)

For applications that used versions of Zoltan before Zoltan v.1.3, only minor updates to the application build process are needed; see the
section on backward compatibility of Zoltan.

Data Types for Object IDs

Application query functions and application callable library functions use global and local identifiers (IDs) for objects. All objects to be used in
load balancing must have unique global IDs. Zoltan stores an ID as an array of unsigned integers. The number of entries in these arrays can be
set using the NUM_GID_ENTRIES and NUM_LID_ENTRIES parameters; by default, one unsigned integer represents an ID. Applications
may use whatever format is most convenient to store their IDs; the IDs can then be converted to and from Zoltan's ID format in the application-
registered query functions.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (3 of 4) [5/21/07 12:06:05 PM]

10

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_apps.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api zoltan module
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://bmi.osu.edu/~umit/software.html

Zoltan User's Guide: Library Usage

The following type definitions are defined in include/zoltan_types.h; they can be used by an application for memory allocation, MPI
communication, and as arguments to load-balancing interface functions and application-registered query functions.

typedef unsigned int ZOLTAN_ID_TYPE;
typedef ZOLTAN_ID_TYPE *ZOLTAN_ID_PTR;
#define ZOLTAN_ID_MPI_TYPE MPI_UNSIGNED

In the Fortran interface, IDs are passed as arrays of integers since unsigned integers are not supported in Fortran. See the description of the
Fortran interface for more details.

The local IDs passed to Zoltan are not used by the library; they are provided for the convenience of the application and can contain any
information desired by the application. For instance, local array indices for objects may be passed as local IDs, enabling direct access to object
data in the query function routines. See the application-registered query functions for more details. The source code distribution contains an
example application zdrive in which global IDs are integers and local IDs are local array indices. One may choose not to use local ids at all, in
which case NUM_LID_ENTRIES may be set to zero.

Some Zoltan routines (e.g., Zoltan_LB_Partition and Zoltan_Invert_Lists) allocate arrays of type ZOLTAN_ID_PTR and return them to
the application. Others (e.g., Zoltan_Order and Zoltan_DD_Find) require the application to allocate memory for IDs. Memory for IDs can
be allocated as follows:

ZOLTAN_ID_PTR gids;
int num_gids, int num_gid_entries;
gids = (ZOLTAN_ID_PTR) ZOLTAN_MALLOC(num_gids * num_gid_entries * sizeof

(ZOLTAN_ID_TYPE);

The system call malloc may be used instead of ZOLTAN_MALLOC.

[Table of Contents | Next: C++ Interface | Previous: Introduction]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (4 of 4) [5/21/07 12:06:05 PM]

11

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api IDs
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_driver.html

Zoltan User's Guide: C++ Interface

Zoltan User's Guide | Next | Previous

C++ Interface

The C++ interface to the Zoltan library is contained in the header files listed below. Each header file defines one class. Each class represents a
Zoltan data structure and the functions that operate on that data structure. The class methods in the header files call functions in the Zoltan C
library. So to use the C++ interface from your application, include the appropriate header file and link with the Zoltan C library.

header file class

include/zoltan_cpp.h Zoltan, representing a load balancing instance

Utilities/Communication/zoltan_comm_cpp.h
Zoltan_Comm, representing an unstructured communication
instance

Utilities/DDirectory/zoltan_dd_cpp.h Zoltan_DD, representing a distributed directory instance

Utilities/Timer/zoltan_timer_cpp.h Zoltan_Timer, representing a timer instance

More detailed information about the interface may be found in the Zoltan Developer's Guide.

Simple examples of the use of the interface may be found in the examples/CPP directory. A more complete example is the test driver
zCPPdrive. The source code for this test driver is in the driver directory.

A note on declaring application registered query functions from a C++ application may be found in the section titled Application-Registered
Query Functions.

Two peculiarities of the wrapping of Zoltan with C++ classes are mentioned here:

1. You must call the C language function Zoltan_Initialize before using the C++ interface to the Zoltan library. This function should
only be called once. Due to design choices, the C++ interface maintains no global state that is independent of any instantiated
objects, so it does not know if the function has been called or not. Therefore, the C++ wrappers do not call Zoltan_Initialize for you.

2. It is preferable to allocate Zoltan objects dynamically so you can explicitly delete them before your application exits. (Zoltan
objects allocated instead on the stack will be deleted automatically at the completion of the scope in which they were created.) The
reason is that the Zoltan destructor calls Zoltan_Destroy(), which makes an MPI call to free the communicator in use by the Zoltan
object. However the MPI destructor may have been called before the Zoltan destructor. In this case you would receive an error while
your application is exiting.

This second point is illustrated in the good and bad example below.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_cpp.html (1 of 2) [5/21/07 12:06:05 PM]

12

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_cpp.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_driver.html

Zoltan User's Guide: C++ Interface

int main(int argc, char *argv[])
{
 MPI::Init(argc, argv);
 int rank = MPI::COMM_WORLD.Get_rank();
 int size = MPI::COMM_WORLD.Get_size();

 //Initialize the Zoltan library with a C language call
 float version;
 Zoltan_Initialize(argc, argv, &version);

 //Dynamically create Zoltan object.
 Zoltan *zz = new Zoltan(MPI::COMM_WORLD);
 zz->Set_Param("LB_METHOD", "RCB");

 //Several lines of code would follow, working with zz

 //Explicitly delete the Zoltan object
 delete zz;
 MPI::Finalize();
 }

Good example, Zoltan object is dynamically allocated and explicity deleted before exit.

int main(int argc, char *argv[])
{
Zoltan zz;

 MPI::Init(argc, argv);
 int rank = MPI::COMM_WORLD.Get_rank();
 int size = MPI::COMM_WORLD.Get_size();

 //Initialize the Zoltan library with a C language call
 float version;
 Zoltan_Initialize(argc, argv, &version);

 zz.Set_Param("LB_METHOD", "RCB");

 //Several lines of code would follow, working with zz

 MPI::Finalize();
 }

Bad example, the MPI destructor may execute before the Zoltan destructor at process exit.

[Table of Contents | Next: Fortran Interface | Previous: Zoltan Usage

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_cpp.html (2 of 2) [5/21/07 12:06:05 PM]

13

Zoltan User's Guide: FORTRAN Interface

Zoltan User's Guide | Next | Previous

FORTRAN Interface

The Fortran interface for Zoltan is a Fortran 90 interface designed similar to the Fortran 90 Bindings for OpenGL [Mitchell]. There is no
FORTRAN 77 interface; however, FORTRAN 77 applications can use Zoltan by adding only a few Fortran 90 statements, which are fully
explained in the section on FORTRAN 77, provided that vendor-specific extensions are not heavily used in the application. This section
describes how to build the Fortran interface into the Zoltan library, how to call Zoltan from Fortran applications, and how to compile Fortran
applications that use Zoltan. Note that the capitalization used in this section is for clarity and need not be adhered to in the application code,
since Fortran is case insensitive.

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System Specific Remarks

FORTRAN: Compiling Zoltan

To include the Fortran interface in the Zoltan library, use the YES_FORTRAN parameter in the make statement; for example

gmake YES_FORTRAN=1 ZOLTAN_ARCH=<platform> zoltan

Before compiling the library, make sure that the application's zoltan_user_data.f90 has been placed in the Zoltan/fort/ directory.

FORTRAN: Compiling Applications

To compile a Fortran application using the Zoltan library, the module information files must be made available to most compilers during the
compilation phase. Module information files are files generated by the compiler to provide module information to program units that USE the
module. They usually have suffixes like .mod or .M. The module information files for the modules in the Zoltan library are located in the
Obj_<platform> subdirectory. Most Fortran 90 compilers have a compile line flag to specify directories to be searched for module information
files, typically "-I"; check the documentation for your compiler. If your compiler does not have such a flag, you will have to copy the module
information files to the directory of the application (or use symbolic links).

The Fortran interface is built into the same library file as the rest of Zoltan, which is found during the compiler link phase with -lzoltan. Thus
an example compilation line would be

f90 -I<path to Zoltan>/Obj_<platform>application.f90 -lzoltan

FORTRAN API

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html (1 of 5) [5/21/07 12:06:06 PM]

14

Zoltan User's Guide: FORTRAN Interface

The Fortran interface for each Zoltan Interface Function and Application-Registered Query Function is given along with the C interface. This
section contains some general information about the design and use of the Fortran interface.

Names
Zoltan module
Numeric types
Structures
Global and local IDs
Query function data

Names

All procedure, variable, defined constant and structure names are identical to those in the C interface, except that in Fortran they are case
insensitive (either upper or lower case letters can be used).

Zoltan module

MODULE zoltan provides access to all entities in Zoltan that are of use to the application, including kind type parameters, named constants,
procedures, and derived types. Any program unit (e.g., main program, module, external subroutine) that needs access to an entity from Zoltan
must contain the statement

USE zoltan

near the beginning.

Numeric types

The correspondence between Fortran and C numeric types is achieved through the use of kind type parameters. In most cases, the default kind
for a Fortran type will match the corresponding C type, but this is not guaranteed. To insure portability of the application code, it is highly
recommended that the following kind type parameters be used in the declaration of all variables and constants that will be passed to a Zoltan
procedure:

C Fortran

int INTEGER(KIND=Zoltan_INT)

float REAL(KIND=Zoltan_FLOAT)

double REAL(KIND=Zoltan_DOUBLE)

Note that "KIND=" is optional in declaration statements. The kind number for constants can be attached to the constant, e.g.,
1.0_Zoltan_DOUBLE.

Structures

For any struct in the C interface to Zoltan, e.g. Zoltan_Struct, there is a corresponding derived type in the Fortran interface. Variables of this
type are declared as demonstrated below:

TYPE(Zoltan_Struct) :: zz

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html (2 of 5) [5/21/07 12:06:06 PM]

15

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_lb_structs.html#Zoltan_Struct

Zoltan User's Guide: FORTRAN Interface

In the Fortran interface, the internal components of the derived type are PRIVATE and not accessible to the application. However, the
application simply passes these variables around, and never needs to access the internal components.

Global and local IDs

While the C implementation uses arrays of unsigned integers to represent global and local IDs, the Fortran interface uses arrays of integers, as
unsigned integers are not available in Fortran. Thus, each ID is represented as an array (possibly of size 1) of integers. Applications that use
other data types for their IDs can convert between their data types and Zoltan's in the application-registered query functions.

Query function data

Zoltan_Set_Fn allows the application to pass a pointer to data that will subsequently be passed to the query function being registered. From
Fortran this is an optional argument, or can be one of several types. In the simplest cases, an intrinsic array containing the data will be
sufficient. For these cases, data can be an assumed size array of type INTEGER(Zoltan_INT), REAL(Zoltan_FLOAT) or REAL
(Zoltan_DOUBLE). When the argument is omitted in the call to the registration function, a data argument will still be passed to the query
function. This should be declared as an assumed size array of type INTEGER(Zoltan_INT) and never used.

For more complicated situations, the application may need to pass data in a user-defined type. The strong type checking of Fortran does not
allow passing an arbitrary type without modifying the Fortran interface for each desired type. So the Fortran interface provides a type to be
used for this purpose, Zoltan_User_Data_1. Since different types of data may need to be passed to different query functions, four such types
are provided, using the numerals 1, 2, 3 and 4 as the last character in the name of the type. These types are defined by the application in
zoltan_user_data.f90. If not needed, they must be defined, but can be almost empty as in fort/zoltan_user_data.f90.

The application may use these types in any appropriate way. If desired, it can define these types to contain the application's data and use the
type throughout the application. But it is anticipated that in most cases, the desired type already exists in the application, and the
Zoltan_User_Data_x types will be used as "wrapper types," containing one or more pointers to the existing types. For example,

TYPE mesh
! an existing data type with whatever defines a mesh

END TYPE mesh

TYPE Zoltan_User_Data_2

TYPE(mesh), POINTER :: ptr
END TYPE Zoltan_User_Data_2

The application would then set the pointer to the data before calling Zoltan_Set_Fn:

TYPE(mesh) :: meshdata
TYPE(Zoltan_User_Data_2) :: query_data
TYPE(Zoltan_Struct) :: zz
INTEGER(Zoltan_INT), EXTERNAL :: num_obj_func ! not required for module procedures

query_data%ptr => meshdata
ierr = Zoltan_Set_Fn(zz,ZOLTAN_NUM_OBJ_FN_TYPE,num_obj_func,query_data)

Note that the existing data type must be available when Zoltan_User_Data_x is defined. Therefore it must be defined either in
zoltan_user_data.f90 or in a module that is compiled before zoltan_user_data.f90 and USEd by MODULE zoltan_user_data. For an example
that uses a wrapper type, see fdriver/zoltan_user_data.f90.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html (3 of 5) [5/21/07 12:06:06 PM]

16

Zoltan User's Guide: FORTRAN Interface

FORTRAN 77

There is no FORTRAN 77 interface for Zoltan; however, an existing FORTRAN 77 application can be compiled by a Fortran 90 compiler
provided it does not use vendor specific extensions (unless the same extensions are supported by the Fortran 90 compiler), and the application
can use Zoltan's Fortran 90 interface with a minimal amount of Fortran 90 additions. This section provides details of the Fortran 90 code that
must be added.

When building the Zoltan library, use the file fort/zoltan_user_data.f90 for zoltan_user_data.f90. This assumes that DATA in a call to
ZOLTAN_SET_FN is either omitted (you can omit arguments that are labeled OPTIONAL in the Fortran API) or an array of type INTEGER,
REAL or DOUBLE PRECISION (REAL*4 and REAL*8 might be acceptable). If a more complicated set of data is required (for example, two
arrays), then it should be made available to the query functions through COMMON blocks.

To get access to the interface, each program unit (main program, subroutine or function) that calls a Zoltan routine must begin with the
statement

USE ZOLTAN

and this should be the first statement after the program, subroutine or function statement (before the declarations).

The pointer to the Zoltan structure returned by ZOLTAN_CREATE should be declared as

TYPE(ZOLTAN_STRUCT), POINTER :: ZZ

(you can use a name other than ZZ if you wish).

To create the structure, use a pointer assignment statement with the call to ZOLTAN_CREATE:

ZZ => ZOLTAN_CREATE(COMMUNICATOR)

Note that the assignment operator is "=>". If ZZ is used in more than one procedure, then put it in a COMMON block. It cannot be passed as
an argument unless the procedure interfaces are made "explicit." (Let's not go there.)

The eight import and export arrays passed to ZOLTAN_LB_PARTITION (and other procedures) must be pointers. They should be declared
as, for example,

INTEGER, POINTER :: IMPORT_GLOBAL_IDS(:)

Note that the double colon after POINTER is required, and the dimension must be declared as "(:)" with a colon. Like ZZ, if they are used in
more than one procedure, pass them through a COMMON block, not as an argument.

Except in the unlikely event that the default kinds of intrinsic types do not match the C intrinsic types, you do not have to use the kind type
parameters Zoltan_INT, etc. It is also not necessary to include the INTENT attribute in the declarations of the query functions, so they can be
simplified to, for example,

SUBROUTINE GET_OBJ_LIST(DATA, GLOBAL_IDS, LOCAL_IDS, WGT_DIM, OBJ_WGTS, IERR)
INTEGER DATA(*),GLOBAL_IDS(*),LOCAL_IDS(*),WGT_DIM,IERR

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html (4 of 5) [5/21/07 12:06:06 PM]

17

Zoltan User's Guide: FORTRAN Interface

REAL OBJ_WGTS(*)

to be more consistent with a FORTRAN 77 style.

FORTRAN: System-Specific Remarks

System-specific details of the FORTRAN interface are included below.

The mention of specific products, trademarks, or brand names is for purposes of identification only. Such mention is not to be
interpreted in any way as an endoresement or certification of such products or brands by the National Institute of Standards and
Technology or Sandia National Laboratories. All trademarks mentioned herein belong to their respective owners.

MPICH
Pacific Sierra
NASoftware

MPICH

As of version 1.1.2, the MPICH implementation of MPI is not completely "Fortran 90 friendly." Only one problem was encountered during
our tests: the reliance on command line arguments. MPICH uses command line arguments during the start-up process, even if the application
does not. Command line arguments are not standard in Fortran, so although most compilers offer it as an extension, each compiler has its own
method of handling them. The problem arises when one Fortran compiler is specified during the build of MPICH and another Fortran compiler
is used for the application. This should not be a problem on systems where there is only one Fortran compiler, or where multiple Fortran
compilers are compatible (for example, FORTRAN 77 and Fortran 90 compilers from the same vendor). If your program can get past the call
to MPI_Init, then you do not have this problem.

To solve this problem, build MPICH in such a way that it does not include the routines for iargc and getarg (I have been able to do this by
using the -f95nag flag when configuring MPICH), and then provide your own versions of them when you link the application. Some versions
of these routines are provided in fdriver/farg_*.

Pacific Sierra

Pacific Sierra Research (PSR) Vastf90 is not currently supported due to bugs in the compiler with no known workarounds. It is not known
when or if this compiler will be supported.

NASoftware

N.A.Software FortranPlus is not currently supported due to problems with the query functions. We anticipate that this problem can be
overcome, and support will be added soon.

[Table of Contents | Next: Zoltan Interface Functions | Previous: C++ Interface

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html (5 of 5) [5/21/07 12:06:06 PM]

18

Zoltan User's Guide: Interface

Zoltan User's Guide | Next | Previous

Zoltan Interface Functions

An application calls a series of dynamic load-balancing library functions to initialize the load balancer, perform load balancing and migrate
data. This section describes the syntax of each type of interface function:

General Zoltan Interface Functions
Load-Balancing Interface Functions
Functions for Augmenting a Decomposition
Migration Interface Functions
Graph Coloring Functions
Graph Ordering Functions

Examples of the calling sequences for initialization, load-balancing, and data migration are included in the Initialization, Load-Balancing, and
Migration sections, respectively, of the Examples of Library Usage.

Error Codes

All interface functions, with the exception of Zoltan_Create, return an error code to the application. The possible return codes are defined in
include/zoltan_types.h and Fortran module zoltan, and are listed in the table below.

Note: Robust error handling in parallel has not yet been achieved in Zoltan. When a processor returns from Zoltan due to an error condition,
other processors do not necessarily return the same condition. In fact, other processors may not know that the original processor has returned
from Zoltan, and may wait indefinitely in a communication routine (e.g., waiting for a message from the original processor that is not sent due
to the error condition). The parallel error-handling capabilities of Zoltan will be improved in future releases.

ZOLTAN_OK Function returned without warnings or errors.

ZOLTAN_WARN Function returned with warnings. The application will probably be able to continue to run.

ZOLTAN_FATAL A fatal error occured within the Zoltan library.

ZOLTAN_MEMERR An error occurred while allocating memory. When this error occurs, the library frees any allocated
memory and returns control to the application. If the application then wants to try to use another, less
memory-intensive algorithm, it can do so.

Return codes defined in include/zoltan_types.h.

Naming conventions

The C, Fortran and C++ interfaces follow consistent naming conventions, as illustrated in the following table.

C and Fortran C++

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface.html (1 of 2) [5/21/07 12:06:07 PM]

19

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api zoltan module

Zoltan User's Guide: Interface

Partitioning and migration functions
example: perform partitioning
example: assign a point to a partition

Zoltan_LB_function()
Zoltan_LB_Partition()
Zoltan_LB_Point_Assign()

Zoltan::function()
Zoltan::LB_Partition()
Zoltan::LB_Point_Assign()

Unstructured communication
example: perform communication

Zoltan_Comm_function
Zoltan_Comm_Do()

Zoltan_Comm::function
Zoltan_Comm::Do()

Distributed data
example: find objects in a remote process

Zoltan_DD_function
Zoltan_DD_Find()

Zoltan_DD::function
Zoltan_DD::Find()

Timers
example: print timing results

Zoltan_Timer_function
Zoltan_Timer_Print()

Zoltan_Timer::function
Zoltan_Timer::Print()

In particular, the C++ Zoltan class represents a load balancing instance and the methods that operate on it. The method name is identical to the
part of the C and Fortran function name that indicates the function performed. A C++ Zoltan_Comm object represents an instance of
unstructured communication, a C++ Zoltan_DD object represents a distributed directory, and a C++ Zoltan_Timer object is a timer. Their
method names are derived similarly.

[Table of Contents | Next: Initialization Functions | Previous: FORTRAN Interface]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface.html (2 of 2) [5/21/07 12:06:07 PM]

20

Zoltan User's Guide: General Zoltan Interface

Zoltan User's Guide | Next | Previous

General Interface Functions

Functions used to initialize and manipulate Zoltan's data structures are described below:

Zoltan_Initialize
Zoltan_Create
Zoltan_Copy
Zoltan_Copy_To
Zoltan_Set_Param
Zoltan_Set_Param_Vec
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Destroy

C and C++: int Zoltan_Initialize (
 int argc,
 char **argv,
 float *ver);

FORTRAN: FUNCTION Zoltan_Initialize(argc, argv, ver)
INTEGER(Zoltan_INT) :: Zoltan_Initialize
INTEGER(Zoltan_INT), INTENT(IN), OPTIONAL :: argc
CHARACTER(LEN=*), DIMENSION(*), INTENT(IN), OPTIONAL :: argv
REAL(Zoltan_FLOAT), INTENT(OUT) :: ver

The Zoltan_Initialize function initializes MPI for Zoltan. If the application uses MPI, this function should be called after calling MPI_Init. If
the application does not use MPI, this function calls MPI_Init for use by Zoltan. This function is called with the argc and argv command-line
arguments from the main program, which are used if Zoltan_Initialize calls MPI_Init. From C, if MPI_Init has already been called, the argc
and argv arguments may have any value because their values will be ignored. From Fortran, if one of argc or argv is omitted, they must both
be omitted. If they are omitted, ver does NOT have to be passed as a keyword argument.

Zoltan_Initialize returns the Zoltan version number so that users can verify which version of the library their application is linked to.

C++ applications should call the C Zoltan_Initialize function before using the C++ interface to the Zoltan library.

Arguments:

 argc The number of command-line arguments to the application.

 argv An array of strings containing the command-line arguments to the application.

 ver Upon return, the version number of the library.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (1 of 6) [5/21/07 12:06:08 PM]

21

Zoltan User's Guide: General Zoltan Interface

C: struct Zoltan_Struct *Zoltan_Create (
 MPI_Comm communicator);

FORTRAN: FUNCTION Zoltan_Create(communicator)
TYPE(Zoltan_Struct), pointer :: Zoltan_Create
INTEGER, INTENT(IN) :: communicator

C++: Zoltan (
 const MPI_Comm &communicator = MPI_COMM_WORLD);

The Zoltan_Create function allocates memory for storage of information to be used by Zoltan and sets the default values for the information.
The pointer returned by this function is passed to many subsequent functions. An application may allocate more than one Zoltan_Struct data
structure; for example, an application may use several Zoltan_Struct structures if, say, it uses different decompositions with different load-
balancing techniques.

In the C++ interface to Zoltan, the Zoltan class represents a Zoltan load balancing data structure and the functions that operate on it. It is the
constructor which allocates an instance of a Zoltan object. It has no return value.

Arguments:

 communicator The MPI communicator to be used for this Zoltan structure. Only those processors included in the
communicator participate in Zoltan functions. If all processors are to participate, communicator should be
MPI_COMM_WORLD .

Returned Value:

 struct Zoltan_Struct * Pointer to memory for storage of Zoltan information. If an error occurs, NULL will be returned in C, or the
result will be a nullified pointer in Fortran. Any error that occurs in this function is assumed to be fatal.

C: struct Zoltan_Struct *Zoltan_Copy (
 Zoltan_Struct *from);

FORTRAN: FUNCTION Zoltan_Copy(from)
TYPE(Zoltan_Struct), pointer :: Zoltan_Copy
TYPE(Zoltan_Struct), INTENT(IN) :: from

C++: Zoltan (
 const Zoltan &zz);

The Zoltan_Copy function creates a new Zoltan_Struct and copies the state of the existing Zoltan_Struct, which it has been passed, to the
new structure. It returns the new Zoltan_Struct.

There is no direct interface to Zoltan_Copy from C++. Rather, the Zoltan copy constructor invokes the C library Zoltan_Copy program.

Arguments:

 from A pointer to the Zoltan_Struct that is to be copied.

Returned Value:

 struct Zoltan_Struct * Pointer to a new Zoltan_Struct, which is now a copy of from.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (2 of 6) [5/21/07 12:06:08 PM]

22

Zoltan User's Guide: General Zoltan Interface

C: int Zoltan_Copy_To (
 Zoltan_Struct *to,
 Zoltan_Struct *from);

FORTRAN: FUNCTION Zoltan_Copy_To(to, from)
INTEGER(Zoltan_INT) :: Zoltan_Copy_To
TYPE(Zoltan_Struct), INTENT(IN) :: to
TYPE(Zoltan_Struct), INTENT(IN) :: from

C++: Zoltan & operator= (
 const Zoltan &zz);

The Zoltan_Copy_To function copies one Zoltan_Struct to another, after first freeing any memory used by the target Zoltan_Struct and re-
initializing it.

The C++ interface to the Zoltan_Copy_To function is through the Zoltan copy operator, which invokes the C library Zoltan_Copy_To
program.

Arguments:

 to A pointer to an existing Zoltan_Struct, the target of the copy.

 from A pointer to an existing Zoltan_Struct, the source of the copy.

Returned Value:

 int 0 on success and 1 on failure.

C: int Zoltan_Set_Param (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val);

FORTRAN: FUNCTION Zoltan_Set_Param(zz, param_name, new_val)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value

C++: int Zoltan::Set_Param (
 const std::string ¶m_name,
 const std::string &new_value);

Zoltan_Set_Param is used to alter the value of one of the parameters used by Zoltan. All Zoltan parameters have reasonable default values,
but this routine allows a user to provide alternative values if desired.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 param_name A string containing the name of the parameter to be altered. Note that the string is case-insensitive. Also,
different Zoltan structures can have different parameter values.

 new_val A string containing the new value for the parameter. Example strings include "3.154", "True", "7" or anything
appropriate for the parameter being set. As above, the string is case-insensitive.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (3 of 6) [5/21/07 12:06:08 PM]

23

Zoltan User's Guide: General Zoltan Interface

C: int Zoltan_Set_Param_Vec (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val,
 int index);

FORTRAN: FUNCTION Zoltan_Set_Param_Vec(zz, param_name, new_val, index)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param_Vec
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value
INTEGER(Zoltan_INT), INTENT(IN) :: index

C++: int Zoltan::Set_Param_Vec (
 const std::string ¶m_name,
 const std::string &new_val,
 const int &index);

Zoltan_Set_Param_Vec is used to alter the value of a vector parameter in Zoltan. A vector parameter is a parameter that has one name but
contains multiple values. These values are referenced by their indices, usually starting at 0. Each entry (component) may have a different
value. This routine sets a single entry (component) of a vector parameter. If you want all entries (components) of a vector parameter to have
the same value, set the parameter using Zoltan_Set_Param as if it were a scalar parameter. If one only sets the values of a subset of the indices
for a vector parameter, the remaining entries will have the default value for that particular parameter.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 param_name A string containing the name of the parameter to be altered. Note that the string is case-insensitive. Also,
different Zoltan structures can have different parameter values.

 new_val A string containing the new value for the parameter. Example strings include "3.154", "True", "7" or anything
appropriate for the parameter being set. As above, the string is case-insensitive.

 index The index of the entry of the vector parameter to be set. The default in Zoltan is that the first entry in a vector
has index 0 (C-style indexing).

Returned Value:

 int Error code.

C: int Zoltan_Set_Fn (
 struct Zoltan_Struct *zz,
 ZOLTAN_FN_TYPE fn_type,
 void (*fn_ptr)(),
 void *data);

FORTRAN: FUNCTION Zoltan_Set_Fn(zz, fn_type, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
TYPE(ZOLTAN_FN_TYPE), INTENT(IN) :: fn_type
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

C++: int Zoltan::Set_Fn (
 const ZOLTAN_FN_TYPE &fn_type,
 void (*fn_ptr)(),
 void *data = 0);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (4 of 6) [5/21/07 12:06:08 PM]

24

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Interface

Zoltan_Set_Fn registers an application-supplied query function in the Zoltan structure. All types of query functions can be registered through
calls to Zoltan_Set_Fn. To register functions while maintaining strict type-checking of the fn_ptr argument, use
Zoltan_Set_<zoltan_fn_type>_Fn.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 fn_type The type of function being registered; see Application-Registered Query Functions for possible function types.

 fn_ptr A pointer to the application-supplied query function being registered.

 data A pointer to user defined data that will be passed, as an argument, to the function pointed to by fn_ptr. In C it
may be NULL. In Fortran it may be omitted.

Returned Value:

 int Error code.

C: int Zoltan_Set_<zoltan_fn_type>_Fn (
 struct Zoltan_Struct *zz,
 <zoltan_fn_type> (*fn_ptr)(),
 void *data);

FORTRAN: FUNCTION Zoltan_Set_<zoltan_fn_type>_Fn(zz, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_<zoltan_fn_type>_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

An interface block for fn_ptr is included in the FUNCTION definition so that strict type-checking of the registered
query function can be done.

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

C++: int Zoltan::Set_<zoltan_fn_type>_Fn (
 <zoltan_fn_type> (*fn_ptr)(),
 void *data = 0);

The interface functions Zoltan_Set_<zoltan_fn_type>_Fn, where <zoltan_fn_type> is one of the query function types, register specific types
of application-supplied query functions in the Zoltan structure. One interface function exists for each type of query function. For example,
Zoltan_Set_Num_Geom_Fn registers a query function of type ZOLTAN_NUM_GEOM_FN. Each query function has an associated
Zoltan_Set_<zoltan_fn_type>_Fn. A complete list of these functions is included in include/zoltan.h.

Query functions can be registered using either Zoltan_Set_Fn or Zoltan_Set_<zoltan_fn_type>_Fn.
Zoltan_Set_<zoltan_fn_type>_Fn provides strict type checking of the fn_ptr argument; the argument's type is specified for each
Zoltan_Set_<zoltan_fn_type>_Fn. Zoltan_Set_Fn does not provide this strict type checking, as the pointer to the registered function is cast
to a void pointer.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 fn_ptr A pointer to the application-supplied query function being registered. The type of the pointer matches
<zoltan_fn_type> in the name Zoltan_Set_<zoltan_fn_type>_Fn.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (5 of 6) [5/21/07 12:06:08 PM]

25

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Interface

 data A pointer to user defined data that will be passed, as an argument, to the function pointed to by fn_ptr. In C it
may be NULL. In Fortran it may be omitted.

Returned Value:

 int Error code.

Example:

The interface function
 int Zoltan_Set_Geom_Fn(struct Zoltan_Struct *zz, ZOLTAN_GEOM_FN (*fn_ptr)(),
 void *data);
registers an ZOLTAN_GEOM_FN query function.

C: void Zoltan_Destroy (
 struct Zoltan_Struct **zz);

FORTRAN: SUBROUTINE Zoltan_Destroy(zz)
TYPE(Zoltan_Struct), POINTER :: zz

C++: ~Zoltan ();

Zoltan_Destroy frees the memory associated with a Zoltan structure and sets the structure to NULL in C or nullifies the structure in Fortran.
Note that Zoltan_Destroy does not deallocate the import and export arrays returned from Zoltan (e.g., the arrays returned from
Zoltan_LB_Partition); these arrays can be deallocated through a separate call to Zoltan_LB_Free_Part.

There is no explicit Destroy method in the C++ interface. The Zoltan object is destroyed when the destructor executes.

As a side effect, Zoltan_Destroy (and the C++ Zoltan destructor) frees the MPI communicator that had been allocated for the structure. So it
is important that the application does not call MPI_Finalize before it calls Zoltan_Destroy or before the destructor executes.

Arguments:

 zz A pointer to the address of the Zoltan structure, created by Zoltan_Create, to be destroyed.

[Table of Contents | Next: Load-Balancing Functions | Previous: Zoltan Interface Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (6 of 6) [5/21/07 12:06:08 PM]

26

Zoltan User's Guide: Load-Balancing Interface

Zoltan User's Guide | Next | Previous

Load-Balancing Functions

The following functions are the load-balancing interface functions in the Zoltan library; their descriptions are included below.

Zoltan_LB_Partition
Zoltan_LB_Set_Part_Sizes
Zoltan_LB_Eval
Zoltan_LB_Free_Part

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions are applicable only
when the number of partitions to be generated is equal to the number of processors on which the partitions are computed. That is, these
functions assume "partitions" and "processors" are synonymous.

Zoltan_LB_Balance
Zoltan_LB_Free_Data

Descriptions of algorithm-specific interface functions are included with the documentation of their associated algorithms. Algorithm-specific
functions include:

Zoltan_RCB_Box

C: int Zoltan_LB_Partition (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int **import_to_part,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs,
 int **export_to_part);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (1 of 7) [5/21/07 12:06:10 PM]

27

Zoltan User's Guide: Load-Balancing Interface

FORTRAN: FUNCTION Zoltan_LB_Partition(zz, changes, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, import_to_part, num_export, export_global_ids, export_local_ids, export_procs,
export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Partition
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

C++: int Zoltan::LB_Partition (
 int &changes,
 int &num_gid_entries,
 int &num_lid_entries,
 int &num_import,
 ZOLTAN_ID_PTR &import_global_ids,
 ZOLTAN_ID_PTR &import_local_ids,
 int * &import_procs,
 int * &import_to_part,
 int &num_export,
 ZOLTAN_ID_PTR &export_global_ids,
 ZOLTAN_ID_PTR &export_local_ids,
 int * &export_procs,
 int * &export_to_part);

Zoltan_LB_Partition invokes the load-balancing routine specified by the LB_METHOD parameter. The number of partitions it generates is
specified by the NUM_GLOBAL_PARTITIONS or NUM_LOCAL_PARTITIONS parameters. Results of the partitioning are returned in lists of
objects to be imported into and exported from partitions on this processor. Objects are included in these lists if either their partition assignment
or their processor assignment is changed by the new decomposition. If an application requests multiple partitions on a single processor, these
lists may include objects whose partition assignment is changing, but whose processor assignment is unchanged.

Returned arrays are allocated in Zoltan; applications should not allocate these arrays before calling Zoltan_LB_Partition. The arrays are later
freed through calls to Zoltan_LB_Free_Part.

Arguments:

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the load-balancing
routine.

 changes Set to 1 or .TRUE. if the decomposition was changed by the load-balancing method; 0 or .FALSE. otherwise.

 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This value is the maximum value
over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_import Upon return, the number of objects that are newly assigned to this processor or to partitions on this processor (i.
e., the number of objects being imported from different partitions to partitions on this processor). If the value
returned is -1, no import information has been returned and all import arrays below are NULL. (The
RETURN_LISTS parameter determines whether import lists are returned).

 import_global_ids Upon return, an array of num_import global IDs of objects to be imported to partitions on this processor.
(size = num_import * num_gid_entries)

 import_local_ids Upon return, an array of num_import local IDs of objects to be imported to partitions on this processor.
(size = num_import * num_lid_entries)

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (2 of 7) [5/21/07 12:06:10 PM]

28

Zoltan User's Guide: Load-Balancing Interface

 import_procs Upon return, an array of size num_import listing the processor IDs of the processors that owned the imported
objects in the previous decomposition (i.e., the source processors).

 import_to_part Upon return, an array of size num_import listing the partitions to which the imported objects are being imported.

 num_export Upon return, this value of this count and the following lists depends on the value of the RETURN_LISTS
parameter:

�● It is the count of objects on this processor that are newly assigned to other processors or to other
partitions on this processor, if RETURN_LISTS is "EXPORT" or "EXPORT AND IMPORT".

�● It is the count of all objects on this processor, if RETURN_LISTS is "PARTITION
ASSIGNMENTS".

