Zoltan User's Guide

-‘i-‘"__F_"*"- Sandia Zoltan:
|I|I.J" L‘ [uaat}::[:;ﬁ_!uies Data-Management Services for

Parallel Applications
About Sandia

Capabilities User's Guide
Programs
Gontacting Us

News and Events Erik Boman (SNL)
Search Karen Devine (SNL)

Robert Heaphy (SNL)
Home Bruce Hendrickson (SNL)

William F. Mitchell (NIST)

Matthew St. John (SNL)
Courtenay Vaughan (SNL)

Sandia National Laboratories (SNL)
P.O. Box 5800
Albuquerque, NM 87185-1111

National Institute of Standards and Technology (NIST)
100 Bureau Dr. Stop 8910
Gaithersburg, MD 20899-8910

Zoltan User's Guide, Version 1.54

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Zoltan Release Notes

Using the Zoltan Library

System Requirements
Data Types for Object IDs
Building the Library
Building Applications

Zoltan Interface Functions

Error Codes

Genera Zoltan Interface Functions

L oad-Balancing Functions

Functions for Adding Items to a Decomposition
Migration Functions

Ordering Functions

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html (1 of 3) [7/29/2004 12:29:00 PM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan_cite.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan_cite.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://math.nist.gov/~mitchell

Zoltan User's Guide

Application-Registered Query Functions

Genera Zoltan Query Functions
Migration Query Functions

Zoltan Parameters and Output Levels

General Parameters
Debugging Levels

Load-Balancing Algorithms

L oad-Balancing Parameters

Recursive Coordinate Bisection (RCB)

Recursive Inertial Bisection (RIB)

Hilbert Space-Filling Curve (HSFC) Partitioning
Refinement Tree Based Partitioning

ParMETIS (graph partitioning and repartitioning)
Jostle (more graph partitioning and repartitioning)
Octree/Space-Filling Curve (SFC) Partitioning

Ordering Algorithms

Nested Dissection by METIS/ParMETIS

Data Services and Utilities

Building Utilities

Dynamic Memory Management
Unstructured Communication
Distributed Data Directories

Examples of Library Usage

General Usage
Load-Balancing
Migration
Query Functions

FORTRAN Interface

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System-Specific Remarks

Backward Compatibility with Earlier Versions of Zoltan

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html (2 of 3) [7/29/2004 12:29:00 PM]

Zoltan User's Guide

References

Index of Interface and Query Functions

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU L esser General

Public License (LGPL). See the README file in the main Zoltan directory for more
information.

[Zoltan Home Page | Next: Introduction]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug.html (3 of 3) [7/29/2004 12:29:00 PM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html

Zoltan User's Guide: Introduction

Zoltan User's Guide | Next | Previous

Introduction

Project Motivation
The Zoltan ToolKkit
Terminology
Zoltan Design

Project Motivation

Over the past decade, parallel computers have been used with great successin many scientific simulations. While
differing in their numerical methods and details of implementation, most applications successfully parallelized to date are
"static" applications. Their data structures and memory usage do not change during the course of the computation. Their
inter-processor communication patterns are predictable and non-varying. And their processor workloads are predictable
and roughly constant throughout the ssmulation. Traditional finite difference and finite element methods are examples of
widely used static applications.

However, increasing use of "dynamic" simulation techniques is creating new challenges for developers of parallel
software. For example, adaptive finite element methods refine localized regions the mesh and/or adjust the order of the
approximation on individual elementsto obtain adesired accuracy in the numerical solution. As aresult, memory must be
allocated dynamically to allow creation of new elements or degrees of freedom. Communication patterns can vary as
refinement creates new element neighbors. And localized refinement can cause severe processor load imbalance as
elemental and processor work |oads change throughout a simulation.

Particle simulations and crash simulations are other examples of dynamic applications. In particle ssimulations, scalable
parallel performance depends upon a good assignment of particles to processors; grouping physically close particles
within a single processor reduces inter-processor communication. Similarly, in crash simulations, assignment of
physically close surfacesto a single processor enables efficient parallel contact search. In both cases, data structures and
communication patterns change as particles and surfaces move. Re-partitioning of the particles or surfacesis needed to
maintain geometric locality of objects within processors.

We developed the Zoltan library to simplilfy many of the difficulties arising in dynamic applications. Zoltan isa
collection of data management services for unstructured, adaptive and dynamic applications. It includes a suite of parallel
partitioning agorithms, data migration tools, distributed data directories, unstructured communication services, and
dynamic memory management tools. Zoltan's data-structure neutral design allowsit to be used by a variety of applications
without imposing restrictions on application data structures. Its object-based interface provides a smple and inexpensive
way for application developersto use the library and researchers to make new capabilities available under acommon
interface.

The Zoltan Toolkit

The Zoltan Library contains a number of tools that simplify the devel opment and improve the performance of parallel,
unstructured and adaptive applications. The library is organized as atoolkit, so that application devel opers can use aslittle
or as much of the library as desired. The major packages in Zoltan are listed below.

« A suite of dynamic load balancing and parallel repartitioning algorithms; switching between algorithmsis easy,
alowing straightforward comparisons of algorithms in applications.

« Datamigration tools for moving data from old partitions to new one.

« Distributed data directories. scalable (in memory and computation) algorithms for locating needed off-processor
data.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (1 of 3) [7/29/2004 12:29:08 PM]

Zoltan User's Guide: Introduction

« An unstructured communication package that insulates users from the details of message sends and receives.

» Dynamic memory management tools that greatly simplify dynamic memory debugging on state-of-the-art parallel
computers.

« A sample application zdrive. It allows algorithm developers to test changes to Zoltan without having to run Zoltan

in alarge application code. Application devel opers can use the zdrive code to see examples of function callsto
Zoltan and the implementation of query functions.

Terminology

Our design of Zoltan does not restrict it to any particular type of application. Rather, Zoltan operates on uniquely
identifiable data items that we can objects. For example, in finite element applications, objects might be elements or nodes
of the mesh. In particle applications, objects might be particles. In linear solvers, objects might be matrix rows.

Each object must have a unique global identifier (ID) represented as an array of unsigned integers. Common choices
include globa numbers of elements (nodes, particles, rows, and so on) that already exist in many applications, or a
structure consisting of an owning processor number and the object's local-memory index. Objects might also have local
(to aprocessor) |Ds that do not have to be unique globally. Local IDs such as addresses or local-array indices of objects
can improve the performance (and convenience) of Zoltan's interface to applications.

We use asimple example to illustrate the above terminology. In the figure below, a simple finite element mesh is
presented.

The blue and yellow shading indicates the mesh is partitioned for two processors. An application must provide
information about the current mesh and partition to Zoltan. If, for example, the application wants Zoltan to perform
operations on the elements of the mesh, it must provide information about the elements when Zoltan asks for object
information.

In this example, the elements have unique numbers assigned to them, as shown by the numbers in the elements. These
unigque numbers can be used as global IDsin Zoltan. In addition, on each processor, local numbering information may be
available. For instance, the elements owned by a processor may be stored in arrays in the processor's memory. An
element'sloca array index may be provided to Zoltan asalocal ID.

For geometric algorithms, the application must provide coordinate information to Zoltan. In this example, the coordinates
of the mid-point of an element are used.

For graph-based a gorithms, information about the connectivity of the objects must be provided to Zoltan. In this example,

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (2 of 3) [7/29/2004 12:29:08 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_driver.html

Zoltan User's Guide: Introduction

the application may consider elements connected if they share aface. The connections between elements, or edges of the
connectivity graph, are shown in red. Connectivity information is passed to Zoltan by specifying aneighbor list for an
object. The neighbor list consists of the global IDs of neighboring objects and the processor(s) currently owning those
objects.

The table below summarizes the information provided to Zoltan by an application for this finite element mesh.
Information about the objects includes their global and local IDs, geometry data, and graph data.

| ObjectIDs | Geometry Data | Graph Data
| Processor | Global | Local | (coordinates) | Neighbor Global ID List | Neighbor Processor List
| Blue | 1 [0 | (0.8,2.9) | 2 | Blue
2 | 1 | (1.7,2.9) | 1,3 | Blue,Blue
3 [2 [(529 | 24 | Blue,Yellow
| Yellow | 4 | 0 | (2.0,2.1) | 3,5 | Blue,Y ellow
| 5 | 1 | (11,10 | 4,6 | Yellow,Yellow
6 [2 [(0502 | 5,7 | Yellow,Yellow
| 7 | 3 | (1.3,0.2) | 6,8 | Yellow,Yelow
| 8 | 4 | (2.1,0.2) | 7 | Yellow

Zoltan Design

To make Zoltan easy to use, we do not impose any particular data structure on an application, nor do we require an
application to build a particular data structure for Zoltan. Instead, Zoltan uses a callback function interface, in which

Zoltan queries the application for needed data. The application must provide simple functions that answer these queries.

To keep the application interface simple, we use asmall set of callback functions and make them easy to write by

reguesting only information that is easily accessible to applications. For example, the most basic partitioning algorithms
require only four callback functions. These functions return the number of objects owned by a processor, alist of weights
and IDs for owned objects, the problem's dimensionality, and a given object's coordinates. More sophisticated
graph-based partitioning algorithms require only two additional callback functions, which return the number of edges per
object and edge lists for objects.

[Table of Contents | Next: Zoltan Release Notes | Previous. Table of Contents]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_intro.html (3 of 3) [7/29/2004 12:29:08 PM]

Zoltan User's Guide: Release Notes

Zoltan User's Guide | Next | Previous

Release Notes

Release notes are available for the following releases of Zoltan:

Zoltan Release v1.54

Zoltan Release v1.53

Zoltan Release v1.52

Zoltan Release v1.5

Zoltan Release v1.3

Zoltan Release Notes v1.54

Some versions of MPICH have abug in MPI_Reduce_scatter; they can report errors with MPI_TYPE_INDEXED. In
Zoltan v1.54's unstructured communication package, callsto MPI_Reduce_scatter have been replaced with separate calls
to MPI_Reduce and MPI_Scatter.

Zoltan Release Notes v1.53

Zoltan v1.53 includes the following new capabilities:

Portability to BSD Unix and Mac OS X was added.
Averaging of RCB and RIB cuts was added; see Zoltan parameter AVERAGE CUTS.

A new function Zoltan RCB_Box returns information about subdomain bounding boxesin RCB
decompositions.

FO0 interface to Zoltan Order was added.
Warnings that 1oad-imbalance tolerance was not met are no longer printed when DEBUG LEVEL ==0.
Minor bugs were addressed.

Zoltan Release Notes v1.52

Zoltan v1.52 includes the following new capabilities:

List-based graph callback functions ZOLTAN NUM_ EDGES MULTI _FN and

ZOLTAN_EDGE_LIST MULTI_FN were added to mirror support and performance given by the list-based
geometric function ZOLTAN_GEOM MULTI _FN.

Support for ParMETIS v3.1 was added.

Minor bugs were addressed.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_release.html (1 of 4) [7/29/2004 12:29:09 PM]

Zoltan User's Guide: Release Notes

Zoltan Release Notes v1.5

This section describes improvementsto Zoltanin Version 1.5. Every attempt was made to keep Zoltan v1.3 backwardly
compatible with previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility

Notes.

Short descriptions of the following features are included below; follow the links for more details.

Partition remapping

Unegual Numbers of Partitions and Processors
Non-Uniform Partition Sizes

Zoltan Interface Updated

Robust HSFC Box Assign

Matrix Ordering

Performance Improvements

Bug Fixes

Partition Remapping

During partitioning, Zoltan v1.5 can renumber partitions so that the input and output partitions have greater overlap (and,
thus, lower data-migration costs). This remapping is controlled by Zoltan parameter REMAP. Experiments have shown

that using this parameter can greatly reduce data migration costs.

Unequal Numbers of Partitions and Processors

Zoltan v1.5 can be used to generate k partitions on p processors, where k is not equal to p. Function Zoltan LB Partition
(replacing Zoltan_L B_Balance) can generate arbitrary numbers of partitions on the given processors. The number of
desired partitionsis set with parameters NUM_GLOBAL_PARTITIONSor NUM_LOCAL_PARTITIONS. Both partition
and processor information are returned by Zoltan LB Partition, Zoltan LB Box PP _Assign, and

Zoltan_LB_Point PP_Assign. New Zoltan query functionsZOLTAN_PARTITION_FN and

ZOLTAN PARTITION MULTI FN return objects partition information to Zoltan. Zoltan LB Balance can till be
used for k equal to p.

Non-Uniform Partition Sizes

Partition sizes for local and global partitions can be specified using Zoltan LB _Set Part_Sizes, allowing non-uniformly
sized partitions to be generated by Zoltan's partitioning algorithms.