�● It is -1 if the value of RETURN_LISTS indicates that either no lists are to be returned, or only import
lists are to be returned. If the value returned is -1, no export information has been returned and all
export arrays below are NULL .

 export_global_ids Upon return, an array of num_export global IDs of objects to be exported from partitions on this processor (if
RETURN_LISTS is equal to "EXPORT" or "EXPORT AND IMPORT"), or an array of num_export global IDs
for every object on this processor (if RETURN_LISTS is equal to "PARTITION ASSIGNMENTS"), .
(size = num_export * num_gid_entries)

 export_local_ids Upon return, an array of num_export local IDs associated with the global IDs returned in export_global_ids
(size = num_export * num_lid_entries)

 export_procs Upon return, an array of size num_export listing the processor ID of the processor to which each object is now
assigned (i.e., the destination processor). If RETURN_LISTS is equal to "PARTITION ASSIGNMENTS", this
list includes all objects, otherwise it only includes the objects which are moving to a new partition and/or
process.

 export_to_part Upon return, an array of size num_export listing the partitions to which the objects are assigned under the new
partitioning.

Returned Value:

 int Error code.

C: int Zoltan_LB_Set_Part_Sizes (
 struct Zoltan_Struct *zz,
 int global_num,
 int len,
 int *part_ids,
 int *wgt_idx,
 float *part_sizes);

FORTRAN: function Zoltan_LB_Set_Part_Sizes(zz,global_part,len,partids,wgtidx,partsizes)
integer(Zoltan_INT) :: Zoltan_LB_Set_Part_Sizes
type(Zoltan_Struct) INTENT(IN) zz
integer(Zoltan_INT) INTENT(IN) global_part,len,partids(*),wgtidx(*)
real(Zoltan_FLOAT) INTENT(IN) partsizes(*)

C++: int Zoltan::LB_Set_Part_Sizes (
 const int &global_num,
 const int &len,
 int *part_ids,
 int *wgt_idx,
 float *part_sizes);

Zoltan_LB_Set_Part_Sizes is used to specify the desired partition sizes in Zoltan. By default, Zoltan assumes that all partitions should be of

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (3 of 7) [5/21/07 12:06:10 PM]

29

Zoltan User's Guide: Load-Balancing Interface

equal size. With Zoltan_LB_Set_Part_Sizes, one can specify the relative (not absolute) sizes of the partitions. For example, if two partitions
are requested and the desired sizes are 1 and 2, that means that the first partition will be assigned approximately one third of the total load. If
the sizes were instead given as 1/3 and 2/3, respectively, the result would be exactly the same. Note that if there are multiple weights per
object, one can (must) specify the partition size for each weight dimension independently.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 global_num Set to 1 if global partition numbers are given, 0 otherwise (local partition numbers).

 len Length of the next three input arrays.

 part_ids Array of partition numbers, either global or local. (Partition numbers are integers starting from 0.)

 vwgt_idx Array of weight indices (between 0 and OBJ_WEIGHT_DIM-1). This array should contain all zeros when there
is only one weight per object.

 part_sizes Relative values for partition sizes; part_sizes[i] is the desired relative size of the vwgt_idx[i]'th weight of
partition part_ids[i].

Returned Value:

 int Error code.

C: int Zoltan_LB_Eval (
 struct Zoltan_Struct *zz,
 int print_stats,
 int *nobj,
 float *obj_wgt,
 int *ncuts,
 float *cut_wgt,
 int *nboundary,
 int *nadj);

FORTRAN: FUNCTION Zoltan_LB_Eval(zz, print_stats, nobj, obj_wgt, ncuts, cut_wgt, nboundary, nadj)
INTEGER(Zoltan_INT) :: Zoltan_LB_Eval
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(IN) :: print_stats
INTEGER(Zoltan_INT), INTENT(OUT), OPTIONAL :: nobj, ncuts, nboundary, nadj
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(vwgt_dim), OPTIONAL :: obj_wgt
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(ewgt_dim), OPTIONAL :: cut_wgt

C++: int Zoltan::LB_Eval (
 const int &print_stats,
 int *nobj,
 float * const obj_wgt,
 int *ncuts,
 float * const cut_wgt,
 int *nboundary,
 int *nadj);

Zoltan_LB_Eval evaluates the quality of a decomposition. Some quality metrics are available only if the graph query functions have been
registered. Zoltan_LB_Eval may either print a summary of the results to stdout or return the results in the output parameters. NOTE: The
interface to this function may change in future versions of Zoltan. Users are discouraged from relying on the output arguments from
Zoltan_LB_Eval.

Arguments:

 zz Pointer to the Zoltan structure.

 print_stats If print_stats>0 (.TRUE. in Fortran), print a summary (max, min, and sum) of the quality metrics to stdout.

 nobj Upon return, the number of objects on this processor.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (4 of 7) [5/21/07 12:06:10 PM]

30

Zoltan User's Guide: Load-Balancing Interface

 obj_wgt Upon return, an array (of dimension OBJ_WEIGHT_DIM) containing the sum of object weights on this
processor.

 ncuts Upon return, the number of (communication) edge cuts for this processor.

 cut_wgt Upon return, an array (of dimension EDGE_WEIGHT_DIM) of cut weights for this processor.

 nboundary Upon return, the number of boundary objects on this processor.

 nadj Upon return, the number of adjacent processors as defined by the communication graph.

Returned Value:

 int Error code.

Query functions:
 Required:

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN

 Optional: ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

An output parameter is returned only if the input value of that parameter was not NULL. The rationale for this feature is that if one wishes just
to print the evaluation results, one can simply set all (or some of) the output parameters to NULL in the function call. From Fortran, one may
omit one or more of the optional output parameters.

Note that the sum of ncuts over all processors is actually twice the number of edges cut in the graph (because each edge is counted twice). The
same principle holds for cut_wgt.

There are a few improvements in Zoltan_LB_Eval in Zoltan version 1.5 (or higher). First, the balance data are computed with respect to both
processors and partitions (if applicable). Second, the desired partition sizes (as set by Zoltan_LB_Set_Partition_Sizes) are taken into account
when computing the imbalance.

Known bug: If a partition is spread across several processors, the computed cut information (ncuts and cut_wgt) may be incorrect (too high).

C: int Zoltan_LB_Free_Part (
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int **procs,
 int **to_part);

FORTRAN: FUNCTION Zoltan_LB_Free_Part(global_ids, local_ids, procs, to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Part
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: procs, to_part

C++: int Zoltan::LB_Free_Part (
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int **procs,
 int **to_part);

Zoltan_LB_Free_Part frees the memory allocated by Zoltan to return the results of Zoltan_LB_Partition or Zoltan_Invert_Lists. Memory
pointed to by the arguments is freed and the arguments are set to NULL in C and C++ or nullified in Fortran. NULL arguments may be passed
to Zoltan_LB_Free_Part. Typically, Zoltan_LB_Free_Part is called twice: once for the import lists, and once for the export lists.
Note that this function does not destroy the Zoltan data structure itself; it is deallocated through a call to Zoltan_Destroy in C and Fortran and
by the object destructor in C++.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (5 of 7) [5/21/07 12:06:10 PM]

31

Zoltan User's Guide: Load-Balancing Interface

Arguments:

 global_ids An array containing the global IDs of objects.

 local_ids An array containing the local IDs of objects.

 procs An array containing processor IDs.

 to_part An array containing partition numbers.

Returned Value:

 int Error code.

C: int Zoltan_LB_Balance (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs);

FORTRAN: FUNCTION Zoltan_LB_Balance(zz, changes, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, num_export, export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Balance
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Balance is a wrapper around Zoltan_LB_Partition that excludes the partition assignment results. Zoltan_LB_Balance assumes
the number of partitions is equal to the number of processors; thus, the partition assignment is equivalent to the processor assignment. Results
of the partitioning are returned in lists of objects to be imported and exported. These arrays are allocated in Zoltan; applications should not
allocate these arrays before calling Zoltan_LB_Balance. The arrays are later freed through calls to Zoltan_LB_Free_Data or
Zoltan_LB_Free_Part.

Arguments:

All arguments are analogous to those in Zoltan_LB_Partition. Partition-assignment arguments import_to_part
and export_to_part are not included, as processor and partitions numbers are considered to be the same in
Zoltan_LB_Balance.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (6 of 7) [5/21/07 12:06:10 PM]

32

Zoltan User's Guide: Load-Balancing Interface

C: int Zoltan_LB_Free_Data (
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs);

FORTRAN: FUNCTION Zoltan_LB_Free_Data(import_global_ids, import_local_ids, import_procs, export_global_ids,
export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Data
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Free_Data frees the memory allocated by the Zoltan to return the results of Zoltan_LB_Balance or
Zoltan_Compute_Destinations. Memory pointed to by the arguments is freed and the arguments are set to NULL in C or nullified in Fortran.
NULL arguments may be passed to Zoltan_LB_Free_Data. Note that this function does not destroy the Zoltan data structure itself; it is
deallocated through a call to Zoltan_Destroy.

Arguments:

 import_global_ids The array containing the global IDs of objects imported to this processor.

 import_local_ids The array containing the local IDs of objects imported to this processor.

 import_procs The array containing the processor IDs of the processors that owned the imported objects in the previous
decomposition (i.e., the source processors).

 export_global_ids The array containing the global IDs of objects exported from this processor.

 export_local_ids The array containing the local IDs of objects exported from this processor.

 export_procs The array containing the processor IDs of processors that own the exported objects in the new decomposition (i.
e., the destination processors).

Returned Value:

 int Error code.

[Table of Contents | Next: Functions for Augmenting a Decomposition | Previous: Initialization Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (7 of 7) [5/21/07 12:06:10 PM]

33

Zoltan User's Guide: Augmenting a Decomposition

Zoltan User's Guide | Next | Previous

Functions for Augmenting a Decomposition

The following functions support the addition of new items to an existing decomposition. Given a decomposition, they determine to which
processor(s) a new item should be assigned. Currently, they work in conjunction with only the RCB, RIB, and HSFC algorithms.

Zoltan_LB_Point_PP_Assign
Zoltan_LB_Box_PP_Assign

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions are applicable only
when the number of partitions to be generated is equal to the number of processors on which the partitions are computed. That is, these
functions assume "partitions" and "processors" are synonymous.

Zoltan_LB_Point_Assign
Zoltan_LB_Box_Assign

C: int Zoltan_LB_Point_PP_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc,
 int * part);

FORTRAN: FUNCTION Zoltan_LB_Point_PP_Assign(zz, coords, proc, part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc
INTEGER(Zoltan_INT), INTENT(OUT) :: part

C++: int Zoltan::LB_Point_PP_Assign (
 double * const coords,
 int & proc,
 int & part);

Zoltan_LB_Point_PP_Assign is used to determine to which processor and partition a new point should be assigned. It is applicable only to
geometrically generated decompositions (RCB, RIB, and HSFC). If the parameter KEEP_CUTS is set to TRUE, then the sequence of cuts
that define the decomposition is saved. Given a new geometric point, the processor and partition which own it can be determined.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 coords The (x,y) or (x,y,z) coordinates of the point being assigned.

 proc Upon return, the ID of the processor to which the point should belong.

 part Upon return, the ID of the partition to which the point should belong.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (1 of 4) [5/21/07 12:06:11 PM]

34

Zoltan User's Guide: Augmenting a Decomposition

C: int Zoltan_LB_Box_PP_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs,
 int *parts,
 int *numparts);

FORTRAN: FUNCTION Zoltan_LB_Box_PP_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax, procs, numprocs, parts, numparts)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::parts
INTEGER(Zoltan_INT), INTENT(OUT) :: numparts

C++: int Zoltan::LB_Box_PP_Assign (
 const double & xmin,
 const double & ymin,
 const double & zmin,
 const double & xmax,
 const double & ymax,
 const double & zmax,
 int * const procs,
 int & numprocs,
 int * const parts,
 int & numparts);

In many settings, it is useful to know which processors and partitions might need to know about an extended geometric object.
Zoltan_LB_Box_PP_Assign addresses this problem. Given a geometric decomposition of space (currently only RCB, RIB, and HSFC are
supported), and given an axis-aligned box around the geometric object, Zoltan_LB_Box_PP_Assign determines which processors and
partitions own geometry that intersects the box. To use this routine, the parameter KEEP_CUTS must be set to TRUE when the
decomposition is generated. This parameter will cause the sequence of geometric cuts to be saved, which is necessary for
Zoltan_LB_Box_PP_Assign to do its job.

Note that if the parameter REDUCE_DIMENSIONS was set to TRUE and the geometry was determined to be degenerate when
decomposition was calculated, then the calculation was performed on transformed coordinates. This means that Zoltan_LB_Box_PP_Assign
must transform the supplied bounding box accordingly. The transformed vertices are bounded again, and the partition intersections are
calculated in the transformed space on this new bounding box. The impact of this is that Zoltan_LB_Box_PP_Assign may return partitions
not actually intersecting the original bounding box, but it will not omit any partitions intersecting the original bounding box.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 xmin, ymin, zmin The coordinates of the lower extent of the bounding box around the object. If the geometry is two-dimensional,
the z value is ignored.

 xmax, ymax, zmax The coordinates of the upper extent of the bounding box around the object. If the geometry is two-dimensional,
the z value is ignored.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (2 of 4) [5/21/07 12:06:11 PM]

35

Zoltan User's Guide: Augmenting a Decomposition

 procs The list of processors intersecting the box are returned starting at this address. Note that it is the responsibility of
the calling routine to ensure that there is sufficient space for the return list.

 numprocs Upon return, this value contains the number of processors that intersect the box (i.e. the number of entries
placed in the procs list).

 parts The list of partitions intersecting the box are returned starting at this address. Note that it is the responsibility of
the calling routine to ensure that there is sufficient space for the return list.

 numparts Upon return, this value contains the number of partitions that intersect the box (i.e. the number of entries placed
in the parts list).

Returned Value:

 int Error code.

C: int Zoltan_LB_Point_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc);

FORTRAN: FUNCTION Zoltan_LB_Point_Assign(zz, coords, proc)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc

Zoltan_LB_Point_Assign is is a wrapper around Zoltan_LB_Point_PP_Assign that excludes the partition assignment results.
Zoltan_LB_Point_Assign assumes the number of partitions is equal to the number of processors; thus, the partition assignment is equivalent
to the processor assignment.

Arguments:

All arguments are analogous to those in Zoltan_LB_Point_PP_Assign. Partition-assignment argument part is
not included, as processor and partitions numbers are considered to be the same in Zoltan_LB_Point_Assign.

Returned Value:

 int Error code.

C: int Zoltan_LB_Box_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs);

FORTRAN: FUNCTION Zoltan_LB_Box_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax, procs, numprocs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs

Zoltan_LB_Box_Assign is a wrapper around Zoltan_LB_Box_PP_Assign that excludes the partition assignment results.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (3 of 4) [5/21/07 12:06:11 PM]

36

Zoltan User's Guide: Augmenting a Decomposition

Zoltan_LB_Box_Assign assumes the number of partitions is equal to the number of processors; thus, the partition assignment is equivalent to
the processor assignment.

Arguments:

All arguments are analogous to those in Zoltan_LB_Box_PP_Assign. Partition-assignment arguments parts
and numparts are not included, as processor and partitions numbers are considered to be the same in
Zoltan_LB_Box_Assign.

Returned Value:

 int Error code.

[Table of Contents | Next: Migration Functions | Previous: Load-Balancing Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (4 of 4) [5/21/07 12:06:11 PM]

37

Zoltan User's Guide: Migration Interface

 Zoltan User's Guide | Next | Previous

Migration Functions

Zoltan's migration functions transfer object data to the processors in a new decomposition. Data to be transferred is specified through the
import/export lists returned by Zoltan_LB_Partition. Alternatively, users may specify their own import/export lists.

The migration functions can migrate objects based on their new partition assignments and/or their new processor assignments. Behavior is
determined by the MIGRATE_ONLY_PROC_CHANGES parameter.

If requested, Zoltan can automatically transfer an application's data between processors to realize a new decomposition. This functionality will
be performed as part of the call to Zoltan_LB_Partition if the AUTO_MIGRATE parameter is set to TRUE (nonzero) via a call to
Zoltan_Set_Param. This approach is effective for when the data to be moved is relatively simple. For more complicated data movement, the
application can leave AUTO_MIGRATE FALSE and call Zoltan_Migrate itself. In either case, routines to pack and unpack object data must
be provided by the application. See the Migration Examples for examples with and without auto-migration.

The following functions are the migration interface functions. Their detailed descriptions can be found below.

Zoltan_Invert_Lists
Zoltan_Migrate

The following functions are maintained for backward compatibility with previous versions of Zoltan. These functions are applicable only
when the number of partitions to be generated is equal to the number of processors on which the partitions are computed. That is, these
functions assume "partitions" and "processors" are synonymous.

Zoltan_Compute_Destinations
Zoltan_Help_Migrate

C: int Zoltan_Invert_Lists (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *known_to_part,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs,
 int **found_to_part);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (1 of 7) [5/21/07 12:06:13 PM]

38

Zoltan User's Guide: Migration Interface

FORTRAN: FUNCTION Zoltan_Invert_Lists(zz, num_known, known_global_ids, known_local_ids, known_procs,
known_to_part, num_found, found_global_ids, found_local_ids, found_procs, found_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Invert_Lists
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids, found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids, found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_to_part, found_to_part

C++: int Zoltan::Invert_Lists (
 const int & num_known,
 ZOLTAN_ID_PTR const known_global_ids,
 ZOLTAN_ID_PTR const known_local_ids,
 int * const known_procs,
 int * const known_to_part,
 int &num_found,
 ZOLTAN_ID_PTR &found_global_ids,
 ZOLTAN_ID_PTR &found_local_ids,
 int * &found_procs,
 int * &found_to_part);

Zoltan_Invert_Lists computes inverse communication maps useful for migrating data. It can be used in two ways:

�● Given a list of known off-processor objects to be received by a processor,
compute a list of local objects to be sent by the processor to other processors; or

�● Given a list of known local objects to be sent by a processor to other processors,
compute a list of off-processor objects to be received by the processor.

For example, if each processor knows which objects it will import from other processors, Zoltan_Invert_Lists computes the list of objects
each processor needs to export to other processors. If, instead, each processor knows which objects it will export to other processors,
Zoltan_Invert_Lists computes the list of objects each processor will import from other processors. The computed lists are allocated in Zoltan;
they should not be allocated by the application before calling Zoltan_Invert_Lists. These lists can be freed through a call to
Zoltan_LB_Free_Part.

Arguments:

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the migration routine.

 num_known The number of known objects to be received (sent) by this processor.

 known_global_ids An array of num_known global IDs of known objects to be received (sent) by this processor.
(size = num_known * NUM_GID_ENTRIES)

 known_local_ids An array of num_known local IDs of known objects to be received (sent) by this processor.
(size = num_known * NUM_LID_ENTRIES)

 known_procs An array of size num_known listing the processor IDs of the processors that the known objects will be received
from (sent to).

 known_to_part An array of size num_known listing the partition numbers of the partitions that the known objects will be
assigned to.

 num_found Upon return, the number of objects that must be sent to (received from) other processors.

 found_global_ids Upon return, an array of num_found global IDs of objects to be sent (received) by this processor.
(size = num_found * NUM_GID_ENTRIES)

 found_local_ids Upon return, an array of num_found local IDs of objects to be sent (received) by this processor.
(size = num_found * NUM_LID_ENTRIES)

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (2 of 7) [5/21/07 12:06:13 PM]

39

Zoltan User's Guide: Migration Interface

 found_procs Upon return, an array of size num_found listing the processor IDs of processors that the found objects will be
sent to (received from).

 found_to_part An array of size num_found listing the partition numbers of the partitions that the found objects will be assigned
to.

Returned Value:

 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set using Zoltan_Set_Param
before calling Zoltan_Invert_Lists. All processors must have the same values for these two parameters.

C: int Zoltan_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part);

FORTRAN: FUNCTION Zoltan_Migrate(zz, num_import, import_global_ids, import_local_ids, import_procs, import_to_part,
num_export, export_global_ids, export_local_ids, export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

C++: int Zoltan::Migrate (
 const int & num_import,
 ZOLTAN_ID_PTR const import_global_ids,
 ZOLTAN_ID_PTR const import_local_ids,
 int * const import_procs,
 int * const import_to_part,
 const int & num_export,
 ZOLTAN_ID_PTR const export_global_ids,
 ZOLTAN_ID_PTR const export_local_ids,
 int * const export_procs,
 int * const export_to_part);

Zoltan_Migrate takes lists of objects to be sent to other processors, along with the destinations of those objects, and performs the operations
necessary to send the data associated with those objects to their destinations. Zoltan_Migrate performs the following operations using the
application-registered functions:

�● Call ZOLTAN_PRE_MIGRATE_PP_FN_TYPE (if registered)
�● For each export object, call ZOLTAN_OBJ_SIZE_FN_TYPE to get object sizes.
�● For each export object, call ZOLTAN_PACK_OBJ_FN_TYPE to load communication buffers.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (3 of 7) [5/21/07 12:06:13 PM]

40

Zoltan User's Guide: Migration Interface

�● Communicate buffers to destination processors.
�● Call ZOLTAN_MID_MIGRATE_PP_FN_TYPE (if registered).
�● For each imported object, call ZOLTAN_UNPACK_OBJ_FN_TYPE to move data from the buffer into the new processor's data

structures.
�● Call ZOLTAN_POST_MIGRATE_PP_FN_TYPE (if registered).

Either export lists or import lists must be specified for Zoltan_Migrate. Both export lists and import lists may be specified, but both are not
required.

If export lists are provided, non-NULL values for input arguments import_global_ids, import_local_ids, import_procs, and import_to_part are
optional. The values must be non-NULL only if no export lists are provided or if the import lists are used by the application callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN. If all processors
pass NULL arguments for the import arrays, the value of num_import should be -1.

Similarly, if import lists are provided, non-NULL values for input arguments export_global_ids, export_local_ids, export_procs, and
export_to_part are optional. The values must be non-NULL only if no import lists are provided or if the export lists are used by the application
callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN. If all processors pass NULL arguments for the export arrays, the value of num_export should be -1.
In this case, Zoltan_Migrate computes the export lists based on the import lists.

Arguments:

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the migration routine.

 num_import The number of objects to be imported to partitions on this processor; these objects may be stored on other
processors or may be moving to new partitions within this processor.
Use num_import=-1 if all processors do not specify import arrays.

 import_global_ids An array of num_import global IDs of objects to be imported to partitions on this processor.
(size = num_import * NUM_GID_ENTRIES).
All processors may pass import_global_ids=NULL if export lists are provided and import_global_ids is not
needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN.

 import_local_ids An array of num_import local IDs of objects to be imported to partitions on this processor.
(size = num_import * NUM_LID_ENTRIES)
All processors may pass import_local_ids=NULL if export lists are provided and import_local_ids is not needed
by callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

 import_procs An array of size num_import listing the processor IDs of objects to be imported to partitions on this processor (i.
e., the source processors).
All processors may pass import_procs=NULL if export lists are provided and import_procs is not needed by
callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

 import_to_part An array of size num_import listing the partitions to which imported objects should be assigned.
All processors may pass import_to_part=NULL if export lists are provided and import_to_part is not needed by
callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

 num_export The number of objects that were stored on this processor in the previous decomposition that are assigned to
other processors or to different partitions within this processor in the new decomposition.
Use num_export=-1 if all processors do not specify export arrays.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (4 of 7) [5/21/07 12:06:13 PM]

41

Zoltan User's Guide: Migration Interface

 export_global_ids An array of num_export global IDs of objects to be exported to new partitions.
(size = num_export * NUM_GID_ENTRIES)
All processors may pass export_global_ids=NULL if import lists are provided and export_global_ids is not
needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 export_local_ids An array of num_export local IDs of objects to be exported to new partitions.
(size = num_export * NUM_LID_ENTRIES)
All processors may pass export_local_ids=NULL if import lists are provided and export_local_ids is not needed
by callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

 export_procs An array of size num_export listing the processor IDs to which exported objects should be assigned (i.e., the
destination processors).
All processors may pass export_procs=NULL if import lists are provided and export_procs is not needed by
callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

 export_to_part An array of size num_export listing the partitions to which exported objects should be assigned.
All processors may pass export_to_part=NULL if import lists are provided and export_to_part is not needed by
callback functions ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN .

Returned Value:

 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set using Zoltan_Set_Param
before calling Zoltan_Migrate. All processors must have the same values for these two parameters.

C: int Zoltan_Compute_Destinations (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs);

FORTRAN: FUNCTION Zoltan_Compute_Destinations(zz, num_known, known_global_ids, known_local_ids, known_procs,
num_found, found_global_ids, found_local_ids, found_procs)
INTEGER(Zoltan_INT) :: Zoltan_Compute_Destinations
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids, found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids, found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs

Zoltan_Compute_Destinations is a wrapper around Zoltan_Invert_Lists that excludes partition assignment arrays. It is maintained for
backward compatibility with previous versions of Zoltan.

Zoltan_Compute_Destinations assumes the number of partitions is equal to the number of processors. The computed lists are allocated in

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (5 of 7) [5/21/07 12:06:13 PM]

42

Zoltan User's Guide: Migration Interface

Zoltan; they should not be allocated by the application before calling Zoltan_Compute_Destinations. These lists can be freed through a call
to Zoltan_LB_Free_Data or Zoltan_LB_Free_Part.

Arguments:

All arguments are analogous to those in Zoltan_Invert_Lists. Partition-assignment arrays known_to_part and
found_to_part are not included, as partition and processor numbers are assumed to be the same in
Zoltan_Compute_Destinations.

Returned Value:

 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set using Zoltan_Set_Param
before calling Zoltan_Compute_Destinations. All processors must have the same values for these two parameters.

C: int Zoltan_Help_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs);

FORTRAN: FUNCTION Zoltan_Help_Migrate(zz, num_import, import_global_ids, import_local_ids, import_procs, num_export,
export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_Help_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_Help_Migrate is a wrapper around Zoltan_Migrate that excludes partition assignment arrays. It is maintained for backward
compatibility with previous versions of Zoltan.

Zoltan_Help_Migrate assumes the number of partitions is equal to the number of processors. It uses migration pre-, mid-, and post-
processing routines ZOLTAN_PRE_MIGRATE_FN_TYPE, ZOLTAN_MID_MIGRATE_FN_TYPE, and
ZOLTAN_POST_MIGRATE_FN_TYPE, respectively, which also exclude partition assignment arrays.

Arguments:

All arguments are analogous to those in Zoltan_Migrate. Partition-assignment arrays import_to_part and
export_to_part are not included, as partition and processor numbers are assumed to be the same in
Zoltan_Help_Migrate.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (6 of 7) [5/21/07 12:06:13 PM]

43

Zoltan User's Guide: Migration Interface

[Table of Contents | Next: Ordering Interface | Previous: Functions for Augmenting a Decomposition]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (7 of 7) [5/21/07 12:06:13 PM]

44

Zoltan User's Guide: Ordering Interface

Zoltan User's Guide | Next | Previous

Ordering Functions

Zoltan provides limited capability for ordering a set of objects, typically given as a graph. The following functions are the ordering interface
functions in the Zoltan library; their descriptions are included below.

Zoltan_Order

C: int Zoltan_Order (
 struct Zoltan_Struct *zz,
 int *num_gid_entries,
 int *num_lid_entries,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *rank,
 int *iperm,
 struct Zoltan_Order_Struct *order_info);

FORTRAN: FUNCTION Zoltan_Order(zz, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids, rank, iperm)
INTEGER(Zoltan_INT) :: Zoltan_Order
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj
INTEGER(Zoltan_INT) :: global_ids(*), local_ids(*)
INTEGER(Zoltan_INT) :: rank(*), iperm(*)

C++: int Zoltan::Order (
 int &num_gid_entries,
 int &num_lid_entries,
 const int &num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *rank,
 int *iperm);

Zoltan_Order invokes the ordering routine specified by the ORDER_METHOD parameter. Results of the ordering are returned in the arrays
rank and iperm. rank[i] gives the rank of global_ids[i] in the computed ordering, while iperm is the inverse permutation of rank, that is, iperm
[rank[i]] = i. The ordering may be either global or local, depending on ORDER_TYPE. The arrays global_ids, local_ids, rank, and iperm
should all be allocated by the application before Zoltan_Order is called. Each array must have space for (at least) num_obj elements, where
num_obj is the number of objects residing on a processor.

Arguments:

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the load-balancing
routine.

 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This value is the maximum value
over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_order.html (1 of 2) [5/21/07 12:06:13 PM]

45

Zoltan User's Guide: Ordering Interface

 num_obj Number of objects to order on this processor. At present, num_obj should be the total number of objects residing
on a processor. In future releases, ordering only a subset of the objects may be permitted.

 global_ids An array of global IDs of objects to be ordered on this processor. (size = num_obj * num_gid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been allocated before
Zoltan_Order is called.

 local_ids [Optional.] An array of local IDs of objects to be ordered on this processor. (size = num_obj * num_lid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been allocated before
Zoltan_Order is called.

 rank Upon return, an array of length num_obj containing the rank of each object in the computed ordering. When rank
[i] = j, that means that the object corresponding to global_ids[i] is the jth object in the ordering. (This array
corresponds directly to the perm array in METIS and the order array in ParMETIS.) Note that the rank may
refer to either a local or a global ordering, depending on ORDER_TYPE. Memory for this array must have been
allocated before Zoltan_Order is called.

 iperm Upon return, an array of length num_obj containing the inverse permutation of rank. That is, iperm[rank[i]] =
i. In other words, iperm[j] gives the jth object in the ordering. Memory for this array must have been allocated
before Zoltan_Order is called.

 order_info Upon return, this struct contains additional information about the ordering produced. This parameter is
currently not used and should always be set to NULL. It is not included in the FORTRAN or C++ interface.

Returned Value:

 int Error code.

[Table of Contents | Next: Coloring Functions | Previous: Migration Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_order.html (2 of 2) [5/21/07 12:06:13 PM]

46

Zoltan User's Guide: Coloring Interface

Zoltan User's Guide | Next | Previous

Coloring Functions

Zoltan provides limited capability for coloring a set of objects, typically given as a graph. In graph coloring, each vertex is assigned an integer
label such that no two adjacent vertices have the same label. The following functions are the coloring interface functions in the Zoltan library;
their descriptions are included below.

Zoltan_Color

C: int Zoltan_Color (
 struct Zoltan_Struct *zz,
 int *num_gid_entries,
 int *num_lid_entries,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *color_exp);

FORTRAN: Not yet available.

C++: int Zoltan::Color (
 int &num_gid_entries,
 int &num_lid_entries,
 const int &num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *color_exp);

Zoltan_Color invokes the coloring routine and the assigned colors of each object are returned in the array color_exp. color_exp[i]gives the
color of global_ids[i] in the computed coloring. The arrays global_ids, local_ids,and color_exp should all be allocated by the application
before Zoltan_Color is called. Each array must have space for (at least) num_obj elements, where num_obj is the number of objects residing
on a processor.

Arguments:

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the load-balancing
routine.

 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This value is the maximum value
over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_obj Number of objects to color on this processor. num_obj should be the total number of objects residing on a
processor.

 global_ids Upon return, an array of global IDs of objects to be colored on this processor. (size = num_obj *
num_gid_entries)
Memory for this array must have been allocated before Zoltan_Color is called.

 local_ids [Optional.] Upon return, an array of local IDs of objects to be colored on this processor. (size = num_obj *
num_lid_entries)
Memory for this array must have been allocated before Zoltan_Color is called.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_color.html (1 of 2) [5/21/07 12:06:14 PM]

47

Zoltan User's Guide: Coloring Interface

 color_exp Upon return, an array of length num_obj containing the colors of objects. That is, color_exp[i] gives the color of
global_ids[i] in the computed coloring. (Colors are usually positive integers.) Memory for this array must have
been allocated before Zoltan_Color is called.

Returned Value:

 int Error code.

[Table of Contents | Next: Application-Registered Query Functions | Previous: Ordering Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_color.html (2 of 2) [5/21/07 12:06:14 PM]

48

Zoltan User's Guide: Query Functions

Zoltan User's Guide | Next | Previous

Application-Registered Query Functions

Zoltan gets information about a processor's objects through calls to query functions. These functions must be provided by the application. They
are "registered" with Zoltan; that is, a pointer to the function is passed to Zoltan, which can then call that function when its information is
needed. Two categories of query functions are used by the library:

General Zoltan Query Functions
Migration Query Functions

In each category, a variety of query functions can be registered by the user. The query functions have a function type, describing their
purpose. Functions can be registered with a Zoltan structure in two ways: through calls to Zoltan_Set_Fn or through calls to query-function-
specific functions Zoltan_Set_<zoltan_fn_type>_Fn. When a function is registered through a call to Zoltan_Set_Fn, its function type is
passed in the fn_type argument. When Zoltan_Set_<zoltan_fn_type>_Fn is used to register functions, the type of the function is implicit in
the fn_ptr argument. Each function description below includes both its function type and function prototype.

Query functions that return information about data objects owned by a processor come in two forms: list-based functions that return
information about a list of objects, and iterator functions that return information about a single object. Users can provide either version of the
query function; they need not provide both. Zoltan calls the list-based functions with the IDs of all objects needed; this approach often
provides faster performance as it eliminates the overhead of multiple function calls. List-based functions have the word "MULTI" in their
function-type name. If, instead, the application provides iterator functions, Zoltan calls the iterator function once for each object whose data is
needed. This approach, while slower, allows Zoltan to use less memory for some data.

Some algorithms in Zoltan require that certain query functions be registered by the application; for example, geometric partitioning algorithms
such as Recursive Coordinate Bisection (RCB) require that either a ZOLTAN_GEOM_FN or a ZOLTAN_GEOM_MULTI_FN be
registered. When a default value is specified below, the query function type is optional; if a function of that type is not registered, the default
values are used. Details of which query functions are required by particular algorithms are included in the Algorithms section.

Many of the functions have both global and local object identifiers (IDs) in their argument lists. The global IDs provided by the application
must be unique across all processors; they are used for identification within Zoltan. The local IDs are not used by Zoltan; they are provided for
the convenience of the application and can be anything the application desires. The local IDs can be used by application query routines to
enable direct access to application data. For example, the object with global ID "3295" may be stored by the application in location "15" of an
array in the processor's local memory. Both global ID "3295" and local ID "15" can be used by the application to describe the object. Then,
rather than searching the array for global ID "3295," the application query routines can subsequently use the local ID to index directly into the
local storage array. See Data Types for Object IDs for a description of global and local IDs. All of the functions have, as their first argument, a
pointer to data that is passed to Zoltan through Zoltan_Set_Fn or Zoltan_Set_<zoltan_fn_type>_Fn. This data is not used by Zoltan. A
different set of data can be supplied for each registered function. For example, if the local ID is an index into an array of data structures, then
the data pointer might point to the head of the data structure array.

As their last argument, all functions have an error code that should be set and returned by the registered function.

If you are calling the Zoltan library from a C++ application, you may set the query function to be any class static function or any function
defined outside of a class definition. However, it is possible you will wish to set the query function to be an object method. In that case, you
should write a query function that takes a pointer to the object as its data field. The query function can then call the object method.

[Table of Contents | Next: Load-Balancing Query Functions | Previous: Coloring Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query.html [5/21/07 12:06:14 PM]

49

Zoltan User's Guide: General Zoltan Query Functions

Zoltan User's Guide | Next | Previous

General Zoltan Query Functions

The following registered functions are used by various Zoltan algorithms in the Zoltan library. No single algorithm uses all the query
functions; the algorithm descriptions indicate which query functions are required by individual algorithms.