Zoltan Interface Updated

To support the concept of partitions separate from processors, many new interface functions were added to Zoltan v1.5
(eg., Zoltan LB Partition and Zoltan Migrate). These functions mimic previous Zoltan functions (e.g.,

Zoltan LB Balance and Zoltan Help Migrate, respectively), but include both partition and processor information.
Both the new and old interface functions work in Zoltan v1.5. See the notes on Backward Compatibility.

Robust HSFC Box Assign

Function Zoltan_LB_Box_ PP_Assign now works for the Hilbert Space-Filling Curve agorithm (HSFC), in addition to
the RCB and RIB algorithms supported in previous versions of Zoltan. Zoltan LB Point PP Assign continues to work

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_release.html (2 of 4) [7/29/2004 12:29:09 PM]

Zoltan User's Guide: Release Notes

for HSFC, RCB and RIB.

Matrix Ordering

Zoltan v1.5 contains a matrix-ordering interface Zoltan Order to ParMETIS' matrix-ordering functions. New
graph-based matrix-ordering algorithms can be easily added behind this interface.

Performance Improvements

Many performance improvements were added to Zoltan v1.5.
« List-based callback functions have been added to Zoltan (ZOLTAN GEOM MULTI FN,
ZOLTAN PARTITION MULTI FN,ZOLTAN OBJ SIZE MULTI FN,
ZOLTAN PACK OBJ MULTI FN,and ZOLTAN UNPACK OBJ MULTI FN); these functionsallow
entire lists of datato be passed from the application to Zoltan, replacing per-object callbacks.

« Zoltan Migrate now can accept either import lists, export lists, or both. It is no longer necessary to call
Zoltan Invert Listsor Zoltan Compute Destinationsto get appropriate input for Zoltan Migrate.

« Zoltan v1.5 contains performance improvements within individual algorithms. We recommend users upgrade to
the latest version.

Bug Fixes

Bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are encouraged to upgrade.

Zoltan Release Notes v1.3

This section describes improvementsto Zoltan in Version 1.3. Every attempt was made to keep Zoltan v1.3 backwardly
compatible with previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility

Notes.

Short descriptions of the following features are included below; follow the links for more details.

More Data Services

New Hilbert Space-Filling Curve Partitioning
Support for Structured-Grid Partitioning
Support for PArMETIS v3.0

Performance | mprovements

Zoltan Interface Updated

Improved Test Suite

Bug Fixes

More Data Services

Zoltan's mission has been widened beyond its original focus on dynamic load-balancing algorithms. Now Zoltan also
provides data management services to parallel, unstructured, and adaptive computations. Several packages of parallel data
services have been added and made available to application devel opers. These services include the following:
« An unstructured communication package that simplifies complicated communication by insulating applications
from the details of message sends and receives.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_release.html (3 of 4) [7/29/2004 12:29:09 PM]

Zoltan User's Guide: Release Notes

« A distributed data directory that allows applications to efficiently (in memory and time) locate off-processor data.

« A dynamic memory management package that simplifies debugging of memory allocation problems on
state-of-the-art parallel computers.

New Hilbert Space-Filling Curve Partitioning

Zoltan now includes a fast, efficient implementation of Hilbert Space-Filling Curve (HSFC) partitioning. This geometric
method also includes support for Zoltan LB _Box_Assign and Zoltan LB _Point_Assign functions.

Support for Structured-Grid Partitioning

Zoltan's Recursive Coordinate Bisection (RCB) partitioning algorithm has been enhanced to allow generation of strictly

rectilinear subdomains. This capability can be used for partitioning of grids for structured-grid applications. See parameter
RCB_RECTILINEAR BLOCKS.

Support for ParMETIS v3.0

In addition to providing interfaces to ParMETIS v2.0 and PJostle, Zoltan now provides an interfaces ParMETIS v3.0. Full
support of ParMETIS v3.0's multiconstraint and multiobjective partitioning is included.

Performance Improvements

Performance of Zoltan's partitioning algorithms has been improved through a number of code optimizations and new
features. In addition, user parameter RETURN_LISTS can be used to specify which returned arguments are computed by

Zoltan LB Balance, allowing reduced work in partitioning. In the Recursive Coordinate Bisection (RCB) partitioning

algorithm, user parameters allow cut directionsto be locked in an attempt to minimize data movement; see parameters
RCB_LOCK_DIRECTIONSand RCB_SET DIRECTIONS

Zoltan Interface Updated

Zoltan has adopted a more modular design, making it easier to use by applications and easier to modify by algorithm
developers. Names in the Zoltan interface and code are tied more closely to their functionality. Full backward

compatibility is supported for users of previous versions of Zoltan.

Improved Test Suite

The Zoltan test suite has been improved, with more tests providing greater code coverage and platform-specific answer
files accounting for differences due to computer architectures.

Bug Fixes

Some bug fixes were made to Zoltan's agorithms and interface. Users of previous versions of Zoltan are encouraged to
upgrade.

[Table of Contents | Next: Using the Zoltan Library | Previous: Introduction]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_release.html (4 of 4) [7/29/2004 12:29:09 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_test_script.html

Zoltan User's Guide: Library Usage

Zoltan User's Guide | Next | Previous

Using the Zoltan library

This section contains information needed to use the Zoltan library with applications:

System reguirements.

Data typesfor globa and local I1Ds.

Instructions for building the Zoltan library.
Instructions for building applications that use Zoltan.

System Requirements

Zoltan was designed to run on parallel computers and clusters of workstations. In order to build and use Zoltan, you will
need:

o ANSI C compiler.
« MPI library for message passing (version 1.1 or higher), such as MPICH or LAM.

o A Unix-like operating system (e.g., Linux or Solaris) and gmake (GNU Make) are recommended to build the
library.

« A Fortran90 compatible compiler is required if you wish to use Zoltan with Fortran applications.

Zoltan has been tested on avariety of platforms, including Linux, Solaris, Irix, and the ASCI Red Teraflop machine. If

you wish to use Zoltan on anon-Unix operating system, for example Windows NT or 2000, you will have to port Zoltan
yourself,

Data Types for Object IDs

Application query functions and application callable library functions use global and local identifiers (IDs) for objects. All
objects to be used in load balancing must have unique global 1Ds. Zoltan stores an ID as an array of unsigned integers.
The number of entriesin these arrays can be set using the NUM_GID ENTRIES and NUM_LID ENTRIES parameters;

by default, one unsigned integer represents an ID. Applications may use whatever format is most convenient to store their
IDs; the IDs can then be converted to and from Zoltan's ID format in the application-registered query functions.

The following type definitions are defined in include/zoltan_types.h; they can be used by an application for memory
alocation, MPI communication, and as arguments to |oad-balancing interface functions and application-registered query

functions.

typedef unsigned int ZOLTAN_ID_TYPE;
typedef ZOLTAN_ID_TYPE *ZOLTAN_ID_PTR;
#define ZOLTAN_ID_MPI_TYPE MPI_UNSIGNED

In the Fortran interface, IDs are passed as arrays of integers since unsigned integers are not supported in Fortran. See the
description of the Fortran interface for more details.

Thelocal IDs passed to Zoltan are not used by the library; they are provided for the convenience of the application and
can contain any information desired by the application. For instance, local array indices for objects may be passed as local
IDs, enabling direct access to object data in the query function routines. See the application-registered query functions for

more details. The source code distribution contains an example application zdrive in which global 1Ds are integers and
local IDs arelocal array indices. One may choose not to use local ids at al, in which case NUM_LID _ENTRIES may be
Set to zero.

Some Zoltan routines (e.g., Zoltan_L B _Partition and Zoltan_Invert Lists) allocate arrays of type ZOLTAN_ID_PTR
and return them to the application. Others (e.g., Zoltan_Order and Zoltan DD _Find) require the application to allocate
memory for IDs. Memory for IDs can be allocated as follows:

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (1 of 3) [7/29/2004 12:29:09 PM]

http://www-unix.mcs.anl.gov/mpi/
http://www.sandia.gov/ASCI/Red/
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_driver.html

Zoltan User's Guide: Library Usage

ZOLTAN_|I D PTR gi ds;

int numgids, int numgid_entries;

gids = (ZOLTAN_I D PTR) ZOLTAN MALLOC(num gids * numgid _entries *
si zeof (ZOLTAN_I D_TYPE) ;

The system call malloc may be used instead of ZOLTAN MALLOC.

Building the Zoltan Library

The Zoltan library isimplemented in ANSI C and can be compiled with any ANSI C compiler. Makefiles are included
with the source code; these makefiles require the GNU Make (gmake) utility. The top-level Makefile defines targets for
the Zoltan library and test driver programsin C and Fortran90. This Makefile need not be edited to build Zoltan. Instead,
environment-specific definitions are specified in the configuration file, Utilities/Config/Config.<platform>, where
<platform> specifies the particular platform for which Zoltan is being built. Paths to compilers, include files, and
libraries are defined in thisfile and are then read by the top-level Makefile. Examples of configuration files for Solaris,
Sandia's ASCI Red (tflop) computer, SGI workstations, and PCs running Linux are included in the Utilities’Config
subdirectory. A well-commented version of the configuration file, Utilities/Config/Config.generic, is also included; this
file can be used as atemplate for new environment-specific files. The variablesin these files should be edited to reflect
the new system's environment.

The command for building Zoltan is shown below:
gmake [options] zoltan
where the options that may be specified are listed below.

Optionsto gmake:

ZOLTAN_ARCH=<platform> Specify the target architecture for the Zoltan library. A corresponding file,
Utilities/Config/Config.< platform>, containing environment definitions for
<platform>, must be created in the Utilities/Config directory.

YES FORTRAN=1 Include Fortran support in the Zoltan library. By default, the Zoltan library is built
without the interface that allows use from Fortran applications. If thisoptionis
specified, the Fortran interface is compiled and included in the library. Use of this

option requires that a Fortran 90 (or 95, or later) compiler is available.

As an alternative to typing the options on the gmake command line, they may be set as environment variables; e.g., if you
areusing a C-shell (csh or tcsh), type

setenv ZOLTAN_ARCH <platform>
or if you are using a Bourne-type shell (e.g., sh or bash), type
ZOLTAN_ARCH = <platform>; export ZOLTAN_ARCH
The resulting library libzoltan.a, object files, and dependency files are stored in the directory Obj_<platform>.

Building Applications that use Zoltan

Thelibrary interface is described in the C include file include/zoltan_types.h; this file should be included in all application
source filesthat call Zoltan library routines. Similarly, Fortran applications must USE module zoltan and specify
Zoltan/Obj_<platform> as a directory to be searched for module information files. The application should then be linked
with the Zoltan library and its utility libraries by including

-lzoltan
in the linking command for the application. Communication within Zoltan is performed through MPI, so appropriate MPI
libraries must be linked with the application. Third-party libraries, such as ParMETIS and Jostle, must be aso be linked
with the application if they were included in compilation of the Zoltan library. (A courtesy copy of ParMETIS isincluded
with the Zoltan distribution; Jostle must be obtained directly from http://www.gre.ac.uk/~jjg01/.)

For applications that used versions of Zoltan before Zoltan v.1.3, only minor updates to the application build process are

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (2 of 3) [7/29/2004 12:29:09 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_driver.html
http://www.gre.ac.uk/~jjg01/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/~jjg01/
http://www.gre.ac.uk/~jjg01/

Zoltan User's Guide: Library Usage

needed; see the section on backward compatibility of Zoltan.

[Table of Contents | Next: Zoltan Interface Functions | Previous: Zoltan Release Noteg]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_usage.html (3 of 3) [7/29/2004 12:29:09 PM]

Zoltan User's Guide: Interface

Zoltan User's Guide | Next | Previous

Zoltan Interface Functions

An application calls aseries of dynamic load-balancing library functionsto initialize the load balancer, perform load
balancing and migrate data. This section describes the syntax of each type of interface function:

Genera Zoltan Interface Functions

L oad-Balancing Interface Functions

Functions for Augmenting a Decomposition

Migration Interface Functions

Examples of the calling sequences for initialization, load-balancing, and data migration are included in the Initialization,
L oad-Balancing, and Migration sections, respectively, of the Examples of Library Usage.

Error Codes

All interface functions, with the exception of Zoltan Create, return an error code to the application. The possible return
codes are defined in include/zoltan_types.h and Fortran module zoltan, and are listed in the table below.

Note: Robust error handling in parallel has not yet been achieved in Zoltan. When a processor returns from Zoltan due to
an error condition, other processors do not necessarily return the same condition. In fact, other processors may not know
that the original processor has returned from Zoltan, and may wait indefinitely in acommunication routine (e.g., waiting
for a message from the original processor that is not sent due to the error condition). The parallel error-handling
capabilities of Zoltan will be improved in future releases.

|ZOLTAN_OK |Function returned without warnings or errors.
ZOLTAN WARN Function returned with warnings. The application will probably be able to continue to
run.

|ZOLTAN_FATAL |A fatal error occured within the Zoltan library.

ZOLTAN_MEMERR |An error occurred while allocating memory. When this error occurs, the library frees
any allocated memory and returns control to the application. If the application then
wants to try to use another, less memory-intensive algorithm, it can do so.

Return codes defined in include/zoltan_types.h.

[Table of Contents| Next: Initialization Functions | Previous: Using the Library]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface.html [7/29/2004 12:29:10 PM]

Zoltan User's Guide: General Zoltan Interface

Zoltan User's Guide | Next | Previous

General Interface Functions

Functions used to initialize and manipulate Zoltan's data structures are described below:

Zoltan Initialize

Zoltan Create

Zoltan Set Param

Zoltan Set Param Vec

Zoltan Set Fn
Zoltan Set <zoltan fn_type> Fn
Zoltan Destroy

C: int Zoltan_Initialize (
int argc,
char **argv,
float *ver);
FORTRAN: FUNCTION Zoltan_Initialize(argc, argv, ver)

INTEGER(Zoltan_INT) :: Zoltan_Initialize

INTEGER(Zoltan_INT), INTENT(IN), OPTIONAL :: argc
CHARACTER(LEN=*), DIMENSION(*), INTENT(IN), OPTIONAL :: argv
REAL (Zoltan_FLOAT), INTENT(OUT) :: ver

The Zoltan_Initialize function initializes MPI for Zoltan. If the application uses MPI, this function should be called after
calling MPI_Init. If the application does not use MPI, this function calls M Pl _I nit for use by Zoltan. Thisfunctionis
called with the argc and argv command-line arguments from the main program, which are used if Zoltan_Initialize calls
MPI_Init. From C, if MPI_Init has already been called, the argc and argv arguments may have any value because their
valueswill beignored. From Fortran, if one of argc or argv is omitted, they must both be omitted. If they are omitted, ver
does NOT have to be passed as a keyword argument.

Zoltan_Initialize returns the the Zoltan version number so that users can verify which version of the library their
application islinked to.

Arguments:
argc The number of command-line arguments to the application.
argv An array of strings containing the command-line arguments to the application.
ver Upon return, the version number of the library.
Returned Value:
int Error code.
C. struct Zoltan_Struct *Zoltan_Create (
MPI_Comm communicator);
FORTRAN: FUNCTION Zoltan_Create(communicator)

TYPE(Zoltan_Struct), pointer :: Zoltan_Create
INTEGER, INTENT(IN) :: communicator

The Zoltan_Cr eate function allocates memory for storage of information to be used by Zoltan and sets the default values
for the information. The pointer returned by this function is passed to many subsequent functions. An application may
allocate more than one Zoltan_Struct data structure; for example, an application may use several Zoltan_Struct
structuresif, say, it uses different decompositions with different |oad-balancing techniques.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (1 of 4) [7/29/2004 12:29:10 PM]

Zoltan User's Guide: General Zoltan Interface

Arguments:
communicator The MPI communicator to be used for this Zoltan structure. Only those processorsincluded in
the communicator participate in Zoltan functions. If all processors are to participate,
communicator should be MPI_COMM_WORLD.
Returned Value:
struct Zoltan_Struct Pointer to memory for storage of Zoltan information. If an error occurs, NULL will be returned
* in C, or theresult will be anullified pointer in Fortran. Any error that occurs in this function is
assumed to be fatal.
C: int Zoltan_Set_Param (

struct Zoltan_Struct *zz,
char *param_name,
char *new_val);

FORTRAN: FUNCTION Zoltan_Set Param(zz, param_name, new_val)
INTEGER(Zoltan _INT) :: Zoltan_Set_Param
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, hew_value

Zoltan_Set_Param is used to ater the value of one of the parameters used by Zoltan. All Zoltan parameters have
reasonable default values, but this routine allows a user to provide alternative values if desired.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
param_name A string containing the name of the parameter to be atered. Notethat the stringis
case-insensitive. Also, different Zoltan structures can have different parameter values.
new_val A string containing the new value for the parameter. Example stringsinclude "3.154", "True",
"7" or anything appropriate for the parameter being set. As above, the string is case-insensitive.
Returned Value:
int Error code.
C. int Zoltan_Set Param_Vec (
struct Zoltan_Struct *zz,
char * param_name,
char *new_val,
int index);
FORTRAN: FUNCTION Zoltan_Set_Param_Vec(zz, param_name, new_val, index)

INTEGER(Zoltan_INT) :: Zoltan_Set_Param_Vec
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value
INTEGER(Zoltan_INT), INTENT(IN) :: index

Zoltan_Set_Param_Vecisused to alter the value of avector parameter in Zoltan. A vector parameter is a parameter that
has one name but contains multiple values. These values are referenced by their indices, usually starting at 0. Each entry
(component) may have a different value. This routine sets a single entry (component) of a vector parameter. If you want
all entries (components) of avector parameter to have the same value, set the parameter using Zoltan _Set Param asif it

were ascalar parameter. If one only sets the values of a subset of the indices for a vector parameter, the remaining entries
will have the default value for that particular parameter.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (2 of 4) [7/29/2004 12:29:10 PM]

Zoltan User's Guide: General Zoltan Interface

param_name A string containing the name of the parameter to be atered. Notethat the stringis
case-insensitive. Also, different Zoltan structures can have different parameter values.
new_val A string containing the new value for the parameter. Example stringsinclude "3.154", "True",
"7" or anything appropriate for the parameter being set. As above, the string is case-insensitive.
index Theindex of the entry of the vector parameter to be set. The default in Zoltan isthat the first
entry in avector hasindex 0 (C-style indexing).
Returned Value:
int Error code.
C. int Zoltan_Set_Fn (
struct Zoltan_Struct *zz,
ZOLTAN_FN_TYPE fn_type,
void (*fn_ptr)(),
void *data);
FORTRAN: FUNCTION Zoltan_Set_Fn(zz, fn_type, fn_ptr, data)

INTEGER(Zoltan_INT) :: Zoltan_Set_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
TYPE(ZOLTAN_FN_TYPE), INTENT(IN) :: fn_type
EXTERNAL :: fn_ptr

<type-data>, OPTIONAL :: data

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

Zoltan_Set_Fn registers an application-supplied query function in the Zoltan structure. All types of query functions can
be registered through callsto Zoltan_Set_Fn. To register functions while maintaining strict type-checking of the fn_ptr
argument, use Zoltan Set <zoltan _fn_type> Fn.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
fn_type The type of function being registered; see Application-Registered Query Functions for possible
function types.
fn_ptr A pointer to the application-supplied query function being registered.
data A pointer to user defined data that will be passed, as an argument, to the function pointed to by
fn_ptr. In C it may be NULL. In Fortran it may be omitted.
Returned Value:
int Error code.
C: int Zoltan_Set_<zoltan_fn_type> Fn (

struct Zoltan_Struct *zz,

<zoltan_fn_type> (*fn_ptr)(),
void *data);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (3 of 4) [7/29/2004 12:29:10 PM]

Zoltan User's Guide: General Zoltan Interface

FORTRAN: FUNCTION Zoltan_Set_<zoltan_fn_type> Fn(zz, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_<zoltan_fn_type> Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

Aninterface block for fn_ptr isincluded in the FUNCTION definition so that strict type-checking of
the registered query function can be done.

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

The interface functions Zoltan_Set_<zoltan_fn_type>_Fn, where <zoltan_fn_type> is one of the query function types,
register specific types of application-supplied query functions in the Zoltan structure. One interface function exists for

each type of query function. For example, Zoltan_Set Num_Geom_Fn registers a query function of type
ZOLTAN NUM GEOM FN. Each query function has an associated Zoltan_Set <zoltan_fn_type> Fn. A complete

list of these functionsisincluded in include/zoltan.h.

Query functions can be registered using either Zoltan Set Fn or Zoltan_Set_<zoltan_fn_type> Fn.

Zoltan_Set_<zoltan_fn_type>_Fn provides strict type checking of the fn_ptr argument; the argument's type is specified
for each Zoltan_Set_<zoltan_fn_type> Fn. Zoltan Set Fn does not provide this strict type checking, as the pointer to

the registered function is cast to avoid pointer.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
fn_ptr A pointer to the application-supplied query function being registered. The type of the pointer
matches <zoltan_fn_type> in the name Zoltan_Set_<zoltan_fn_type>_Fn.
data A pointer to user defined data that will be passed, as an argument, to the function pointed to by
fn_ptr. In Cit may be NULL. In Fortran it may be omitted.
Returned Value:
int Error code.
Example:
The interface function
int Zoltan_Set_Geom_Fn(struct Zoltan_Struct *zz, ZOLTAN_GEOM FEN (*fn_ptr)(),
void *data);
registersan ZOLTAN GEOM FN query function.
C. void Zoltan_Destroy (
struct Zoltan_Struct **zz);
FORTRAN: SUBROUTINE Zoltan_Destroy(zz)

TYPE(Zoltan_Struct), POINTER :: zz

Zoltan_Destr oy frees the memory associated with a Zoltan structure and sets the structure to NULL in C or nullifiesthe
structure in Fortran. Note that Zoltan_Destr oy does not deallocate the import and export arrays returned from Zoltan
(e.g., the arrays returned from Zoltan LB _Partition); these arrays can be deall ocated through a separate call to

Zoltan LB Free Part.

Arguments:
z A pointer to the address of the Zoltan structure, created by Zoltan Cr eate, to be destroyed.

[Table of Contents | Next: Load-Balancing Functions | Previous. Zoltan Interface Functions]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_init.html (4 of 4) [7/29/2004 12:29:10 PM]

Zoltan User's Guide: Load-Balancing Interface

Zoltan User's Guide | Next | Previous

Load-Balancing Functions

The following functions are the |oad-bal ancing interface functionsin the Zoltan library; their descriptions are included
below.

Zoltan LB Partition

Zoltan LB _Set Part_Sizes

Zoltan LB Eval

Zoltan LB Free Part

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions
are applicable only when the number of partitions to be generated is equal to the number of processors on which the
partitions are computed. That is, these functions assume "partitions" and "processors’ are Synonymous.

Zoltan LB Balance

Zoltan LB Free Data

Descriptions of algorithm-specific interface functions are included with the documentation of their associated algorithms.
Algorithm-specific functions include:

Zoltan RCB Box

C. int Zoltan_LB_Partition (
struct Zoltan_Struct *zz,
int *changes,
int *num_gid_entries,
int *num_lid_entries,
int *num_import,
ZOLTAN ID PTR *import_global_ids,
ZOLTAN ID PTR *import_local_ids,
int **import_procs,
int **import_to_part,
int * num_export,
ZOLTAN ID PTR *export_global _ids,
ZOLTAN ID PTR *export_local _ids,
int **export_procs,
int **export_to_part);

FORTRAN: FUNCTION Zoltan_LB_Partition(zz, changes, num _gid_entries, num lid_entries, num_import,
import_global _ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local _ids, export_procs, export_to_part)

INTEGER(Zoltan _INT) :: Zoltan_LB_Partition

TYPE(Zoltan_Struct), INTENT(IN) :: zz

LOGICAL, INTENT(OUT) :: changes

INTEGER(Zoltan _INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan _INT), INTENT(OUT) :: hum_import, num_export
INTEGER(Zoltan _INT), POINTER, DIMENSIONY(:) :: import_global _ids, export_global_ids
INTEGER(Zoltan _INT), POINTER, DIMENSIONY(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

Zoltan_L B_Partition invokes the load-balancing routine specified by the LB_ METHOD parameter. The number of
partitions it generatesis specified by the NUM_GLOBAL PARTITIONS or NUM_LOCAL PARTITIONS parameters.
Results of the partitioning are returned in lists of objects to be imported and exported. These arrays are alocated in
Zoltan; applications should not allocate these arrays before calling Zoltan_LB_Partition. The arrays are later freed
through callsto Zoltan LB Free Part.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (1 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Load-Balancing Interface

Arguments:
z Pointer to the Zoltan structure, created by Zoltan Cr eate, to be used in thisinvocation of the
load-balancing routine.
changes Set to 1 or .TRUE. if the decomposition was changed by the |oad-balancing method; O or

.FALSE. otherwise.

num_gid_entries Upon return, the number of array entries used to describe asingle global ID. Thisvaueisthe
maximum value over all processors of the parameter NUM_GID ENTRIES.

num _lid entries Upon return, the number of array entries used to describe asingle local ID. Thisvaueisthe
maximum value over all processors of the parameter NUM_LID _ENTRIES.
num_import Upon return, the number of objects that are now assigned to this processor that were assighed to

other processors in the old decomposition (i.e., the number of objects to be imported to this
processor). If the value returned is -1, no import information has been returned and all import
arrays below are NULL (seethe RETURN_LISTS parameter for more information).