Object ID Functions

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN
ZOLTAN_FIRST_OBJ_FN (deprecated)
ZOLTAN_NEXT_OBJ_FN (deprecated)
ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN

Geometry-Based Functions

ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

Graph-Based Functions

ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

Hypergraph-Based Functions

ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN
ZOLTAN_HG_SIZE_EDGE_WTS_FN
ZOLTAN_HG_EDGE_WTS_FN
ZOLTAN_NUM_FIXED_OBJ_FN
ZOLTAN_FIXED_OBJ_LIST_FN

Tree-Based Functions

ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_COARSE_OBJ_LIST_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NUM_CHILD_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN

Hierarchical Partitioning Functions

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (1 of 25) [5/21/07 12:06:19 PM]

50

Zoltan User's Guide: General Zoltan Query Functions

ZOLTAN_HIER_NUM_LEVELS_FN
ZOLTAN_HIER_PARTITION_FN
ZOLTAN_HIER_METHOD_FN

Object ID Functions

C and C++: typedef int ZOLTAN_NUM_OBJ_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Num_Obj(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_NUM_OBJ_FN query function returns the number of objects that are currently assigned to the processor.

Function Type: ZOLTAN_NUM_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 ierr Error code to be set by function.

Returned Value:

 int The number of objects that are assigned to the processor.

C and C++: typedef void ZOLTAN_OBJ_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int wgt_dim, float *obj_wgts, int *ierr);

FORTRAN: SUBROUTINE Get_Obj_List(data, num_gid_entries, num_lid_entries, global_ids, local_ids, wgt_dim, obj_wgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_OBJ_LIST_FN query function fills two (three if weights are used) arrays with information about the objects currently assigned

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (2 of 25) [5/21/07 12:06:19 PM]

51

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

to the processor. Both arrays are allocated (and subsequently freed) by Zoltan; their size is determined by a call to a
ZOLTAN_NUM_OBJ_FN query function to get the array size. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or
a ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query options need not be
provided. The ZOLTAN_OBJ_LIST_FN is preferred for efficiency.

Function Type: ZOLTAN_OBJ_LIST_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, an array of unique global IDs for all objects assigned to the processor.

 local_ids Upon return, an array of local IDs, the meaning of which can be determined by the application, for all objects
assigned to the processor.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested. This value is set
through the parameter OBJ_WEIGHT_DIM.

 obj_wgts Upon return, an array of object weights. Weights for object i are stored in obj_wgts[(i-1)*wgt_dim:i*wgt_dim-
1]. If wgt_dim=0, the return value of obj_wgts is undefined and may be NULL.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_FIRST_OBJ_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR first_global_id, ZOLTAN_ID_PTR first_local_id, int wgt_dim, float *first_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_First_Obj(data, num_gid_entries, num_lid_entries, first_global_id, first_local_id, wgt_dim,
first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

(Deprecated) A ZOLTAN_FIRST_OBJ_FN query function initializes an iteration over objects assigned to the processor. It returns the global
and local IDs of the first object on the processor. Subsequent calls to a ZOLTAN_NEXT_OBJ_FN query function iterate over and return
other objects assigned to the processor. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query options need not be
provided. The ZOLTAN_OBJ_LIST_FN) is preferred for efficiency.

Function Type: ZOLTAN_FIRST_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (3 of 25) [5/21/07 12:06:19 PM]

52

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 first_global_id The returned value of the global ID for the first object; the value is ignored if there are no objects.

 first_local_id The returned value of the local ID for the first object; the value is ignored if there are no objects.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested. This value is set
through the parameter OBJ_WEIGHT_DIM.

 first_obj_wgt Upon return, the first object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.

 ierr Error code to be set by function.

Returned Value:

 1 If first_global_id and first_local_id contain valid IDs of the first object.

 0 If no objects are available.

C and C++: typedef int ZOLTAN_NEXT_OBJ_FN (void * data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID_PTR next_global_id,
ZOLTAN_ID_PTR next_local_id, int wgt_dim, float *next_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_Next_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, next_global_id,
next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

(Deprecated) A ZOLTAN_NEXT_OBJ_FN query function is an iterator function which, when given an object assigned to the processor,
returns the next object assigned to the processor. The first object of the iteration is provided by a ZOLTAN_FIRST_OBJ_FN query function.
For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or a ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
query-function pair must be registered; however, both query options need not be provided. The ZOLTAN_OBJ_LIST_FN) is preferred for
efficiency.

Function Type: ZOLTAN_NEXT_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (4 of 25) [5/21/07 12:06:19 PM]

53

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 global_id The global ID of the previous object.

 local_id The local ID of the previous object.

 next_global_id The returned value of the global ID for the next object; the value is ignored if there are no more objects.

 next_local_id The returned value of the local ID for the next object; the value is ignored if there are no more objects.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested. This value is set
through the parameter OBJ_WEIGHT_DIM.

 next_obj_wgt Upon return, the next object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.

 ierr Error code to be set by function.

Returned Value:

 1 If next_global_id and next_local_id contain valid IDs of the next object.

 0 If no more objects are available.

C and C++: typedef void ZOLTAN_PARTITION_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int *parts, int *ierr);

FORTRAN: SUBROUTINE Get_Partition_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: parts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PARTITION_MULTI_FN query function returns a list of partitions to which given objects are currently assigned. If a
ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN is not registered, Zoltan assumes the partition numbers are the
processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.

 global_ids The global IDs of the objects for which the partition numbers should be returned.

 local_ids The local IDs of the objects for which the partition numbers should be returned.

 parts Upon return, an array of partition numbers corresponding to the global and local IDs.

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (5 of 25) [5/21/07 12:06:19 PM]

54

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

C and C++: typedef int ZOLTAN_PARTITION_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Partition(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Partition
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PARTITION_FN query function returns the partition to which a given object is currently assigned. If a
ZOLTAN_PARTITION_FN or ZOLTAN_PARTITION_MULTI_FN is not registered, Zoltan assumes the partition numbers are the
processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the partition number should be returned.

 local_id The local ID of the object for which the partition number should be returned.

 ierr Error code to be set by function.

Returned Value:

 int The partition number for the object identified by global_id and local_id.

Geometry-based Functions

C and C++: typedef int ZOLTAN_NUM_GEOM_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Num_Geom(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Geom
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (6 of 25) [5/21/07 12:06:19 PM]

55

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

A ZOLTAN_NUM_GEOM_FN query function returns the number of values needed to express the geometry of an object. For example, for a
two-dimensional mesh-based application, (x,y) coordinates are needed to describe an object's geometry; thus the
ZOLTAN_NUM_GEOM_FN query function should return the value of two. For a similar three-dimensional application, the return value
should be three.

Function Type: ZOLTAN_NUM_GEOM_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 ierr Error code to be set by function.

Returned Value:

 int The number of values needed to express the geometry of an object.

C and C++: typedef void ZOLTAN_GEOM_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries, int num_obj,
ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int num_dim, double *geom_vec, int *ierr);

FORTRAN: SUBROUTINE Get_Geom_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids, num_dim,
geom_vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj, num_dim
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_GEOM_MULTI FN query function returns a vector of geometry values for a list of given objects. The geometry vector is
allocated by Zoltan to be of size num_obj * num_dim; its format is described below.

Function Type: ZOLTAN_GEOM_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.

 global_ids Array of global IDs of objects whose geometry values should be returned.

 local_ids Array of local IDs of objects whose geometry values should be returned.

 num_dim Number of coordinate entries per object (typically 1, 2, or 3).

 geom_vec Upon return, an array containing geometry values. For object i (specified by global_ids[i*num_gid_entries] and
local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), coordinate values should be stored in geom_vec[i*num_dim:
(i+1)*num_dim-1].

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (7 of 25) [5/21/07 12:06:19 PM]

56

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

C and C++: typedef void ZOLTAN_GEOM_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, double *geom_vec, int *ierr);

FORTRAN: SUBROUTINE Get_Geom(data, num_gid_entries, num_lid_entries, global_id, local_id, geom_vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_GEOM_FN query function returns a vector of geometry values for a given object. The geometry vector is allocated by Zoltan to
be of the size returned by a ZOLTAN_NUM_GEOM_FN query function.

Function Type: ZOLTAN_GEOM_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object whose geometry values should be returned.

 local_id The local ID of the object whose geometry values should be returned.

 geom_vec Upon return, an array containing geometry values.

 ierr Error code to be set by function.

Graph-based Functions

C and C++: typedef void ZOLTAN_NUM_EDGES_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int *num_edges, int *ierr);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (8 of 25) [5/21/07 12:06:19 PM]

57

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: SUBROUTINE Get_Num_Edges_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids,
num_edges, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT),DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_MULTI_FN query function returns the number of edges in the communication graph of the application for
each object in a list of objects. That is, for each object in the global_ids/local_ids arrays, the number of objects with which the given object
must share information is returned.

Function Type: ZOLTAN_NUM_EDGES_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.

 global_ids Array of global IDs of objects whose number of edges should be returned.

 local_ids Array of local IDs of objects whose number of edges should be returned.

 num_edges Upon return, an array containing numbers of edges. For object i (specified by global_ids[i*num_gid_entries]
and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), the number of edges should be stored in num_edges[i].

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_NUM_EDGES_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Num_Edges(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_FN query function returns the number of edges for a given object in the communication graph of the
application (i.e., the number of objects with which the given object must share information).

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (9 of 25) [5/21/07 12:06:19 PM]

58

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

Function Type: ZOLTAN_NUM_EDGES_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the number of edges should be returned.

 local_id The local ID of the object for which the number of edges should be returned.

 ierr Error code to be set by function.

Returned Value:

 int The number of edges for the object identified by global_id and local_id.

C and C++: typedef void ZOLTAN_EDGE_LIST_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int *num_edges,
ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs, int wgt_dim, float *ewgts, int *ierr);

FORTRAN: SUBROUTINE Get_Edge_List_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids,
num_edges, nbor_global_id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_MULTI_FN query function returns lists of global IDs, processor IDs, and optionally edge weights for objects
sharing edges with objects specified in the global_ids input array; objects share edges when they must share information with other objects.
The arrays for the returned neighbor lists are allocated by Zoltan; their size is determined by a calls to
ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN query functions.

Function Type: ZOLTAN_EDGE_LIST_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.

 global_ids Array of global IDs of objects whose edge lists should be returned.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (10 of 25) [5/21/07 12:06:19 PM]

59

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 local_ids Array of local IDs of objects whose edge lists should be returned.

 num_edges An array containing numbers of edges for each object in global_ids. For object i (specified by global_ids
[i*num_gid_entries] and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), the number of edges is stored in
num_edges[i].

 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the objects specified in global_ids. For object i
(specified by global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), edges are
stored in nbor_global_id[sum*num_gid_entries] to nbor_global_id[(sum+num_edges[i])*num_gid_entries-1],
where sum = the sum of num_edges[j] for j=0,1,...,i-1.

 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring objects reside. For neighboring
object i (stored in nbor_global_id[i*num_gid_entries]), the processor owning the neighbor is stored in
nbor_procs[i].

 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights are not requested. This value
is set through the parameter EDGE_WEIGHT_DIM.

 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgts is undefined and may be
NULL.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_EDGE_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
int wgt_dim, float *ewgts, int *ierr);

FORTRAN: SUBROUTINE Get_Edge_List(data, num_gid_entries, num_lid_entries, global_id, local_id, nbor_global_id,
nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_FN query function returns lists of global IDs, processor IDs, and optionally edge weights for objects sharing an
edge with a given object (i.e., objects that must share information with the given object). The arrays for the returned neighbor lists are
allocated by Zoltan; their size is determined by a call to ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN query
functions.

Function Type: ZOLTAN_EDGE_LIST_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (11 of 25) [5/21/07 12:06:19 PM]

60

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 global_id The global ID of the object for which an edge list should be returned.

 local_id The local ID of the object for which an edge list should be returned.

 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the given object.

 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring objects reside.

 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights are not requested. This value
is set through the parameter EDGE_WEIGHT_DIM.

 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgts is undefined and may be
NULL.

 ierr Error code to be set by function.

Hypergraph-based Functions

C and C++: typedef void ZOLTAN_HG_SIZE_CS_FN (void *data, int *num_lists, int *num_pins, int *format, int *ierr);

FORTRAN: SUBROUTINE Get_HG_Size_CS(data, num_lists, num_pins, format, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: num_lists
INTEGER(Zoltan_INT), INTENT(OUT) :: num_pins
INTEGER(Zoltan_INT), INTENT(OUT) :: format
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A hypergraph (which may alternatively be viewed as a sparse matrix) can be supplied to the Zoltan library in one of two compressed storage
formats. In compressed hyperedge format (ZOLTAN_COMPRESSED_EDGE) a list of global hyperedge IDs is provided. Then a single list
of the hypergraph pins, is provided. A pin is the connection between a vertex and a hyperedge (corresponds to a nonzero in a sparse matrix).
Pins do not have separate IDs but are rather identified by the global ID of the vertex containing the pin, and implicitly also by the hyperedge
ID. An example is provided below.

The other format is compressed vertex (ZOLTAN_COMPRESSED_VERTEX). In this format a list of vertex global IDs is provided. Then a
list of pins ordered by vertex and then by hyperedge is provided. The pin ID in this case is the global ID of the row (or hyperedge) in which the
pin appears. In both formats, an array must be provided pointing to the start in the list of pins where each row or column begins. Sparse matrix
users may think of these two formats as CSR (compressed sparse row) and CSC (compressed sparse column) format, respectively.

The point of this query function is to tell Zoltan in which format the application will supply the hypergraph, how many vertices and
hyperedges there will be, and how many pins. The actual hypergraph is supplied with a query function of the type
ZOLTAN_HG_CS_FN_TYPE.

This query function is required by all applications using the hypergraph methods of Zoltan (unless they are using the graph-based functions
with hypergraph code instead).

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (12 of 25) [5/21/07 12:06:19 PM]

61

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

Function Type: ZOLTAN_HG_SIZE_CS_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_lists Upon return, the number of rows (if using compressed row storage) or columns (if using compressed column
storage) that will be supplied to Zoltan by the application process.

 num_pins Upon return, the number of pins (matrix non-zeroes) that will be supplied to Zoltan by the application process.

 format Upon return, the format in which the application process will provide the hypergraph to Zoltan. The options are
ZOLTAN_COMPRESSED_EDGE and ZOLTAN_COMPRESSED_VERTEX.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_HG_CS_FN (void *data, int num_gid_entries, int num_vtx_edge, int num_pins, int format,
ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID, int *ierr);

FORTRAN: SUBROUTINE Get_HG_CS(data, num_gid_entries, num_vtx_edge, num_pins, format, vtxedge_GID, vtxedge_ptr,
pin_GID, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_vtx_edge, num_pins, format
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vtxedge_GID
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vtxedge_ptr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: pin_GID
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HG_CS_FN returns a hypergraph, in a sparse matrix-like style. The size and format of the data to be returned must have been
supplied to Zoltan using a ZOLTAN_HG_SIZE_CS_FN_TYPE function.

When a hypergraph is distributed across multiple processes, Zoltan expects that all processes share a consistent global numbering scheme for
hyperedges and vertices. Also, no two processes should return the same pin (matrix non-zero) in this query function.

This query function is required by all applications using the hypergraph methods of Zoltan (unless they are using the graph-based functions
with hypergraph code instead).

Function Type: ZOLTAN_HG_CS_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_vtx_edge The number of global IDs that is expected to appear on return in vtxedge_GID. This may correspond to either
vertices or (hyper-)edges.

 num_pins The number of pins that is expected to appear on return in pin_GID.

 format If format is ZOLTAN_COMPRESSED_EDGE, Zoltan expects that row (hyperedge) global IDs will be
returned in vtxedge_GID, and that column (vertex) global IDs will be returned in pin_GIDs. If it is
ZOLTAN_COMPRESSED_VERTEX, then column global IDs are expected to be returned in vtxedge_GID
and row global IDs are expected to be returned in pin_GIDs.

 vtxedge_GID Upon return, a list of num_vtx_edge global IDs.

 vtxedge_ptr Upon return, this array contains num_vtx_edge integers. The integer in the i'th array element is the index in array
pin_GID where the pins for the i'th row (if format is ZOLTAN_COMPRESSED_EDGE) or i'th column (if
format is ZOLTAN_COMPRESSED_VERTEX) begins. Array indices begin at zero.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (13 of 25) [5/21/07 12:06:19 PM]

62

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 pin_GID Upon return, a list of num_pins global IDs. This is the list of the pins (or matrix non-zeros) contained in the
rows or columns listed in vtxedge_GID.

 ierr Error code to be set by function.

Example

vertex

hyperedge 10 20 30 40 50

1 0 0 1 1 0

2 0 1 1 0 0

3 1 0 0 0 1

Compressed hyperedge storage:

vtxedge_GID = {1, 2, 3}
vtxedge_ptr = {0, 2, 4}
pin_GID = {30, 40, 20, 30, 10, 50}

Compressed vertex storage:

vtxedge_GID = {10, 20, 30, 40, 50}
vtxedge_ptr = {0, 1, 2, 4, 5}
pin_GID = {3, 2, 1, 2, 1, 3}

C and C++: typedef void ZOLTAN_HG_SIZE_EDGE_WTS_FN (void *data, int *num_edges, int *ierr);

FORTRAN: SUBROUTINE Get_HG_Size_Edge_Wts(data, num_edges, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HG_SIZE_EDGE_WTS_FN returns the number of hyperedges for which a process will supply edge weights. The number of
weights per hyperedge was supplied by the application with the EDGE_WEIGHT_DIM parameter. The actual edge weights will be supplied
with a ZOLTAN_HG_EDGE_WTS_FN_TYPE function.

This query function is not required. If no hyperedge weights are supplied, Zoltan will assume every hyperedge has weight 1.0.

Function Type: ZOLTAN_HG_SIZE_EDGE_WTS_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_edges Upon return, the number of hyperedges for which edge weights will be supplied.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_HG_EDGE_WTS_FN (void *data, int num_gid_entries, int num_lid_entries, int num_edges,
int edge_weight_dim, ZOLTAN_ID_PTR edge_GID, ZOLTAN_ID_PTR edge_LID, float *edge_weight, int *ierr);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (14 of 25) [5/21/07 12:06:19 PM]

63

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: SUBROUTINE Get_HG_Edge_Wts(data, num_gid_entries, num_lid_entries, num_edges, edge_weight_dim,
edge_GID, edge_LID, edge_weight, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_edges, edge_weight_dim
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: edge_GID
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: edge_LID
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: edge_weight
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HG_EDGE_WTS_FN returns edges weights for a set of hypergraph edges. The number of weights supplied for each hyperedge
should equal the value of the EDGE_WEIGHT_DIM parameter. In the case of a hypergraph which is distributed across multiple processes, if
more than one process supplies edge weights for the same hyperedge, the different edge weights will be resolved according to the value of the
PHG_EDGE_WEIGHT_OPERATION parameter.

This query function is not required. If no hyperedge weights are supplied, Zoltan will assume every hyperedge has weight 1.0.

Function Type: ZOLTAN_HG_SIZE_EDGE_WTS_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_edges The number of hyperedges for which edge weights should be supplied in the edge_weight array.

 edge_weight_dim The number of weights which should be supplied for each hyperedge. This is also the value of the
EDGE_WEIGHT_DIM parameter.

 edge_GID Upon return, this array should contain the global IDs of the num_edges hyperedges for which the application is
supplying edge weights.

 edge_LID Upon return, this array can optionally contain the local IDs of the num_edges hyperedges for which the
application is supplying edge weights.

 edge_weight Upon return, this array should contain the weights for each edge listed in the edge_GID. If edge_weight_dim is
greater than one, all weights for one hyperedge are listed before the weights for the next hyperedge are listed.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_NUM_FIXED_OBJ_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Num_Fixed_Obj(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Fixed_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (15 of 25) [5/21/07 12:06:19 PM]

64

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

A ZOLTAN_NUM_FIXED_OBJ_FN returns the number of objects on a given processor fixed to particular partitions. These objects will not
be assigned to a partition other than the user specified partition by the parallel hypergraph algorithm.

This query function is not required. If it is not defined, all objects are candidates for migration to new partitions.

Function Type: ZOLTAN_NUM_FIXED_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 ierr Error code to be set by function.

Returned Value:

 int The number of objects on this processor that are to be fixed to a specific partition.

C and C++: typedef void ZOLTAN_FIXED_OBJ_LIST_FN (void *data, int num_fixed_obj, int num_gid_entries,
ZOLTAN_ID_PTR fixed_gids, int *fixed_parts, int *ierr);

FORTRAN: SUBROUTINE Get_Fixed_Obj_List(data, num_fixed_obj, num_gid_entries, fixed_gids, fixed_parts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_fixed_obj
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: fixed_gids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: fixed_parts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_FIXED_OBJ_LIST_FN query function fills two arrays with information about the objects that should not be moved from their
user assigned partitions. These arrays are allocated (and subsequently freed) by Zoltan; their size is determined by a call to a
ZOLTAN_NUM_FIXED_OBJ_FN query function to get the array size.

A process should only fix the partition of objects that it owns, that is, objects that it had previously supplied in a ZOLTAN_OBJ_LIST_FN
query function. It is an error to list the global ID of an object owned by another process.

Function Type: ZOLTAN_FIXED_OBJ_LIST_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_fixed_obj The number of objects you will list in the two output arrays.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 fixed_gids Upon return, an array of unique global IDs for all objects assigned to the processor which are to be fixed to a
partition.

 fixed_parts Upon return, an array of partition numbers, one for each object listed in the global ID array. These objects will
not be migrated from this assigned partition.

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (16 of 25) [5/21/07 12:06:19 PM]

65

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

Tree-based Functions

C and C++: typedef int ZOLTAN_NUM_COARSE_OBJ_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Num_Coarse_Obj(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_NUM_COARSE_OBJ_FN query function returns the number of objects (elements) in the initial coarse grid.

Function Type: ZOLTAN_NUM_COARSE_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 ierr Error code to be set by function.

Returned Value:

 int The number of objects in the coarse grid.

C and C++: typedef void ZOLTAN_COARSE_OBJ_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int *assigned, int *num_vert,
ZOLTAN_ID_PTR vertices, int *in_order, ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex,
int *ierr);

FORTRAN: SUBROUTINE Get_Coarse_Obj_List(data, num_gid_entries, num_lid_entries, global_ids, local_ids, assigned,
num_vert, vertices, in_order, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex, out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: in_order, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_COARSE_OBJ_LIST_FN query function returns lists of global IDs, local IDs, vertices, and order information for all objects
(elements) of the initial coarse grid. The vertices are designated by a global ID such that if two elements share a vertex then the same ID
designates that vertex in both elements and on all processors. The user may choose to provide the order in which the elements should be
traversed or have Zoltan determine the order. If the user provides the order, then entry and exit vertices for a path through the elements may
also be provided. The arrays for the returned values are allocated by Zoltan; their size is determined by a call to a

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (17 of 25) [5/21/07 12:06:19 PM]

66

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

ZOLTAN_NUM_COARSE_OBJ_FN query function.

Function Type: ZOLTAN_COARSE_OBJ_LIST_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, an array of global IDs of all objects in the coarse grid.

 local_ids Upon return, an array of local IDs of all objects in the coarse grid.

 assigned Upon return, an array of integers indicating whether or not each object is currently assigned to this processor. A
value of 1 indicates it is assigned to this processor; a value of 0 indicates it is assigned to some other processor.
For elements that have been refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, an array containing the number of vertices for each object.

 vertices Upon return, an array of global IDs of the vertices of each object. If the number of vertices for objects 0 through
i-1 is N, then the vertices for object i are in vertices[N*num_gid_entries: (N+num_vert[i])*num_gid_entries]

 in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed, or 0 if Zoltan
should determine the order.

 in_vertex Upon return, an array of global IDs of the vertices through which to enter each element in the user provided
traversal. It is required only if the user is providing the order for the coarse grid objects (i.e., in_order==1) and
allowing Zoltan to select the order of the children in at least one invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each element in the user provided
traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_FIRST_COARSE_OBJ_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *assigned, int *num_vert,
ZOLTAN_ID_PTR vertices, int *in_order, ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex,
int *ierr);

FORTRAN: FUNCTION Get_First_Coarse_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, assigned, num_vert,
vertices, in_order, in_vertex, out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_First_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vert, in_order, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_FIRST_COARSE_OBJ_FN query function initializes an iteration over the objects of the initial coarse grid. It returns the
global ID, local ID, vertices, and order information for the first object (element) of the initial coarse grid. Subsequent calls to a
ZOLTAN_NEXT_COARSE_OBJ_FN iterate over and return other objects from the coarse grid. The vertices are designated by a global ID
such that if two elements share a vertex then the same ID designates that vertex in both elements and on all processors. The user may choose to

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (18 of 25) [5/21/07 12:06:19 PM]

67

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

provide the order in which the elements should be traversed, or have Zoltan determine the order. If the user provides the order, then entry and
exit vertices for a path through the elements may also be provided.

Function Type: ZOLTAN_FIRST_COARSE_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, the global ID of the first object in the coarse grid.

 local_ids Upon return, the local ID of the first object in the coarse grid.

 assigned Upon return, an integer indicating whether or not this object is currently assigned to this processor. A value of 1
indicates it is assigned to this processor; a value of 0 indicates it is assigned to some other processor. For
elements that have been refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.

 vertices Upon return, an array of global IDs of the vertices of this object.

 in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed, or 0 if Zoltan
should determine the order.

 in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. It is required only if
the user is providing the order for the coarse grid objects (i.e., in_order==1) and allowing Zoltan to select the
order of the children in at least one invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The same provisions
hold as for in_vertex.

 ierr Error code to be set by function.

Returned Value:

 1 If global_id and local_id contain valid IDs of the first object in the coarse grid.

 0 If no coarse grid is available.

C and C++: typedef int ZOLTAN_NEXT_COARSE_OBJ_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID_PTR next_global_id,
ZOLTAN_ID_PTR next_local_id, int *assigned, int *num_vert, ZOLTAN_ID_PTR vertices,
ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: FUNCTION Get_Next_Coarse_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, next_global_id,
next_local_id, assigned, num_vert, vertices, in_vertex, out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vertex, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (19 of 25) [5/21/07 12:06:19 PM]

68

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

A ZOLTAN_NEXT_COARSE_OBJ_FN query function is an iterator function that returns the next object in the initial coarse grid. The first
object of the iteration is provided by a ZOLTAN_FIRST_COARSE_OBJ_FN query function.

Function Type: ZOLTAN_NEXT_COARSE_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the previous object in the coarse grid.

 local_id The local ID of the previous object in the coarse grid.

 next_global_id Upon return, the global ID of the next object in the coarse grid.

 next_local_id Upon return, the local ID of the next object in the coarse grid.

 assigned Upon return, an integer indicating whether or not this object is currently assigned to this processor. A value of 1
indicates it is assigned to this processor; a value of 0 indicates it is assigned to some other processor. For
elements that have been refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.

 vertices Upon return, an array of global IDs of the vertices of this object.

 in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. It is required only if
the user is providing the order for the coarse grid objects (i.e., in_order==1) and allowing Zoltan to select the
order of the children in at least one invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The same provisions
hold as for in_vertex.

 ierr Error code to be set by function.

Returned Value:

 1 If global_id and local_id contain valid IDs of the next object in the coarse grid.

 0 If no more objects are available.

C and C++: typedef int ZOLTAN_NUM_CHILD_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Num_Child(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Child
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_NUM_CHILD_FN query function returns the number of children of the element with the given global and local IDs. If the
element has not been refined, the number of children is 0.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (20 of 25) [5/21/07 12:06:19 PM]

69

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

Function Type: ZOLTAN_NUM_CHILD_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the number of children is requested.

 local_id The local ID of the object for which the number of children is requested.

 ierr Error code to be set by function.

Returned Value:

 int The number of children.

C and C++: typedef void ZOLTAN_CHILD_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR parent_gid, ZOLTAN_ID_PTR parent_lid, ZOLTAN_ID_PTR child_gids,
ZOLTAN_ID_PTR child_lids, int *assigned, int *num_vert, ZOLTAN_ID_PTR vertices,
ZOLTAN_REF_TYPE *ref_type, ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: SUBROUTINE Get_Child_List(data, num_gid_entries, num_lid_entries, parent_gid, parent_lid, child_gids,
child_lids, assigned, num_vert, vertices, ref_type, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_gid
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_lid
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_gids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_lids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex, out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: ref_type, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_CHILD_LIST_FN query function returns lists of global IDs, local IDs, vertices, and order information for all children of a
refined element. The vertices are designated by a global ID such that if two elements share a vertex then the same ID designates that vertex in
both elements and on all processors. The user may choose to provide the order in which the children should be traversed, or have Zoltan
determine the order based on the type of element refinement used to create the children. If the user provides the order, then entry and exit
vertices for a path through the elements may also be provided. The arrays for the returned values are allocated by Zoltan; their size is
determined by a call to a ZOLTAN_NUM_CHILD_FN query function.

Function Type: ZOLTAN_CHILD_LIST_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 parent_gid The global ID of the object whose children are requested.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (21 of 25) [5/21/07 12:06:19 PM]

70

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 parent_lid The local ID of the object whose children are requested.

 child_gids Upon return, an array of global IDs of all children of this object.

 child_lids Upon return, an array of local IDs of all children of this object.

 assigned Upon return, an array of integers indicating whether or not each child is currently assigned to this processor. A
value of 1 indicates it is assigned to this processor; a value of 0 indicates it is assigned to some other processor.
For children that have been further refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, an array containing the number of vertices for each object.

 vertices Upon return, an array of global IDs of the vertices of each object. If the number of vertices for objects 0 through
i-1 is N, then the vertices for object i are in vertices[N*num_gid_entries: (N+num_vert[i])*num_gid_entries]

 ref_type Upon return, a value indicating what type of refinement was used to create the children. This determines how
the children will be ordered. The values currently supported are:

 ZOLTAN_TRI_BISECT Bisection of triangles.

 ZOLTAN_QUAD_QUAD Quadrasection of quadrilaterals.

 ZOLTAN_HEX3D_OCT Octasection of hexahedra.

 ZOLTAN_OTHER_REF All other forms of refinement.

 ZOLTAN_IN_ORDER Traverse the children in the order in which they are provided.

 in_vertex Upon return, an array of global IDs of the vertex through which to enter each element in the user provided
traversal. It is required only if the user is providing the order for the children of this element (i.e.,
ref_type==ZOLTAN_IN_ORDER) but does not provide the order for the children of at least one of those
children.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each element in the user provided
traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_CHILD_WEIGHT_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int wgt_dim, float *obj_wgt, int *ierr);

FORTRAN: SUBROUTINE Get_Child_Weight(data, num_gid_entries, num_lid_entries, global_id, local_id, wgt_dim, obj_wgt,
ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_CHILD_WEIGHT_FN query function returns the weight of an object. Interior nodes of the refinement tree as well as the
leaves are allowed to have weights.

Function Type: ZOLTAN_CHILD_WEIGHT_FN_TYPE

Arguments:

 data Pointer to user-defined data.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (22 of 25) [5/21/07 12:06:19 PM]

71

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object whose weight is requested.

 local_id The local ID of the object whose weight is requested.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested. This value is set
through the parameter OBJ_WEIGHT_DIM.

 obj_wgt Upon return, an array containing the object's weights. If wgt_dim=0, the return value of obj_wgts is undefined
and may be NULL.

 ierr Error code to be set by function.

Hierarchical Partitioning Functions (used only by method HIER)

C and C++: typedef int ZOLTAN_HIER_NUM_LEVELS_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Hier_Num_Levels(data, nbor_proc, ierr)
INTEGER(Zoltan_INT) :: Get_Hier_Num_Levels
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HIER_NUM_LEVELS_FN query function returns, for the calling processor, the number of levels of hierarchy for hierarchical
load balancing.

Function Type: ZOLTAN_HIER_NUM_LEVELS_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 ierr Error code to be set by function.

Returned Value:

 int the number of levels of balancing hierarchy for method HIER.

C and C++: typedef int ZOLTAN_HIER_PARTITION_FN (void *data, int level, int *ierr);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (23 of 25) [5/21/07 12:06:20 PM]

72

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: FUNCTION Get_Hier_Partition(data, level, ierr)
INTEGER(Zoltan_INT) :: Get_Hier_Partition
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) ::: level
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HIER_PARTITION_FN query function gets the partition number to be used for the given level of a hierarchical balancing
procedure.

Function Type: ZOLTAN_HIER_PARTITION_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 level The level of a hierarchical balancing for which the partition ID is requested.

 ierr Error code to be set by function.

Returned Value:

 int The partition number the process is to compute for this level.

C and C++: typedef void ZOLTAN_HIER_METHOD_FN (void *data, int level, struct Zoltan_Struct * zz, int *ierr);

FORTRAN: SUBROUTINE Get_Hier_Method(data, level, zz, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: level
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_HIER_METHOD_FN query function provides to the calling process the Zoltan_Struct to be used to guide the partitioning and
load balancing at the given level in the hierarchy. This Zoltan_Struct can be passed to Zoltan_Set_Param to set load balancing parameters for
this level in the hierarchical balancing.

Function Type: ZOLTAN_HIER_METHOD_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 level Level in the hierarchy being considered.

 zz Zoltan_Struct to use to set parameters.

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (24 of 25) [5/21/07 12:06:20 PM]

73

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: General Zoltan Query Functions

[Table of Contents | Next: Migration Query Functions | Previous: Application-Registered Query Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (25 of 25) [5/21/07 12:06:20 PM]

74

Zoltan User's Guide: Migration Query Functions

Zoltan User's Guide | Next | Previous

Migration Query Functions

The following query functions must be registered to use any of the migration tools described in Migration Functions:

ZOLTAN_OBJ_SIZE_MULTI_FN or ZOLTAN_OBJ_SIZE_FN
ZOLTAN_PACK_OBJ_MULTI_FN or ZOLTAN_PACK_OBJ_FN
ZOLTAN_UNPACK_OBJ_MULTI_FN or ZOLTAN_UNPACK_OBJ_FN

The "MULTI_" versions of the packing/unpacking functions take lists of IDs as input and pack/unpack data for all objects in the lists. Only
one function of each type must be provided (e.g., either a ZOLTAN_PACK_OBJ_FN or ZOLTAN_PACK_OBJ_MULTI_FN, but not
both).

Optional, additional query functions for migration may also be registered; these functions are called at the beginning, middle, and end of
migration in Zoltan_Migrate.

ZOLTAN_PRE_MIGRATE_PP_FN
ZOLTAN_MID_MIGRATE_PP_FN
ZOLTAN_POST_MIGRATE_PP_FN

For backward compatibility with previous versions of Zoltan, the following functions may be used with Zoltan_Help_Migrate.

ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_POST_MIGRATE_FN

C and C++: typedef int ZOLTAN_OBJ_SIZE_FN(
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int *ierr);

FORTRAN: FUNCTION Obj_Size(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Obj_Size
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id, local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_FN query function returns the size (in bytes) of the data buffer that is needed to pack all of a single object's data.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (1 of 12) [5/21/07 12:06:22 PM]

75

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

Function Type: ZOLTAN_OBJ_SIZE_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id Pointer to the global ID of the object.

 local_id Pointer to the local ID of the object.

 ierr Error code to be set by function.

Returned Value:

 int The size (in bytes) of the required data buffer.

C and C++: typedef void ZOLTAN_OBJ_SIZE_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *sizes,
 int *ierr);

FORTRAN: SUBROUTINE Obj_Size_Multi(data, num_gid_entries, num_lid_entries, num_ids, global_ids, local_ids, sizes, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids, local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_MULTI_FN query function is the multiple-ID version of ZOLTAN_OBJ_SIZE_FN. For a list of objects, it
returns the per-objects sizes (in bytes) of the data buffers needed to pack object data.

Function Type: ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_ids The number of objects whose sizes are to be returned.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in global_ids[i*num_gid_entries].

 local_ids An array of local IDs of the objects. The ID for the i-th object begins in local_ids[i*num_lid_entries].

 sizes Upon return, array of sizes (in bytes) for each object in the ID lists.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (2 of 12) [5/21/07 12:06:22 PM]

76

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

 ierr Error code to be set by function.