import_global_ids Upon return, an array of num_import global 1Ds of objects to be imported to this processor.
(size =num_import * num_gid_entries)

import_local_ids Upon return, an array of num_import local 1Ds of objects to be imported to this processor.
(size=num_import * num_lid_entries)

import_procs Upon return, an array of size num_import listing the processor 1Ds of the processors that owned
the imported objects in the previous decomposition (i.e., the source processors).

import_to_part Upon return, an array of size num_import listing the partitions to which the imported objects are
being imported.

num_export Upon return, the number of objects that were assigned to this processor in the previous

decomposition that are now assigned to other processors (i.e., the number of objects that must be
exported from this processor to other processors). If the value returned is -1, no export
information has been returned and all export arrays below are NULL (seethe RETURN_LISTS
parameter for more information).

export_global_ids Upon return, an array of num_export global 1Ds of objects to be exported from this processor.
(size=num_export * num_gid_entries)

export_local_ids Upon return, an array of num_export local 1Ds of abjects to be exported from this processor.
(size=num _export * num_lid_entries)

export_procs Upon return, an array of size num_export listing the processor IDs of processors that will own
the exported objects in the new decomposition (i.e., the destination processors).
export_to_part Upon return, an array of size num_export listing the partitions to which the exported objects are
being exported.
Returned Value:
int Error code.
C: int Zoltan_LB_Set Part_Sizes(

struct Zoltan_Struct *zz,
int global_num,
int len,
int *part_ids,
int *wgt_idx,
float * part_sizes);
FORTRAN: function Zoltan_LB_Set Part_Sizes(zz,global _part,len,partids,wgtidx,partsizes)
integer(Zoltan_INT) :: Zoltan_LB_Set Part Sizes
type(Zoltan_Struct) INTENT(IN) zz
integer(Zoltan_INT) INTENT(IN) global_part,len,partids(*),wgtidx(*)
real(Zoltan_FLOAT) INTENT(IN) partsizes(*)

Zoltan_LB_Set_Part_Sizesisused to specify the desired partition sizes in Zoltan. By default, Zoltan assumes that al
partitions should be of equal size. With Zoltan_LB_Set_Part_Sizes, one can specify the relative (not absolute) sizes of

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (2 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Load-Balancing Interface

the partitions. For example, if two partitions are requested and the desired sizes are 1 and 2, that means that the first
partition will be assigned approximately one third of the total load. If the sizes were instead given as 1/3 and 2/3,
respectively, the result would be exactly the same. Note that if there are multiple weights per object, one can (must)
specify the partition size for each weight dimension independently.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
global_num Set to 1if global partition numbers are given, 0 otherwise (local partition numbers).
len Length of the next three input arrays.
part_ids é;ray of partition numbers, either global or local. (Partition numbers are integers starting from
wwgt_idx Array of weight indices (between 0 and OBJ WEIGHT_DIM-1). This array should contain all
zeros when there is only one weight per object.
part_sizes Relative values for partition sizes; part_sizeqi] isthe desired relative size of the vwgt_idx[i]'th
weight of partition part_idg[i].
Returned Value:
int Error code.
C: int Zoltan_LB_Eval (
struct Zoltan_Struct *zz,
int print_stats,
int * nobj,
float * obj_wagt,
int * ncuts,
float * cut_wgt,
int * nboundary,
int *nadj);
FORTRAN: FUNCTION Zoltan_LB_Eval(zz print_stats, nobj, obj_wgt, ncuts, cut_wgt, nboundary, nadj)

INTEGER(Zoltan_INT) :: Zoltan_LB_Eval

TYPE(Zoltan_Struct), INTENT(IN) :: zz

LOGICAL, INTENT(IN) :: print_stats

INTEGER(Zoltan _INT), INTENT(OUT), OPTIONAL :: nobj, ncuts, nboundary, nadj
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(vwgt_dim), OPTIONAL :: obj_wgt
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(ewgt_dim), OPTIONAL :: cut_wgt

Zoltan_L B_Eval evaluates the quality of a decomposition. Some quality metrics are available only if the graph query
functions have been registered. Zoltan_L B_Eval may either print a summary of the results to stdout or return the results
in the output parameters. NOTE: The interface to this function may change in future versions of Zoltan. Users are
discouraged from relying on the output arguments from Zoltan_LB_Eval.

Arguments:
z
print_stats

nobj
obj_wgt

ncuts
cut_wgt
nboundary
nadj

Returned Value:

Pointer to the Zoltan structure.

If print_stats>0 (.TRUE. in Fortran), print a summary (max, min, and sum) of the quality
metrics to stdout.

Upon return, the number of objects on this processor.

Upon return, an array (of dimension OBJ WEIGHT DIM) containing the sum of object weights
on this processor.

Upon return, the number of (communication) edge cuts for this processor.

Upon return, an array (of dimension EDGE_WEIGHT DIM) of cut weights for this processor.

Upon return, the number of boundary objects on this processor.
Upon return, the number of adjacent processors as defined by the communication graph.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (3 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Load-Balancing Interface

int Error code.
Query functions:
Required: ZOLTAN_NUM_OBJ FN
ZOLTAN_OBJ LIST FN or ZOLTAN_FIRST _OBJ FN/ZOLTAN_NEXT_OBJ FN
Optional: ZOLTAN NUM EDGES MULTI FNorZOLTAN NUM EDGES FN

ZOLTAN EDGE _LIST MULTI FNorZOLTAN EDGE_LIST FN

An output parameter is returned only if the input value of that parameter was not NULL. The rationale for thisfeatureis
that if one wishes just to print the evaluation results, one can simply set all (or some of) the output parametersto NULL in
the function call. From Fortran, one may omit one or more of the optional output parameters.

Note that the sum of ncuts over al processorsis actually twice the number of edges cut in the graph (because each edgeis
counted twice). The same principle holds for cut_wgt.

There are afew improvementsin Zoltan LB_Eva in Zoltan version 1.5 (or higher). First, the balance data are computed
with respect to both processors and partitions (if applicable). Second, the desired partition sizes (as set by
Zoltan LB_Set Partition_Sizes) aretaken into account when computing the imbalance.

Known bug: If apartition is spread across several processors, the computed cut information (ncuts and cut_wgt) may be
incorrect (too high).

C. int Zoltan_LB_Free Part (
ZOLTAN ID PTR *global_ids,
ZOLTAN ID PTR *local_ids,
int **procs,
int**to_part);
FORTRAN: FUNCTION Zoltan_LB_Free Part(global_ids, local_ids, procs, to_part)
INTEGER(Zoltan INT) :: Zoltan_ LB _Free Part
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: procs, to_part

Zoltan_LB_Free Part freesthe memory alocated by the Zoltan to return the results of Zoltan LB Partition or
Zoltan Invert Lists. Memory pointed to by the arguments is freed and the arguments are set to NULL in C or nullified

in Fortran. NULL arguments may be passed to Zoltan_L B_Free Part. Note that this function does not destroy the Zoltan
data structure itself; it is deallocated through a call to Zoltan_Destroy.

Arguments:
global _ids An array containing the global 1Ds of abjects.
local_ids An array containing the local 1Ds of objects.
procs An array containing processor |Ds.
to_part An array containing partition numbers.
Returned Value:
int Error code.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (4 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Load-Balancing Interface

C. int Zoltan_L B_Balance (
struct Zoltan_Struct *zz,
int *changes,
int *num_gid_entries,
int *num_lid_entries,
int *num_import,
ZOLTAN ID PTR *import_global_ids,
ZOLTAN ID PTR *import_local_ids,
int **import_procs,
int * num_export,
ZOLTAN ID PTR *export_global _ids,
ZOLTAN ID PTR *export_local _ids,

int **export_procs);
FORTRAN: FUNCTION Zoltan_LB_Balance(zz, changes, num _gid_entries, num_lid_entries, num_import,
import_global _ids, import_local_ids, import_procs, num_export, export_global _ids, export_local_ids,
export_procs)

INTEGER(Zoltan _INT) :: Zoltan_LB_Balance

TYPE(Zoltan_Struct), INTENT(IN) :: zz

LOGICAL, INTENT(OUT) :: changes

INTEGER(Zoltan _INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan _INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: import_global _ids, export_global_ids
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_L B_Balanceisawrapper around Zoltan_L B_Partition that excludes the partition assignment results.

Zoltan_L B_Balance assumes the number of partitionsis egqual to the number of processors; thus, the partition assignment
is equivalent to the processor assignment. Results of the partitioning are returned in lists of objectsto be imported and
exported. These arrays are alocated in Zoltan; applications should not allocate these arrays before calling

Zoltan_L B_Balance. The arrays are later freed through callsto Zoltan LB Free Dataor Zoltan LB Free Part.

Arguments:
All arguments are analogous to those in Zoltan_L B_Partition. Partition-assignment arguments

import_to_part and export_to_part are not included, as processor and partitions numbers are
considered to bethe samein Zoltan_LB_Balance.

Returned Value
int Error code.

C. int Zoltan_LB Free Data (
ZOLTAN ID PTR *import_global_ids,
ZOLTAN ID PTR *import_local_ids,
int **import_procs,
ZOLTAN ID PTR *export_global _ids,
ZOLTAN ID PTR *export_local_ids,
int **export_procs);
FORTRAN: FUNCTION Zoltan_LB_Free Data(import_global_ids, import_local_ids, import_procs,
export_global _ids, export_local_ids, export_procs)
INTEGER(Zoltan _INT) :: Zoltan_LB_Free Data
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan _INT), POINTER, DIMENSIONY(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_L B_Free Data freesthe memory allocated by the Zoltan to return the results of Zoltan LB Balance or

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (5 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Load-Balancing Interface

Zoltan Compute Destinations. Memory pointed to by the argumentsis freed and the arguments are set to NULL in C or

nullified in Fortran. NULL arguments may be passed to Zoltan_L B_Free Data. Note that this function does not destroy
the Zoltan data structure itself; it is deallocated through a call to Zoltan_Destroy.

Arguments:
import_global_ids The array containing the global IDs of objectsimported to this processor.
import_local_ids The array containing the local IDs of objectsimported to this processor.

import_procs The array containing the processor |Ds of the processors that owned the imported objectsin the
previous decomposition (i.e., the source processors).

export_global_ids The array containing the global 1Ds of objects exported from this processor.
export_local_ids The array containing the local 1Ds of objects exported from this processor.
export_procs The array containing the processor | Ds of processors that own the exported objectsin the new
decomposition (i.e., the destination processors).
Returned Value:
int Error code.

[Table of Contents | Next: Functions for Augmenting a Decomposition | Previous. Initialization Functions]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_lb.html (6 of 6) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Augmenting a Decomposition

Zoltan User's Guide | Next | Previous

Functions for Augmenting a Decomposition

The following functions support the addition of new items to an existing decomposition. Given a decomposition, they
determine to which processor(s) anew item should be assigned. Currently, they work in conjunction with only the RCB,
RIB, and HSFC agorithms.

Zoltan LB Point PP Assign
Zoltan LB Box PP Assign

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions
are applicable only when the number of partitions to be generated is equal to the number of processors on which the
partitions are computed. That is, these functions assume "partitions’ and "processors' are synonymous.
Zoltan_LB_Point_Assign
Zoltan LB Box Assign

C. int Zoltan_LB_Point_ PP_Assign (
struct Zoltan_Struct * zz,
double * coords,
int* proc,
int* part);

FORTRAN: FUNCTION Zoltan_L B_Point_PP_Assign(zz, coords, proc, part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL (Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc
INTEGER(Zoltan_INT), INTENT(OUT) :: part

Zoltan_LB_Point_PP_Assign is used to determine to which processor and partition a new point should be assigned. Itis
applicable only to geometrically generated decompositions (RCB, RIB, and HSFC). If the parameter KEEP_CUTS s set

to TRUE, then the sequence of cuts that define the decomposition is saved. Given anew geometric point, the processor
and partition which own it can be determined.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
coords The (x,y) or (x,y,2) coordinates of the point being assigned.
proc Upon return, the ID of the processor to which the point should belong.
part Upon return, the ID of the partition to which the point should belong.
Returned Value:
int Error code.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (1 of 3) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Augmenting a Decomposition

C. int Zoltan_LB_Box_PP_Assign (

struct Zoltan_Struct * zz,

double xmin,

double ymin,

double zmin,

double xmax,

double ymax,

double zmax,

int * procs,

int * numprocs,

int * parts,

int * numparts);

FORTRAN: FUNCTION Zoltan_LB_Box_PP_Assign(zz, xmin, ymin, zmin, Xmax, ymax, Zmax, procs, numprocs,

parts, numparts)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL (Zoltan DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::parts
INTEGER(Zoltan_INT), INTENT(OUT) :: numparts

In many settings, it is useful to know which processors and partitions might need to know about an extended geometric
object. Zoltan_LB_Box_PP_Assign addresses this problem. Given a geometric decomposition of space (currently only
RCB, RIB, and HSFC are supported), and given an axis-aligned box around the geometric object,

Zoltan_LB_Box_PP_Assign determines which processors and partitions own geometry that intersects the box. To use
this routine, the parameter KEEP_CUT S must be set to TRUE when the decomposition is generated. This parameter will
cause the sequence of geometric cuts to be saved, which is necessary for Zoltan_LB_Box_PP_Assign to doitsjob.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
Xmin, ymin, zmin The coordinates of the lower extent of the bounding box around the object. If the geometry is

two-dimensional, the z valueis ignored.

Xmax, ymax, zmax The coordinates of the upper extent of the bounding box around the object. If the geometry is
two-dimensional, the z value isignored.

procs Thelist of processors intersecting the box are returned starting at this address. Note that it isthe
responsibility of the calling routine to ensure that there is sufficient space for the return list.
NnUMprocs Upon return, this value contains the number of processors that intersect the box (i.e. the number
of entries placed in the procs list).
parts Thelist of partitions intersecting the box are returned starting at this address. Note that it is the
responsibility of the calling routine to ensure that there is sufficient space for the return list.
numparts Upon return, this value contains the number of partitions that intersect the box (i.e. the number
of entries placed in the partslist).
Returned Value:
int Error code.
C. int Zoltan_LB_Point_Assign (

struct Zoltan_Struct * zz,
double * coords,
int * proc);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (2 of 3) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Augmenting a Decomposition

FORTRAN: FUNCTION Zoltan_L B_Point_Assign(zz, coords, proc)
INTEGER(Zoltan _INT) :: Zoltan_LB_Point_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL (Zoltan DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc

Zoltan_LB_Point_Assign isisawrapper around Zoltan LB Point PP Assign that excludes the partition assignment

results. Zoltan_L B_Point_Assign assumes the number of partitionsis equal to the number of processors; thus, the
partition assignment is equivalent to the processor assignment.

Arguments:

All arguments are analogous to thosein Zoltan LB Point PP Assign. Partition-assignment

argument part is not included, as processor and partitions numbers are considered to be the same
inZoltan_LB_Point_Assign.

Returned Value:
int Error code.

C. int Zoltan_LB_Box_Assign (

struct Zoltan_Struct * zz,

double xmin,

double ymin,

double zmin,

double xmax,

double ymax,

double zmax,

int * procs,

int * numprocs);
FUNCTION Zoltan_L B_Box_Assign(zz, xmin, ymin, zmin, Xmax, ymax, zZmax, procs, Numprocs)
INTEGER(Zoltan _INT) :: Zoltan_LB_Box_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL (Zoltan DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs

FORTRAN:

Zoltan_LB_Box_Assign isawrapper around Zoltan LB Box PP _Assign that excludes the partition assignment results.

Zoltan_L B_Box_Assign assumes the number of partitionsis equal to the number of processors; thus, the partition
assignment is equivalent to the processor assignment.

Arguments:
All arguments are analogousto thosein Zoltan LB Box PP Assign. Partition-assignment
arguments parts and numparts are not included, as processor and partitions numbers are
considered to bethe samein Zoltan_LB_Box_Assign.
Returned Value:
int Error code.

[Table of Contents | Next: Migration Functions | Previous. Load-Balancing Functiong]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_augment.html (3 of 3) [7/29/2004 12:29:12 PM]

Zoltan User's Guide: Migration Interface

Zoltan User's Guide | Next | Previous

Migration Functions

Zoltan's migration functions transfer object data to the processors in a new decomposition. Data to be transferred is
specified through the import/export lists returned by Zoltan L B_Partition (or Zoltan_L B_Balance). Alternatively, users

may specify their own import/export lists.

The migration functions can migrate objects based on their new partition assignments and/or their new processor
assignments. Behavior is determined by the MIGRATE ONLY PROC CHANGES parameter.

If requested, Zoltan can automatically transfer an application's data between processors to realize a new decomposition.
This functionality will be performed as part of the call to Zoltan LB Partition (or Zoltan LB Balance) if the

AUTO MIGRATE parameter is set to TRUE (nonzero) viaacall to Zoltan Set Param. This approach is effective for

when the datato be moved is relatively simple. For more complicated data movement, the application can leave
AUTO MIGRATE FALSE and call Zoltan_Migrate (or Zoltan_Help Migrate) itself. In either case, routines to pack

and unpack object data must be provided by the application. See the Migration Examples for examples with and without
auto-migration.

The following functions are the migration interface functions. Their detailed descriptions can be found below.

Zoltan _Invert Lists
Zoltan Migrate

The following functions are maintained for backward compatibility with previous versions of Zoltan. These functions are

applicable only when the number of partitions to be generated is equal to the number of processors on which the partitions
are computed. That is, these functions assume "partitions' and "processors” are synonymous.

Zoltan Compute Destinations
Zoltan Help Migrate

C: int Zoltan_Invert_Lists(
struct Zoltan_Struct *zz,
int num_known,
ZOLTAN ID PTR known_global_ids,
ZOLTAN _ID_PTR known local _ids,
int *known_praocs,
int *known_to_part,
int *num_found,
ZOLTAN ID PTR *found_global_ids,
ZOLTAN ID PTR *found local _ids,

int **found_procs,
int **found_to_part);

FORTRAN: FUNCTION Zoltan_Invert_Lists(zz, num_known, known_global_ids, known_local_ids,
known_procs, known_to_part, num_found, found_global_ids, found_local _ids, found_procs,
found_to_part)

INTEGER(Zoltan_INT) :: Zoltan_Invert_Lists

TYPE(Zoltan_Struct),INTENT(IN) :: zz

INTEGER(Zoltan_INT), INTENT(IN) :: num_known

INTEGER(Zoltan_INT), INTENT(OUT) :: num_found

INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids, found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids, found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_to_part, found_to_part

Zoltan_Invert_Lists computes inverse communication maps useful for migrating data. It can be used in two ways.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (1 of 6) [7/29/2004 12:29:13 PM]

Zoltan User's Guide: Migration Interface

« Given alist of known off-processor objects to be received by a processor,
compute alist of local objects to be sent by the processor to other processors; or

« Givenalist of known local objectsto be sent by a processor to other processors,
compute alist of off-processor objects to be received by the processor.

For example, if each processor knows which objects it will import from other processors, Zoltan_Invert_L ists computes
the list of objects each processor needs to export to other processors. If, instead, each processor knows which objects it
will export to other processors, Zoltan_Invert_Lists computes the list of objects each processor will import from other
processors. The computed lists are allocated in Zoltan; they should not be allocated by the application before calling
Zoltan_Invert_Lists. Theselists can be freed through acall to Zoltan LB Free Part.

Arguments:
z

num_known
known_global_ids

known_local ids
known_procs

known_to_part

num_found
found _global ids

found_local_ids
found_procs
found_to_part

Returned Value;
int

Pointer to the Zoltan structure, created by Zoltan Cr eate, to be used in this invocation of the
migration routine.
The number of known objects to be received (sent) by this processor.
An array of num_known global 1Ds of known objects to be received (sent) by this processor.
(size=num _known* NUM_GID ENTRIES)
An array of num_known local IDs of known objects to be received (sent) by this processor.
(sze=num_known* NUM_LID ENTRIES)
An array of size num_known listing the processor 1Ds of the processors that the known objects
will be received from (sent to).
An array of size num_known listing the partition numbers of the partitions that the known
objects will be assigned to.

Upon return, the number of objects that must be sent to (received from) other processors.

Upon return, an array of num_found global 1Ds of abjects to be sent (received) by this processor.
(size=num found* NUM_GID ENTRIES)

Upon return, an array of num_found local 1Ds of objects to be sent (received) by this processor.
(size=num found* NUM LID ENTRIES)

Upon return, an array of size num_found listing the processor IDs of processors that the found
objects will be sent to (received from).

An array of size num_found listing the partition numbers of the partitions that the found objects
will be assigned to.

Error code.

Note that the number of global and local ID entries(NUM_GID _ENTRIESand NUM _LID ENTRIES) should be set
using Zoltan Set Param before calling Zoltan_Invert_Lists. All processors must have the same values for these two

parameters.

C. int Zoltan_Migrate (

struct Zoltan_Struct *zz,
int num_import,
ZOLTAN_ID PTR import_global _ids,

ZOLTAN ID PTR import_local_ids,

int *import_procs,

int *import_to_part,

int num_export,

ZOLTAN ID PTR export_global ids,
ZOLTAN_ID _PTR export_local_ids,
int *export_procs,

int *export_to_part);

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (2 of 6) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Migration Interface

FORTRAN: FUNCTION Zoltan_Migrate(zz, num_import, import_global _ids, import_local_ids, import_procs,
import_to_part, num_export, export_global_ids, export_local_ids, export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global _ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

Zoltan_Migrate takes lists of objectsto be sent to other processors, along with the destinations of those objects, and
performs the operations necessary to send the data associated with those objects to their destinations. Zoltan_Migrate
performs the following operations using the application-registered functions:

o Cdl ZOLTAN PRE MIGRATE PP FN TYPE (if registered)
« For each export object, call ZOLTAN OBJ SIZE FN_ TYPE to get object sizes.
« For each export object, call ZOLTAN PACK OBJ FN TYPE to load communication buffers.

« Communicate buffers to destination processors.

o Cdl ZOLTAN MID MIGRATE PP FN TYPE (if registered).

« For each imported object, call ZOLTAN UNPACK OBJ FN_TY PE to move data from the buffer into the new
processor's data structures.

o Cal ZOLTAN POST MIGRATE PP FN TYPE (if registered).

Either export lists or import lists must be specified for Zoltan_Migrate. Both export lists and import lists may be
specified, but both are not required.

If export lists are provided, non-NULL values for input argumentsimport_global_ids, import_local_ids, import_procs,
and import_to_part are optional. The values must be non-NULL only if no export lists are provided or if the import lists
are used by the application callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN. If al processors pass NULL
arguments for the import arrays, the value of num_import should be -1.

Similarly, if import lists are provided, non-NULL values for input arguments export_global_ids, export_local _ids,
export_procs, and export_to_part are optional. The values must be non-NULL only if no import lists are provided or if the
export lists are used by the application callback functions ZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN. If al processors pass NULL
arguments for the export arrays, the value of num_export should be -1. In this case, Zoltan_Migrate computes the export
lists based on the import lists.

Arguments:
z Pointer to the Zoltan structure, created by Zoltan Create, to be used in thisinvocation of the
migration routine.
num_import The number of objects that are needed by this processor that are stored on other processors (i.e.,

the number of objects to be imported to this processor).
Use num_import=-1if all processors do not specify import arrays.

import_global ids Anarray of num_import global 1Ds of objects needed by this processor that are stored on other
processors.
(size=num_import* NUM_GID_ENTRIES).
All processors may passimport_global_ids=NULL if export lists are provided and
import_global_idsis not needed by callback functionsZOLTAN _PRE_MIGRATE PP _FN,
ZOLTAN MID MIGRATE PP FN,and ZOLTAN POST MIGRATE PP FN.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (3 of 6) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Migration Interface

import_local_ids

import_procs

import_to_part

num_export

export_global_ids

export_local_ids

export_procs

export_to_part

Returned Value;
int

An array of num_import local 1Ds of objects needed by this processor that are stored on other
processors.

(size=num_import* NUM_LID ENTRIES)

All processors may passimport_local_ids=NULL if export lists are provided and
import_local_idsis not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN.

An array of size num_import listing the processor |Ds of the processors that own objects needed
by this processor (i.e., the source processors).

All processors may passimport_procs=NULL if export lists are provided and import_procsis
not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN_MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN.

An array of size num_import listing the partitions to which imported objects should be assigned.
All processors may passimport_to part=NULL if export lists are provided and import_to_part
is not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN.

The number of objects that were stored on this processor in the previous decomposition that are
needed by other processors (i.e., the number of objects that must be sent from this processor to
other processors).

Use num_export=-1if all processors do not specify export arrays.

Anarray of num_export global IDs of objects to be sent from this processor.

(size=num export * NUM_GID_ENTRIES)

All processors may pass export_global_ids=NULL if import lists are provided and
export_global_idsis not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN,and ZOLTAN POST MIGRATE PP FN.
An array of num_export local 1Ds of objects to be sent from this processor.
(size=num export* NUM _LID ENTRIES)

All processors may pass export_local_ids=NULL if import lists are provided and
export_local_idsis not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN.

An array of size num_export listing the processor |Ds of processors that need the sent objects
(i.e., the destination processors).

All processors may pass export_procs=NULL if import lists are provided and export_procsis
not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN MID MIGRATE PP FN,and ZOLTAN POST MIGRATE PP FN.
An array of size num_export listing the partitions to which exported objects should be assigned.