Returned Value:

 int The size (in bytes) of the required data buffer.

C and C++: typedef void ZOLTAN_PACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int dest,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, dest, size, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: dest, size
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_FN query function allows the application to tell Zoltan how to copy all needed data for a given object into a
communication buffer. The object's data can then be sent to another processor as part of data migration. It may also perform other operations,
such as removing the object from the processor's data structure. This routine is called by Zoltan_Migrate for each object to be sent to another
processor.

Function Type: ZOLTAN_PACK_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which data should be copied into the communication buffer.

 local_id The local ID of the object for which data should be copied into the communication buffer.

 dest The destination partition (i.e., the partition to which the object is being sent)

 size The size (in bytes) of the communication buffer for the specified object (as returned by the
ZOLTAN_OBJ_SIZE_FN query function).

 buf The starting address of the communication buffer into which the object's data should be packed.

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (3 of 12) [5/21/07 12:06:22 PM]

77

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

C and C++: typedef void ZOLTAN_PACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *dest,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj_Multi(data, num_gid_entries, num_lid_entries, num_ids, global_ids, local_ids, dest, sizes,
idx, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: dest
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_MULTI_FN query function is the multiple-ID version of a ZOLTAN_PACK_OBJ_FN. It allows the
application to tell Zoltan how to copy all needed data for a given list of objects into a communication buffer.

Function Type: ZOLTAN_PACK_OBJ_FN_MULTI_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_ids The number of objects to be packed.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in global_ids[i*num_gid_entries].

 local_ids An array of local IDs of the objects. The ID for the i-th object begins in local_ids[i*num_lid_entries].

 dest An array of destination partition numbers (i.e., the partitions to which the objects are being sent)

 sizes An array containing the per-object sizes (in bytes) of the communication buffer for each object.

 idx For each object, an index into the buf array giving the starting location of that object's data. Data for the i-th
object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf[idx[i]+sizes[i]-1]. Because Zoltan adds some tag
information to packed data, idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer into which the objects' data should be packed.

 ierr Error code to be set by function.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (4 of 12) [5/21/07 12:06:22 PM]

78

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

C and C++: typedef void ZOLTAN_UNPACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 ZOLTAN_ID_PTR global_id,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Unpack_Obj(data, num_gid_entries, global_id, size, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN) :: size
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_FN query function allows the application to tell Zoltan how to copy all needed data for a given object from a
communication buffer into the application's data structure. This operation is needed as the final step of importing objects during data
migration. The query function may also perform other computation, such as building request lists for related data. This routine is called by
Zoltan_Migrate for each object to be received by the processor. (Note: a local ID for the object is not included in this function, as the local ID
is local to the exporting, not the importing, processor.)

Function Type: ZOLTAN_UNPACK_OBJ_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 global_id The global ID of the object whose data has been received in the communication buffer.

 size The size (in bytes) of the object's data in the communication buffer.

 buf The starting address of the communication buffer for this object.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_UNPACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (5 of 12) [5/21/07 12:06:22 PM]

79

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

FORTRAN: SUBROUTINE Unpack_Obj_Multi(data, num_gid_entries, num_ids, global_ids, sizes, idx, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_MULTI_FN query function is the multiple-ID version of a ZOLTAN_UNPACK_OBJ_FN. It allows the
application to tell Zoltan how to copy all needed data for a given list of objects from a communication buffer into the application's data
structure.

Function Type: ZOLTAN_UNPACK_OBJ_MULTI_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_ids The number of objects to be unpacked.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in global_ids[i*num_gid_entries].

 sizes An array containing the per-object sizes (in bytes) of the communication buffer for each object.

 idx For each object, an index into the buf array giving the starting location of that object's data. Data for the i-th
object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf[idx[i]+sizes[i]-1]. Because Zoltan adds some tag
information to packed data, idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer from which data is unpacked.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_PRE_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (6 of 12) [5/21/07 12:06:22 PM]

80

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

FORTRAN: SUBROUTINE Pre_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, import_to_part, num_export, export_global_ids, export_local_ids, export_procs,
export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_PP_FN query function performs any pre-processing desired by the application. If it is registered, it is called
at the beginning of the Zoltan_Migrate routine. The arguments passed to Zoltan_Migrate are made available for use in the pre-processing
routine.

Function Type: ZOLTAN_PRE_MIGRATE_PP_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.

 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors. This array may be NULL, as the
processor does not necessarily need to know which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array may be NULL,
as the processor does not necessarily need to know from which objects it will receive.

 num_export The number of objects that will be sent from this processor to other processors.

 export_global_ids An array of num_export global IDs of objects to be sent from this processor.

 export_local_ids An array of num_export local IDs of objects to be sent from this processor.

 export_procs An array of size num_export listing the processor IDs of the destination processors.

 export_to_part An array of size num_export listing the partitions to which objects will be sent.

 ierr Error code to be set by function.

Default:

No pre-processing is done if a ZOLTAN_PRE_MIGRATE_PP_FN is not registered.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (7 of 12) [5/21/07 12:06:22 PM]

81

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

C and C++: typedef void ZOLTAN_MID_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Mid_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, import_to_part, num_export, export_global_ids, export_local_ids, export_procs,
export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_PP_FN query function performs any processing desired by the application between the packing and
unpacking of objects being migrated. If it is registered, it is called after export objects are packed in Zoltan_Migrate; imported objects are
unpacked after the ZOLTAN_MID_MIGRATE_PP_FN query function is called. The arguments passed to Zoltan_Migrate are made
available for use in the processing routine.

,

Function Type: ZOLTAN_MID_MIGRATE_PP_FN_TYPE

Arguments:

 data Pointer to user-defined data.

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.

 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors. This array may be NULL, as the
processor does not necessarily need to know which objects is will receive.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (8 of 12) [5/21/07 12:06:22 PM]

82

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array may be NULL,
as the processor does not necessarily need to know from which objects it will receive.

 num_export The number of objects that will be sent from this processor to other processors.

 export_global_ids An array of num_export global IDs of objects to be sent from this processor.

 export_local_ids An array of num_export local IDs of objects to be sent from this processor.

 export_procs An array of size num_export listing the processor IDs of the destination processors.

 export_to_part An array of size num_export listing the partitions to which objects will be sent.

 ierr Error code to be set by function.

Default:

No processing is done if a ZOLTAN_MID_MIGRATE_PP_FN is not registered.

C and C++: typedef void ZOLTAN_POST_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, import_to_part, num_export, export_global_ids, export_local_ids, export_procs,
export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_PP_FN query function performs any post-processing desired by the application. If it is registered, it is
called at the end of the Zoltan_Migrate routine. The arguments passed to Zoltan_Migrate are made available for use in the post-processing
routine.

Function Type: ZOLTAN_POST_MIGRATE_PP_FN_TYPE

Arguments:

 data Pointer to user-defined data.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (9 of 12) [5/21/07 12:06:22 PM]

83

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum value over all
processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value over all
processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.

 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be NULL, as the
processor does not necessarily need to know which objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors. This array may be NULL, as the
processor does not necessarily need to know which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array may be NULL,
as the processor does not necessarily need to know from which objects it will receive.

 num_export The number of objects that will be sent from this processor to other processors.

 export_global_ids An array of num_export global IDs of objects to be sent from this processor.

 export_local_ids An array of num_export local IDs of objects to be sent from this processor.

 export_procs An array of size num_export listing the processor IDs of the destination processors.

 export_to_part An array of size num_export listing the partitions to which objects will be sent.

 ierr Error code to be set by function.

Default:

No post-processing is done if a ZOLTAN_POST_MIGRATE_PP_FN is not registered.

C: typedef void ZOLTAN_PRE_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Pre_Migrate(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, num_export, export_global_ids, export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_FN query function performs any pre-processing desired by applications using Zoltan_Help_Migrate. Its

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (10 of 12) [5/21/07 12:06:22 PM]

84

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

function is analogous to ZOLTAN_PRE_MIGRATE_PP_FN, but it cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_PRE_MIGRATE_FN_TYPE

Arguments:

All arguments are analogous to those in ZOLTAN_PRE_MIGRATE_PP_FN. Partition-assignment arguments
import_to_part and export_to_part are not included, as processor and partitions numbers are considered to be
the same in Zoltan_Help_Migrate.

Default:

No pre-processing is done if a ZOLTAN_PRE_MIGRATE_FN is not registered.

C: typedef void ZOLTAN_MID_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Mid_Migrate(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, num_export, export_global_ids, export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_FN query function performs any mid-migration processing desired by applications using
Zoltan_Help_Migrate. Its function is analogous to ZOLTAN_MID_MIGRATE_PP_FN, but it cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_MID_MIGRATE_FN_TYPE

Arguments:

All arguments are analogous to those in ZOLTAN_MID_MIGRATE_PP_FN. Partition-assignment arguments
import_to_part and export_to_part are not included, as processor and partitions numbers are considered to be
the same in Zoltan_Help_Migrate.

Default:

No processing is done if a ZOLTAN_MID_MIGRATE_FN is not registered.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (11 of 12) [5/21/07 12:06:22 PM]

85

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Migration Query Functions

C: typedef void ZOLTAN_POST_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate(data, num_gid_entries, num_lid_entries, num_import, import_global_ids,
import_local_ids, import_procs, num_export, export_global_ids, export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT), DIMENSION(*) or
REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section on
Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_FN query function performs any post-processing desired by applications using Zoltan_Help_Migrate. Its
function is analogous to ZOLTAN_POST_MIGRATE_PP_FN, but it cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_POST_MIGRATE_FN_TYPE

Arguments:

All arguments are analogous to those in ZOLTAN_POST_MIGRATE_PP_FN. Partition-assignment
arguments import_to_part and export_to_part are not included, as processor and partitions numbers are
considered to be the same in Zoltan_Help_Migrate.

Default:

No post-processing is done if a ZOLTAN_POST_MIGRATE_FN is not registered.

[Table of Contents | Next: Zoltan Parameters and Output Levels | Previous: Load-Balancing Query Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (12 of 12) [5/21/07 12:06:22 PM]

86

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Algorithms

Zoltan User's Guide | Next | Previous

Zoltan Parameters and Output Levels

The behavior of Zoltan is controlled by several parameters and debugging-output levels. These parameters can be set by calls to
Zoltan_Set_Param. Reasonable default values for all parameters are specified by Zoltan. Many of the parameters are specific to individual
algorithms, and are listed in the descriptions of those algorithms. However, the parameters below have meaning across the entire library.

General Parameters

The following parameters apply to the entire Zoltan library. While reasonable default values for all parameters are specified by Zoltan,
applications can change these values through calls to Zoltan_Set_Param.

Parameters:

 NUM_GID_ENTRIES The number of unsigned integers that should be used to represent a global identifier (ID). Values greater than zero
are accepted.

 NUM_LID_ENTRIES The number of unsigned integers that should be used to represent a local identifier (ID). Values greater than or
equal to zero are accepted.

 DEBUG_LEVEL An integer indicating how much debugging information is printed by Zoltan. Higher values of DEBUG_LEVEL
produce more output and potentially slow down Zoltan's computations. The least output is produced when
DEBUG_LEVEL= 0. DEBUG_LEVEL primarily controls Zoltan's behavior; most algorithms have their own
parameters to control their output level. Values used within Zoltan are listed below.
Note: Because some debugging levels use processor synchronization, all processors should use the same value of
DEBUG_LEVEL.

 DEBUG_PROCESSOR Processor number from which trace output should be printed when DEBUG_LEVEL is 5.

 DEBUG_MEMORY Integer indicating the amount of low-level debugging information about memory-allocation should be kept by
Zoltan's Memory Management utilities. Valid values are 0, 1, 2, and 3.

 OBJ_WEIGHT_DIM The number of weights (to be supplied by the user in a query function) associated with an object. If this parameter
is zero, all objects have equal weight. Some algorithms may not support multiple (multidimensional) weights.

 EDGE_WEIGHT_DIM The number of weights associated with an edge. If this parameter is zero, all edges have equal weight. Many
algorithms do not support multiple (multidimensional) weights.

 TIMER The timer with which you wish to measure time. Valid choices are wall (based on MPI_Wtime), cpu (based on the
ANSI C library function clock), and user. The resolution may be poor, as low as 1/60th of a second, depending
upon your platform.

Default Values:

 NUM_GID_ENTRIES = 1

 NUM_LID_ENTRIES = 1

 DEBUG_LEVEL = 1

 DEBUG_PROCESSOR = 0

 DEBUG_MEMORY = 1

 OBJ_WEIGHT_DIM = 0

 EDGE_WEIGHT_DIM = 0

 TIMER = wall

Debugging Levels in Zoltan

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_param.html (1 of 2) [5/21/07 12:06:23 PM]

87

Zoltan User's Guide: Algorithms

The DEBUG_LEVEL parameter determines how much debugging information is printed to stdout by Zoltan. It is set by a call to
Zoltan_Set_Param. Higher values of DEBUG_LEVEL produce more output and can slow down Zoltan's computations, especially when the
output is printed by one processor at a time. The least output is produced when DEBUG_LEVEL = 0.

Descriptions of the output produced by Zoltan for each value of DEBUG_LEVEL are included below. For a given DEBUG_LEVEL value n,
all output for values less than or equal to n is produced.

Some high debugging levels use processor synchronization to force processors to write one-at-a-time. For example, when DEBUG_LEVEL is
greater than or equal to eight, each processor writes its list in turn so that the lists from all processors are not jumbled together in the output.
This synchronization requires all processors to use the same value of DEBUG_LEVEL.

DEBUG_LEVEL Output Produced

 0 Quiet mode; no output unless an error or warning is produced.

 1 Values of all parameters set by Zoltan_Set_Param and used by Zoltan.

 2 Timing information for Zoltan's main routines.

 3 Timing information within Zoltan's algorithms (support by algorithms is optional).

 4

 5 Trace information (enter/exit) for major Zoltan interface routines (printed by the processor specified by the
DEBUG_PROCESSOR parameter).

 6 Trace information (enter/exit) for major Zoltan interface routines (printed by all processors).

 7 More detailed trace information in major Zoltan interface routines.

 8 List of objects to be imported to and exported from each processor. ¹

 9

 10 Maximum debug output; may include algorithm-specific output. ¹

¹ Output may be serialized; that is, one processor may have to complete its output before the next processor is allowed to begin its output.
This serialization is not scalable and can significantly increase execution time on large number of processors.

[Table of Contents | Next: Load-Balancing Algorithms | Previous: Migration Query Functions]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_param.html (2 of 2) [5/21/07 12:06:23 PM]

88

Zoltan User's Guide: Load-Balancing Algorithms and Parameters

Zoltan User's Guide | Next | Previous

Load-Balancing Algorithms and Parameters

The following dynamic load-balancing algorithms are currently included in the Zoltan library:

Simple Partitioners for Testing

Block Partitioning (BLOCK)
Random Partitioning (RANDOM)

Geometric (Coordinate-based) Partitioners

Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve Partitioning (HSFC)
Refinement Tree Based Partitioning (REFTREE)

Hypergraph Partitioning, Repartitioning and Refinement (HYPERGRAPH)

PHG
PaToH

Graph Partitioning and Repartitioning (GRAPH)

PHG
ParMETIS
Jostle

Hybrid Hierarchical Partitioning (HIER)

The parenthetical string is the parameter value for LB_METHOD parameter; the parameter is set through a call to Zoltan_Set_Param.

For further analysis and discussion of some of the algorithms, see [Hendrickson and Devine].

Load-Balancing Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each load-balancing method is controlled by
parameters specific to partitioning which are also set by calls to Zoltan_Set_Param. Many of these parameters are specific to individual
partitioning algorithms, and are listed in the descriptions of the individual algorithms. However, several have meaning across multiple
partitioning algorithms. These load-balancing parameters are described below. Unless indicated otherwise, these parameters apply to both
Zoltan_LB_Partition and Zoltan_LB_Balance.

Parameters:

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg.html (1 of 3) [5/21/07 12:06:24 PM]

89

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_geomtric.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html

Zoltan User's Guide: Load-Balancing Algorithms and Parameters

 LB_METHOD The load-balancing algorithm used by Zoltan is specified by this parameter. Valid values are

BLOCK (for block partitioning),
RANDOM (for random partitioning),
RCB (for recursive coordinate bisection),
RIB (for recursive inertial bisection),
HSFC (for Hilbert space-filling curve partitioning),
REFTREE (for refinement tree based partitioning)
GRAPH (to choose from collection of methods for graphs),
HYPERGRAPH (to choose from a collection of methods for hypergraphs),
HIER (for hybrid hierarchical partitioning)
NONE (for no load balancing).

 LB_APPROACH The desired load balancing approach. Only LB_METHOD = HYPERGRAPH or GRAPH uses the
LB_APPROACH parameter. Valid values are

PARTITION (Partition "from scratch," not taking into account the current data
distribution; this option is recommended for static load balancing.)
REPARTITION (Partition but take into account current data distribution to
keep data migration low; this option is recommended for dynamic load
balancing.)
REFINE (Quickly improve the current data distribution.)

 NUM_GLOBAL_PARTITIONS The total number of partitions to be generated by a call to Zoltan_LB_Partition. Integer values
greater than zero are accepted. Not valid for Zoltan_LB_Balance.

 NUM_LOCAL_PARTITIONS The number of partitions to be generated on this processor by a call to Zoltan_LB_Partition.
Integer values greater than or equal to zero are accepted. Not valid for Zoltan_LB_Balance. If any
processor sets this parameter, NUM_LOCAL_PARTITIONS is assumed to be zero on processors
not setting this parameter.

 RETURN_LISTS The lists returned by calls to Zoltan_LB_Partition or Zoltan_LB_Balance. Valid values are

"IMPORT", to return only information about objects to be imported to a
processor
"EXPORT", to return only information about objects to be exported from a
processor
"ALL", or "IMPORT AND EXPORT" (or any string with both "IMPORT" and
"EXPORT" in it) to return both import and export information
"PARTITION ASSIGNMENTS" (or any string with "PARTITION" in it) to
return the new process and partition assignment of every local object, including
those not being exported.
"NONE", to return neither import nor export information

 REMAP Within Zoltan_LB_Partition or Zoltan_LB_Balance, renumber partitions to maximize overlap
between the old decomposition and the new decomposition (to reduce data movement from old to
new decompositions). Valid values are "0" (no remapping) or "1" (remapping). Requests for
remapping are ignored when, in the new decomposition, a partition is spread across multiple
processors or partition sizes are specified using Zoltan_LB_Set_Part_Sizes.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg.html (2 of 3) [5/21/07 12:06:24 PM]

90

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html

Zoltan User's Guide: Load-Balancing Algorithms and Parameters

 IMBALANCE_TOL The amount of load imbalance the partitioning algorithm should deem acceptable. The load on each
processor is computed as the sum of the weights of objects it is assigned. The imbalance is then
computed as the maximum load divided by the average load. An value for IMBALANCE_TOL of
1.2 indicates that 20% imbalance is OK; that is, the maximum over the average shouldn't exceed
1.2.

 MIGRATE_ONLY_PROC_CHANGES If this value is set to TRUE (non-zero), Zoltan's migration functions will migrate only objects
moving to new processors. They will not migrate objects for which only the partition number has
changed; the objects' processor numbers must change as well. If this value is set to FALSE (zero),
Zoltan's migration functions will migrate all objects with new partition or processor assignments.

 AUTO_MIGRATE If this value is set to TRUE (non-zero), Zoltan will automatically perform the data migration during
calls to Zoltan_LB_Partition or Zoltan_LB_Balance. A full discussion of automatic migration
can be found in the description of the migration interface functions.

Default Values:

LB_METHOD = RCB

LB_APPROACH = REPARTITION

NUM_GLOBAL_PARTITIONS = Number of processors specified in Zoltan_Create.

NUM_LOCAL_PARTITIONS = 1

RETURN_LISTS = ALL

REMAP = 1

IMBALANCE_TOL = 1.1

MIGRATE_ONLY_PROC_CHANGES = 1

AUTO_MIGRATE = FALSE

[Table of Contents | Next: Simple Partitioners for Testing | Previous: Zoltan Parameters and Output Levels]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg.html (3 of 3) [5/21/07 12:06:24 PM]

91

Zoltan User's Guide: Simple Partitioners for Testing

Zoltan User's Guide | Next | Previous

Simple Partitioners for Testing

Zoltan includes two very simple partitioners for testing initial implementations of Zoltan in applications. These partitioners are intended only
for testing and to serve as examples. They use neither geometry nor connectivity (graph/hypergraph), so they require very few query functions
(only two!).

Block partitioning (BLOCK)
Random partitioning (RANDOM)

[Table of Contents | Next: Block Partitioning | Previous: Load-Balancing Algorithms and Parameters]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_simple.html [5/21/07 12:06:24 PM]

92

Zoltan User's Guide: BLOCK

Zoltan User's Guide | Next | Previous

Block

A simple partitioner based on block partitioning of the objects. It is mainly intended for testing. It uses neither geometry nor connectivity
(graph/hypergraph), so it requires very few query functions. The block strategy is as follows: Consider all objects (on all processors) as a linear
sequence. Assign the first block of n/num_parts objects to the first partition, the next block to the second, and so on. Block is smart enough to
generalize this method to handle vertex weights and target partition sizes. Only a single weight per object (Obj_Weight_Dim=1) is currently
supported.

Method String: Block

Parameters:

Required Query Functions:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

[Table of Contents | Next: Random | Previous: Simple Partitioners for Testing]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_block.html [5/21/07 12:06:24 PM]

93

Zoltan User's Guide: RANDOM

User's Guide | Next | Previous

Random

Random is not really a load-balancing algorithm, and should be used only for testing! It takes each object and randomly assigns it to a new
partition. Via a parameter, one can alternatively choose to randomly perturb only a fraction of the objects. The random method does not use
weights and does not attempt to achieve load balance.

Method String: Random

Parameters:

 RANDOM_MOVE_FRACTION The fraction of objects to randomly move.
1.0 = move all; 0.0 = move nothing

Default:

RANDOM_MOVE_FRACTION = 1.0

Required Query Functions:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

[Table of Contents | Next: Geometric (Coordinate-Based) Partitioners | Previous: Block]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_random.html [5/21/07 12:06:25 PM]

94

Zoltan User's Guide: Geometric (Coordinate-Based) Partitioners

Zoltan User's Guide | Next | Previous

Geometric (Coordinate-based) Partitioners

Geometric partitioners divide data into partitions based on the physical coordinates of the data. Objects assigned to a single partition tend to be
physically close to each other in space. Such partitioners are very useful for applications that don't have explicit connectivity information (such
as particle methods) or for which geometric locality is important (such as contact detection). They are also widely used in adaptive finite
element methods because, in general, they execute very quickly and yield moderately good partition quality.

The geometric methods are the easiest non-trivial partitioners to incorporate into applications, as they require only four callbacks: two
returning object information and two returning coordinate information.

We group refinement-tree partitioning for adaptive mesh refinement applications into the geometric partitioners because it uses geometric
information to determine an initial ordering for coarse elements of adaptively refined meshes. The refinement-tree partitioner also requires tree-
based callbacks with connectivity information between coarse and fine elements in refined meshes.

Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve Partitioning (HSFC)
Refinement Tree Based Partitioning (Reftree)

[Table of Contents | Next: Recursive Coordinate Bisection | Previous: Random Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_geom.html [5/21/07 12:06:26 PM]

95

Zoltan User's Guide: RCB

Zoltan User's Guide | Next | Previous

Recursive Coordinate Bisection (RCB)

An implementation of Recursive Coordinate Bisection (RCB) due to Steve Plimpton of Sandia National Laboratories is included in Zoltan.
RCB was first proposed as a static load-balancing algorithm by Berger and Bokhari, but is attractive as a dynamic load-balancing algorithm
because it implicitly produces incremental partitions. In RCB, the computational domain is first divided into two regions by a cutting plane
orthogonal to one of the coordinate axes so that half the work load is in each of the sub-regions. The splitting direction is determined by
computing in which coordinate direction the set of objects is most elongated, based upon the geometric locations of the objects. The sub-
regions are then further divided by recursive application of the same splitting algorithm until the number of sub-regions equals the number of
processors. Although this algorithm was first devised to cut into a number of sets which is a power of two, the set sizes in a particular cut
needn't be equal. By adjusting the partition sizes appropriately, any number of equally-sized sets can be created. If the parallel machine has
processors with different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan implementation of RCB has several
parameters which can be modified by the Zoltan_Set_Param function. A recent feature is that RCB allows multiple weights; that is, one can
balance with respect to several load criteria simultaneously. Note that there is no guarantee that a desired load balance tolerance can be
achieved using RCB, especially in the multiconstraint case.

Information about the sub-regions generated by RCB can be obtained by an application through calls to Zoltan_RCB_Box. This function is
not required to perform load balancing; it only provides auxiliary information to an application.

Method String: RCB

Parameters:

 RCB_OVERALLOC The amount by which to over-allocate temporary storage arrays for objects within the RCB algorithm
when additional storage is due to changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RCB_REUSE Flag to indicate whether to use previous cuts as initial guesses for the current RCB invocation.
0 = don't use previous cuts; 1 = use previous cuts.

 RCB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the routine produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

 KEEP_CUTS Should information about the cuts determining the RCB decomposition be retained? It costs a bit of time
to do so, but this information is necessary if application wants to add more objects to the decomposition
via calls to Zoltan_LB_Point_PP_Assign or to Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 AVERAGE_CUTS When set to one, coordinates of RCB cutting planes are computed to be the average of the coordinates of
the closest object on each side of the cut. Otherwise, coordinates of cutting planes may equal those of
one of the closest objects.
0 = don't average cuts; 1 = average cuts.

 RCB_LOCK_DIRECTIONS Flag that determines whether the order of the directions of the cuts is kept constant after they are
determined the first time RCB is called.
0 = don't lock directions; 1 = lock directions.

 RCB_SET_DIRECTIONS If this flag is set, the order of cuts is changed so that all of the cuts in any direction are done as a group.
The number of cuts in each direction is determined and then the value of the parameter is used to
determine the order that those cuts are made in. When 1D and 2D problems are partitioned, the
directions corresponding to unused dimensions are ignored.
0 = don't order cuts; 1 = xyz; 2 = xzy; 3 = yzx; 4 = yxz; 5 = zxy; 6 = zyx;

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html (1 of 3) [5/21/07 12:06:27 PM]

96

Zoltan User's Guide: RCB

 RCB_RECTILINEAR_BLOCKS Flag controlling the shape of the resulting regions. If this option is specified, then when a cut is made, all
of the dots located on the cut are moved to the same side of the cut. The resulting regions are then
rectilinear. When these dots are treated as a group, then the resulting load balance may not be as good as
when the group of dots is split by the cut.
0 = move dots individually; 1 = move dots in groups.

 REDUCE_DIMENSIONS When a 3 dimensional geometry is almost flat, it may make more sense to treat it as a 2 dimensional
geometry when applying the RCB algorithm. In this case, a 2 dimensional RCB calculation is applied to
a plane that corresponds with the geometry. (This results in cuts that, while still orthogonal, may no
longer be axis aligned.) If this parameter is set to 1, a 3 dimensional geometry will be treated as 2
dimensional if it is very flat, or 1 dimensional if it is very thin. A 2 dimensional geometry will be treated
as 1 dimensional if it is very thin.

 DEGENERATE_RATIO If the REDUCE_DIMENSIONS parameter is set, then this parameter determines when a geometry is
considered to be degenerate. A bounding box which is oriented to the geometry is constructed, and the
lengths of its sides are tested against a ratio of 1 : DEGENERATE_RATIO.

 RCB_RECOMPUTE_BOX Flag indicating whether the bounding box of set of partitions is recomputed at each level of recursion.
By default, the longest direction of the bounding box is cut during bisection. Recomputing the bounding
box at each level of recursion can produce more effective cut directions for unusually shaped
geometries; the computation does, however, take additional time and communication, and may cause cut
directions to vary from one invocation of RCB to the next.
0 = don't recompute the bounding box; 1 = recompute the box.

 OBJ_WEIGHTS_COMPARABLE In the multiconstraint case, are the object weights comparable? Do they have the same units and is the
scaling meaningful? For example, if the jth weight corresponds to the expected time in phase j
(measured in seconds), set this parameter to 1. (0 = incomparable, 1 = comparable)

 RCB_MULTICRITERIA_NORM Norm used in multicriteria algorithm; this determines how to balance the different weight constraints.
Valid values are 1,2, and 3. Roughly, if the weights correspond to different phases, then the value 1 (1-
norm) tries to minimize the total time (sum over all phases) while the value 3 (max-norm) attempts to
minimize the worst imbalance in any phase. The 2-norm does something in between. Try a different
value if you're not happy with the balance.

 RCB_MAX_ASPECT_RATIO Maximum allowed ratio between the largest and smallest side of a subdomain. Must be > 1.

Default:

 RCB_OVERALLOC = 1.2

 RCB_REUSE = 0

 RCB_OUTPUT_LEVEL = 0

 CHECK_GEOM = 1

 KEEP_CUTS = 0

AVERAGE_CUTS = 0

 RCB_LOCK_DIRECTIONS = 0

 REDUCE_DIMENSIONS = 0

 DEGENERATE_RATIO = 10

 RCB_SET_DIRECTIONS = 0

 RCB_RECTILINEAR_BLOCKS = 0

RCB_RECOMPUTE_BOX = 0

 OBJ_WEIGHTS_COMPARABLE = 0

 RCB_MULTICRITERIA_NORM = 1

 RCB_MAX_ASPECT_RATIO = 10

Required Query Functions:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

 ZOLTAN_NUM_GEOM_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html (2 of 3) [5/21/07 12:06:27 PM]

97

Zoltan User's Guide: RCB

 ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

C: int Zoltan_RCB_Box (
 struct Zoltan_Struct * zz,
 int part,
 int *ndim,
 double *xmin,
 double *ymin,
 double *zmin,
 double *xmax,
 double *ymax,
 double *zmax);

FORTRAN: FUNCTION Zoltan_RCB_Box(zz, part,ndim, xmin, ymin, zmin, xmax, ymax, zmax)
INTEGER(Zoltan_INT) :: Zoltan_RCB_Box
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: part
INTEGER(Zoltan_INT), INTENT(OUT) :: ndim
REAL(Zoltan_DOUBLE), INTENT(OUT) :: xmin, ymin, zmin, xmax, ymax, zmax

In many settings, it is useful to know a partition's bounding box generated by RCB. This bounding box describes the region of space assigned
to a given partition. Given an RCB decomposition of space and a partition number, Zoltan_RCB_Box returns the lower and upper corners of
the region of space assigned to the partition. To use this routine, the parameter KEEP_CUTS must be set to TRUE when the decomposition is
generated. This parameter will cause the sequence of geometric cuts to be saved, which is necessary for Zoltan_RCB_Box to do its job.

Arguments:

 zz Pointer to the Zoltan structure created by Zoltan_Create.

 part Partition number of partition for which the bounding box should be returned.

 ndim Upon return, the number of dimensions in the partitioned geometry.

 xmin, ymin, zmin Upon return, the coordinates of the lower extent of bounding box for the partition. If the geometry is two-
dimensional, zmin is -DBL_MAX. If the geometry is one-dimensional, ymin is -DBL_MAX.

 xmax, ymax, zmax Upon return, the coordinates of the upper extent of bounding box for the partition. If the geometry is two-
dimensional, zmax is DBL_MAX. If the geometry is one-dimensional, ymax is DBL_MAX.

Returned Value:

 int Error code.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous: Geometric (Coordinate-based) Partitioners]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_rcb.html (3 of 3) [5/21/07 12:06:27 PM]

98

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.htm
l#Zoltan_Create

Zoltan User's Guide: RIB

Zoltan User's Guide | Next | Previous

Recursive Inertial Bisection (RIB)

An implementation of Recursive Inertial Bisection (RIB) is included in Zoltan. RIB was proposed as a load-balancing algorithm by Williams
and later studied by Taylor and Nour-Omid, but its origin is unclear. RIB is similar to RCB in that it divides the domain based on the location
of the objects being partitioned by use of cutting planes. In RIB, the computational domain is first divided into two regions by a cutting plane
orthogonal to the longest direction of the domain so that half the work load is in each of the sub-regions. The sub-regions are then further
divided by recursive application of the same splitting algorithm until the number of sub-regions equals the number of processors. Although
this algorithm was first devised to cut into a number of sets which is a power of two, the set sizes in a particular cut needn't be equal. By
adjusting the partition sizes appropriately, any number of equally-sized sets can be created. If the parallel machine has processors with
different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan implementation of RIB has several parameters which can
be modified by the Zoltan_Set_Param function.

Method String: RIB

Parameters:

 RIB_OVERALLOC The amount by which to over-allocate temporary storage arrays for objects within the RIB algorithm when
additional storage is due to changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RIB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the routine produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

 KEEP_CUTS Should information about the cuts determining the RIB decomposition be retained? It costs a bit of time to do
so, but this information is necessary if application wants to add more objects to the decomposition via calls to
Zoltan_LB_Point_PP_Assign or to Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 AVERAGE_CUTS When set to one, coordinates of RIB cutting planes are computed to be the average of the coordinates of the
closest object on each side of the cut. Otherwise, coordinates of cutting planes may equal those of one of the
closest objects.
0 = don't average cuts; 1 = average cuts.

 REDUCE_DIMENSIONS When a 3 dimensional geometry is almost flat, it may make more sense to treat it as a 2 dimensional geometry
when applying the RIB algorithm. (Coordinate values in the omitted direction are ignored for the purposes of
partitioning.) If this parameter is set to 1, a 3 dimensional geometry will be treated as 2 dimensional if it is very
flat, or 1 dimensional if it is very thin. A 2 dimensional geometry will be treated as 1 dimensional if it is very
thin.

 DEGENERATE_RATIO If the REDUCE_DIMENSIONS parameter is set, then this parameter determines when a geometry is
considered to be degenerate. A bounding box which is oriented to the geometry is constructed, and the lengths
of its sides are tested against a ratio of 1 : DEGENERATE_RATIO.

Default:

RIB_OVERALLOC = 1.2

RIB_OUTPUT_LEVEL = 0

CHECK_GEOM = 1

KEEP_CUTS = 0

AVERAGE_CUTS = 0

REDUCE_DIMENSIONS = 0

DEGENERATE_RATIO = 10

Required Query
Functions:

ZOLTAN_NUM_OBJ_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html (1 of 2) [5/21/07 12:06:27 PM]

99

Zoltan User's Guide: RIB

ZOLTAN_OBJ_LIST_FN

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Hilbert Space-Filling Curve Partitioning | Previous: Recursive Coordinate Bisection (RCB)]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html (2 of 2) [5/21/07 12:06:27 PM]

100

Zoltan User's Guide: HSFC

Zoltan User's Guide | Next | Previous

Hilbert Space Filling Curve (HSFC)

The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensions into the interval [0,1]. The Hilbert functions
that map [0, 1] to normal spatial coordinates are also provided. (The one-dimensional inverse Hilbert curve is defined here as the identity
function, f(x)=x for all x.)

The HSFC partitioning algorithm seeks to divide [0,1] into P intervals each containing the same weight of objects associated to these intervals
by their inverse Hilbert coordinates. N bins are created (where N > P) to partition [0,1]. The weights in each bin are summed across all
processors. A greedy algorithm sums the bins (from left to right) placing a cut when the desired weight for current partition interval is
achieved. This process is repeated as needed to improve partitioning tolerance by a technique that maintains the same total number of bins but
refines the bins previously containing a cut.

HSFC returns an warning if the final imbalance exceeds the user specified tolerance.

This code implements both the point assign and box assign functionality. The point assign determines an appropriate partition (associated with
a specific group of processors) for a new point. The box assign determines the list of processors whose associated subdomains intersect the
given box. In order to use either of these routines, the user parameter KEEP_CUTS must be turned on. Both point assign and box assign now
work for points or boxes anywhere in space even if they are exterior to the original bounding box. If a partition is empty (due to the partition
being assigned zero work), it is not included in the list of partitions returned by box assign. Note: the original box assign algorithm was not
rigorous and may have missed partitions. This version is both rigorous and fast.