All processors may pass export_to_part=NULL if import lists are provided and export_to_part
is not needed by callback functionsZOLTAN PRE MIGRATE PP FN,

ZOLTAN_MID MIGRATE PP FN, and ZOLTAN POST MIGRATE PP FN.

Error code.

Note that the number of global and local ID entries(NUM_GID ENTRIESand NUM_LID ENTRIES) should be set

using Zoltan Set Param before calling Zoltan_Migrate. All processors must have the same values for these two

parameters.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (4 of 6) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Migration Interface

C: int Zoltan_Compute _Destinations (

struct Zoltan_Struct *zz,

int num_known,

ZOLTAN_ID_PTR known_global_ids,
ZOLTAN ID PTR known local _ids,
int *known_procs,

int *num_found,

ZOLTAN ID PTR *found global ids,
ZOLTAN ID PTR *found local_ids,
int **found_procs);

FORTRAN: FUNCTION Zoltan_Compute Destinations(zz, num_known, known_global _ids, known_local _ids,
known_procs, num_found, found_global ids, found local ids, found procs)
INTEGER(Zoltan _INT) :: Zoltan_Compute Destinations
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan _INT), INTENT(IN) :: num_known
INTEGER(Zoltan _INT), INTENT(OUT) :: num_found
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: known_global_ids, found global _ids
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: known_local_ids, found local_ids
INTEGER(Zoltan _INT), POINTER, DIMENSION(:) :: known_procs, found_procs

Zoltan_Compute Destinationsisawrapper around Zoltan_Invert L iststhat excludes partition assignment arrays. It is
maintained for backward compatibility with previous versions of Zoltan.

Zoltan_Compute_Destinations assumes the number of partitionsis equal to the number of processors. The computed
lists are alocated in Zoltan; they should not be allocated by the application before calling
Zoltan_Compute Destinations. These lists can be freed through acall to Zoltan LB Free Data or

Zoltan LB Free Part.

Arguments:
All arguments are analogous to thosein Zoltan Invert Lists. Partition-assignment arrays
known_to_part and found _to_part are not included, as partition and processor numbers are
assumed to be the samein Zoltan_Compute Destinations.
Returned Value:
int Error code.

Note that the number of global and local ID entries(NUM_GID_ENTRIESand NUM_LID_ENTRIES) should be set
using Zoltan Set Param before calling Zoltan_Compute_Destinations. All processors must have the same values for
these two parameters.

C: int Zoltan_Help_Migrate (
struct Zoltan_Struct *zz,
int num_import,
ZOLTAN ID PTRimport_global ids,
ZOLTAN_ ID PTRimport_local _ids,
int *import_procs,
int num_export,
ZOLTAN_ID_PTR export_global_ids,
ZOLTAN ID PTR export_local_ids,

int *export_procs);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (5 of 6) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Migration Interface

FORTRAN: FUNCTION Zoltan_Help_Migrate(zz, num_import, import_global_ids, import_local_ids,
import_procs, num_export, export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan Help_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global _ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_Help_Migrateisawrapper around Zoltan Migrate that excludes partition assignment arrays. It is maintained
for backward compatibility with previous versions of Zoltan.

Zoltan_Help_Migrate assumes the number of partitionsis equal to the number of processors. It uses migration pre-,
mid-, and post-processing routinesZOLTAN PRE MIGRATE FN TYPE,

ZOLTAN MID MIGRATE FN TYPE,and ZOLTAN POST MIGRATE FN TYPE, respectively, which also
exclude partition assignment arrays.

Arguments:
All arguments are analogous to those in Zoltan Migrate. Partition-assignment arrays
import_to_part and export_to_part are not included, as partition and processor numbers are
assumed to be the samein Zoltan_Help_Migrate.
Returned Value:
int Error code.

[Table of Contents | Next: Ordering Interface | Previous. Functionsfor Augmenting a Decomposition]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_mig.html (6 of 6) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Ordering Interface

Zoltan User's Guide | Next | Previous

Ordering Functions

Zoltan provides limited capability for ordering a set of objects, typically given as a graph. The following functions are the
ordering interface functionsin the Zoltan library; their descriptions are included below.

Zoltan Order

C: int Zoltan_Order (
struct Zoltan_Struct *zz,
int *num_gid_entries,
int *num_lid_entries,
int num_obj,
ZOLTAN ID PTR global_ids,
ZOLTAN ID PTR local_ids,
int *rank,
int *iperm,
struct Zoltan_Order_Struct *order_info);
FORTRAN: FUNCTION Zoltan_Order(zz, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids,
rank, iperm)
INTEGER(Zoltan_INT) :: Zoltan_Order
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj
INTEGER(Zoltan_INT) :: global_ids(*), local_ids(*)
INTEGER(Zoltan_INT) :: rank(*), iperm(*)

Zoltan_Order invokes the ordering routine specified by the ORDER METHOD parameter. Results of the ordering are
returned in the arrays rank and iperm. rank[i] givesthe rank of global_idg[i] in the computed ordering, whileipermisthe
inverse permutation of rank, that is, iperm[rank[i]] = i. The ordering may be either global or local, depending on
ORDER TYPE. The arrays global_ids, local_ids, rank, and iperm should all be allocated by the application before
Zoltan_Order iscalled. Each array must have space for (at |east) num_obj elements, where num_obj is the number of
objects residing on a processor.

Arguments:
z Pointer to the Zoltan structure, created by Zoltan Create, to be used in thisinvocation of the
load-balancing routine.

num_gid_entries Upon return, the number of array entries used to describe asingle global ID. Thisvaueisthe
maximum value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries Upon return, the number of array entries used to describe asingle local ID. Thisvaueisthe
maximum value over all processors of the parameter NUM_LID_ENTRIES.

num_obj Number of objects to order on this processor. At present, num_obj should be the total number of
objects residing on a processor. In future releases, ordering only a subset of the objects may be
permitted.

global_ids Anarray of global IDs of objectsto be ordered on this processor. (size = num_obj *

num_gid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been
alocated before Zoltan_Order iscalled.

local_ids An array of local IDs of objects to be ordered on this processor. (size = num_obj *
num_lid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been
alocated before Zoltan_Order iscalled.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_order.html (1 of 2) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Ordering Interface

rank

iperm

order_info

Returned Value;

int

Upon return, an array of length num_obj containing the rank of each object in the computed
ordering. When rank[i] = j, that means that the object corresponding to global_idg[i] isthe jth
object in the ordering. (This array corresponds directly to the perm array in METIS and the
order array in ParMETIS.) Note that the rank may refer to either alocal or aglobal ordering,
depending on ORDER _TYPE. Memory for this array must have been allocated before
Zoltan_Order iscaled.

Upon return, an array of length num_obj containing the inverse permutation of rank. That is,
iperm[rank[i]] = i. In other words, iperm([j] givesthe jth object in the ordering. Memory for this
array must have been alocated before Zoltan_Order iscalled.

Upon return, this struct contains additional information about the ordering produced. This
parameter is currently not used and should always be set to NULL. It isnot included in the
FORTRAN interface.

Error code.

[Table of Contents | Next: Application-Registered Query Functions | Previous: Migration Functiong]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_interface_order.html (2 of 2) [7/29/2004 12:29:14 PM]

Zoltan User's Guide: Query Functions

Zoltan User's Guide | Next | Previous

Application-Registered Query Functions

Zoltan gets information about a processor's objects through calls to query functions. These functions must be provided by
the application. They are "registered” with Zoltan; that is, a pointer to the function is passed to Zoltan, which can then call
that function when its information is needed. Two categories of query functions are used by the library:

General Zoltan Query Functions

Migration Query Functions

In each category, avariety of query functions can be registered by the user. The query functions have a function type,
describing their purpose. Functions can be registered with a Zoltan structure in two ways: through callsto
Zoltan Set Fn or through calls to query-function-specific functions Zoltan Set <zoltan _fn_type> Fn. When a

function is registered through a call to Zoltan Set Fn, itsfunction type is passed in the fn_type argument. When
Zoltan Set <zoltan _fn_type> Fn isused to register functions, the type of the function isimplicit in the fn_ptr
argument. Each function description below includes both its function type and function prototype.

Query functions that return information about data objects owned by a processor comein two forms: list-based functions
that return information about alist of objects, and iterator functions that return information about a single object. Users
can provide either version of the query function; they need not provide both. Zoltan calls the list-based functions with the
IDs of al objects needed; this approach often provides faster performance as it eliminates the overhead of multiple
function calls. List-based functions have the word "MULTI" in their function-type name. If, instead, the application
provides iterator functions, Zoltan calls the iterator function once for each object whose datais needed. This approach,
while slower, allows Zoltan to use less memory for some data.

Some algorithms in Zoltan require that certain query functions be registered by the application; for example, geometric
partitioning agorithms such as Recursive Coordinate Bisection (RCB) require that either aZOLTAN_GEOM _FN or a
ZOLTAN GEOM MULTI FN beregistered. When a default value is specified below, the query function typeis

optional; if afunction of that type is not registered, the default values are used. Details of which query functions are
required by particular algorithms are included in the Algorithms section.

Many of the functions have both global and local object identifiers (IDs) in their argument lists. The global 1Ds provided
by the application must be unique across all processors; they are used for identification within Zoltan. Thelocal IDs are
not used by Zoltan; they are provided for the convenience of the application and can be anything the application desires.
Thelocal IDs can be used by application query routines to enable direct access to application data. For example, the
object with global ID "3295" may be stored by the application in location "15" of an array in the processor's local

memory. Both global ID "3295" and local ID "15" can be used by the application to describe the object. Then, rather than
searching the array for global 1D "3295," the application query routines can subsequently use thelocal 1D to index directly
into the local storage array. See Data Types for Object IDs for a description of global and local IDs. All of the functions

have, as their first argument, a pointer to datathat is passed to Zoltan through Zoltan Set Fn or
Zoltan Set <zoltan fn type> Fn. Thisdatais not used by Zoltan. A different set of data can be supplied for each

registered function. For example, if thelocal 1D isanindex into an array of data structures, then the data pointer might
point to the head of the data structure array.

Astheir last argument, al functions have an error code that should be set and returned by the registered function.

[Table of Contents | Next: Load-Balancing Query Functions | Previous. Migration Functions]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query.html [7/29/2004 12:29:14 PM]

Zoltan User's Guide: General Zoltan Query Functions

General Zoltan Query Functions

Zoltan User's Guide | Next | Previous

The following registered functions are used by various Zoltan algorithmsin the Zoltan library. No single algorithm uses
all the query functions; the algorithm descriptions indicate which query functions are required by individual algorithms.

Object ID Functions

ZOLTAN_NUM_OBJ FN
ZOLTAN OBJ LIST FN
ZOLTAN FIRST OBJ FN
ZOLTAN_NEXT_OBJ FN

ZOLTAN PARTITION_MULTI _FNor ZOLTAN_PARTITION_FN

Geometry-Based Functions
ZOLTAN NUM GEOM FN

ZOLTAN_GEOM_MULTI_FNorZOLTAN_GEOM_FN

Graph-Based Functions

ZOLTAN NUM EDGES MULTI FN or ZOLTAN NUM EDGES FN

ZOLTAN EDGE_LIST MULTI FNorZOLTAN EDGE LIST FN

Tree-Based Functions

ZOLTAN_NUM_COARSE OBJ FN
ZOLTAN COARSE OBJ LIST FN
ZOLTAN FIRST COARSE_OBJ FN
ZOLTAN_NEXT_COARSE_OBJ FN
ZOLTAN NUM CHILD FN
ZOLTAN CHILD LIST FN
ZOLTAN _CHILD WEIGHT FN

Border Object Functions (currently unused)

ZOLTAN NUM BORDER OBJ FN
ZOLTAN BORDER OBJ LIST FN
ZOLTAN_FIRST BORDER OBJ FN

ZOLTAN_NEXT BORDER OBJ FN

Object ID Functions

C. typedef int ZOLTAN_NUM_OBJ_FN (void *data, int *ierr);

FORTRAN: FUNCTION Get_Num_Obj(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Obj

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (1 of 21) [7/29/2004 12:29:19 PM]

Zoltan User's Guide: General Zoltan Query Functions

A ZOLTAN_NUM_OBJ FN query function returns the number of objects that are currently assigned to the processor.

Function Type: ZOLTAN_NUM_OBJ FN_TYPE
Arguments:
data Pointer to user-defined data.
ierr Error code to be set by function.
Returned Value:
int The number of objects that are assigned to the processor.

C. typedef void ZOLTAN_OBJ_LIST_FN (void *data, int num_gid entries, int num_lid_entries,
ZOLTAN ID PTR global ids, ZOLTAN ID PTR local_ids, int wgt_dim, float *obj wagts,
int *ierr);

FORTRAN: SUBROUTINE Get_Obj_List(data, num _gid entries, num _lid_entries, global_ids, local_ids,

wgt_dim, obj_wgts, ierr)

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: loca_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim

REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wagts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_LIST_FN query function fillstwo (three if weights are used) arrays with information about the
objects currently assigned to the processor. Both arrays are allocated (and subsequently freed) by Zoltan; their sizeis
determined by acall toaZOLTAN_NUM _OBJ FN query function to get the array size. For many algorithms, either a

ZOLTAN_OBJ LIST_FN query functionoraZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN
guery-function pair must be registered; however, both query options need not be provided.

Function Type: ZOLTAN OBJ LIST FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num lid entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over al processors of the parameter NUM_LID _ENTRIES.

global_ids Upon return, an array of unique global IDsfor al objects assigned to the processor.

local_ids Upon return, an array of local 1Ds, the meaning of which can be determined by the application,
for al objects assigned to the processor.

wgt_dim The number of weights associated with an object (typically 1), or O if weights are not requested.
Thisvalue is set through the parameter OBJ WEIGHT DIM.

obj_wgts Upon return, an array of object weights. Weights for object i are stored in
obj_wagtd[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, the return value of obj_wgtsis undefined
and may be NULL.

ierr Error code to be set by function.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (2 of 21) [7/29/2004 12:29:19 PM]

Zoltan User's Guide: General Zoltan Query Functions

C: typedef int ZOLTAN_FIRST_OBJ_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN ID PTR first_global_id, ZOLTAN ID PTR first_local_id, int wgt_dim,
float *first_obj_wagt, int *ierr);

FORTRAN: FUNCTION Get_First_Obj(data, num _gid_entries, num_lid entries, first_global_id, first_local_id,
wgt_dim, first_obj_wagt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_OBJ_FN query function initializes an iteration over objects assigned to the processor. It returns the
global and local I1Ds of thefirst object on the processor. Subsequent callstoaZOLTAN NEXT OBJ FN query function

iterate over and return other objects assigned to the processor. This query-function pair frees the application from having
to build an array of objects (asin ZOLTAN OBJ LIST FN) and allows Zoltan's routines to obtain only as much

information about objects as they need. For many algorithms, either aZOLTAN OBJ LIST FN query function or a
ZOLTAN_FIRST_OBJ FN/ZOLTAN NEXT OBJ FN query-function pair must be registered; however, both query
options need not be provided.

Function Type: ZOLTAN_FIRST _OBJ FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over all processors of the parameter NUM _LID ENTRIES.
first_global_id The returned value of the global ID for the first object; the value isignored if there are no
objects.
first_local_id The returned value of the local ID for the first object; the value isignored if there are no objects.
wgt_dim The number of weights associated with an object (typically 1), or O if weights are not requested.
Thisvalue is set through the parameter OBJ WEIGHT DIM.
first_obj_wgt Upon return, the first object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.
ierr Error code to be set by function.
Returned Value:
1 If first_global_id andfirst_local_id contain valid IDs of the first object.
0 If no objects are available.
C. typedef int ZOLTAN_NEXT_OBJ_FN (void * data, int num_gid_entries, int num_lid_entries,

ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, ZOLTAN ID PTR next_global_id,
ZOLTAN ID PTR next_local_id, int wgt_dim, float *next_obj_wgt, int *ierr);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (3 of 21) [7/29/2004 12:29:19 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN:

FUNCTION Get_Next_Obj(data, num_gid_entries, num _lid_entries, global_id, local_id,
next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Obj

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim

REAL (Zoltan_ FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)

wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_OBJ_FN query function is an iterator function which, when given an object assigned to the
processor, returns the next object assigned to the processor. The first object of the iteration is provided by a
ZOLTAN FIRST OBJ FN query function. This query-function pair frees the application from having to build an array

of objects (asin ZOLTAN_OBJ _LIST_FN) and allows Zoltan's routines to obtain only as much information about

objects as they need. For many algorithms, either aZOLTAN OBJ LIST FN query functionor a
ZOLTAN FIRST OBJ FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query

options need not be provided.

Function Type:
Arguments:
data
num_gid_entries

num_lid_entries

ZOLTAN_NEXT_OBJ_FN_TYPE

Pointer to user-defined data.

The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.

global_id The global ID of the previous object.
local_id Thelocal ID of the previous object.
next_global_id The returned value of the global ID for the next object; the value isignored if there are no more
objects.
next_local_id The returned value of the local ID for the next object; the value isignored if there are no more
objects.
wgt_dim The number of weights associated with an object (typically 1), or O if weights are not requested.
Thisvalue is set through the parameter OBJ WEIGHT DIM.
next_obj_ wgt Upon return, the next object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.
ierr Error code to be set by function.
Returned Value:
1 If next_global_id and next_local_id contain valid IDs of the next object.
0 If no more abjects are available.
C: typedef void ZOLTAN_PARTITION_MULTI_FN (void *data, int num_gid_entries,

int num_lid_entries, int num_obj, ZOLTAN ID PTR global_ids, ZOLTAN ID PTR local_ids,
int *parts, int *ierr);

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (4 of 21) [7/29/2004 12:29:19 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: SUBROUTINE Get_Partition_Multi(data, num _gid_entries, num _lid_entries, num_obj, global_ids,
local_ids, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: parts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_MULTI_FN query function returns alist of partitions to which given objects are currently
assigned. If aZOLTAN_PARTITION_MULTI_FNor ZOLTAN PARTITION FN isnot registered, Zoltan assumes

the partition numbers are the processor number of the owning processor. Valid partition numbers are non-negative

integers.
Function Type: ZOLTAN PARTITION_MULTI_FN_TYPE
Arguments:

data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.
num_obj The number of object IDsin arrays global_idsand local _ids.
global_ids The global IDs of the objects for which the partition numbers should be returned.
local_ids Thelocal IDs of the objects for which the partition numbers should be returned.
parts Upon return, an array of partition numbers corresponding to the global and local I1Ds.
ierr Error code to be set by function.
C. typedef int ZOLTAN_PARTITION_FN (void *data, int num_gid_entries, int num lid_entries,
ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int *ierr);
FORTRAN: FUNCTION Get_Partition(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)

INTEGER(Zoltan _INT) :: Get_Partition

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_FN query function returns the partition to which a given object is currently assigned. If a
ZOLTAN_PARTITION_FN or ZOLTAN PARTITION MULTI FN isnot registered, Zoltan assumes the partition

numbers are the processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_FN_TYPE
Arguments:

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (5 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID_ENTRIES.
global_id The global ID of the object for which the partition number should be returned.
local_id Thelocal ID of the object for which the partition number should be returned.
ierr Error code to be set by function.
Returned Value:
int The partition number for the object identified by global _id and local_id.

Geometry-based Functions

C: typedef int ZOLTAN_NUM_GEOM_FN (void *data, int *ierr);
FORTRAN: FUNCTION Get_Num_Geom(data, ierr)

INTEGER(Zoltan _INT) :: Get_ Num_Geom

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(OUT) :: ier

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_GEOM_FN query function returns the number of values needed to express the geometry of an
object. For example, for atwo-dimensional mesh-based application, (x,y) coordinates are needed to describe an object's
geometry; thusthe ZOLTAN_NUM_GEOM _FN query function should return the value of two. For asimilar
three-dimensional application, the return value should be three.

Function Type: ZOLTAN_NUM_GEOM_FN_TYPE
Arguments:
data Pointer to user-defined data.
ierr Error code to be set by function.
Returned Value:
int The number of values needed to express the geometry of an object.
C: typedef void ZOLTAN_GEOM_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries,

int num_obj, ZOLTAN ID PTR global_ids, ZOLTAN ID PTR local_ids, int num_dim,
double *geom vec, int *ierr);

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (6 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: SUBROUTINE Get_Geom_Multi(data, num_gid_entries, num _lid_entries, num_obj, global_ids,
local _ids, num_dim, geom vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj, num_dim
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
REAL (Zoltan DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_GEOM_MULTI FN guery function returns a vector of geometry valuesfor alist of given objects. The
geometry vector is alocated by Zoltan to be of size num_obj * num_dim; its format is described below.

Function Type: ZOLTAN _GEOM_MULTI_FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num lid entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over al processors of the parameter NUM_LID _ENTRIES.

num_aobj The number of object IDsin arrays global_idsand local _ids.

global_ids Array of global I1Ds of objects whose geometry values should be returned.

local_ids Array of local 1Ds of objects whose geometry values should be returned.

num_dim Number of coordinate entries per object (typicaly 1, 2, or 3).

geom vec Upon return, an array containing geometry values. For object i (specified by

global_idg[i*num _gid entries] and local_idgi*num lid entrieg], i=0,1,...,num_obj-1),
coordinate values should be stored in geom vec[i*num_dim:(i+1)*num _dim-1].

ierr Error code to be set by function.
C: typedef void ZOLTAN_GEOM_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, double *geom vec, int *ierr);
FORTRAN: SUBROUTINE Get_Geom(data, num _gid_entries, num _lid_entries, global id, local _id, geom vec,
ierr)

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan _INT), INTENT(IN) :: num_gid entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id

REAL (Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data X)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_GEOM _FN query function returns a vector of geometry values for a given object. The geometry vector is
alocated by Zoltan to be of the size returned by aZOLTAN NUM GEOM FN query function.

Function Type: ZOLTAN_GEOM_FN_TYPE

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (7 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num lid entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over al processors of the parameter NUM_LID _ENTRIES.

global _id The global ID of the object whose geometry values should be returned.

local_id Thelocal ID of the object whose geometry values should be returned.

geom_vec Upon return, an array containing geometry values.

ierr Error code to be set by function.

Graph-based Functions

C: typedef void ZOLTAN_NUM_EDGES MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN ID PTR global_ids, ZOLTAN ID PTR local_ids,
int *num_edges, int *ierr);

FORTRAN: SUBROUTINE Get_Num_Edges Multi(data, num_gid_entries, num _lid_entries, num_obj,
global _ids, local_ids, num_edges, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Edges

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT),DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL(Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES MULTI_FN query function returns the number of edges in the communication graph of
the application for each object in alist of objects. That is, for each object in the global_ids/local _ids arrays, the number of
objects with which the given object must share information is returned.

Function Type: ZOLTAN_NUM_EDGES MULTI_FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. This value isthe maximum
value over al processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over all processors of the parameter NUM _LID ENTRIES.

num_aobj The number of object IDsin arrays global_idsand local _ids.

global_ids Array of global I1Ds of objects whose number of edges should be returned.

local_ids Array of local 1Ds of objects whose number of edges should be returned.

num_edges Upon return, an array containing numbers of edges. For object i (specified by

global_idg[i*num_gid_entries] and local_idgi*num_lid_entries], i=0,1,...,num_obj-1), the
number of edges should be stored in num_edgeq]i].

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (8 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

ierr Error code to be set by function.
C: typedef int ZOLTAN_NUM_EDGES FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int *ierr);
FORTRAN: FUNCTION Get_Num_Edges(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Edges

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL(Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES FN query function returns the number of edges for a given object in the communication
graph of the application (i.e., the number of objects with which the given object must share information).

Function Type: ZOLTAN_NUM_EDGES FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM _LID ENTRIES.
global _id The global ID of the object for which the number of edges should be returned.
local_id Thelocal ID of the object for which the number of edges should be returned.
ierr Error code to be set by function.
Returned Value:
int The number of edges for the object identified by global _id and local_id.
C: typedef void ZOLTAN_EDGE_LIST_MULTI_FN (void *data, int num_gid entries,

int num_lid_entries, int num_obj, ZOLTAN ID PTR global_ids, ZOLTAN ID PTR local_ids,
int *num_edges, ZOLTAN ID PTR nbor_global_id, int *nbor_procs, int wgt_dim, float * ewgts,
int *ierr);

FORTRAN: SUBROUTINE Get_Edge List_Multi(data, num_gid_entries, num lid_entries, num_obj, global ids,
local_ids, num_edges, nbor_global _id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global _id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan _INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (9 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

A ZOLTAN_EDGE_LIST_MULTI_FN query function returns lists of global 1Ds, processor 1Ds, and optionally edge
weights for objects sharing edges with objects specified in the global_ids input array; objects share edges when they must
share information with other objects. The arrays for the returned neighbor lists are allocated by Zoltan; their sizeis
determined by acallsto ZOLTAN_NUM EDGES MULTI FNor ZOLTAN_NUM _ EDGES FN query functions.

Function Type:
Arguments:

data

num_gid entries

num_lid_entries

ZOLTAN_EDGE_LIST_MULTI_FN_TYPE

Pointer to user-defined data.
The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over al processors of the parameter NUM_GID _ENTRIES.