The Zoltan implementation of HSFC has one parameter that can be modified by the Zoltan_Set_Param function.

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in the Octree partitioner and on the BSFC partitioning
implementation by Andrew C. Bauer, Department of Engineering, State University of New York at Buffalo, as his summer project at SNL in
2001. The box assign algorithm is loosely based on the papers by Lawder referenced both in the developers guide and the code itself. NOTE:
This code can be trivially extended to any space filling curve by providing the tables implementing the curve's state transition diagram. The
only dependance on the curve is through the tables and the box assign algorithm will work for all space filling curves (if we have their tables.)

Please refer to the Zoltan Developers Guide, Appendix: Hilbert Space Filling Curve (HSFC) for more detailed information about these
algorithms.

Method String: HSFC

Parameters:

 KEEP_CUTS Information about cuts and bounding box is necessary if the application wants to add more objects to the
decomposition via calls to Zoltan_LB_Point_PP_Assign or to Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 REDUCE_DIMENSIONS When a 3 dimensional geometry is almost flat, it may make more sense to treat it as a 2 dimensional geometry
when applying the HSFC algorithm. (Coordinate values in the omitted direction are ignored for the purposes of
partitioning.) If this parameter is set to 1, a 3 dimensional geometry will be treated as 2 dimensional if is very
flat, or 1 dimensional if it very thin. And a 2 dimensional geometry will be treated as 1 dimensional if it is very
thin. Turning this parameter on removes the possibility that disconnected partitions will appear on the surface
of a flat 3 dimensional object.

 DEGENERATE_RATIO If the REDUCE_DIMENSIONS parameter is set, then this parameter determines when a geometry is
considered to be flat. A bounding box which is oriented to the geometry is constructed, and the lengths of its
sides are tested against a ratio of 1 : DEGENERATE_RATIO.

Default:

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html (1 of 2) [5/21/07 12:06:28 PM]

101

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_hsfc.html

Zoltan User's Guide: HSFC

KEEP_CUTS = 0

REDUCE_DIMENSIONS = 0

DEGENERATE_RATIO = 10

Required Query Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Refinement Tree Partitioning | Previous: Recursive Inertial Bisection]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html (2 of 2) [5/21/07 12:06:28 PM]

102

Zoltan User's Guide: Refinement Tree Based Partition

Zoltan User's Guide | Next | Previous

Refinement Tree Partitioning (REFTREE)

The refinement tree based partitioning method is due to William Mitchell of the National Institute of Standards and Technology [Mitchell]. It
is closely related to the Octree and Space-Filling Curve methods, except it uses the tree that represents the adaptive refinement process that
created the grid. This tree is constructed through the tree-based query functions.

Each node of the refinement tree corresponds to an element that occurred during the grid refinement process. The first level of the tree (the
children of the root of the tree) corresponds to the initial coarse grid, one tree node per initial element. It is assumed that the initial coarse grid
does not change through the execution of the program, except that the local IDs, assignment of elements to processors, and weights can
change. If any other aspect of the coarse grid changes, then the Zoltan structure should be destroyed and recreated. The children of a node in
the tree correspond to the elements that were created when the corresponding element was refined. The children are ordered such that a
traversal of the tree creates a space-filling curve within each initial element. If the initial elements can be ordered with a contiguous path
through them, then the traversal creates a space-filling curve through all the elements. Each element has a designated "in" vertex and "out"
vertex, with the out vertex of one element being the same as the in vertex of the next element in the path, in other words the path goes through
a vertex to move from one element to the next (and does not go out the same vertex it came in).

The user may allow Zoltan to determine the order of the coarse grid elements, or may specify the order, which might be faster or produce a
better path. If Zoltan determines the order, the user can select between an order that will produce connected partitions, an order based on a
Hilbert Space Filling Curve, or an order based on a Sierpinski Space Filling Curve. See the parameter REFTREE_INITPATH below. If the
user provides the order, then the in/out vertices must also be supplied. Similarly, the user may specify the order and in/out vertices of the child
elements, or allow Zoltan to determine them. If the user knows how to provide a good ordering for the children, this may be significantly faster
than the default general algorithm. However, accelerated forms of the ordering algorithm are provided for certain types of refinement schemes
and should be used in those cases. See ZOLTAN_CHILD_LIST_FN. If the user always specifies the order, then the vertices and in/out
vertices are not used and do not have to be provided.

Weights are assigned to the nodes of the tree. These weights need not be only on the leaves (the elements of the final grid), but can also be on
interior nodes (for example, to represent work on coarse grids of a multigrid algorithm). The default weights are 1.0 at the leaves and 0.0 at the
interior nodes, which produces a partition based on the number of elements in each partition. An initial tree traversal is used to sum the
weights, and a second traversal to cut the space-filling curve into appropriately-sized pieces and assign elements to partitions. The number of
partitions is not necessarily equal to the number of processors.

The following limitations should be removed in the future.

�● For multicomponent weights, only the first component is used.
�● Heterogeneous architectures are not supported, in the sense that the computational load is equally divided over the processors. A vector of
relative partition sizes is used to determine the weight assigned to each partition, but they are currently all equal. In the future they should be
input to reflect heterogeneity.

Method String: REFTREE

Parameters:

 REFTREE_HASH_SIZE The size of the hash table to map from global IDs to refinement tree nodes. Larger values require more
memory but may reduce search time.

Default:

REFTREE_HASH_SIZE = 16384

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html (1 of 2) [5/21/07 12:06:28 PM]

103

Zoltan User's Guide: Refinement Tree Based Partition

 REFTREE_INITPATH Determines the method for finding an order of the elements in the initial grid.
"SIERPINSKI" uses a Sierpinski Space Filling Curve and is most appropriate for grids consisting of triangles.
It is currently limited to 2D.
"HILBERT" uses a Hilbert Space Filling Curve and is most appropriate for grids consisting of quadralaterals
or hexahedra.
"CONNECTED" attempts to produce connected partitions (guaranteed for triangles and tetrahedra), however
they tend to be stringy, i.e., less compact than the SFC methods. It is most appropriate when connected
partitions are required.
An invalid character string will invoke the default method.

Default:

REFTREE_INITPATH = "SIERPINSKI" if the grid contains only triangles
REFTREE_INITPATH = "HILBERT" otherwise

NOTE: In Zoltan versions 1.53 and earlier the default was "CONNECTED". To reproduce old results, use
REFTREE_INITPATH = "CONNECTED".

Required Query Functions:

ZOLTAN_NUM_COARSE_OBJ_FN

ZOLTAN_COARSE_OBJ_LIST_FN or ZOLTAN_FIRST_COARSE_OBJ_FN/
ZOLTAN_NEXT_COARSE_OBJ_FN pair

ZOLTAN_NUM_CHILD_FN

ZOLTAN_CHILD_LIST_FN

ZOLTAN_CHILD_WEIGHT_FN

The following functions are needed only if the order of the initial elements will be determined by a space
filling curve method:

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Hypergraph Partitioning | Previous: Hilbert Space-Filling Curve Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html (2 of 2) [5/21/07 12:06:28 PM]

104

Zoltan User's Guide: Hypergraph Algorithms

Zoltan User's Guide | Next | Previous

Hypergraph partitioning

Hypergraph partitioning is a useful partitioning and load balancing method when connectivity data is available. It can be viewed as a more
sophisticated alternative to the traditional graph partitioning.

A hypergraph consists of vertices and hyperedges. A hyperedge connects one or more vertices. A graph can be cast as a hypergraph in one of
two ways: either every pair of neighboring vertices form a hyperedge, or a vertex and all its neighbors form a hyperedge. The hypergraph
model is well suited to parallel computing, where vertices correspond to data objects and hyperedges represent the communication
requirements. The basic partitioning problem is to partition the vertices into k approximately equal sets such that the number of cut hyperedges
is minimized. Most partitioners (including Zoltan-PHG) allows a more general model where both vertices and hyperedges can be assigned
weights. It has been shown that the hypergraph model gives a more accurate representation of communication cost (volume) than the graph
model. In particular, for sparse matrix-vector multiplication, the hypergraph model exactly represents communication volume. Sparse matrices
can be partitioned either along rows or columns; in the row-net model the columns are vertices and each row corresponds to an hyperedge,
while in the column-net model the roles of vertices and hyperedges are reversed.

Zoltan contains a native parallel hypergraph partitioner, called PHG (Parallel HyperGraph partitioner). In addition, Zoltan provides access to
PaToH, a serial hypergraph partitioner. Note that PaToH is not part of Zoltan and should be obtained separately from the PaToH web site.
Zoltan-PHG is a fully parallel multilevel hypergraph partitioner. For further technical description, see [Devine et al, 2006].

A new feature available in Zoltan 3.0 is the ability to assign selected objects (vertices) to a particular partition ("fixed vertices"). When objects
are fixed, Zoltan will not migrate them out of the user assigned partition. See the descriptions of the ZOLTAN_NUM_FIXED_OBJ_FN and
ZOLTAN_FIXED_OBJ_LIST_FN query functions for a discussion of how you can define these two functions to fix objects to partitions. Both
PHG and PaToH support this feature.

For applications that already use Zoltan to do graph partitioning, it is easy to upgrade to hypergraph partitioning. For many applications, the
hypergraph model is superior to the graph model, but in some cases the graph model should be preferred. PHG can also be used as a pure
graph partitioner. See the section graph vs. hypergraph partitioning for further details.

Method String: HYPERGRAPH

Parameters:

 HYPERGRAPH_PACKAGE The software package to use in partitioning the hypergraph.
PHG (Zoltan, the default)
PATOH

[Table of Contents | Next: PHG | Previous: Refinement Tree Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hypergraph.html [5/21/07 12:06:29 PM]

105

http://bmi.osu.edu/%7Eumit/software.htm
http://bmi.osu.edu/%7Eumit/software.htm

Zoltan User's Guide: Hypergraph Partitioning

Zoltan User's Guide | Next | Previous

PHG - Parallel Hypergraph and Graph Partitioning with Zoltan

New in version 3.0: PHG now supports hypergraph repartititioning for dynamic load balancing! Repartititioning is the new default setting.
Use the LB_APPROACH parameter to select partitioning "from scratch".

Value of LB_METHOD: HYPERGRAPH (for hypergraph partitioning) or

GRAPH (for graph partitioning)

Value of HYPERGRAPH_PACKAGE: PHG

Parameters:

 LB_APPROACH The load balancing approach:.
PARTITION - partition from scratch, not taking the current data
distribution into account
REPARTITION - partition but try to stay close to the current partition/
distribution
REFINE - refine the current partition/distribution; assumes only small
changes

 PHG_REPART_MULTIPLIER For repartitioning, this parameter determines the trade-off between
application communication (as represented by cut edges) and data
migration related to rebalancing. PHG attempts to minimize the function
(PHG_REPART_MULTIPLIER* edge_cut + migration volume). The
migration volume is measured using the
ZOLTAN_OBJ_SIZE_MULTI_FN or ZOLTAN_OBJ_SIZE_FN query
functions. Make sure the units for edges and object sizes are the same.
Simply put, to emphasize communication within the application, use a
large value for PHG_REPART_MULTIPLIER. Typically this should be
proportional to the number of iterations between load-balancing calls.

 PHG_EDGE_WEIGHT_OPERATION Operation to be applied to edge weights supplied by different processes
for the same hyperedge:
ADD - the hyperedge weight will be the sum of the supplied weights
MAX - the hyperedge weight will be the maximum of the supplied
weights
ERROR - if the hyperedge weights are not equal, Zoltan will flag an
error, otherwise the hyperedge weight will be the value returned by the
processes

 ADD_OBJ_WEIGHT Add another object (vertex) weight. Currently multi-weight partitioning
is not supported, but this parameter may also be used for implicit vertex
weights. Valid values are:
NONE
UNIT or VERTICES (each vertex has weight 1.0)
PINS or NONZEROS or vertex degree (vertex weight equals number of
hyperedges containing it, i.e., the degree)

 PHG_FROM_GRAPH_METHOD Method for building a hypergraph from graph-based callback functions:
NEIGHBORS - a vertex and all its graph neighbors form a hyperedge (the
default)
PAIRS - every pair of neighboring vertices form a hyperedge

 PHG_CUT_OBJECTIVE Selects the partitioning objective, CONNECTIVITY or HYPEREDGES.
While hyperedges simply counts the number of hyperedges cut, the
connectivity metric weights each cut edge by the number of participating
processors - 1 (aka the k-1 cut metric). The connectivity metric better
represents communication volume for most applications. The hyperedge
metric is useful for certain applications, e.g., minimizing matrix border
size in block matrix decompositions.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_phg.html (1 of 3) [5/21/07 12:06:30 PM]

106

Zoltan User's Guide: Hypergraph Partitioning

 PHG_OUTPUT_LEVEL Level of verbosity; 0 is silent.

 CHECK_HYPERGRAPH Check that the query functions return valid input data; 0 or 1. (This slows
performance; intended for debugging.)

 PHG_COARSENING_METHOD Low-level parameter: The method to use in the matching/coarsening
phase:
AGG - agglomerative inner product matching (a.k.a. agglomerative heavy
connectivity matching); gives high quality.
IPM - inner product matching (a.k.a. heavy connectivity matching); gives
high quality.
L-IPM - local IPM on each processor. Faster but usually gives poorer
quality.
A-IPM - alternate between IPM and L-IPM. (A compromise between
speed and quality.)
none - no coarsening

 PHG_COARSEPARTITION_METHOD Low-level parameter: Method to partition the coarsest (smallest)
hypergraph; typically done in serial:
RANDOM - random
LINEAR - linear assignment of the vertices (ordered by the user query
function)
GREEDY - greedy method based on minimizing cuts
AUTO - automatically select from the above methods (in parallel, the
processes will do different methods)

 PHG_REFINEMENT_METHOD Low-level parameter: Refinement algorithm:
FM - approximate Fiduccia-Mattheyses (FM)
NO - no refinement

 PHG_REFINEMENT_QUALITY Low-level parameter: Knob to control the trade-off between run time and
quality. 1 is the recommended (default) setting, >1 gives more refinement
(higher quality partitions but longer run time), while <1 gives less
refinement (and poorer quality).

 PHG_RANDOMIZE_INPUT Low-level parameter: Randomize layout of vertices and hyperedges in
internal parallel 2D layout?
Setting this parameter to 1 often reduces Zoltan-PHG execution time.

 PHG_EDGE_SIZE_THRESHOLD Low-level parameter: Value 0.0 through 1.0, if number of vertices in
hyperedge divided by total vertices in hypergraph exceeds this fraction,
the hyperedge will be omitted.

 PHG_PROCESSOR_REDUCTION_LIMIT Low-level parameter: In V-cycle, redistribute coarsened hypergraph to
this fraction of processors when number of pins in coarsened hypergraph
is less than this fraction of original number of pins. Original number of
pins is redefined after each processor redistribution.

Default values:

 LB_APPROACH = REPARTITION

 PHG_REPART_MULTIPLIER=100

 PHG_EDGE_WEIGHT_OPERATION=max

 ADD_OBJ_WEIGHT=none

PHG_FROM_GRAPH_METHOD = NEIGHBORS (when
LB_METHOD=HYPERGRAPH)
 = PAIRS (when LB_METHOD=GRAPH)

 PHG_CUT_OBJECTIVE=connectivity

 CHECK_HYPERGRAPH=0

 PHG_OUTPUT_LEVEL=0

 PHG_COARSENING_METHOD=ipm

 PHG_COARSEPARTITION_METHOD=auto

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_phg.html (2 of 3) [5/21/07 12:06:30 PM]

107

Zoltan User's Guide: Hypergraph Partitioning

 PHG_REFINEMENT_METHOD=fm

 PHG_REFINEMENT_QUALITY=1

 PHG_RANDOMIZE_INPUT=0

 PHG_EDGE_SIZE_THRESHOLD=0.25

 PHG_PROCESSOR_REDUCTION_LIMIT=0.5

Required Query Functions for LB_METHOD =
HYPERGRAPH:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

 ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN

Optional Query Functions for LB_METHOD =
HYPERGRAPH:

 ZOLTAN_OBJ_SIZE_MULTI_FN or ZOLTAN_OBJ_SIZE_FN

 ZOLTAN_HG_SIZE_EDGE_WTS_FN

 ZOLTAN_HG_EDGE_WTS_FN

Note for
LB_METHOD = HYPERGRAPH:

It is possible to provide the graph query functions instead of the
hypergraph queries, though this is not recommended. If only graph query
functions are registered, Zoltan will automatically create a hypergraph
from the graph, but this is not equivalent to graph partitioning. In
particular, the edge weights will not be accurate.

Required Query Functions for LB_METHOD = GRAPH:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

 ZOLTAN_NUM_EDGES_MULTI_FN or
ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or
ZOLTAN_EDGE_LIST_FN

Optional Query Functions for LB_METHOD = GRAPH:

 ZOLTAN_OBJ_SIZE_MULTI_FN or ZOLTAN_OBJ_SIZE_FN

[Table of Contents | Next: PaToH | Previous: Hypergraph Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_phg.html (3 of 3) [5/21/07 12:06:30 PM]

108

Zoltan User's Guide: PaToH

Zoltan User's Guide | Next | Previous

PaToH

PaToH is a serial hypergraph partitioning package. It is not distributed with Zoltan and must be obtained separately. (You will also need to
modify your Zoltan configuration file after installation.)

Since PaToH is serial, it can only be used in Zoltan on a single processor. PaToH is faster than Zoltan PHG in serial mode, and often produces
(slightly) better partition quality.

Value of LB_METHOD: HYPERGRAPH

Value of HYPERGRAPH_PACKAGE: PATOH

Parameters:

 PATOH_ALLOC_POOL0

non-zero (the value of the MemMul_CellNet PATOH parameter)
0 (the default)

 PATOH_ALLOC_POOL1

non-zero (the value of the MemMul_Pins PATOH parameter)
0 (the default)

 USE_TIMERS

1 (time operations and print results)
0 (don't time, the default)

 PHG_EDGE_SIZE_THRESHOLD Value 0.0 through 1.0, if number of vertices in hyperedge divided by total vertices in hypergraph
exceeds this fraction, the hyperedge will be omitted.

 ADD_OBJ_WEIGHT Add implicit vertex (object) weight. Multi-weight partitioning is not yet supported, so currently
either the user-defined weight or the implicit weight will be used. Valid values:
none (the default if OBJ_WEIGHT_DIM > 0)
unit or vertices (each vertex has weight 1.0, default if OBJ_WEIGHT_DIM is zero)
pins or nonzeros or vertex degree (vertex weight equals number hyperedges containing it)

 CHECK_HYPERGRAPH Check that the query functions return valid input data; 0 or 1. (This slows performance; intended
for debugging.)

Default Values:

PATOH_ALLOC_POOL0 = 0

PATOH_ALLOC_POOL1 = 0

USE_TIMERS = 0

PHG_EDGE_SIZE_THRESHOLD = 0.25

ADD_OBJ_WEIGHT = none

CHECK_HYPERGRAPH = 0

Required Query Functions:

 ZOLTAN_NUM_OBJ_FN

 ZOLTAN_OBJ_LIST_FN

 ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN

Optional Query Functions:

 ZOLTAN_HG_SIZE_EDGE_WTS_FN

 ZOLTAN_HG_EDGE_WTS_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_patoh.html (1 of 2) [5/21/07 12:06:30 PM]

109

http://bmi.osu.edu/%7Eumit/software.htm

Zoltan User's Guide: PaToH

[Table of Contents | Next: Graph Partitioning | Previous: PHG]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_patoh.html (2 of 2) [5/21/07 12:06:30 PM]

110

Zoltan User's Guide: Graph Algorithms

Zoltan User's Guide | Next | Previous
Note: See also hypergraph partitioning.

Graph partitioning

Zoltan performs graph partitioning when the LB_METHOD parameter is set to GRAPH. Zoltan provides three packages capable of
partitioning a graph. The package is chosen by setting the GRAPH_PACKAGE parameter. Two packages (ParMetis and Jostle) are external
packages and not part of Zoltan but accessible via Zoltan. The last package is PHG, Zoltan's native hypergraph partitioner. PHG will treat the
graph as a regular hypergraph with edge size two. Since PHG was designed for general hypergraphs, it is usually slower than graph
partitioners but often produces better quality.

Method String: GRAPH

Parameters:

 GRAPH_PACKAGE The software package to use in partitioning the graph.
PHG (default)
ParMETIS
Jostle

[Table of Contents | Next: Graph vs. Hypergraph Partitioning | Previous: PaToH Hypergraph Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_graph.html [5/21/07 12:06:31 PM]

111

Zoltan User's Guide: Graph vs. Hypergraph Partitioning

Zoltan User's Guide | Next | Previous

Graph vs Hypergraph Partitioning

Graph partitioning has proven quite useful in scientific computing. Hypergraph partitioning is a more recent improvement that uses a
hypergraph model, which is often a more accurate model than the graph model for scientific computing. (Hypergraphs contain hyperedges
which connect two or more vertices.) See [Catalyurek & Aykanat] and [Hendrickson & Kolda] for further details. You do not need to
understand the underlying models to use graph or hypergraph partitioning for load-balancing in Zoltan. The basic trade-offs are:

�● Hypergraph partitioning usually produces partitions (assignments) of higher quality than graph partitioning, which may reduce
communication time in parallel applications (up to 30-40% reduction has been reported). However, hypergraph partitioning takes
longer time to compute.

�● The graph model is restricted to symmetric data dependencies. If you have a non-symmetric problem, we recommend hypergraph
partitioning.

Migrating from ParMetis to PHG in Zoltan

If you already use Zoltan for graph partitioning (via ParMetis), there are three ways to switch to the Zoltan-PHG hypergraph partitioner:

1. The quick and easy way: Just change the LB_METHOD to "Hypergraph". Zoltan will then use the graph query functions
(presumably already implemented) to construct a hypergraph model, which is similar to but not equivalent to the graph.

2. The proper way: Change the LB_METHOD, but also implement and register the hypergraph query functions required by Zoltan.
These may give a more accurate representation of data dependencies (and communication requirements) for your application.

3. If you really want graph (not hypergraph) partitioning: Just change the LB_METHOD to "Graph". Zoltan will then use PHG as a
graph partitioner, which is slower than ParMetis but often produces better partitions (lower cuts).

Technical note: A hypergraph is constructed from the graph as follows: The vertices are the same in the hypergraph as in the graph. For each
vertex v, create a hyperedge that consists of all neighbors in the graph and v itself.

[Table of Contents | Next: ParMETIS | Previous: Graph Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_graph_vs_hg.html [5/21/07 12:06:31 PM]

112

Zoltan User's Guide: ParMETIS Interface

Zoltan User's Guide | Next | Previous

ParMETIS - Parallel Graph Partitioning

ParMETIS is a parallel library for graph partitioning (for static load balancing) and repartitioning (for dynamic load balancing) developed at
the University of Minnesota by Karypis, Schloegel and Kumar [Karypis and Kumar]. ParMETIS is therefore strictly speaking not a method but
rather a collection of methods. In the Zoltan context, ParMETIS is a method with many sub-methods. Zoltan provides an interface to all the
ParMETIS (sub-)methods. The user selects which ParMETIS method to use through the parameter PARMETIS_METHOD. Most of the
ParMETIS methods are based on either multilevel Kernighan-Lin partitioning or a diffusion algorithm. The names of the ParMETIS methods
used by Zoltan are identical to those in the ParMETIS library. For further information about the various ParMETIS methods and parameters,
please consult the ParMETIS User's Guide.

Graph partitioning is a useful abstraction for load balancing. The main idea is to represent the computational application as a weighted graph.
The nodes or vertices in the graph correspond to objects in Zoltan. Each object may have a weight that normally represents the amount of
computation. The edges or arcs in the graph usually correspond to communication costs. In graph partitioning, the problem is to find a
partitioning of the graph (that is, each vertex is assigned to one out of k possible sets called partitions) that minimizes the cut size (weight)
subject to the partitions having approximately equal size (weight). In repartitioning, it is assumed that a partitioning already exists. The
problem is to find a good partitioning that is also "similar" in some sense to the existing partitioning. This keeps the migration cost low. All the
problems described above are NP-hard so no efficient exact algorithm is known, but heuristics work well in practice.

We give only a brief summary of the various ParMETIS methods here; for more details see the ParMETIS documentation. The methods fall
into three categories:

1. Part* - Perform graph partitioning without consideration of the initial distribution. (LB_APPROACH=partition)
2. AdaptiveRepart (ParMETIS 3) and Repart* (ParMETIS 2) - Incremental algorithms with small migration cost.

(LB_APPROACH=repartition)
3. Refine* - Refines a given partitioning (balance). Can be applied multiple times to reduce the communication cost (cut weight) if

desired. (LB_APPROACH=refine)

As a rule of thumb, use one of the Part* methods if you have a poor initial balance and you are willing to spend some time doing migration.
One such case is static load balancing; that is, you need to balance only once. Use AdaptiveRepart or the Repart* methods when you have a
reasonably good load balance that you wish to update incrementally. These methods are well suited for dynamic load balancing (for example,
adaptive mesh refinement). A reasonable strategy is to call PartKway once to obtain a good initial balance and later update this balance using
AdaptiveRepart (Repart* in ParMetis 2.0).

Zoltan is currently compatible with ParMETIS versions 3.1 and 2.0. There is no guarantee that Zoltan will work correctly if you have a
different version of ParMETIS on your computer. (ParMETIS 3.0 will work with Zoltan in most cases, but is not officially supported.
ParMETIS 3.1 is highly recommended. The 2.0 version will soon become obsolete and may not be supported in future Zoltan versions.) The
ParMETIS source code can be obtained from the ParMETIS home page. As a courtesy service, a recent, compatible version of the ParMETIS
source code is distributed with Zoltan. However, ParMETIS is a completely separate library. If you do not wish to install ParMETIS, it is
possible to compile Zoltan without any references to ParMETIS (when you 'make' Zoltan, comment out the PARMETIS_LIBPATH variable
in the configuration file Utilities/Config/Config.<platform>).

Note that Zoltan ignores the imbalance tolerance parameter IMBALANCE_TOL when ParMETIS 2.0 is used (the default value 1.05 is used),
while IMBALANCE_TOL works correctly with ParMETIS 3.0. Zoltan supports the multiconstraint feature of ParMETIS 3 through multiple
object weights (see OBJ_WEIGHT_DIM).

The graph given to Zoltan/ParMETIS must be symmetric. Any self edges (loops) will be ignored. Multiple edges between a pair of vertices is
not allowed. All weights must be non-negative. The graph does not have to be connected.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (1 of 3) [5/21/07 12:06:32 PM]

113

http://www-users.cs.umn.edu/%7Ekarypis/metis/parmetis/
http://www-users.cs.umn.edu/%7Ekarypis/metis/parmetis/
http://www-users.cs.umn.edu/%7Ekarypis/metis/parmetis/
http://www-users.cs.umn.edu/%7Ekarypis/metis/parmetis/
http://www-users.cs.umn.edu/%7Ekarypis/metis/parmetis/

Zoltan User's Guide: ParMETIS Interface

Value of LB_METHOD: GRAPH

Value of GRAPH_PACKAGE: Parmetis

Parameters:

 LB_APPROACH The load balancing approach:.
PARTITION - partition from scratch, not taking the current data distribution into account
REPARTITION - partition but try to stay close to the current partition/distribution
REFINE - refine the current partition/distribution; assumes only small changes

 PARMETIS_METHOD The ParMETIS method to be used; currently nine are available. Note: See also LB_APPROACH,
which is a simpler way to specify the overall load balance approach. Only use PARMETIS_METHOD if
you really need a specific implementation.
PartKway - multilevel Kernighan-Lin partitioning
PartGeom - space filling curves (coordinate based)
PartGeomKway - hybrid method based on PartKway and PartGeom (needs both graph data and
coordinates)
AdaptiveRepart - adaptive repartitioning (only in ParMETIS 3.0 and higher)
RepartLDiffusion - diffusion algorithm (local)
RepartGDiffusion - diffusion algorithm (global)
RepartRemap - multilevel partioning with remap seeking to minimize migration cost
RepartMLRemap - similar to RepartRemap but with additional multilevel refinement
RefineKway - refine the current partitioning (balance)

 The method names are case insensitive.

 PARMETIS_OUTPUT_LEVEL Amount of output the load-balancing algorithm should produce.
0 = no output, 1 = print timing info. Turning on more bits displays more information (for example, 3=1
+2, 5=1+4, 7=1+2+4).

 PARMETIS_COARSE_ALG Coarse algorithm for PartKway. 1 = serial, 2 = parallel. (ParMETIS 2 only)

 PARMETIS_SEED Random seed for ParMETIS.

 PARMETIS_ITR Ratio of interprocessor communication time to redistribution time. A high value will emphasize
reducing the edge cut, while a small value will try to keep the change in the new partition (distribution)
small. This parameter is used only by AdaptiveRepart. A value of between 100 and 1000 is good for
most problems.

 USE_OBJ_SIZE Use (or not use) the available information about object sizes to estimate migration cost. This parameter
is currently relevant only for AdaptiveRepart.

 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 = on-processor checking, 2 = full checking.
(CHECK_GRAPH==2 is very slow and should be used only during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects (vertices) of roughly equal size to each
processor before calling the partitioner. 0 = don't scatter; 1 = scatter only if all objects are on a single
processor; 2 = scatter if at least one processor owns no objects (recommended to avoid a bug in
ParMETIS 2.0); 3 = always scatter.

Default values:

 LB_APPROACH = Repartition

 PARMETIS_METHOD = AdaptiveRepart

 PARMETIS_OUTPUT_LEVEL = 0

 PARMETIS_COARSE_ALG = 2

 PARMETIS_SEED = 15

 PARMETIS_ITR = 100

 USE_OBJ_SIZE = 1

 CHECK_GRAPH = 1

 SCATTER_GRAPH = 1

Required Query Functions:

For all submethods: ZOLTAN_NUM_OBJ_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (2 of 3) [5/21/07 12:06:32 PM]

114

Zoltan User's Guide: ParMETIS Interface

 ZOLTAN_OBJ_LIST_FN

Only PartGeom & PartGeomKway: ZOLTAN_NUM_GEOM_FN

 ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

All but PartGeom: ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

Optional Query Functions:

 ZOLTAN_OBJ_SIZE_MULTI_FN or ZOLTAN_OBJ_SIZE_FN

[Table of Contents | Next: Jostle | Previous: Graph vs. Hypergraph Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (3 of 3) [5/21/07 12:06:32 PM]

115

Zoltan User's Guide: Jostle Interface

Zoltan User's Guide | Next | Previous

Graph partitioning: Jostle

Jostle is a library for graph (mesh) partitioning and load balancing developed at the University of Greenwich, London, UK, by Chris Walshaw
[Jostle, Walshaw]. The parallel version of Jostle is sometimes called pjostle. In the Zoltan context, the name Jostle always refers to the parallel
version of the library. The main algorithm used in Jostle is based on multilevel graph partitioning, and a diffusion-type method is available for
repartitioning. Hence the Jostle library is very similar to ParMETIS. See the ParMETIS section for a brief description of graph partitioning as a
model for load balancing.

At present, only the most common Jostle options are supported by Zoltan. These are briefly described below. For further details, see the
documentation available from the Jostle home page. Other options may be added to Zoltan upon request.

Note that Jostle is not distributed with Zoltan. If you wish to use Jostle within Zoltan, you must first obtain a license for Parallel Jostle and
install it on your system. The license is currently free for academic use. Zoltan has been tested only with parallel Jostle version 1.2.* and may
be incompatible with other versions. Zoltan offers only limited support for Jostle and this may be discontinued in the future.

Value of LB_METHOD: GRAPH

Value of GRAPH_PACKAGE: Jostle

Parameters:

 JOSTLE_OUTPUT_LEVEL Amount of output Jostle should produce. (integer)

 JOSTLE_THRESHOLD Threshold at which the graph contraction phase is stopped. (integer)

 JOSTLE_GATHER_THRESHOLD Duplicate coarse graph on all processors when there are fewer than this number of nodes. (integer)

 JOSTLE_MATCHING Matching algorithm for graph contraction. (Valid values are "local" and "global".)

 JOSTLE_REDUCTION When reduction is turned off, Jostle performs a diffusion-type algorithm instead of multilevel graph
partitioning. (Valid values are "on" and "off".)

 JOSTLE_CONNECT Make a disconnected graph connected before partitioning. (Valid values are "on" and "off".)

 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 = on-processor checking, 2 = full checking.
(CHECK_GRAPH==2 is very slow and should be used only during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects (vertices) of roughly equal size to each
processor before calling the partitioner. 0 = don't scatter; 1 = scatter only if all objects are on a single
processor; 2 = scatter if at least one processor owns no objects; 3 = always scatter.

Default values: See the Jostle documentation. See our ParMETIS section for the last two parameters.

Required Query Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN

ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Hybrid Hierarchical Partitioning | Previous: ParMETIS]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_jostle.html [5/21/07 12:06:33 PM]

116

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html

Zoltan User's Guide: Ordering Algorithms

Zoltan User's Guide | Next | Previous

Ordering Algorithms

The following graph ordering algorithms are currently included in the Zoltan library:

Nested dissection by METIS/ParMETIS (NODEND)

The parenthetical string is the parameter value for ORDER_METHOD parameter; the parameter is set through a call to Zoltan_Set_Param.

Ordering is accessed through calls to Zoltan_Order.

Ordering Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each ordering method is controlled by
parameters specific to ordering which are also set by calls to Zoltan_Set_Param. Many of these parameters are specific to individual ordering
algorithms, and are listed in the descriptions of the individual algorithms. However, several have meaning across multiple ordering
algorithms. These parameters are described below.

Parameters:

 ORDER_METHOD The order algorithm used by Zoltan is specified by this parameter. Valid values are

"NODEND" (for nodal nested dissection by ParMETIS or METIS),
"METIS" (same as NODEND with ORDER_TYPE = local),
"PARMETIS" (same as NODEND with ORDER_TYPE = global), and
"NONE" (for no load-balancing).

 ORDER_TYPE "LOCAL" or "GLOBAL". If LOCAL is selected, then each processor constructs a local (sub-)graph. All inter-
processor edges are simply ignored. The ordering arrays returned, rank and iperm, are local permutation vectors in
this case.

ORDER_START_INDEX The start index for the permutation vectors rank and iperm. Valid values are 0 and 1.

 REORDER If this value is set to TRUE (non-zero), Zoltan assumes that the lists of local and global ids are given as input to
Zoltan_Order. Otherwise, the id lists will be populated by Zoltan_Order. The permutation of the ids will be the
one produced by calling the query functions.

Default Values:

ORDER_METHOD = NODEND

ORDER_TYPE = GLOBAL

ORDER_START_INDEX = 0

REORDER = FALSE

[Table of Contents | Next: Nested dissection by ParMETIS | Previous: Hybrid Hierarchical Partitioning]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_order.html [5/21/07 12:06:33 PM]

117

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html

Zoltan User's Guide: Nested Dissection by ParMETIS

Zoltan User's Guide | Next | Previous

Nested Dissection by METIS/ParMETIS

Nested Dissection (ND) is a popular method to compute fill-reducing orderings for sparse matrices. It can also be used for other ordering
purposes. The algorithm recursively finds a separator (bisector) in a graph, orders the nodes in the two subsets first, and nodes in the separator
last. In METIS/ParMETIS, the recursion is stopped when the graph is smaller than a certain size, and some version of minimum degree
ordering is applied to the remaining graph.

METIS computes a local ordering of the objects on each processor, while ParMETIS performs a global ordering of all the objects. ParMETIS
currently (versions 2.0 and 3.0) requires that the number of processors is a power of two.

The generic name for this method is NODEND. If GRAPH_TYPE=GLOBAL ParMETIS is called, but if it is LOCAL, METIS is called.
Alternatively, the user can simply set ORDER_METHOD to METIS or PARMETIS.

Order_Method String: NODEND or METIS or PARMETIS

Parameters:

 See ParMETIS. Note that the PARMETIS options are ignored when METIS is called.

Required Query Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN

ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Coloring Algorithms | Previous: Ordering Algorithms]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_order_parmetis.html [5/21/07 12:06:33 PM]

118

Zoltan User's Guide: Coloring Algorithms

Zoltan User's Guide | Next | Previous

Coloring Algorithms

The following coloring algorithms are currently included in the Zoltan library:

Parallel Coloring

They are accessed through calls to Zoltan_Color.

Coloring Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each coloring method is controlled by
parameters specific to coloring which are also set by calls to Zoltan_Set_Param. These parameters are described below.

Parameters:

 DISTANCE The maximum distance between two objects that should not get the same color is specified by this parameter.
Valid values are "1" (for distance-1 coloring) and "2" (for distance-2 coloring).

 SUPERSTEP_SIZE Number of local objects to be colored on each processor before exchanging color information. SUPERSTEP_SIZE
should be greater than 0.

 COMM_PATTERN Valid values are "S" (synchronous) and "A" (asynchronous). If synchronous communication is selected, processors
are forced to wait for the color information from all other processors to be received before proceeding with
coloring of the next SUPERSTEP_SIZE number of local objects. If asynchronous communication is selected, there
is no such restriction.

 COLOR_ORDER Valid values are "I" (internal first), "B" (boundary first) and "U" (unordered). If "I" is selected, each processor
colors its internal objects before boundary objects. If "B" is selected, each processor colors its boundary objects
first. If "U" is selected, there is no such distinction between internal and boundary objects. "U" is not implemented
for distance-2 coloring.

 COLORING_METHOD Currently only "F" (first-fit) is implemented. By using "F", the smallest available color that will not cause a
conflict is assigned to the object that is being colored.

Default Values:

DISTANCE = 1

SUPERSTEP_SIZE = 100

COMM_PATTERN = S

COLOR_ORDER = I

COLORING_METHOD = F

[Table of Contents | Next: Parallel Coloring | Previous: Nested Dissection by ParMETIS]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_color.html [5/21/07 12:06:34 PM]

119

Zoltan User's Guide: Parallel Coloring

Zoltan User's Guide | Next | Previous

Parallel Coloring

The parallel coloring algorithm in Zoltan is based on the work of Boman et al. for distance-1 coloring and Bozdag et al. for distance-2
coloring. It was implemented in Zoltan by Doruk Bozdag and Umit Catalyurek, Department of Biomedical Informatics, Ohio State University.
Distance-1 coloring algorithm is an iterative data parallel algorithm that proceeds in two-phased rounds. In the first phase, processors
concurrently color the vertices assigned to them. Adjacent vertices colored in the same parallel step of this phase may result in inconsistencies.
In the second phase, processors concurrently check the validity of the colors assigned to their respective vertices and identify a set of vertices
that needs to be re-colored in the next round to resolve the detected inconsistencies. The algorithm terminates when every vertex has been
colored correctly. To reduce communication frequency, the coloring phase is further decomposed into computation and communication sub-
phases. In a communication sub-phase processors exchange recent color information. During a computation sub-phase, a number of vertices
determined by the SUPERSTEP_SIZE parameter, rather than a single vertex, is colored based on currently available color information. With
an appropriate choice of a value for SUPERSTEP_SIZE, the number of ensuing conflicts can be kept low while at the same time preventing
the runtime from being dominated by the sending of a large number of small messages. The distance-2 graph coloring problem aims at
partitioning the vertex set of a graph into the fewest sets consisting of vertices pairwise at distance greater than two from each other. The
algorithm is an extension of the parallel distance-1 coloring algorithm.

Parameters:

 See Coloring Algorithms.

Required Query Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN

ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Data Services and Utilities | Previous: Coloring Algorithms]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_color_parallel.html [5/21/07 12:06:34 PM]

120

Zoltan User's Guide: Data Services

Zoltan User's Guide | Next | Previous

Data Services and Utilities

Within Zoltan, several utilities are provided to simplify both application development and development of new algorithms in the library. They
are separate from the Zoltan library so that applications can use them independently of Zoltan, if desired. They are compiled separately from
Zoltan and can be archived in separate libraries. Instructions for building the utilities and applications using them are included below;
individual library names are listed in the following documentation for each package.

The packages available are listed below.

Memory Management Utilities
Unstructured Communication Utilities
Distributed Directory Utility

Building Utilities

The utilities provided with Zoltan have their own Makefiles and can be built separately from Zoltan. If the user builds the Zoltan library, the
utility libraries are built automatically and copied to the appropriate Zoltan/Obj_<platform> directory, where <platform> is specified through
the ZOLTAN_ARCH environment variable. Zoltan and the utilities share the Utilities/Config/Config.<platform> files specifying compilation
paths for various architectures. If, however, a user wishes to use these utilities without using Zoltan, he must build the libraries separately.

The structure and use of Makefiles for the utilities are similar to Zoltan's makefiles; a top-level makefile includes rules for building each
utility's library. Object files and the utility libraries are stored in a subdirectory Obj_<platform>, where <platform> is a target architecture
supported with a Utilities/Config/Config.<platform> file. The command for compiling a particular utility follows:

gmake ZOLTAN_ARCH=<platform> <library_name>

where <library_name> is the name of the utility library, and <platform> is the target architecture (corresponding to Utilities/Config/Config.
<platform>). The <library_name> for each utility is included in the following documentation for the utilities.

Building Applications

The utilities are designed so that they can easily be used separately from Zoltan in applications. To enable type-checking of arguments, the
function-prototypes file for a utility should be included in all application source code files that directly access the utility. The application must
also link with the appropriate utility library (and any other libraries on which the utility depends). Library and function-prototype file names
for each utility are listed in the following documentation for the utilities.

[Table of Contents | Next: Memory Management Utilities | Previous: Parallel Coloring]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util.html [5/21/07 12:06:35 PM]

121

Zoltan User's Guide: Memory Management Utilities

Zoltan User's Guide | Next | Previous

Memory Management Utilities

This package consists of wrappers around the standard C memory allocation and deallocation routines which add error-checking and
debugging capabilities. These routines are packaged separately from Zoltan to allow their independent use in other applications. A Fortran90
interface is not yet available. C++ programmers can include the header file "zoltan_mem.h" and use the C functions. This header file, and in
fact all of Zoltan's C language header files, are surrounded by an extern "C" {} declaration to prevent name mangling when compiled with a C
++ compiler.

Source code location: Utilities/Memory

Function prototypes file: Utilities/Memory/zoltan_mem.h or include/zoltan_mem.h

Library name: libzoltan_mem.a

Other libraries used by this library: libmpi.a. (See note below.)

Routines:

Zoltan_Array_Alloc: Allocates arrays of dimension n, n=0,1,...,4
Zoltan_Malloc: Wrapper for system malloc.
Zoltan_Calloc: Wrapper for system calloc.
Zoltan_Realloc: Wrapper for system realloc.
Zoltan_Free: Frees memory and sets the pointer to NULL.
Zoltan_Memory_Debug: Sets the debug level used by the memory utilities; see the description below.
Zoltan_Memory_Stats: Prints memory debugging statistics, such as memory leak information.
Zoltan_Memory_Usage: Returns user-specified information about memory usage (i.e. maximum memory used, total
memory currently allocated).

Use in Zoltan:

The memory management utility routines are used extensively in Zoltan and in some individual algorithms. Zoltan
developers use these routines directly for most memory management, taking advantage of the error checking and
debugging capabilities of the library.

Rather than call Zoltan_Memory_Debug directly, applications using Zoltan can set the DEBUG_MEMORY parameter
used by this utility through calls to Zoltan_Set_Param.

Note on MPI usage:

MPI is used only to obtain the processor number (through a call to MPI_Comm_rank) for print statements and error
messages. If an application does not link with MPI, the memory utilities should be compiled with -
DZOLTAN_NO_MPI; all output will then appear to be from processor zero, even if it is actually from other processors.

double *Zoltan_Array_Alloc(char * file, int line, int n, int d1, int d2, ..., int dn, int size);

The Zoltan_Array_Alloc routine dynamically allocates an array of dimension n, n = 0, 1, ..., 4 with size (d1 x d2 x ... x dn). It is intended to

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (1 of 6) [5/21/07 12:06:36 PM]

122

Zoltan User's Guide: Memory Management Utilities

be used for 2, 3 and 4 dimensional arrays; Zoltan_Malloc should be used for the simpler cases. The memory allocated by
Zoltan_Array_Alloc is contiguous, and can be freed by a single call to Zoltan_Free.

Arguments:

 file A string containing the name of the file calling the function. The __FILE__ macro can be passed as this
argument. This argument is useful for debugging memory allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be passed as this argument.
This argument is useful for debugging memory allocation problems.

 n The number of dimensions in the array to be allocated. Valid values are 0, 1, 2, 3, or 4.

 d1, d2, ..., dn The size of each dimension to be allocated. One argument is included for each dimension.

 size The size (in bytes) of the data objects to be stored in the array.

Returned Value:

 double * A pointer to the starting address of the n-dimensional array, or NULL if the allocation fails.

Example:

int ** x = (int **) Zoltan_Array_Alloc (__FILE__ , __LINE__ , 2, 5, 6, sizeof (int));

Allocates a two-dimensional, 5x6-element array of integers.

double *Zoltan_Malloc(size_t n, char * file , int line);

The Zoltan_Malloc function is a wrapper around the standard C malloc routine. It allocates a block of memory of size n bytes. The principle
advantage of using the wrapper is that it allows memory leaks to be tracked via the DEBUG_MEMORY variable (set in
Zoltan_Memory_Debug).

A macro ZOLTAN_MALLOC is defined in zoltan_mem.h. It takes the argument n, and adds the __FILE__ and __LINE__ macros to the
argument list of the Zoltan_Malloc call:

#define ZOLTAN_MALLOC(n) Zoltan_Malloc((n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line information in each memory
allocation call.

Arguments:

 n The size (in bytes) of the memory-allocation request.

 file A string containing the name of the file calling the function. The __FILE__ macro can be passed as this
argument. This argument is useful for debugging memory allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be passed as this argument.
This argument is useful for debugging memory allocation problems.

Returned Value:

 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0 or the routine is unsuccessful.

Example:

struct Zoltan_Struct *b = (struct Zoltan_Struct *) ZOLTAN_MALLOC(sizeof(struct Zoltan_Struct));

Allocates memory for one Zoltan_Struct data structure.

double *Zoltan_Calloc(size_t num, size_t size, char * file, int line);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (2 of 6) [5/21/07 12:06:36 PM]

123

Zoltan User's Guide: Memory Management Utilities

The Zoltan_Calloc function is a wrapper around the standard C calloc routine. It allocates a block of memory of size num * size bytes and
initializes the memory to zeros. The principle advantage of using the wrapper is that it allows memory leaks to be tracked via the
DEBUG_MEMORY variable (set in Zoltan_Set_Memory_Debug).

A macro ZOLTAN_CALLOC is defined in zoltan_mem.h. It takes the arguments num and size, and adds the __FILE__ and __LINE__
macros to the argument list of the Zoltan_Calloc call:

#define ZOLTAN_CALLOC(num, size) Zoltan_Calloc((num), (size), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line information in each memory
allocation call.

Arguments:

 num The number of elements of the following size to allocate.

 size The size of each element. Hence, the total allocation is num * size bytes.

 file A string containing the name of the file calling the function. The __FILE__ macro can be passed as this
argument. This argument is useful for debugging memory allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be passed as this argument.
This argument is useful for debugging memory allocation problems.

Returned Value:

 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0 or the routine is unsuccessful.

Example:

int *b = (int *) ZOLTAN_CALLOC(10, sizeof(int));

Allocates memory for 10 integers and initializes the memory to zeros.

double *Zoltan_Realloc(void *ptr, size_t n, char *file, int line);

The Zoltan_Realloc function is a "safe" version of realloc. It changes the size of the object pointed to by ptr to n bytes. The contents of ptr are
unchanged up to a minimum of the old and new sizes. Error tests ensuring that n is a positive number and that space is available to be allocated
are performed.

A macro ZOLTAN_REALLOC is defined in zoltan_mem.h. It takes the arguments ptr and n, and adds the __FILE__ and __LINE__ macros
to the argument list of the Zoltan_Realloc call:

#define ZOLTAN_REALLOC(ptr, n) Zoltan_Realloc((ptr), (n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line information in each memory
allocation call.

Arguments:

 ptr Pointer to allocated memory to be re-sized.

 n The size (in bytes) of the memory-allocation request.

 file A string containing the name of the file calling the function. The __FILE__ macro can be passed as this
argument. This argument is useful for debugging memory allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be passed as this argument.
This argument is useful for debugging memory allocation problems.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (3 of 6) [5/21/07 12:06:36 PM]

124

Zoltan User's Guide: Memory Management Utilities

Returned Value:

 double * A pointer to the starting address of memory allocated. If the routine is unsuccessful, NULL is returned and *ptr
is unchanged.

Example:

int n = sizeof(struct Zoltan_Struct);
int *b = (int *) ZOLTAN_MALLOC (n));
b = (int *) ZOLTAN_REALLOC (b, 2*n);

Reallocates memory for b from length n to length 2*n.

void Zoltan_Free(void **ptr, char * file , int line);

The Zoltan_Free function calls the system's "free" function for the memory pointed to by *ptr. Note that the argument to this routine has an
extra level of indirection when compared to the standard C "free" call. This allows the pointer being freed to be set to NULL, which can help
find errors in which a pointer is used after it is deallocated. Error checking is performed to prevent attempts to free NULL pointers. When
Zoltan_Free is used with the DEBUG_MEMORY options (set in Zoltan_Memory_Debug), it can help identify memory leaks.

A macro ZOLTAN_FREE is defined in zoltan_mem.h. It takes the argument ptr, and adds the __FILE__ and __LINE__ macros to the
argument list of the Zoltan_Free call:

#define ZOLTAN_FREE(ptr) Zoltan_Free((void **)(ptr), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line information in each memory
allocation call.

Arguments:

 ptr Address of a pointer to the memory to be freed. Upon return, ptr is set to NULL.

Example:

ZOLTAN_FREE(& x);

Frees memory associated with the variable x; upon return, x is NULL.

Debugging Memory Errors

One important reason to use the memory-management utilities' wrappers around the system memory routines is to facilitate debugging of
memory problems. Various amounts of information can about memory allocation and deallocation are stored, depending on the debug level
set through a call to Zoltan_Memory_Debug. This information is printed either when an error or warning occurs, or when
Zoltan_Memory_Stats is called. We have found values of one and two to be very helpful in our development efforts. The routine
Zoltan_Memory_Usage can be called to return user-specified information about memory utilization to the user's program.

void Zoltan_Memory_Debug(int new_level);

The Zoltan_Memory_Debug function sets the level of memory debugging to be used.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (4 of 6) [5/21/07 12:06:36 PM]

125

Zoltan User's Guide: Memory Management Utilities

Arguments:

 new_level Integer indicating the amount of debugging to use. Valid options include:

0 -- No debugging.
1 -- The number of calls to Zoltan_Malloc and Zoltan_Free are tallied, and can be printed
by a call to Zoltan_Memory_Stats.
2 -- A list of all calls to Zoltan_Malloc which have not yet been freed is kept. This list is
printed by Zoltan_Memory_Stats (useful for detecting memory leaks). Any calls to
Zoltan_Free with addresses not in this list trigger warning messages. (Note that allocations
that occurred prior to setting the debug level to 2 will not be in this list and thus can generate
spurious warnings.)
3 -- Information about each allocation is printed as it happens.

Default:

Memory debug level is 1.

void Zoltan_Memory_Stats();

The Zoltan_Memory_Stats function prints information about memory allocation and deallocation. The amount of information printed is
determined by the debug level set through a call to Zoltan_Memory_Debug.

Arguments:

None.

size_t Zoltan_Memory_Usage(int type);

The Zoltan_Memory_Usage function returns information about memory utilization. The memory debug level (set through a call to
Zoltan_Set_Memory_Debug) must be at least 2 for this function to return non-zero values.

Arguments:

 type Integer to request type of information required. These integers are defined in zoltan_mem.h. Valid options
include:

ZOLTAN_MEM_STAT_TOTAL -- The function will return the current total memory
allocated via Zoltan's memory allocation routines.
ZOLTAN_MEM_STAT_MAXIMUM -- The function will return the maximum total
memory allocated via Zoltan's memory allocation routines up to this point.

Default:

type = ZOLTAN_MEM_STAT_MAXIMUM

Returned Value:

 int The number in bytes of the specific requested memory statistic.

Example:

total = Zoltan_Memory_Usage (ZOLTAN_MEM_STAT_TOTAL);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (5 of 6) [5/21/07 12:06:36 PM]

126

Zoltan User's Guide: Memory Management Utilities

[Table of Contents | Next: Unstructured Communication Utilities | Previous: Utilities]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (6 of 6) [5/21/07 12:06:36 PM]

127

Zoltan User's Guide: Communication Utilities

 Zoltan User's Guide | Next | Previous

Unstructured Communication Utilities

The unstructured communication package provides a simple interface for doing complicated patterns of point-to-point communication, such as
those associated with data remapping. This package consists of a few simple functions which create or modify communication plans, perform
communication, and destroy communication plans upon completion. The package is descended from software first developed by Steve
Plimpton and Bruce Hendrickson, and has proved useful in a variety of different applications. For this reason, it is maintained as a separate
library and can be used independently from Zoltan.

In a prototypical usage of the unstructured communication package each processor has some objects to send to other processors, but no
processor knows what messages it will receive. A call to Zoltan_Comm_Create produces a data structure called a communication plan which
encapsulates the basic information about the communication operation. The plan does not know anything about the types of objects being
transferred, only the number of them. So the same plan can be used repeatedly to transfer different types of data as long as the number of
objects in the transfers remains the same. The actual size of objects isn't specified until the call to Zoltan_Comm_Do which performs the data
transfer.

The plan which is produced by Zoltan_Comm_Create assumes that all the objects are of the same size. If this is not true, then a call to
Zoltan_Comm_Resize can specify the actual size of each object, and the plan is augmented appropriately. Zoltan_Comm_Resize can be
invoked repeatedly on the same plan to specify varying sizes for different data transfer operations.

Although a friendlier interface may be added in the future, for now the data to be sent must be passed to Zoltan_Comm_Do as a packed buffer
in which the objects are stored consecutively. This probably requires the application to pull the data out of native data structures and place in
into the buffer. The destination of each object is specified by the proclist argument to Zoltan_Comm_Create. Some flexibility is supported by
allowing proclist to contain negative values, indicating that the corresponding objects are not to be sent. The communication operations allow
for any object to be sent to any destination processor. However, if the objects are grouped in such a way that all those being sent to a particular
processor are consecutive, the time and memory of an additional copy is avoided.

Function Zoltan_Comm_Do_Reverse reverses the communication plan to send back messages to the originators.

To allow overlap between communication and processing, POST and WAIT variants of Zoltan_Comm_Do and Zoltan_Comm_Do_Reverse
are provided. Communication is initiated by the POST function (Zoltan_Comm_Do_Post or Zoltan_Comm_Do_Reverse_Post); incoming
messages are posted and outgoing messages are sent. Then the user can continue processing. After the processing is complete, the
corresponding WAIT function (Zoltan_Comm_Do_Wait or Zoltan_Comm_Do_Reverse_Wait) is called to wait for all incoming messages
to be received. For convenience, these functions use the same calling arguments as Zoltan_Comm_Do and Zoltan_Comm_Do_Reverse.

All the functions in the unstructured communication library return integer error codes identical to those used by Zoltan.

The C++ interface to the unstructured communication utility is found in the zoltan_comm_cpp.h header file which defines the Zoltan_Comm
class.

A Fortran90 interface is not yet available.

Source code location: Utilities/Communication

C Function prototypes file: Utilities/Communication/zoltan_comm.h

C++ class definition: Utilities/Communication/zoltan_comm_cpp.h

Library name: libzoltan_comm.a

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (1 of 8) [5/21/07 12:06:38 PM]

128

Zoltan User's Guide: Communication Utilities

Other libraries used by this library: libmpi.a, libzoltan_mem.a.

High Level Routines:

Zoltan_Comm_Create: computes a communication plan for sending objects to destination processors.
Zoltan_Comm_Do: uses a communication plan to send data objects to destination processors. The POST and WAIT
variants are
 Zoltan_Comm_Do_Post and
 Zoltan_Comm_Do_Wait.
Zoltan_Comm_Do_Reverse: performs the reverse (opposite) communication of Zoltan_Comm_Do. The POST and
WAIT variants are
 Zoltan_Comm_Do_Reverse_Post and
 Zoltan_Comm_Do_Reverse_Wait.
Zoltan_Comm_Resize: augments the plan to allow objects to be of variable sizes.
Zoltan_Comm_Copy: create a new communication plan and copy an existing one to it.
Zoltan_Comm_Copy_To: copy one existing communication plan to another.
Zoltan_Comm_Destroy: free memory associated with a communication plan.

Low Level Routines:

Zoltan_Comm_Exchange_Sizes: updates the sizes of the messages each processor will receive.
Zoltan_Comm_Invert_Map: given a set of messages each processor wants to send, determines the set of messages
each processor needs to receive.
Zoltan_Comm_Sort_Ints: sorts an array of integer values.
Zoltan_Comm_Info: returns information about a communication plan.
Zoltan_Comm_Invert_Plan: given a communication plan, converts the plan into a plan for the reverse communication.

Use in Zoltan:

The Zoltan library uses the unstructured communication package in its migration tools and in some of the load-balancing
algorithms. For example, in Zoltan_Migrate, Zoltan_Comm_Create is used to develop a communication map for
sending objects to be exported to their new destination processors. The sizes of the exported objects are obtained and the
communication map is augmented with a call to Zoltan_Comm_Resize. The data for the objects is packed into a
communication buffer and sent to the other processors through a call to Zoltan_Comm_Do. After the received objects
are unpacked, the communication plan is no longer needed, and it is deallocated by a call to Zoltan_Comm_Destroy.
Zoltan developers use the package whenever possible, as improvements made to the package (for example, support for
heterogeneous architectures) automatically propagate to the algorithms.

C:
int Zoltan_Comm_Create(struct Zoltan_Comm_Obj **plan, int nsend, int *proclist, MPI_Comm comm, int tag, int *nreturn);
C++:
Zoltan_Comm(const int & nsend, int *proclist, const MPI_Comm & comm, const int & tag, int *nreturn);
 or
Zoltan_Comm();
Zoltan_Comm::Create(const int & nsend, int *proclist, const MPI_Comm & comm, const int & tag, int *nreturn);

The Zoltan_Comm_Create function sets up the communication plan in the unstructured communication package. Its input is a count of
objects to be sent to other processors, a list of the processors to which the objects should be sent (repetitions are allowed), and an MPI
communicator and tag. It allocates and builds a communication plan that describes to which processors data will be sent and from which

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (2 of 8) [5/21/07 12:06:38 PM]

129

Zoltan User's Guide: Communication Utilities

processors data will be received. It also computes the amount of data to be sent to and received from each processor. It returns the number of
objects to be received by the processor and a pointer to the communication plan it created. The communication plan is then used by calls to
Zoltan_Comm_Do to perform the actual communication.

Arguments:

 plan A pointer to the communication plan created by Zoltan_Comm_Create.

 nsend The number of objects to be sent to other processors.

 proclist An array of size nsend of destination processor numbers for each of the objects to be sent.

 comm The MPI communicator for the unstructured communication.

 tag A tag for MPI communication.

 nreturn Upon return, the number of objects to be received by the processor.

Returned Value:

 int Error code.

In the C++ interface to the communication utility, the communication plan is represented by a Zoltan_Comm object. It is created when the
Zoltan_Comm constructor executes. There are two constructors. The first one listed above uses parameters to initialize the plan. The second
constructor does not, but the plan can subsequently be initialized with a call to Zoltan_Comm::Create().

C:
int Zoltan_Comm_Do(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char *recvbuf);
int Zoltan_Comm_Do_Post(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char *recvbuf);
int Zoltan_Comm_Do_Wait(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char *recvbuf);
C++:
int Zoltan_Comm::Do(const int & tag, char *send_data, const int & nbytes, char *recvbuf);
int Zoltan_Comm::Do_Post(const int & tag, char *send_data, const int & nbytes, char *recvbuf);
int Zoltan_Comm::Do_Wait(const int & tag, char *send_data, const int & nbytes, char *recvbuf);

The Zoltan_Comm_Do function performs the communication described in a communication plan built by Zoltan_Comm_Create. Using the
plan, it takes a buffer of object data to be sent and the size (in bytes) of each object's data in that buffer and sends the data to other processors.
Zoltan_Comm_Do also receives object data from other processors and stores it in a receive buffer. The receive buffer must be allocated by
the code calling Zoltan_Comm_Do using the number of received objects returned by Zoltan_Comm_Create or Zoltan_Comm_Resize. If
the objects have variable sizes, then Zoltan_Comm_Resize must be called before Zoltan_Comm_Do.

Arguments:

 plan A pointer to a communication plan built by Zoltan_Comm_Create.

 tag An MPI message tag.

 send_data A buffer filled with object data to be sent to other processors.

 nbytes The size (in bytes) of the data for one object, or the scale factor if the objects have variable sizes. (See
Zoltan_Comm_Resize for more details.)

 recvbuf Upon return, a buffer filled with object data received from other processors.

Returned Value:

 int Error code.

C:
int Zoltan_Comm_Do_Reverse(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, int *sizes, char *recvbuf);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (3 of 8) [5/21/07 12:06:38 PM]

130

Zoltan User's Guide: Communication Utilities

int Zoltan_Comm_Do_Reverse_Post(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, int *sizes, char *recvbuf);
int Zoltan_Comm_Do_Reverse_Wait(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, int *sizes, char *recvbuf);
C++:
int Zoltan_Comm::Do_Reverse(const int & tag, char *send_data, const int & nbytes, int *sizes, char *recvbuf);
int Zoltan_Comm::Do_Reverse_Post(const int & tag, char *send_data, const int & nbytes, int *sizes, char *recvbuf);
int Zoltan_Comm::Do_Reverse_Wait(const int & tag, char *send_data, const int & nbytes, int *sizes, char *recvbuf);

The Zoltan_Comm_Do_Reverse function performs communication based on a communication plan built by Zoltan_Comm_Create. But
unlike Zoltan_Comm_Do, this routine performs the reverse of the communication pattern. Specifically, all sends in the plan are treated as
receives and vice versa. Zoltan_Comm_Do_Reverse is particularly well suited to return updated data objects to their originating processors
when the objects were initially transferred via Zoltan_Comm_Do.

Arguments:

 plan A pointer to a communication plan built by Zoltan_Comm_Create.

 tag An MPI message tag to be used by this routine.

 send_data A buffer filled with object data to be sent to other processors.

 nbytes The size (in bytes) of the data associated with an object, or the scale factor if the objects have variable sizes.

 sizes If not NULL, this input array specifies the size of all the data objects being transferred. This argument is passed
directly to Zoltan_Comm_Resize. This array has length equal to the nsend value passed to
Zoltan_Comm_Create. But note that for Zoltan_Comm_Do_Reverse this array describes the sizes of the
values being received, not sent.

 recvbuf Upon return, a buffer filled with object data received from other processors.

Returned Value:

 int Error code.

C:
int Zoltan_Comm_Resize(struct Zoltan_Comm_Obj *plan, int *sizes, int tag , int *total_recv_size);
C++:
int Zoltan_Comm::Resize(int *sizes, const int & tag , int *total_recv_size);

If the objects being communicated are of variable sizes, then the plan produced by Zoltan_Comm_Create is incomplete. This routine allows
the plan to be augmented to allow for variable sizes. Zoltan_Comm_Resize can be invoked repeatedly on the same plan to specify different
object sizes associated with different data transfers.

Arguments:

 plan A communication plan built by Zoltan_Comm_Create.

 sizes An input array of length equal to the nsend argument in the call to Zoltan_Comm_Create which generated the
plan. Each entry in the array is the size of the corresponding object to be sent. If sizes is NULL (on all
processors), the objects are considered to be the same size. Note that the true size of a message will be scaled by
the nbytes argument to Zoltan_Comm_Do.

 tag A message tag to be used for communication within this routine, based upon the communicator in plan.

 total_recv_size Sum of the sizes of the incoming messages. To get the actual size (in bytes), you need to scale by the nbytes
argument to Zoltan_Comm_Do.

Returned Value:

 int Error code.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (4 of 8) [5/21/07 12:06:38 PM]

131

Zoltan User's Guide: Communication Utilities

C: struct Zoltan_Comm_Obj *Zoltan_Comm_Copy(struct Zoltan_Comm_Obj *plan);
C++: Zoltan_Comm(const Zoltan_Comm &plan);

Zoltan_Comm_Copy creates a new Zoltan_Comm_Obj structure and copies the existing plan to it. The corresponding C++ method is the
Zoltan_Comm copy constructor.

Arguments:

 plan A pointer to the communication plan to be copied to the new Zoltan_Comm_Obj structure.

Returned Value:

 struct
Zoltan_Comm_Obj *

the newly created plan, or NULL on error.

C: int Zoltan_Comm_Copy_To(struct Zoltan_Comm_Obj **to, struct Zoltan_Comm_Obj *from);
C++: Zoltan_Comm & operator= (const Zoltan_Comm &plan);

Zoltan_Comm_Copy_To copies one existing communication plan to another. The corresponding C++ method is the Zoltan_Comm copy
operator.

Arguments:

 to A pointer to a pointer to the communication plan that will be copied to. We destroy the plan first, and set the
pointer to the plan to NULL, before proceeding with the copy.

 from A pointer the communication plan that we will make a copy of.

Returned Value:

 int Error code

C: int Zoltan_Comm_Destroy(struct Zoltan_Comm_Obj **plan);
C++: ~Zoltan_Comm();

The Zoltan_Comm_Destroy function frees all memory associated with a communication plan created by Zoltan_Comm_Create. The C++
Zoltan_Comm object does not have an explicit Destroy method. It is deallocated when its destructor is called.

Arguments:

 plan A pointer to a communication plan built by Zoltan_Comm_Create. Upon return, plan is set to NULL.

Returned Value:

 int Error code.

C:
int Zoltan_Comm_Exchange_Sizes(int *sizes_to, int *procs_to, int nsends, int self_msg, int *sizes_from, int *procs_from, int nrecvs, int
*total_recv_size, int my_proc, int tag, MPI_Comm comm);
C++:
static int Zoltan_Comm::Exchange_Sizes(int *sizes_to, int *procs_to, const int & nsends, const int & self_msg, int *sizes_from, int
*procs_from, const int & nrecvs, int *total_recv_size, const int & my_proc, const int & tag, const MPI_Comm & comm);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (5 of 8) [5/21/07 12:06:38 PM]

132

Zoltan User's Guide: Communication Utilities

This routine is used by Zoltan_Comm_Resize to update the sizes of the messages each processor is expecting to receive. The processors
already know who will send them messages, but if variable sized objects are being communicated, then the sizes of the messages are
recomputed and exchanged via this routine.

Arguments:

 sizes_to Input array with the size of each message to be sent. Note that the actual number of bytes in the message is the
product of this value and the nbytes argument to Zoltan_Comm_Do.

 procs_to Input array with the destination processor for each of the messages to be sent.

 nsends Input argument with the number of messages to be sent. (Length of the procs_to array.)

 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0) within the procs_to and
lengths_to arrays.

 sizes_from Returned array with the size of each message that will be received. Note that the actual number of bytes in the
message is the product of this value and the nbytes argument to Zoltan_Comm_Do.

 procs_from Returned array of processors from which data will be received.

 nrecvs Returned value with number of messages to be received. (length of procs_from array.)

 total_recv_size The total size of all the messages to be received. As above, the actual number of bytes will be scaled by the
nbytes argument to Zoltan_Comm_Do.

 my_proc The processor's ID in the comm communicator.

 tag A message tag which can be used by this routine.

 comm MPI Communicator for the processor numbering in the procs arrays.

Returned Value:

 int Error code.

C:
int Zoltan_Comm_Invert_Map(int *lengths_to, int * procs_to, int nsends, int self_msg, int ** lengths_from, int ** procs_from, int * nrecvs,
int my_proc, int nprocs, int out_of_mem, int tag, MPI_Comm comm);
C++:
static int Zoltan_Comm::Invert_Map(int *lengths_to, int * procs_to, const int & nsends, const int & self_msg, int * & lengths_from, int * &
procs_from, int & nrecvs, const int & my_proc, const int & nprocs, const int & out_of_mem, const int & tag, const MPI_Comm & comm);

The Zoltan_Comm_Invert_Map function is a low level communication routine. It is useful when a processor knows to whom it needs to
send data, but not from whom it needs to receive data. Each processor provides to this routine a set of lengths and destinations for the
messages it wants to send. The routine then returns the set of lengths and origins for the messages a processor will receive. Note that by
inverting the interpretation of to and from in these arguments, the routine can be used to do the opposite: knowing how much data to receive
and from which processors, it can compute how much data to send and to which processors.

Arguments:

 lengths_to Input array with the number of values in each of the messages to be sent. Note that the actual size of each value
is not specified until the Zoltan_Comm_Do routine is invoked.

 procs_to Input array with the destination processor for each of the messages to be sent.

 nsends Input argument with the number of messages to be sent. (Length of the lengths_to and procs_to arrays.)

 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0) within the procs_to and
lengths_to arrays.

 lengths_from Returned array with lengths of messages to be received.

 procs_from Returned array of processors from which data will be received.

 nrecvs Returned value with number of messages to be received (lengths of lengths_from and procs_from arrays).

 my_proc The processor's ID in the comm communicator.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (6 of 8) [5/21/07 12:06:38 PM]

133

Zoltan User's Guide: Communication Utilities

 nprocs Number of processors in the comm communicator.

 out_of_mem Since it has a barrier operation, this routine is a convenient time to tell all the processors that one of them is out
of memory. This input argument is 0 if the processor is OK, and 1 if the processor has failed in a malloc call. All
the processors will return with a code of COMM_MEMERR if any of them is out of memory.

 tag A message tag which can be used by this routine.

 comm MPI Communicator for the processor numbering in the procs arrays.

Returned Value:

 int Error code.

int Zoltan_Comm_Sort_Ints(int *vals_sort, int *vals_other, int nvals);

As its name suggests, the Zoltan_Comm_Sort_Ints function sorts a set of integers via the quicksort algorithm. The integers are reordered
from lowest to highest, and a second array of integers is reordered in the same fashion. This second array can be used to return the permutation
associated with the sort operation. There is no C++ interface to this function. You can use the C function instead.

Arguments:

 vals_sort The array of integers to be sorted. This array is permuted into sorted order.

 vals_other Another array of integers which is permuted identically to vals_sort.

 nvals The number of values in the two integer arrays.

Returned Value:

 int Error code.

C:
int Zoltan_Comm_Info(struct Zoltan_Comm_Obj *plan, int *nsends, int *send_procs, int *send_lengths, int *send_nvals, int
*send_max_size, int *send_list, int *nrecvs, int *recv_procs, int *recv_lengths, int *recv_nvals, int *recv_total_size, int *recv_list, int
*self_msg);
C++:
int Zoltan_Comm::Info(int *nsends, int *send_procs, int *send_lengths, int *send_nvals, int *send_max_size, int *send_list, int *nrecvs, int
*recv_procs, int *recv_lengths, int *recv_nvals, int *recv_total_size, int *recv_list, int *self_msg) const;

Zoltan_Comm_Info returns information about a communication plan. All arguments, except the plan itself, may be NULL; values are
returned only for non-NULL arguments.

Arguments:

 plan Communication data structure created by Zoltan_Comm_Create.

 nsends Upon return, the number of processors to which messages are sent; does not include self-messages.

 send_procs Upon return, a list of processors to which messages are sent; self-messages are included.

 send_lengths Upon return, the number of values to be sent to each processor in send_procs.

 send_nvals Upon return, the total number of values to send.

 send_max_size Upon return, the maximum size of a message to be sent; does not include self-messages.

 send_list Upon return, the processor assignment of each value to be sent.

 nrecvs Upon return, the number of processors from which to receive messages; does not include self-messages.

 recv_procs Upon return, a list of processors from which messages are received; includes self-messages.

 recv_lengths Upon return, the number of values to be received from each processor in recv_procs.

 recv_nvals Upon return, the total number of values to receive.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (7 of 8) [5/21/07 12:06:38 PM]

134

Zoltan User's Guide: Communication Utilities

 recv_total_size Upon return, the total size of items to be received.

 recv_list Upon return, the processor assignments of each value to be received.

 self_msg Upon return, the number of self-messages.

Returned Value:

 int Error code.

C: int Zoltan_Comm_Invert_Plan(struct Zoltan_Comm_Obj **plan);
C++: int Zoltan_Comm::Invert_Plan();

Given a communication plan, Zoltan_Comm_Invert_Plan alters the plan to make it the plan for the reverse communication. Information in
the input plan is replaced by information for the reverse-communication plan. All receives in the reverse-communication plan are blocked;
thus, using the inverted plan does not produce the same results as Zoltan_Comm_Do_Reverse. If an error occurs within
Zoltan_Comm_Invert_Plan, the original plan is returned unaltered.

Arguments:

 plan Communication data structure created by Zoltan_Comm_Create; the contents of this plan are irretrievably
modified by Zoltan_Comm_Invert_Plan.

Returned Value:

 int Error code.

[Table of Contents | Next: Distributed Directory Utility | Previous: Memory Management Utilities]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (8 of 8) [5/21/07 12:06:38 PM]

135

Zoltan User's Guide: Distributed Data Directory Utilities

Zoltan Users's Guide | Next | Previous

Distributed Directory Utility

A distributed directory may be viewed as a distributed hash table. The owner (i.e. the processor number) of any computational object is subject
to change during load balancing. An application may use this directory utility to manage its objects' locations. A distributed directory balances
the load (in terms of memory and processing time) and avoids the bottle neck of a centralized directory design.

This distributed directory module may be used alone or in conjunction with Zoltan's load balancing capability and memory and
communication services. The user should note that external names (subroutines, etc.) prefaced by Zoltan_DD_ are reserved when using this
module. Since the distributed directory uses collective communication, it is important that all processes (processors) call the same routine
(function).

The user initially creates an empty distributed directory using Zoltan_DD_Create. Then global ID (GID) information is added to the directory
using Zoltan_DD_Update. The directory maintains the GID's basic information: local ID (optional), partition (optional), arbitrary user data
(optional), and the current data owner. Zoltan_DD_Update is also called after data migration or refinements. Zoltan_DD_Find returns the
directory information for a list of GIDs. A selected list of GIDs may be removed from the directory by Zoltan_DD_Remove. When the user
has finished using the directory, its memory is returned to the system by Zoltan_DD_Destroy.

An object is known by its GID. Hashing provides very fast lookup for the information associated with a GID in a two step process. The first
hash of the GID yields the processor number owning the directory entry for that GID. The directory entry owner remains constant even if the
object (GID) migrates in time. Second, a different hash algorithm of the GID looks up the associated information in directory processor's hash
table. The user may optionally register their own (first) hash function to take advantage of their knowledge of their GID naming scheme and
the GID's neighboring processors. See the documentation for Zoltan_DD_Set_Hash_Fn for more information. If no user hash function is
registered, Zoltan's Zoltan_Hash will be used. This module's design was strongly influenced by the paper "Communication Support for
Adaptive Computation" by Pinar and Hendrickson.

Some users number their GIDs by giving the first "n" GIDs to processor 0, the next "n" GIDs to processor 1, and so forth. The function
Zoltan_DD_Set_Neighbor_Hash_Fn1 will provide efficient directory communication when these GIDs stay close to their origin. The function
Zoltan_DD_Set_Neighbor_Hash_Fn2 allows the specification of ranges of GIDs to each processor for more flexibility. The source code for
DD_Set_Neighbor_Hash_Fn1 and DD_Set_Neighbor_Hash_Fn2 provide examples of how a user can create their own "hash" functions taking
advantage of their own GID naming convention.

The routine Zoltan_DD_Print will print the contents of the directory. The companion routine Zoltan_DD_Stats prints out a summary of the
hash table size, number of linked lists, and the length of the longest linked list. This may be useful when the user creates their own hash
functions.

The C++ interface to this utility is defined in the header file zoltan_dd_cpp.h as the class Zoltan_DD. A single Zoltan_DD object represents a
distributed directory.

A Fortran90 interface is not yet available.

Source code location: Utilities/DDirectory

C Function prototypes file: Utilities/DDirectory/zoltan_dd.h

C++ class definition: Utilities/DDirectory/zoltan_dd_cpp.h

Library name: libzoltan_dd.a

Other libraries used by this library: libmpi.a, libzoltan_mem.a, libzoltan_comm.a

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (1 of 7) [5/21/07 12:06:40 PM]

136

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html

Zoltan User's Guide: Distributed Data Directory Utilities

Routines:

Zoltan_DD_Create: Allocates memory and initializes the directory.
Zoltan_DD_Copy: Allocates a new directory structure and copies an existing one to it.
Zoltan_DD_Copy_To: Copies one directory structure to another.
Zoltan_DD_Destroy: Terminate the directory and frees its memory.
Zoltan_DD_Update: Adds or updates GIDs' directory information.
Zoltan_DD_Find: Returns GIDs' information (owner, local ID, etc.)
Zoltan_DD_Remove: Eliminates selected GIDs from the directory.
Zoltan_DD_Stats: Provides statistics about hash table & linked lists.
Zoltan_DD_Print: Displays the contents (GIDs, etc) of each directory.
Zoltan_DD_Set_Hash_Fn: Registers a user's optional hash function.
Zoltan_DD_Set_Neighbor_Hash_Fn1: Hash function with constant number of GIDs per processor.
Zoltan_DD_Set_Neighbor_Hash_Fn2: Hash function with variable number of GID's per processor.

Data Stuctures:

struct Zoltan_DD_Struct: State & storage used by all DD routines. Users should not modify any internal values in this
structure. Users should only pass the address of this structure to the other routines in this package.

C: int Zoltan_DD_Create (struct Zoltan_DD_Struct **dd, MPI_Comm comm, int num_gid_entries, int num_lid_entries, int
user_length, int table_length, int debug_level);

C++: Zoltan_DD(const MPI_Comm & comm, const int & num_gid_entries, const int & num_lid_entries, const int & user_length,
const int & table_length, const int & debug_level);
 or
Zoltan_DD();
Zoltan_DD::Create(const MPI_Comm & comm, const int & num_gid_entries, const int & num_lid_entries, const int &
user_length, const int & table_length, const int & debug_level);

Zoltan_DD_Create allocates and initializes memory for the Zoltan_DD_Struct structure. It must be called before any other distributed
directory routines. MPI must be initialized prior to calling this routine.

The Zoltan_DD_Struct must be passed to all other distributed directory routines. The MPI Comm argument designates the processors used for
the distributed directory. The MPI Comm argument is duplicated and stored for later use.

The user can set the debug level argument in the Zoltan_DD_Create to determine the module's response to multiple updates for any GID
within one update cycle. If the argument is set to 0, all multiple updates are ignored (but the last determines the directory information.) If the
argument is set to 1, an error is returned if the multiple updates represent different owners for the same GID. If the debug level is 2, an error
return and an error message are generated if multiple updates represent different owners for the same GID. If the level is 3, an error return and
an error message are generated for a multiple update even if the updates represent the same owner for a GID.

Arguments:

 dd Structure maintains directory state and hash table.

 comm MPI comm duplicated and stored specifying directory processors.

 num_gid_entries Length of GID.

 num_lid_entries Length of local ID or zero to ignore local IDs.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (2 of 7) [5/21/07 12:06:40 PM]

137

Zoltan User's Guide: Distributed Data Directory Utilities

 user_length Length of user defined data field (optional, may be zero).

 table_length Length of hash table (zero forces default value of 50,000 slots). For large problems, this value should be
increased to approximately the number of global GIDs / number of processors (if you have enough memory) in
order to improve performance.

 debug_level Legal values range in [0,3]. Sets response to various error conditions where 3 is the most verbose.

Returned Value:

 int Error code.

ZOLTAN_FATAL is returned for MPI problems or if num_gid_entries, num_lid_entries, or user_length do not match globally.
ZOLTAN_WARN is returned for illegal input arguements such as dd being NULL.
ZOLTAN_MEMERR is returned if sufficient memory can not be allocated.

In the C++ interface, the distributed directory is represented by a Zoltan_DD object. It is created when the Zoltan_DD constructor executes.
There are two constructors. The first one listed above uses parameters to initialize the distributed directory. The second constructor does not,
but it can subsequently be initialized with a call to Zoltan_DD::Create().

C: struct Zoltan_DD_Struct *Zoltan_DD_Copy (struct Zoltan_DD_Struct *from);

C++: Zoltan_DD(const Zoltan_DD &dd);

This routine creates a new distributed directory structure and copies an existing one to it. The corresponding routine in the C++ library is the
Zoltan_DD copy constructor.

Arguments:

 from The existing directory structure which will be copied to the new one.

Returned Value:

 struct Zoltan_DD_Struct
*

The newly created directory structure.

C: int Zoltan_DD_Copy_To (struct Zoltan_DD_Struct **to, struct Zoltan_DD_Struct *from);

C++: Zoltan_DD & operator=(const Zoltan_DD &dd);

This routine copies one distributed directory structure to another. The corresponding method in the C++ library is the Zoltan_DD class copy
operator.

Arguments:

 to A pointer to a pointer to the target structure. The structure will be destroyed and the pointer set to NULL before
proceeding with the copy.

 from A pointer to the source structure. The contents of this structure will be copied to the target structure.

Returned Value:

 int Error code.

C: void Zoltan_DD_Destroy (struct Zoltan_DD_Struct **dd);

C++: ~Zoltan_DD();

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (3 of 7) [5/21/07 12:06:40 PM]

138

Zoltan User's Guide: Distributed Data Directory Utilities

This routine frees all memory allocated for the distributed directory. No calls to any distributed directory functions using this
Zoltan_DD_Struct are permitted after calling this routine. MPI is necessary for this routine only to free the previously saved MPI comm.

Arguments:

 dd Directory structure to be deallocated.

Returned Value:

 void NONE

There is no explicit Destroy method in the C++ Zoltan_DD class. The object is deallocated when its destructor is called.

C: int Zoltan_DD_Update (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR
user, int *partition, int count);

C++: int Zoltan_DD::Update(ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR user, int *partition, const int &
count);

Zoltan_DD_Update takes a list of GIDs and corresponding lists of optional local IDs, optional user data, and optional partitions. This routine
updates the information for existing directory entries or creates a new entry (filled with given data) if a GID is not found. NULL lists should be
passed for optional arguments not desired. This function should be called initially and whenever objects are migrated to keep the distributed
directory current.

The user can set the debug level argument in Zoltan_DD_Create to determine the module's response to multiple updates for any GID within
one update cycle.

Arguments:

 dd Distributed directory structure state information.

 gid List of GIDs to update (in).

 lid List of corresponding local IDs (optional) (in).

 user List of corresponding user data (optional) (in).

 partition List of corresponding partitions (optional) (in).

 count Number of GIDs in update list.

Returned Value:

 int Error code.

C: int Zoltan_DD_Find (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR
data, int *partition, int count, int *owner);

C++: int Zoltan_DD::Find(ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR data, int *partition, const int &
count, int *owner) const;

Given a list of GIDs, Zoltan_DD_Find returns corresponding lists of the GIDs' owners, local IDs, partitions, and optional user data. NULL
lists must be provided for optional information not being used.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (4 of 7) [5/21/07 12:06:40 PM]

139

Zoltan User's Guide: Distributed Data Directory Utilities

Arguments:

 dd Distributed directory structure state information.

 gid List of GIDs whose information is requested.

 lid Corresponding list of local IDs (optional) (out).

 data Corresponding list of user data (optional) (out).

 partition Corresponding list of partitions (optional) (out).

 count Count of GIDs in above list.

 owner Corresponding list of data owners (out).

Returned Value:

 int Error code.

The normal return "error code" is ZOLTAN_OK.
ZOLTAN_WARN is returned when at least one GID in the gid list is not found. The corresponding element in optional owner list is set to -1 if
the owner array is not NULL. Setting the debug_level higher (> 0) will show an error message to confirm this problem.
ZOLTAN_WARN is returned whenever there is a problem with the input arguments (such as dd being NULL). In this case an error message is
always printed.

C: int Zoltan_DD_Remove (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, int count);

C++: int Zoltan_DD::Remove(ZOLTAN_ID_PTR gid, const int & count);

Zoltan_DD_Remove takes a list of GIDs and removes all of their information from the distributed directory.

Arguments:

 dd Distributed directory structure state information.

 gid List of GIDs to eliminate from the directory.

 count Number of GIDs to be removed.

Returned Value:

 int Error code.

C: void Zoltan_DD_Set_Hash_Fn (struct Zoltan_DD_Struct *dd, unsigned int (*hash) (ZOLTAN_ID_PTR, int, unsigned int));

C++: void Zoltan_DD::Set_Hash_Fn(unsigned int (*hash) (ZOLTAN_ID_PTR, int, unsigned int));

Enables the user to register a new hash function for the distributed directory. (If this routine is not called, the default hash function
Zoltan_Hash will be used automatically.) This hash function determines which processor maintains the distributed directory entry for a given
GID. Inexperienced users do not need this routine.

Experienced users may elect to create their own hash function based on their knowledge of their GID naming scheme. The user's hash function
must have calling arguments compatible with Zoltan_Hash. Consider that a user has defined a hash function, myhash, as

 unsigned int myhash(ZOLTAN_ID_PTR gid, int length, unsigned int naverage)
 {
 return *gid / naverage ; /* GID length assumed to be 1 ; naverage = total_GIDS/nproc */

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (5 of 7) [5/21/07 12:06:40 PM]

140

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html

Zoltan User's Guide: Distributed Data Directory Utilities

 }

Then the call to register this hash function is:
 Zoltan_DD_Set_Hash (myhash) ;

NOTE: This hash function might group the gid's directory information near the gid's owning processor's neighborhood, for an appropriate
naming scheme.

Arguments:

 dd Distributed directory structure state information.

 hash Name of user's hash function.

Returned Value:

 void NONE

C: void Zoltan_DD_Stats (struct Zoltan_DD_Struct *dd);

C++: void Zoltan_DD::Stats() const;

This routine prints out summary information about the local distributed directory. It includes the hash table length, number of GIDs stored in
the local directory, the number of linked lists, and the length of the longest linked list. The debug level (set by an argument to
Zoltan_DD_Create controls this routine's verbosity.

Arguments:

 dd Distributed directory structure for state information

Returned Value:

 void NONE

int Zoltan_DD_Set_Neighbor_Hash_Fn1 (struct Zoltan_DD_Struct *dd, int size);

This routine associates the first size GIDs to proc 0, the next size to proc 1, etc. It assumes the GIDs are consecutive numbers. It assumes that
GIDs primarily stay near their original owner. The GID length is assumed to be 1. GIDs outside of the range are evenly distributed among the
processors via modulo(number of processors). This is a model for the user to develop their own similar routine.

Arguments:

 dd Distributed directory structure state information.

 size Number of consecutive GIDs associated with a processor.

Returned Value:

 int Error code.

int Zoltan_DD_Set_Neighbor_Hash_Fn2 (struct Zoltan_DD_Struct *dd, int *proc, int *low, int *high, int n);

This routine allows the user to specify a beginning and ending GID "numbers" per directory processor. It assumes that GIDs primarily stay

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (6 of 7) [5/21/07 12:06:40 PM]

141

Zoltan User's Guide: Distributed Data Directory Utilities

near their original owner. It requires that the numbers of high, low, & proc entries are all n. It assumes the GID length is 1. It is a model for the
user to develop their own similar routine. Users should note the registration of a cleanup routine to free local static memory when the
distributed directory is destroyed. GIDs outside the range specified by high and low lists are evenly distributed among the processors via
modulo (number of processors).

Arguments:

 dd Distributed directory structure state information.

 proc List of processor ids labeling for corresponding high, low value.

 low List of low GID limits corresponding to proc list.

 high List of high GID limits corresponding to proc list.

 n Number of elements in the above lists. Should be number of processors!

Returned Value:

 int Error code.

C: int Zoltan_DD_Print (struct Zoltan_DD_Struct *dd);

C++: int Zoltan_DD::Print () const;

This utility displays (to stdout) the entire contents of the distributed directory at one line per GID.

Arguments:

 dd Distributed directory structure state information.

Returned Value:

 int Error code.

User's Notes

Because Zoltan places no restrictions on the content or length of GIDs, hashing does not guarantee a balanced distribution of objects in the
distributed directory. Note also, the worst case behavior of a hash table lookup is very bad (essentially becoming a linear search). Fortunately,
the average behavior is very good! The user may specify their own hash function via Zoltan_DD_Set_Hash_Fn to improve performance.

This software module is built on top of the Zoltan Communications functions for efficiency. Improvements to the communications library will
automatically benefit the distributed directory.

[Table of Contents | Next: Examples of Zoltan Usage | Previous: Unstructured Communication Utilities]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (7 of 7) [5/21/07 12:06:40 PM]

142

Zoltan User's Guide: Examples

Zoltan User's Guide | Next | Previous

Examples of Zoltan Usage

Examples for each part of the Zoltan library are provided:

General use of Zoltan
Load-balancing calling sequence
Data migration calling sequences
Query functions for a simple application

[Table of Contents | Next: General Usage Example | Previous: Distributed Data Directories]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples.html [5/21/07 12:06:40 PM]

143

Zoltan User's Guide: General Usage Examples

Zoltan User's Guide | Next | Previous

General Usage Example

An example of general Zoltan usage is included below. This is a C language example. Similar C++ examples may be found in the examples
directory.

In this example, Zoltan_Initialize is called using the argc and argv arguments to the main program. Then a pointer to a Zoltan structure is
returned by the call to Zoltan_Create. In this example, all processors will be used by Zoltan, as MPI_COMM_WORLD is passed to
Zoltan_Create as the communicator.

Several application query functions are then registered with Zoltan through calls to Zoltan_Set_Fn. Parameters are set through calls to
Zoltan_Set_Param. The application then performs in computations, including making calls to Zoltan functions and utilities.

Before its execution ends, the application frees memory used by Zoltan by calling Zoltan_Destroy.

/* Initialize the Zoltan library */
struct Zoltan_Struct *zz;
float version;
...
Zoltan_Initialize(argc, argv, &version);

zz = Zoltan_Create(MPI_COMM_WORLD);

/* Register query functions. */
Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE,

 (void (*)()) user_return_dimension, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,

 (void (*)()) user_return_coords, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE,

 (void (*)()) user_return_num_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,

 (void (*)()) user_return_owned_nodes, NULL);

/* Set some Zoltan parameters. */
Zoltan_Set_Param(zz, "debug_level", "4");

/* Perform application computations, call Zoltan, etc. */
...

/* Free Zoltan data structure before ending application. */
Zoltan_Destroy (&zz);

Typical calling sequence for general usage of the Zoltan library.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_init.html (1 of 2) [5/21/07 12:06:41 PM]

144

Zoltan User's Guide: General Usage Examples

! Initialize the Zoltan library
type(Zoltan_Struct), pointer :: zz
real(Zoltan_FLOAT) version
integer(Zoltan_INT) ierr
...
ierr = Zoltan_Initialize(version) ! without argc and argv

zz => Zoltan_Create(MPI_COMM_WORLD)

! Register load-balancing query functions.
! omit data = C NULL
ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE, user_return_dimension)

ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords)

ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE, user_return_num_node)

ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE, user_return_owned_nodes)

! Set some Zoltan parameters.
ierr = Zoltan_Set_Param(zz, "debug_level", "4")

! Perform application computations, call Zoltan, etc.
...

! Free Zoltan data structure before ending application.
call Zoltan_Destroy(zz)

Fortran version of general usage example.

[Table of Contents | Next: Load-Balancing Example | Previous: Examples of Library Usage]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_init.html (2 of 2) [5/21/07 12:06:41 PM]

145

Zoltan User's Guide: Load-Balancing Examples

Zoltan User's Guide | Next | Previous

Load-Balancing Example

An example of the typical calling sequence for load balancing using Zoltan in a finite element application is shown in the figure below. An
application first selects a load-balancing algorithm by setting the LB_METHOD parameter with Zoltan_Set_Param. Next, other parameter
values are set by calls to Zoltan_Set_Param. After some computation, load balancing is invoked by calling Zoltan_LB_Partition. The
results of the load balancing include the number of nodes to be imported and exported to the processor, lists of global and local IDs of the
imported and exported nodes, and source and destination processors of the imported and exported nodes. A returned argument of
Zoltan_LB_Partition is tested to see whether the new decomposition differs from the old one. If the decompositions differ, some sort of data
migration is needed to establish the new decomposition; the details of migration are not shown in this figure but will be addressed in the
migration examples. After the data migration is completed, the arrays of information about imported and exported nodes returned by
Zoltan_LB_Partition are freed by a call to Zoltan_LB_Free_Part.

char *lb_method;
int new, num_imp, num_exp, *imp_procs, *exp_procs;
int *imp_to_part, *exp_to_part;
int num_gid_entries, num_lid_entries;
ZOLTAN_ID_PTR imp_global_ids, exp_global_ids;

ZOLTAN_ID_PTR imp_local_ids, exp_local_ids;

/* Set load-balancing method. */
read_load_balancing_info_from_input_file(&lb_method);
Zoltan_Set_Param(zz, "LB_METHOD", lb_method);

/* Reset some load-balancing parameters. */
Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE");

/* Perform computations */
...
/* Perform load balancing */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,

 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);
if (new)
 perform_data_migration(...);

/* Free memory allocated for load-balancing results by Zoltan library */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs, &imp_to_part);

Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs, &exp_to_part);

...

Typical calling sequence for performing load balancing with the Zoltan library.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_lb.html (1 of 2) [5/21/07 12:06:42 PM]

146

Zoltan User's Guide: Load-Balancing Examples

character(len=3) lb_method
logical new
integer(Zoltan_INT) num_imp, num_exp
integer(Zoltan_INT) num_gid_entries, num_lid_entries
integer(Zoltan_INT), pointer :: imp_procs(:), exp_procs(:)
integer(Zoltan_INT), pointer :: imp_global_ids(:), exp_global_ids(:) ! global IDs
integer(Zoltan_INT), pointer :: imp_local_ids(:), exp_local_ids(:) ! local IDs
integer(Zoltan_INT) ierr

! Set load-balancing method.
lb_method = "RCB"
ierr = Zoltan_Set_Param(zz, "LB_METHOD", lb_method)

! Reset some load-balancing parameters
ierr = Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE")

! Perform computations
...
! Perform load balancing
ierr = Zoltan_LB_Partition(zz,new,num_gid_entries,num_lid_entries, &

 num_imp,imp_global_ids,imp_local_ids, &
 imp_procs,imp_to_part, &
 num_exp,exp_global_ids,exp_local_ids, &
 exp_procs,exp_to_part)
if (new) then
 perform_data_migration(...)
endif

! Free memory allocated for load-balancing results by Zoltan library
ierr = Zoltan_LB_Free_Part(imp_global_ids, imp_local_ids, imp_procs, imp_to_part);

ierr = Zoltan_LB_Free_Part(exp_global_ids, exp_local_ids, exp_procs, exp_to_part);
...

Fortran version of the load-balancing example.

[Table of Contents | Next: Migration Examples | Previous: General Usage Example]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_lb.html (2 of 2) [5/21/07 12:06:42 PM]

147

Zoltan User's Guide: Migration Examples

Zoltan User's Guide | Next | Previous

Migration Examples

Data migration using Zoltan's migration tools can be accomplished in two different ways:

auto-migration, or
user-guided migration.

The choice of migration method depends upon the complexity of the application's data. For some applications, only the objects used in
balancing must be migrated; no auxiliary data structures must be moved. Particle simulations are examples of such applications; load
balancing is based on the number of particles per processor, and only the particles and their data must be moved to establish the new
decomposition. For such applications, Zoltan's auto-migration tools can be used. Other applications, such as finite element methods, perform
load balancing on, say, the nodes of the finite element mesh, but nodes that are moved to new processors also need to have their connected
elements moved to the new processors, and migrated elements may also need "ghost" nodes (i.e., copies of nodes assigned to other processors)
to satisfy their connectivity requirements on the new processor. This complex data migration requires a more user-controlled approach to data
migration than the auto-migration capabilities Zoltan can provide.

Auto-Migration Example

In the figure below, an example of the load-balancing calling sequence for a particle simulation using Zoltan's auto-migration tools is shown.
The application requests auto-migration by turning on the AUTO_MIGRATE option through a call to Zoltan_Set_Param and registers
functions to pack and unpack a particle's data. During the call to Zoltan_LB_Partition, Zoltan computes the new decomposition and, using
calls to the packing and unpacking query functions, automatically migrates particles to their new processors. The application then frees the
arrays returned by Zoltan_LB_Partition and can continue computation without having to perform any additional operations for data
migration.

/* Tell Zoltan to automatically migrate data for the application. */
Zoltan_Set_Param(zz, "AUTO_MIGRATE", "TRUE");

/* Register additional functions for packing and unpacking data */
/* by migration tools. */
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,

 (void (*)()) user_return_particle_data_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,

 (void (*)()) user_pack_particle_data, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,

 (void (*)()) user_unpack_particle_data, NULL);
...
/* Perform computations */
...
/* Perform load balancing AND automatic data migration! */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,

 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Free memory allocated for load-balancing results by Zoltan */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs, &imp_to_part);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (1 of 3) [5/21/07 12:06:43 PM]

148

Zoltan User's Guide: Migration Examples

Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs, &exp_to_part);
...

Typical calling sequence for using the migration tools' auto-migration capability with the dynamic load-balancing tools.

User-Guided Migration Example

In the following figure, an example of user-guided migration using Zoltan's migration tools for a finite element application is shown. Several
migration steps are needed to completely rebuild the application's data structures for the new decomposition. On each processor, newly
imported nodes need copies of elements containing those nodes. Newly imported elements, then, need copies of "ghost" nodes, nodes that are
in the element but are assigned to other processors. Each of these entities (nodes, elements, and ghost nodes) can be migrated in separate
migration steps using the functions provided in the migration tools. First, the assignment of nodes to processors returned by
Zoltan_LB_Partition is established. Query functions that pack and unpack nodes are registered and Zoltan_Migrate is called using the nodal
decomposition returned from Zoltan_LB_Partition. Zoltan_Migrate packs the nodes to be exported, sends them to other processors, and
unpacks nodes received by a processor. The packing routine migrate_node_pack includes with each node a list of the element IDs for elements
containing that node. The unpacking routine migrate_node_unpack examines the list of element IDs and builds a list of requests for elements
the processor needs but does not already store. At the end of the nodal migration, each processor has a list of element IDs for elements that it
needs to support imported nodes but does not already store. Through a call to Zoltan_Invert_Lists, each processor computes the list of
elements it has to send to other processors to satisfy their element requests. Packing and unpacking routines for elements are registered, and
Zoltan_Migrate is again used to move element data to new processors. Requests for ghost nodes can be built within the element packing and
unpacking routines, and calls to Zoltan_Invert_Lists and Zoltan_Migrate, with node packing and unpacking, satisfy requests for ghost
nodes. In all three phases of migration, the migration tools handle communication; the application is responsible only for packing and
unpacking data and for building the appropriate request lists.

/* Assume Zoltan returns a decomposition of the */
/* nodes of a finite element mesh. */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,

 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Migrate the nodes as directed by the results of Zoltan_LB_Partition. */
/* While unpacking nodes, build list of requests for elements needed */
/* to support the imported nodes.*/
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,

 (void (*)()) migrate_node_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,

 (void (*)()) migrate_pack_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,

 (void (*)()) migrate_unpack_node, NULL);
Zoltan_Migrate(zz,num_import,imp_global_ids,imp_local_ids,imp_procs,imp_to_part,

 num_export,exp_global_ids,exp_local_ids,exp_procs,exp_to_part);

/* Prepare for migration of requested elements. */
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,

 (void (*)()) migrate_pack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,

 (void (*)()) migrate_unpack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,

 (void (*)()) migrate_element_size, NULL);

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (2 of 3) [5/21/07 12:06:43 PM]

149

Zoltan User's Guide: Migration Examples

/* From the request lists, a processor knows which elements it needs */
/* to support the imported nodes; it must compute which elements to */
/* send to other processors. */
Zoltan_Invert_Lists(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,

 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Requests_to_Part,
 &num_tmp_exp, &tmp_exp_global_ids,
 &tmp_exp_local_ids, &tmp_exp_procs, &tmp_exp_to_part);

/* Processor now knows which elements to send to other processors. */
/* Send the requested elements. While unpacking elements, build */
/* request lists for "ghost" nodes needed by the imported elements. */
Zoltan_Migrate(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,

 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Request_to_Part,
 num_tmp_exp_objs, tmp_exp_global_ids,
 tmp_exp_local_ids, tmp_exp_procs, tmp_exp_to_part);

/* Repeat process for "ghost" nodes. */
...

Typical calling sequence for user-guided use of the migration tools in Zoltan.

[Table of Contents | Next: Query-Function Examples | Previous: Load-Balancing Example]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (3 of 3) [5/21/07 12:06:43 PM]

150

Zoltan User's Guide: Query-Functon Examples

Zoltan User's Guide | Next | Previous

Query-Function Examples

Examples of query functions provided by a simple application are included below. The general-interface examples include a simple
implementation of ZOLTAN_GEOM_FN and ZOLTAN_OBJ_LIST_FN query functions and variants of the simple implementation that
exploit local identifiers and data pointers. Migration examples for packing and unpacking objects are also included. Robust error checking is
not included in the routines; application developers should include more explicit error checking in their query functions.

General Interface Examples
Basic example
User-defined data pointer

Migration Examples
Packing and unpacking functions

All the examples use a mesh data structure consisting of nodes in the mesh. these nodes are the objects passed to Zoltan. A node is described
by its 3D coordinates and a global ID number that is unique across all processors. The type definitions for the mesh and node data structures
used in the examples are included below.

/* Node data structure. */
/* A node consists of its 3D coordinates and */
/* an ID number that is unique across all processors. */
struct Node_Type {
 double Coordinates[3];
 int Global_ID_Num;
};

/* Mesh data structure. */
/* Mesh consists of an array of nodes and */
/* the number of nodes owned by the processor. */
struct Mesh_Type {
 struct Node_Type Nodes[MAX_NODES];
 int Number_Owned;
};

Data types for the query-function examples.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (1 of 9) [5/21/07 12:06:44 PM]

151

Zoltan User's Guide: Query-Functon Examples

! Node data structure.
! A node consists of its 3D coordinates and
! an ID number that is unique across all processors.
type Node_Type
 real(Zoltan_DOUBLE) :: Coordinates(3)
 integer(Zoltan_INT) :: Global_ID_Num
end type Node_Type

! Mesh data structure.
! Mesh consists of an array of nodes and
! the number of nodes owned by the processor.
type Mesh_Type
 type(Node_Type) :: Nodes(MAX_NODES)
 integer(Zoltan_INT) :: Number_Owned
end type Mesh_Type

Data types for the Fortran query-function examples.

General Interface Query Function Examples

In the following examples, ZOLTAN_OBJ_LIST_FN and ZOLTAN_GEOM_FN query functions are implemented for an application using
the mesh and node data structures described above. The nodes are the objects passed to Zoltan.

Through a call to Zoltan_Set_Fn, the function user_return_owned_nodes is registered as the ZOLTAN_OBJ_LIST_FN query function. It
returns global and local identifiers for each node owned by a processor.

The function user_return_coords is registered as a ZOLTAN_GEOM_FN query function. Given the global and local identifiers for a node,
this function returns the node's coordinates. All the examples exploit the local identifier to quickly locate nodal data. If such an identifier is
not available in an application, a search using the global identifier can be performed.

The Basic Example includes the simplest implementation of the query routines. In the query routines, it uses global application data structures
and a local numbering scheme for the local identifiers. The User-Defined Data Pointer Example uses only local application data structures;
this model is useful if the application does not have global data structures or if objects from more than one data structure are to be passed to
Zoltan. Differences between the latter example and the Basic Example are shown in red.

Basic Example

In the simplest example, the query functions access the application data through a global data structure (Mesh) representing the mesh. In the
calls to Zoltan_Set_Fn, no pointers to application data are registered with the query function (i.e., the data pointer is not used). A node's
local identifier is an integer representing the index in the Mesh.Nodes array of the node. The local identifier is set to the index's value in
user_return_owned_nodes. It is used to access the global Mesh.Nodes array in user_return_coords.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (2 of 9) [5/21/07 12:06:44 PM]

152

Zoltan User's Guide: Query-Functon Examples

/* in application's program file */
#include "zoltan.h"

/* Declare a global Mesh data structure. */
struct Mesh_Type Mesh;

main()
{
...
 /* Indicate that local and global IDs are one integer each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");

 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,

 (void (*)()) user_return_coords, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,

 (void (*)()) user_return_owned_nodes, NULL);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,

 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < Mesh.Number_Owned; i++){
 global_ids[i*num_gid_entries] = Mesh.Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

void user_return_coords(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,

 double *geom_vec, int *ierr)
{
 /* use local_id to index into the Nodes array. */
 geom_vec[0] = Mesh.Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = Mesh.Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = Mesh.Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions (simplest implementation).

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (3 of 9) [5/21/07 12:06:44 PM]

153

Zoltan User's Guide: Query-Functon Examples

! in application's program file

module Global_Mesh_Data
! Declare a global Mesh data structure.
 type(Mesh_Type) :: Mesh
end module

program query_example_1
use zoltan
...
 ! Indicate that local and global IDs are one integer each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");

 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Do not register a data pointer with the functions;
 ! the global Mesh data structure will be used.
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords)

 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE, user_return_owned_nodes)

...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*), local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i
 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, num_gid_entries, num_lid_entries, &
 global_id, local_id, geom_vec, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (4 of 9) [5/21/07 12:06:44 PM]

154

Zoltan User's Guide: Query-Functon Examples

integer(Zoltan_INT), intent(out) :: ierr
 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK
end subroutine

Fortran example of general interface query functions (simplest implementation).

User-Defined Data Pointer Example

In this example, the address of a local mesh data structure is registered with the query functions for use by those functions. This change
eliminates the need for a global mesh data structure in the application. The address of the local data structure is included as an argument in
calls to Zoltan_Set_Fn. This address is then used in user_return_owned_nodes and user_return_coords to provide data for these routines. It
is cast to the Mesh_Type data type and accessed with local identifiers as in the Basic Example. Differences between this example and the
Basic Example are shown in red.

This model is useful when the application does not have a global data structure that can be accessed by the query functions. It can also be used
for operations on different data structures. For example, if an application had more than one mesh, load balancing could be performed
separately on each mesh without having different query routines for each mesh. Calls to Zoltan_Set_Fn would define which mesh should be
balanced, and the query routines would access the mesh currently designated by the Zoltan_Set_Fn calls.

/* in application's program file */
#include "zoltan.h"

main()
{
/* declare a local mesh data structure. */
struct Mesh_Type mesh;
...
 /* Indicate that local and global IDs are one integer each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");

 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Register the address of mesh as the data pointer. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,

 (void (*)()) user_return_coords, &mesh);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,

 (void (*)()) user_return_owned_nodes, &mesh);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,

 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (5 of 9) [5/21/07 12:06:44 PM]

155

Zoltan User's Guide: Query-Functon Examples

 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < ptr->Number_Owned; i++) {
 global_ids[i*num_gid_entries] = ptr->Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

void user_return_coords(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,

 double *geom_vec, int *ierr)
{

/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

 /* use local_id to address the requested node. */
 geom_vec[0] = ptr->Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = ptr->Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = ptr->Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions using the application-defined data pointer.

/* included in file zoltan_user_data.f90 */
! User defined data type as wrapper for Mesh
type Zoltan_User_Data_1
 type(Mesh_type), pointer :: ptr
end type Zoltan_User_Data_1

! in application's program file

program query_example_3
use zoltan
! declare a local mesh data structure and a User_Data to point to it.
type(Mesh_Type), target :: mesh
type(Zoltan_User_Data_1) data
...
 ! Indicate that local and global IDs are one integer each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");

 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Use the User_Data variable to pass the mesh data
 data%ptr => mesh
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords, data)

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (6 of 9) [5/21/07 12:06:44 PM]

156

Zoltan User's Guide: Query-Functon Examples

 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,

 user_return_owned_nodes, data)
...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*), local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i
type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, global_id, local_id, &
 geom_vec, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)
integer(Zoltan_INT), intent(out) :: ierr
type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK
end subroutine

Fortran example of general interface query functions using the application-defined data pointer.

Migration Examples

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (7 of 9) [5/21/07 12:06:44 PM]

157

Zoltan User's Guide: Query-Functon Examples

Packing and Unpacking Data

Simple migration query functions for the Basic Example are included below. These functions are used by the migration tools to move nodes
among the processors. The functions user_size_node, user_pack_node, and user_unpack_node are registered through calls to
Zoltan_Set_Fn. Query function user_size_node returns the size (in bytes) of data representing a single node. Query function user_pack_node
copies a given node's data into the communication buffer buf. Query function user_unpack_node copies a data for one node from the
communication buffer buf into the Mesh.Nodes array on its new processor.

These query routines are simple because the application does not dynamically allocate memory for each node. Such dynamic allocation would
have to be accounted for in the ZOLTAN_OBJ_SIZE_FN, ZOLTAN_PACK_OBJ_FN, and ZOLTAN_UNPACK_OBJ_FN routines.

main()
{
...
 /* Register migration query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,

 (void (*)()) user_size_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,

 (void (*)()) user_pack_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,

 (void (*)()) user_unpack_node, NULL);
...
}

int user_size_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr)

{
/* Return the size of data associated with one node. */
/* This case is simple because all nodes have the same size. */
 *ierr = ZOLTAN_OK;
 return(sizeof(struct Node_Type));
}

void user_pack_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,

 int dest_proc, int size, char *buf, int *ierr)
{
/* Copy the specified node's data into buffer buf. */
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 node_buf->Coordinates[0] = Mesh.Nodes[local_id[0]].Coordinates[0];
 node_buf->Coordinates[1] = Mesh.Nodes[local_id[0]].Coordinates[1];
 node_buf->Coordinates[2] = Mesh.Nodes[local_id[0]].Coordinates[2];
 node_buf->Global_ID_Num = Mesh.Nodes[local_id[0]].Global_ID_Num;
}

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (8 of 9) [5/21/07 12:06:44 PM]

158

Zoltan User's Guide: Query-Functon Examples

void user_unpack_node(void *data, int num_gid_entries,
 ZOLTAN_ID_PTR global_id, int size,

 char *buf, int *ierr)
{
/* Copy the node data in buf into the Mesh data structure. */
int i;
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 i = Mesh.Number_Owned;
 Mesh.Number_Owned = Mesh.Number_Owned + 1;
 Mesh.Nodes[i].Coordinates[0] = node_buf->Coordinates[0];
 Mesh.Nodes[i].Coordinates[1] = node_buf->Coordinates[1];
 Mesh.Nodes[i].Coordinates[2] = node_buf->Coordinates[2];
 Mesh.Nodes[i].Global_ID_Num = node_buf->Global_ID_Num;
}

Example of migration query functions for the Basic Example.

[Table of Contents | Next: Release Notes | Previous: Migration Examples]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (9 of 9) [5/21/07 12:06:44 PM]

159

Zoltan User's Guide: Release Notes

Zoltan User's Guide | Next | Previous

Release Notes

Release notes are available for the following releases of Zoltan:

Zoltan Release v3.0
Zoltan Release v2.1
Zoltan Release v2.02
Zoltan Release v2.01
Zoltan Release v2.0
Zoltan Release v1.54
Zoltan Release v1.53
Zoltan Release v1.52
Zoltan Release v1.5
Zoltan Release v1.3

Zoltan Release Notes v3.0: May 1, 2007

Zoltan v3.0 includes major new features.

�● Parallel Hypergraph Repartitioning combining the improved communication metric of hypergraph partitioning with a new model for
representing an existing partition while computing a new one. This work received the "Best Algorithms Paper Award" at the 2007
IEEE International Parallel and Distributed Processing Symposium.

�● Hypergraph refinement to quickly improve the quality of an existing partition.
�● Improved partition quality within the Zoltan parallel hypergraph partitioner.
�● Parallel graph partitioning using Zoltan's parallel hypergraph partitioner.
�● Hypergraph partitioning with fixed vertices that allows application to assign or "fix" objects to a desired partition before partitioning.
�● Improved partition remapping to reduce data migration costs in all partitioners.
�● Hybrid hierarchical partitioning that allows different partitioning algorithms to be applied within a hierarchy of computers (e.g.,

partitioning across a cluster of shared-memory processors, followed by partitioning within each shared-memory processor).
�● A new scheme for more easily specifying partitioning methods and approaches within the hypergraph and graph partitioners.
�● Very simple partitioners that serve as testing tools and examples for usage.

Please see the backward compatibility section for a detailed description of changes that may affect current users.

Zoltan Release Notes v2.1: October 5, 2006

Zoltan v2.1 includes a significant bug fix for the hypergraph partitioner. We strongly recommend that users upgrade to Zoltan v2.1.

Zoltan Release Notes v2.02: September 26, 2006

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (1 of 6) [5/21/07 12:06:45 PM]

160

http://www.cs.sandia.gov/~kddevin/papers/Catalyurek_IPDPS07.pdf
http://www.ipdps.org/
http://www.ipdps.org/
http://www.cs.sandia.gov/~kddevin/papers/wiley_chapter.pdf
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_alg_hier.html

Zoltan User's Guide: Release Notes

Zoltan v2.02 includes bugfixes:

�● Zoltan_LB_Eval now correctly computes edge cuts with respect to partitions when partitions are spread across more than one
processor.

�● Extraneous (and annoying) print statement has been removed from Zoltan partitioning method RCB.

Zoltan Release Notes v2.01: August 2006

Zoltan v2.01 includes enhancements to version 2.0.

�● F90 interface fixes to comply with standard F90 (e.g., shortened variable names and continuation lines). The hypergraph callback
function names have changed, but C and C++ compatibility with v2.0 is maintained.

�● Performance improvement to initial building of hypergraphs from application data.
�● Major bug fix for dense-edge removal in parallel hypergraph method; partitioning of hypergraphs with edges containing more than

25% of the vertices was affected by this bug.
�● Minor fixes to parallel hypergraph code.

Zoltan Release Notes v2.0: April 2006

Zoltan v2.0 includes several major additions:

�● Parallel hypergraph partitioning.
�● Parallel graph coloring, both distance-1 and distance-2.
�● Multicriteria geometric partitioning (RCB).
�● C++ interface.

Zoltan Release Notes v1.54

Some versions of MPICH have a bug in MPI_Reduce_scatter; they can report errors with MPI_TYPE_INDEXED. In Zoltan v1.54's
unstructured communication package, calls to MPI_Reduce_scatter have been replaced with separate calls to MPI_Reduce and MPI_Scatter.

Zoltan Release Notes v1.53

Zoltan v1.53 includes the following new capabilities:

�● Portability to BSD Unix and Mac OS X was added.
�● Averaging of RCB and RIB cuts was added; see Zoltan parameter AVERAGE_CUTS.
�● A new function Zoltan_RCB_Box returns information about subdomain bounding boxes in RCB decompositions.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (2 of 6) [5/21/07 12:06:45 PM]

161

Zoltan User's Guide: Release Notes

�● F90 interface to Zoltan_Order was added.
�● Warnings that load-imbalance tolerance was not met are no longer printed when DEBUG_LEVEL == 0.
�● Minor bugs were addressed.

Zoltan Release Notes v1.52

Zoltan v1.52 includes the following new capabilities:

�● List-based graph callback functions ZOLTAN_NUM_EDGES_MULTI_FN and ZOLTAN_EDGE_LIST_MULTI_FN were added
to mirror support and performance given by the list-based geometric function ZOLTAN_GEOM_MULTI_FN.

�● Support for ParMETIS v3.1 was added.
�● Minor bugs were addressed.

Zoltan Release Notes v1.5

This section describes improvements to Zoltan in Version 1.5. Every attempt was made to keep Zoltan v1.3 backwardly compatible with
previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility Notes.

Short descriptions of the following features are included below; follow the links for more details.

Partition remapping
Unequal Numbers of Partitions and Processors
Non-Uniform Partition Sizes
Zoltan Interface Updated
Robust HSFC Box Assign
Matrix Ordering
Performance Improvements
Bug Fixes

Partition Remapping

During partitioning, Zoltan v1.5 can renumber partitions so that the input and output partitions have greater overlap (and, thus, lower data-
migration costs). This remapping is controlled by Zoltan parameter REMAP. Experiments have shown that using this parameter can greatly
reduce data migration costs.

Unequal Numbers of Partitions and Processors

Zoltan v1.5 can be used to generate k partitions on p processors, where k is not equal to p. Function Zoltan_LB_Partition (replacing
Zoltan_LB_Balance) can generate arbitrary numbers of partitions on the given processors. The number of desired partitions is set with
parameters NUM_GLOBAL_PARTITIONS or NUM_LOCAL_PARTITIONS. Both partition and processor information are returned by
Zoltan_LB_Partition, Zoltan_LB_Box_PP_Assign, and Zoltan_LB_Point_PP_Assign. New Zoltan query functions

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (3 of 6) [5/21/07 12:06:45 PM]

162

Zoltan User's Guide: Release Notes

ZOLTAN_PARTITION_FN and ZOLTAN_PARTITION_MULTI_FN return objects' partition information to Zoltan.
Zoltan_LB_Balance can still be used for k equal to p.

Non-Uniform Partition Sizes

Partition sizes for local and global partitions can be specified using Zoltan_LB_Set_Part_Sizes, allowing non-uniformly sized partitions to be
generated by Zoltan's partitioning algorithms.

Zoltan Interface Updated

To support the concept of partitions separate from processors, many new interface functions were added to Zoltan v1.5 (e.g.,
Zoltan_LB_Partition and Zoltan_Migrate). These functions mimic previous Zoltan functions (e.g., Zoltan_LB_Balance and
Zoltan_Help_Migrate, respectively), but include both partition and processor information. Both the new and old interface functions work in
Zoltan v1.5. See the notes on Backward Compatibility.

Robust HSFC Box Assign

Function Zoltan_LB_Box_PP_Assign now works for the Hilbert Space-Filling Curve algorithm (HSFC), in addition to the RCB and RIB
algorithms supported in previous versions of Zoltan. Zoltan_LB_Point_PP_Assign continues to work for HSFC, RCB and RIB.

Matrix Ordering

Zoltan v1.5 contains a matrix-ordering interface Zoltan_Order to ParMETIS' matrix-ordering functions. New graph-based matrix-ordering
algorithms can be easily added behind this interface.

Performance Improvements

Many performance improvements were added to Zoltan v1.5.

�● List-based callback functions have been added to Zoltan (ZOLTAN_GEOM_MULTI_FN,
ZOLTAN_PARTITION_MULTI_FN, ZOLTAN_OBJ_SIZE_MULTI_FN, ZOLTAN_PACK_OBJ_MULTI_FN, and
ZOLTAN_UNPACK_OBJ_MULTI_FN); these functions allow entire lists of data to be passed from the application to Zoltan,
replacing per-object callbacks.

�● Zoltan_Migrate now can accept either import lists, export lists, or both. It is no longer necessary to call Zoltan_Invert_Lists or
Zoltan_Compute_Destinations to get appropriate input for Zoltan_Migrate.

�● Zoltan v1.5 contains performance improvements within individual algorithms. We recommend users upgrade to the latest version.

Bug Fixes

Bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are encouraged to upgrade.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (4 of 6) [5/21/07 12:06:45 PM]

163

Zoltan User's Guide: Release Notes

Zoltan Release Notes v1.3

This section describes improvements to Zoltan in Version 1.3. Every attempt was made to keep Zoltan v1.3 backwardly compatible with
previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility Notes.

Short descriptions of the following features are included below; follow the links for more details.

More Data Services
New Hilbert Space-Filling Curve Partitioning
Support for Structured-Grid Partitioning
Support for ParMETIS v3.0
Performance Improvements
Zoltan Interface Updated
Improved Test Suite
Bug Fixes

More Data Services

Zoltan's mission has been widened beyond its original focus on dynamic load-balancing algorithms. Now Zoltan also provides data
management services to parallel, unstructured, and adaptive computations. Several packages of parallel data services have been added and
made available to application developers. These services include the following:

�● An unstructured communication package that simplifies complicated communication by insulating applications from the details of
message sends and receives.

�● A distributed data directory that allows applications to efficiently (in memory and time) locate off-processor data.
�● A dynamic memory management package that simplifies debugging of memory allocation problems on state-of-the-art parallel

computers.

New Hilbert Space-Filling Curve Partitioning

Zoltan now includes a fast, efficient implementation of Hilbert Space-Filling Curve (HSFC) partitioning. This geometric method also includes
support for Zoltan_LB_Box_Assign and Zoltan_LB_Point_Assign functions.

Support for Structured-Grid Partitioning

Zoltan's Recursive Coordinate Bisection (RCB) partitioning algorithm has been enhanced to allow generation of strictly rectilinear
subdomains. This capability can be used for partitioning of grids for structured-grid applications. See parameter
RCB_RECTILINEAR_BLOCKS.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (5 of 6) [5/21/07 12:06:45 PM]

164

Zoltan User's Guide: Release Notes

Support for ParMETIS v3.0

In addition to providing interfaces to ParMETIS v2.0 and PJostle, Zoltan now provides an interfaces ParMETIS v3.0. Full support of
ParMETIS v3.0's multiconstraint and multiobjective partitioning is included.

Performance Improvements

Performance of Zoltan's partitioning algorithms has been improved through a number of code optimizations and new features. In addition, user
parameter RETURN_LISTS can be used to specify which returned arguments are computed by Zoltan_LB_Balance, allowing reduced work in
partitioning. In the Recursive Coordinate Bisection (RCB) partitioning algorithm, user parameters allow cut directions to be locked in an
attempt to minimize data movement; see parameters RCB_LOCK_DIRECTIONS and RCB_SET_DIRECTIONS.

Zoltan Interface Updated

Zoltan has adopted a more modular design, making it easier to use by applications and easier to modify by algorithm developers. Names in the
Zoltan interface and code are tied more closely to their functionality. Full backward compatibility is supported for users of previous versions
of Zoltan.

Improved Test Suite

The Zoltan test suite has been improved, with more tests providing greater code coverage and platform-specific answer files accounting for
differences due to computer architectures.

Bug Fixes

Some bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are encouraged to upgrade.

[Table of Contents | Next: Backward Compatibility | Previous: Query Function Examples]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_release.html (6 of 6) [5/21/07 12:06:45 PM]

165

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/dev_html/dev_test_script.html

Zoltan User's Guide: Backward Compatilibity

Zoltan User's Guide | Next | Previous

Backward Compatibility with Previous Versions of Zoltan

As new features have been added to Zoltan, backward compatibility with previous versions of Zoltan has been maintained. Thus, users of
previous versions of Zoltan can upgrade to a new version without changing their application source code. Modifications to application
source code are needed only if the applications use new Zoltan functionality.

Enhancements to the Zoltan interface are described below.

Versions 3.0 and higher
Versions 1.5 and higher
Versions 1.3 and higher

Backward Compatibility: Versions 3.0 and higher

A new naming convention was implemented to better categorize partitioning methods. For more details, see parameters

LB_METHOD,
LB_APPROACH,
GRAPH_PACKAGE, and
HYPERGRAPH_PACKAGE.

Former valid values of LB_METHOD should continue to work. In particular, values of LB_METHOD for geometric partitioners RCB, RIB,
HSFC, and REFTREE are unchanged.

The default graph partitioner has been changed from ParMETIS to Zoltan PHG. This change was made to provide graph partitioning capability
without reliance on the third-party library ParMETIS.

Because Zoltan is designed primarily for dynamic load balancing, The default partitioning approach LB_APPROACH is now "repartition."
This change affects only Zoltan's hypergraph partitioner PHG.

Backward Compatibility: Versions 1.5 and higher

The ability to generate more partitions than processors was added to Zoltan in version 1.5. Thus, Zoltan's partitioning and migration routines
were enhanced to return and use both partition assignments and processor assignments. New interface and query functions were added to
support this additional information. All former Zoltan parameters apply to the new functions as they did to the old; new parameters
NUM_GLOBAL_PARTITIONS and NUM_LOCAL_PARTITIONS apply only to the new functions.

The table below lists the Zoltan function that uses both partition and processor information, along with the analogous function that returns only
processor information. Applications requiring only one partition per processor can use either version of the functions.

Function with Partition and Processor info (v1.5 and
higher)

Function with only Processor info (v1.3 and
higher)

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (1 of 4) [5/21/07 12:06:46 PM]

166

Zoltan User's Guide: Backward Compatilibity

Zoltan_LB_Partition Zoltan_LB_Balance

Zoltan_LB_Point_PP_Assign Zoltan_LB_Point_Assign

Zoltan_LB_Box_PP_Assign Zoltan_LB_Box_Assign

Zoltan_Invert_Lists Zoltan_Compute_Destinations

Zoltan_Migrate Zoltan_Help_Migrate

ZOLTAN_PRE_MIGRATE_PP_FN ZOLTAN_PRE_MIGRATE_FN

ZOLTAN_MID_MIGRATE_PP_FN ZOLTAN_MID_MIGRATE_FN

ZOLTAN_POST_MIGRATE_PP_FN ZOLTAN_POST_MIGRATE_FN

To continue using the v1.3 partition functions, no changes to C or Fortran90 applications are needed. Zoltan interfaces from versions earlier
than 1.3 are also still supported (see below), requiring no changes to application programs.

To use the new v1.5 partitioning functions:

�● C users must include file zoltan.h in their applications and edit their applications to use the appropriate new functions.
�● Fortran90 users must put user-defined data types in zoltan_user_data.f90 and edit their applications to use the appropriate new

functions. The new partitioning functions do not work with user-defined data types in lb_user_const.f90.

Backward Compatibility: Versions 1.3 and higher

Versions of Zoltan before version 1.3 used a different naming convention for the Zoltan interface and query functions. All functions in Zoltan
v.1.3 and above are prefixed with Zoltan_; earlier versions were prefixed with LB_.

Zoltan versions 1.3 and above maintain backward compatibility with the earlier Zoltan interface. Thus, applications that used earlier
versions of Zoltan can continue using Zoltan without changing their source code.

Only two changes are needed to build the application with Zoltan v.1.3 and higher:

�● All Zoltan include files are now in directory Zoltan/include. Thus, application include paths must point to this directory.
(Previously, include files were in Zoltan/lb.)

�● Applications link with Zoltan now by specifying only -lzoltan.
(Previously, applications had to link with -lzoltan -lzoltan_comm -lzoltan_mem.)

While it is not necessary for application developers to modify their source code to use Zoltan v.1.3 and above, those who want to update their
source code should do the following in their application source files:

�● Replace Zoltan calls and constants (LB_*) with new names. The new names can be found through the index below.
�● C programs: Include file zoltan.h instead of lbi_const.h.
�● F90 programs: Put user-defined data types in file zoltan_user_data.f90 instead of lb_user_const.f90.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (2 of 4) [5/21/07 12:06:46 PM]

167

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query
file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html#fortran ug api query

Zoltan User's Guide: Backward Compatilibity

Backward Compatilibity Index for Interface and Query Functions

Name in Earlier Zoltan
Versions

Name in Zoltan Version 1.3 and higher

LB_BORDER_OBJ_LIST_FN ZOLTAN_BORDER_OBJ_LIST_FN

LB_Balance Zoltan_LB_Balance

LB_Box_Assign Zoltan_LB_Box_Assign

LB_CHILD_LIST_FN ZOLTAN_CHILD_LIST_FN

LB_CHILD_WEIGHT_FN ZOLTAN_CHILD_WEIGHT_FN

LB_COARSE_OBJ_LIST_FN ZOLTAN_COARSE_OBJ_LIST_FN

LB_Compute_Destinations Zoltan_Compute_Destinations

LB_Create Zoltan_Create

LB_Destroy Zoltan_Destroy

LB_EDGE_LIST_FN ZOLTAN_EDGE_LIST_FN

LB_Eval Zoltan_LB_Eval

LB_FIRST_BORDER_OBJ_FN ZOLTAN_FIRST_BORDER_OBJ_FN

LB_FIRST_COARSE_OBJ_FN ZOLTAN_FIRST_COARSE_OBJ_FN

LB_FIRST_OBJ_FN ZOLTAN_FIRST_OBJ_FN

LB_Free_Data Zoltan_LB_Free_Data

LB_GEOM_FN ZOLTAN_GEOM_FN

LB_Help_Migrate Zoltan_Help_Migrate

LB_Initialize Zoltan_Initialize

LB_MID_MIGRATE_FN ZOLTAN_MID_MIGRATE_FN

LB_NEXT_BORDER_OBJ_FN ZOLTAN_NEXT_BORDER_OBJ_FN

LB_NEXT_COARSE_OBJ_FN ZOLTAN_NEXT_COARSE_OBJ_FN

LB_NEXT_OBJ_FN ZOLTAN_NEXT_OBJ_FN

LB_NUM_BORDER_OBJ_FN ZOLTAN_NUM_BORDER_OBJ_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (3 of 4) [5/21/07 12:06:46 PM]

168

Zoltan User's Guide: Backward Compatilibity

LB_NUM_CHILD_FN ZOLTAN_NUM_CHILD_FN

LB_NUM_COARSE_OBJ_FN ZOLTAN_NUM_COARSE_OBJ_FN

LB_NUM_EDGES_FN ZOLTAN_NUM_EDGES_FN

LB_NUM_GEOM_FN ZOLTAN_NUM_GEOM_FN

LB_NUM_OBJ_FN ZOLTAN_NUM_OBJ_FN

LB_OBJ_LIST_FN ZOLTAN_OBJ_LIST_FN

LB_OBJ_SIZE_FN ZOLTAN_OBJ_SIZE_FN

LB_PACK_OBJ_FN ZOLTAN_PACK_OBJ_FN

LB_POST_MIGRATE_FN ZOLTAN_POST_MIGRATE_FN

LB_PRE_MIGRATE_FN ZOLTAN_PRE_MIGRATE_FN

LB_Point_Assign Zoltan_LB_Point_Assign

LB_Set_Fn Zoltan_Set_Fn

LB_Set_<lb_fn_type>_Fn Zoltan_Set_<zoltan_fn_type>_Fn

LB_Set_Method
Zoltan_Set_Param with parameter
LB_METHOD

LB_Set_Param Zoltan_Set_Param

LB_UNPACK_OBJ_FN ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Next: References | Previous: Release Notes]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (4 of 4) [5/21/07 12:06:46 PM]

169

Zoltan User's Guide: References

Zoltan User's Guide | Next | Previous

References

1. "ALEGRA -- A Framework for Large Strain Rate Physics." http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html
2. S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton and C. Vaughan. "Transient Solid Dynamics

Simulations on the Sandia/Intel Teraflop Computer." Proceedings of SC'97, San Jose, CA, November, 1997. (Finalist for the Gordon
Bell Prize.)
U. Catalyurek and C. Aykanat, "Hypergraph-partitioning-based decomposition for parallel sparse matrix vector multiplication",
IEEE Trans. Parallel Dist. Systems, v. 10, no. 7, (1999) pp. 673--693.

3. P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. "Robust geometrically based automatic two-dimensional mesh
generation." Intl. J. Numer. Meths. Engrg., 24 (1987) 1043-1078.

4. E.G. Boman, D. Bozdag, U. Catalyurek, A.H. Gebremedhin and F. Manne. "A Scalable Parallel Graph Coloring Algorithm for
Distributed Memory Computers". Proceedings of Euro-Par'05, Lisbon, Portugal, August, 2005.

5. D. Bozdag, U. Catalyurek, A.H. Gebremedhin, F. Manne, E.G. Boman and F. Ozguner. "A Parallel Distance-2 Graph Coloring
Algorithm for Distributed Memory Computers". Proceedings of HPCC'05, Sorrento, Italy, September, 2005.

6. M. Berger and S. Bokhari. "A partitioning strategy for nonuniform problems on multiprocessors." IEEE Trans. Computers, C-36
(1987) 570-580.

7. K.D. Devine, E.G. Boman, R. Heaphy, R.H. Bisseling, U.V. Catalyurek. "Parallel Hypergraph Partitioning for Scientific
Computing", Proc. of IPDPS'06, Rhodos, Greece, April 2006.

8. K. Devine, G. Hennigan, S. Hutchinson, A. Salinger, J. Shadid, and R. Tuminaro. "High Performance MP Unstructured Finite
Element Simulation of Chemically Reacting Flows." Proceedings of SC'97, San Jose, CA, November, 1997. (Finalist for the Gordon
Bell Prize.)

9. K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D. Teresco, J. Faik, J.E. Flaherty, and L.G. Gervasio. "New
challenges in dynamic load balancing." Williams College Department of Computer Science Technical Report CS-04-02, and Sandia
Report SAND2004-1496J, Sandia National Laboratories, 2004. Submitted to Applied Numerical Mathematics.

10. H.C. Edwards. A parallel infrastructure for scalable adaptive finite element methods and its application to least squares C^(inf)
collocation. Ph.D. Dissertation, Univ. of Texas at Austin, May, 1997.

11. J. Faik, J.E. Flaherty, L.G. Gervasio, J.D. Teresco, K,D. Devine, and E.G. Boman. "A model for resource-aware load balancing on
heterogeneous clusters." Williams College Department of Computer Science Technical Report CS-04-03, and Sandia Report
SAND2004-2145C, Sandia National Laboratories, 2004. Presented at Cluster '04.

12. J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco and L. Ziantz. "Adaptive local refinement with octree load-balancing for
the parallel solution of three-dimensional conservation laws." J. Parallel Distrib. Comput., 47 (1998) 139-152.

13. L. Gervasio. "Final Report." Summer project report, Internal Memo, Department 9103, Sandia National Laboratories, August, 1998.
14. B. Hendrickson and K. Devine. "Dynamic load balancing in computational mechanics." Comp. Meth. Appl. Mech. Engrg., v. 184

(#2-4), p. 485-500, 2000.
15. B. Hendrickson and T.G. Kolda. "Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel computation",

SIAM J. on Sci. Comp., v. 21, no. 6, 2001, pp. 2048-2072.
16. B. Hendrickson and R. Leland. "The Chaco user's guide, version 2.0." Tech. Rep. SAND 94-2692, Sandia National Laboratories,

Albuquerque, NM, October, 1994. http://www.cs.sandia.gov/CRF/chac.html
17. G. Karypis and V. Kumar. "ParMETIS: Parallel graph partitioning and sparse matrix ordering library." Tech. Rep. 97-060,

Department of Computer Science, Univ. of Minnesota, 1997. http://www-users.cs.umn.edu/~karypis/metis/parmetis/
18. R. Loy. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. Ph.

D. Dissertation, Dept. of Computer Science, Rensselaer Polytechnic Institute, May 1998.
19. S. Mitchell and S. Vavasis. "Quality mesh generation in three dimensions." Proc. 8th ACM Symposium on Computational Geometry,

ACM (1992) 212-221.
20. W. F. Mitchell. "A Fortran 90 Interface for OpenGL: Revised January 1998" NISTIR 6134 (1998). http://math.nist.gov/~mitchell/

papers/nistir6134.ps.gz
21. W.F. Mitchell. "A Refinement-tree Based Partitioning Method for Dynamic Load Balancing with Adaptively Refined Grids."

Journal of Parallel and Distributed Computing, Volume 67, Issue 4, April 2007, Pages 417-429.
22. "MPSalsa: Massively Parallel Numerical Methods for Advanced Simulation of Chemically Reacting Flows." http://www.cs.sandia.

gov/CRF/MPSalsa/
23. A. Patra and J. T. Oden. "Problem decomposition for adaptive hp-finite element methods." J. Computing Systems in Engrg., 6 (1995).
24. J. Pilkington and S. Baden. "Partitioning with space-filling curves." Tech. Rep. CS94-349, Dept. of Computer Science and

Engineering, Univ. of California, San Diego, CA, 1994.
25. M. Shephard and M. Georges. "Automatic three-dimensional mesh generation by the finite octree technique." Intl. J. Numer. Meths.

Engrg., 32 (1991) 709-749.

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_refs.html (1 of 2) [5/21/07 12:06:47 PM]

170

http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz
http://www.cs.sandia.gov/CRF/MPSalsa/
http://www.cs.sandia.gov/CRF/MPSalsa/

Zoltan User's Guide: References

26. V. E. Taylor and B. Nour-Omid. "A Study of the Factorization Fill-in for a Parallel Implementation of the Finite Element Method."
Intl. J. Numer. Meths. Engrg., 37 (1994) 3809-3823.

27. J. D. Teresco, J. Faik, and J. E. Flaherty. "Resource-Aware Scientific Computation on a Heterogeneous Cluster." Computing in
Science & Engineering, To appear, 2005.

28. J. D. Teresco, J. Faik, and J. E. Flaherty. "Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation."
Williams College Department of Computer Science Technical Report CS-04-04, and Sandia Report SAND2004-1559A, Sandia
National Laboratories, 2004. Submitted to Proc. PARA'04 Workshop on State-Of-The-Art in Scientific Computing.

29. C. Walshaw. "JOSTLE mesh partitioning software", http://www.gre.ac.uk/jostle/
30. C. Walshaw, M. Cross, and M. Everett. "Parallel Dynamic Graph Partitioning for Adaptive Unstructured Meshes", J. Par. Dist.

Comp., 47(2) 102-108, 1997.
31. M. Warren and J. Salmon. "A parallel hashed octree n-body algorithm." Proc. Supercomputing `93, Portland, OR, November 1993.
32. R. D. Williams. "Performance of dynamic load balancing algorithms for unstructured mesh calculations. Concurrency, Practice, and

Experience, 3(5), 457-481, 1991.

[Table of Contents | Next: Index of Interface and Query Functions | Previous: Backward Compatibility]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_refs.html (2 of 2) [5/21/07 12:06:47 PM]

171

http://www.gre.ac.uk/jostle/

Zoltan User's Guide: Index

Zoltan User's Guide | Previous

Index of Interface and Query Functions

ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN
ZOLTAN_COARSE_OBJ_LIST_FN
Zoltan_Color
Zoltan_Compute_Destinations
Zoltan_Create
Zoltan_Destroy
ZOLTAN_EDGE_LIST_FN
ZOLTAN_EDGE_LIST_MULTI_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_FIRST_OBJ_FN (deprecated)
ZOLTAN_FIXED_OBJ_LIST_FN
ZOLTAN_GEOM_FN
ZOLTAN_GEOM_MULTI_FN
Zoltan_Help_Migrate
ZOLTAN_HIER_NUM_LEVELS_FN
ZOLTAN_HIER_PARTITION_FN
ZOLTAN_HIER_METHOD_FN
ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN
ZOLTAN_HG_SIZE_EDGE_WTS_FN
ZOLTAN_HG_EDGE_WTS_FN
Zoltan_Initialize
Zoltan_Invert_Lists
Zoltan_LB_Balance
Zoltan_LB_Box_Assign
Zoltan_LB_Box_PP_Assign
Zoltan_LB_Eval
Zoltan_LB_Free_Data
Zoltan_LB_Partition
Zoltan_LB_Point_Assign
Zoltan_LB_Point_PP_Assign
Zoltan_LB_Set_Part_Sizes
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_MID_MIGRATE_PP_FN
Zoltan_Migrate
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NEXT_OBJ_FN (deprecated)
ZOLTAN_NUM_CHILD_FN
ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_NUM_EDGES_FN
ZOLTAN_NUM_EDGES_MULTI_FN
ZOLTAN_NUM_FIXED_OBJ_FN
ZOLTAN_NUM_GEOM_FN
ZOLTAN_NUM_OBJ_FN

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_index.html (1 of 2) [5/21/07 12:06:47 PM]

172

Zoltan User's Guide: Index

ZOLTAN_OBJ_LIST_FN
ZOLTAN_OBJ_SIZE_FN
Zoltan_Order
ZOLTAN_PACK_OBJ_FN
ZOLTAN_PARTITION_FN
ZOLTAN_PARTITION_MULTI_FN
ZOLTAN_POST_MIGRATE_FN
ZOLTAN_POST_MIGRATE_PP_FN
ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_PRE_MIGRATE_PP_FN
Zoltan_RCB_Box
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Set_Param
ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Previous: References | Zoltan Home Page]

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/ug_html/ug_index.html (2 of 2) [5/21/07 12:06:47 PM]

173

file:///Users/kddevin/code/Zoltan_v3.bugfix/docs/Zoltan_html/Zoltan.html

	Local Disk
	Zoltan User's Guide
	Zoltan User's Guide: Introduction
	Zoltan User's Guide: Library Usage
	Zoltan User's Guide: C++ Interface
	Zoltan User's Guide: FORTRAN Interface
	Zoltan User's Guide: Interface
	Zoltan User's Guide: General Zoltan Interface
	Zoltan User's Guide: Load-Balancing Interface
	Zoltan User's Guide: Augmenting a Decomposition
	Zoltan User's Guide: Migration Interface
	Zoltan User's Guide: Ordering Interface
	Zoltan User's Guide: Coloring Interface
	Zoltan User's Guide: Query Functions
	Zoltan User's Guide: General Zoltan Query Functions
	Zoltan User's Guide: Migration Query Functions
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: Load-Balancing Algorithms and Parameters
	Zoltan User's Guide: Simple Partitioners for Testing
	Zoltan User's Guide: BLOCK
	Zoltan User's Guide: RANDOM
	Zoltan User's Guide: Geometric (Coordinate-Based) Partitioners
	Zoltan User's Guide: RCB
	Zoltan User's Guide: RIB
	Zoltan User's Guide: HSFC
	Zoltan User's Guide: Refinement Tree Based Partition
	Zoltan User's Guide: Hypergraph Algorithms
	Zoltan User's Guide: Hypergraph Partitioning
	Zoltan User's Guide: PaToH
	Zoltan User's Guide: Graph Algorithms
	Zoltan User's Guide: Graph vs. Hypergraph Partitioning
	Zoltan User's Guide: ParMETIS Interface
	Zoltan User's Guide: Jostle Interface
	Zoltan User's Guide: Ordering Algorithms
	Zoltan User's Guide: Nested Dissection by ParMETIS
	Zoltan User's Guide: Coloring Algorithms
	Zoltan User's Guide: Parallel Coloring
	Zoltan User's Guide: Data Services
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Communication Utilities
	Zoltan User's Guide: Distributed Data Directory Utilities
	Zoltan User's Guide: Examples
	Zoltan User's Guide: General Usage Examples
	Zoltan User's Guide: Load-Balancing Examples
	Zoltan User's Guide: Migration Examples
	Zoltan User's Guide: Query-Functon Examples
	Zoltan User's Guide: Release Notes
	Zoltan User's Guide: Backward Compatilibity
	Zoltan User's Guide: References
	Zoltan User's Guide: Index