The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value
over all processors of the parameter NUM _LID ENTRIES.

num_obj The number of object IDs in arrays global_ids and local_ids.

global_ids Array of global 1Ds of objects whose edge lists should be returned.

local_ids Array of local 1Ds of objects whose edge lists should be returned.

num_edges An array containing numbers of edges for each object in global_ids. For object i (specified by
global_ids[i*num_gid_entries| and local_idg/i*num_lid_entries], i=0,1,...,num_obj-1), the
number of edgesis stored in num_edges]i].

nbor_global_id Upon return, an array of global I1Ds of objects sharing edges with the objects specified in
global _ids. For object i (specified by global _idg[i* num_gid_entries] and
local_idgi*num lid_entrieg], i=0,1,...,num_obj-1), edges are stored in
nbor_global_id[sum*num_gid_entries] to
nbor_global _id[(sum+num_edgeg[i])*num _gid_entries-1], where sum = the sum of
num_edgeq[j] for j=0,1,...,i-1.

nbor_procs Upon return, an array of processor |Ds that identifies where the neighboring objects reside. For
neighboring object i (stored in nbor_global_id[i*num _gid_entries]), the processor owning the
neighbor is stored in nbor_procg]i].

wgt_dim The number of weights associated with an edge (typically 1), or O if edge weights are not
requested. Thisvalueis set through the parameter EDGE_WEIGHT DIM.

ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgts is undefined
and may be NULL.

ierr Error code to be set by function.

C: typedef void ZOLTAN_EDGE_LIST_FN (void *data, int num_gid_entries, int num _lid_entries,

ZOLTAN ID PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID PTR nbor_global_id,

int *nbor_procs, int wgt_dim, float *ewgts, int *ierr);

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (10 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: SUBROUTINE Get_Edge List(data, num_gid_entries, num_lid_entries, global _id, local_id,
nbor_global_id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_FN query function returns lists of global 1Ds, processor IDs, and optionally edge weights for
objects sharing an edge with a given object (i.e., objects that must share information with the given object). The arrays for
the returned neighbor lists are allocated by Zoltan; their size is determined by acall to

ZOLTAN NUM EDGES MULTI FNor ZOLTAN NUM EDGES FN query functions.

Function Type: ZOLTAN_EDGE_LIST_FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.

global_id The global ID of the object for which an edge list should be returned.

local_id Thelocal ID of the object for which an edge list should be returned.

nbor_global_id Upon return, an array of global I1Ds of objects sharing edges with the given object.

nbor_procs Upon return, an array of processor |Ds that identifies where the neighboring objects reside.

wgt_dim The number of weights associated with an edge (typically 1), or O if edge weights are not
reguested. Thisvalueis set through the parameter EDGE_WEIGHT DIM.

ewgts Upon return, an array of edge weights, where ewgtsi*wgt_dim: (i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgtsis undefined
and may be NULL.

ierr Error code to be set by function.

Tree-based Functions

C: typedef int ZOLTAN_NUM_COARSE_OBJ_FN (void *data, int *ierr);

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (11 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: FUNCTION Get_Num_Coarse_Obj(data, ierr)
INTEGER(Zoltan _INT) :: Get_Num_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_COARSE_OBJ_FN query function returns the number of objects (elements) in the initial coarse
grid.

Function Type: ZOLTAN_NUM_COARSE_OBJ_FN_TYPE
Arguments:
data Pointer to user-defined data.
ierr Error code to be set by function.
Returned Value:
int The number of objectsin the coarse grid.
C. typedef void ZOLTAN_COARSE_OBJ _LIST_FN (void *data, int num_gid_entries,

int num _lid entries, ZOLTAN ID PTR global _ids, ZOLTAN ID PTR local ids, int *assigned,
int *num_vert, ZOLTAN ID PTR vertices, int *in_order, ZOLTAN ID PTR in_vertex,
ZOLTAN ID PTR out_vertex, int *ierr);

FORTRAN: SUBROUTINE Get_Coarse_Obj_List(data, num_gid_entries, num_lid_entries, global _ids, local_ids,
assigned, num_vert, vertices, in_order, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex,
out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: in_order, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_COARSE_OBJ _LIST_FN query function returnslists of global IDs, local IDs, vertices, and order
information for all objects (elements) of the initial coarse grid. The vertices are designated by aglobal 1D such that if two
elements share a vertex then the same ID designates that vertex in both elements and on all processors. The user may
choose to provide the order in which the elements should be traversed or have Zoltan determine the order. If the user
provides the order, then entry and exit vertices for a path through the elements may also be provided. The arrays for the
returned values are allocated by Zoltan; their sizeis determined by acall toaZOLTAN NUM COARSE OBJ FN
query function.

Function Type: ZOLTAN_COARSE_OBJ LIST_FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.
global_ids Upon return, an array of global 1Ds of al objectsin the coarse grid.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (12 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

local_ids Upon return, an array of local 1Ds of al objectsin the coarse grid.
assigned Upon return, an array of integers indicating whether or not each object is currently assigned to
this processor. A value of 1 indicatesit is assigned to this processor; avalue of O indicatesit is
assigned to some other processor. For elements that have been refined, it isignored unless
weights are assigned to interior nodes of the tree.
num_vert Upon return, an array containing the number of vertices for each object.
vertices Upon return, an array of global 1Ds of the vertices of each object. If the number of vertices for
objects O through i-1 is N, then the vertices for object i are in verticesfN*num_gid_entries:
(N+num_vert[i])*num_gid_entries]
in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed,
or O if Zoltan should determine the order.
in_vertex Upon return, an array of global 1Ds of the vertices through which to enter each element in the
user provided traversal. It is required only if the user is providing the order for the coarse grid
objects (i.e., in_order==1) and allowing Zoltan to select the order of the children in at least one
invocation of ZOLTAN CHILD LIST FN.
out_vertex Upon return, an array of global I1Ds of the vertex through which to exit each element in the user
provided traversal. The same provisions hold asfor in_vertex.
ierr Error code to be set by function.
C. typedef int ZOLTAN_FIRST_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int *assigned,
int *num_vert, ZOLTAN ID PTR vertices, int *in_order, ZOLTAN ID PTR in_vertex,
ZOLTAN ID PTR out_vertex, int *ierr);
FORTRAN: FUNCTION Get_First_ Coarse_Obj(data, num_gid entries, num _lid_entries, global_id, local_id,

assigned, num_vert, vertices, in_order, in_vertex, out_vertex, ierr)

INTEGER(Zoltan _INT) :: Get_First Coarse_Obj

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan _INT), INTENT(OUT), DIMENSION(*) :: globa _id
INTEGER(Zoltan _INT), INTENT(OUT), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vert, in_order, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_COARSE_OBJ_FN query function initializes an iteration over the objects of theinitial coarse
grid. It returnsthe global 1D, local 1D, vertices, and order information for the first object (element) of the initial coarse
grid. Subsequent callstoaZOLTAN NEXT COARSE OBJ FN iterate over and return other objects from the coarse

grid. The vertices are designated by aglobal 1D such that if two elements share a vertex then the same ID designates that
vertex in both elements and on all processors. The user may choose to provide the order in which the elements should be
traversed, or have Zoltan determine the order. If the user provides the order, then entry and exit vertices for a path through
the elements may also be provided.

Function Type:
Arguments:
data

ZOLTAN_FIRST_COARSE_OBJ_FN_TYPE

Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum

value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value

global ids

over all processors of the parameter NUM_LID_ENTRIES.
Upon return, the global 1D of the first object in the coarse grid.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (13 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

local_ids Upon return, the local 1D of the first object in the coarse grid.
assigned Upon return, an integer indicating whether or not this object is currently assigned to this
processor. A value of 1 indicatesit is assigned to this processor; avalue of O indicatesitis
assigned to some other processor. For elements that have been refined, it isignored unless
weights are assigned to interior nodes of the tree.
num_vert Upon return, the number of vertices for this object.
vertices Upon return, an array of global I1Ds of the vertices of this object.
in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed,
or O if Zoltan should determine the order.
in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. It is
required only if the user is providing the order for the coarse grid objects (i.e., in_order==1) and
allowing Zoltan to select the order of the children in at least one invocation of
ZOLTAN CHILD LIST EN.
out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The
same provisions hold asfor in_vertex.
ierr Error code to be set by function.
Returned Value:
1 If global_id and local_id contain valid IDs of the first object in the coarse grid.
0 If no coarse grid isavailable.
C. typedef int ZOLTAN_NEXT_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id,
ZOLTAN ID PTR next_global_id, ZOLTAN ID PTR next_local_id, int *assigned,
int *num vert, ZOLTAN ID PTR vertices, ZOLTAN ID PTRin vertex,
ZOLTAN ID PTR out_vertex, int *ierr);
FORTRAN: FUNCTION Get_Next_Coarse Obj(data, num _gid_entries, num lid entries, global_id, local _id,

next_global_id, next_local_id, assigned, num_vert, vertices, in_vertex, out_vertex, ierr)
INTEGER(Zoltan _INT) :: Get_ Next_Coarse Obj

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan _INT), INTENT(OUT) :: assigned, num_vertex, ierr
INTEGER(Zoltan _INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_COARSE_OBJ_FN query function is an iterator function that returns the next object in the initial
coarse grid. Thefirst object of the iteration is provided by aZOLTAN FIRST COARSE OBJ FN query function.

Function Type:
Arguments:
data

ZOLTAN_NEXT_COARSE_OBJ_FN_TYPE

Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum

value over al processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value

global_id

over all processors of the parameter NUM _LID ENTRIES.
The global ID of the previous object in the coarse grid.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (14 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

local_id Thelocal ID of the previous object in the coarse grid.
next_global_id Upon return, the global 1D of the next object in the coarse grid.
next_local_id Upon return, the local 1D of the next object in the coarse grid.
assigned Upon return, an integer indicating whether or not this object is currently assigned to this
processor. A value of 1 indicatesit is assigned to this processor; avalue of O indicatesit is
assigned to some other processor. For elements that have been refined, it isignored unless
weights are assigned to interior nodes of the tree.
num_vert Upon return, the number of vertices for this object.
vertices Upon return, an array of global IDs of the vertices of this object.
in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. Itis
required only if the user is providing the order for the coarse grid objects (i.e., in_order==1) and
allowing Zoltan to select the order of the children in at least one invocation of
ZOLTAN CHILD LIST FN.
out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The
same provisions hold asfor in_vertex.
ierr Error code to be set by function.
Returned Value:
1 If global_id and local_id contain valid 1Ds of the next object in the coarse grid.
0 If no more abjects are available.
C: typedef int ZOLTAN_NUM_CHILD_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int *ierr);
FORTRAN: FUNCTION Get_Num_Child(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Child

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL(Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_CHILD_FN query function returns the number of children of the element with the given global and
local IDs. If the element has not been refined, the number of childrenisO.

Function Type:
Arguments:
data

ZOLTAN_NUM_CHILD_FN_TYPE

Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum

value over al processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value

global_id
local_id
ierr

Returned Value:
int

over all processors of the parameter NUM _LID ENTRIES.

The global ID of the object for which the number of children is requested.
Thelocal ID of the object for which the number of children is requested.
Error code to be set by function.

The number of children.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (15 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

C:

FORTRAN:

typedef void ZOLTAN_CHILD_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN ID PTR parent_gid, ZOLTAN ID PTR parent_lid, ZOLTAN ID PTR child_gids,
ZOLTAN ID PTR child lids, int *assigned, int *num_vert, ZOLTAN ID PTR vertices,
ZOLTAN_REF _TYPE *ref_type, ZOLTAN ID PTR in_vertex, ZOLTAN ID PTR out_vertex,
int *ierr);

SUBROUTINE Get_Child_List(data, num_gid_entries, num_lid_entries, parent_gid, parent_lid,
child_gids, child_lids, assigned, num vert, vertices, ref_type, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_gid

INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_lid

INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_gids

INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_lids

INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex,
out_vertex

INTEGER(Zoltan_INT), INTENT(OUT) :: ref_type, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_CHILD_LIST_FN query function returns lists of global IDs, local 1Ds, vertices, and order information for
all children of arefined element. The vertices are designated by a global ID such that if two elements share avertex then
the same ID designates that vertex in both elements and on all processors. The user may choose to provide the order in
which the children should be traversed, or have Zoltan determine the order based on the type of element refinement used
to create the children. If the user provides the order, then entry and exit vertices for a path through the elements may also
be provided. The arrays for the returned values are allocated by Zoltan; their size is determined by acall to a
ZOLTAN_NUM_CHILD FN query function.

Function Type:
Arguments:
data

ZOLTAN_CHILD_LIST_FN_TYPE

Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum

value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value

parent_gid
parent_lid
child_gids
child_lids

assigned

num_vert
vertices

ref_type

over all processors of the parameter NUM_LID_ENTRIES.

The global ID of the object whose children are requested.
Thelocal ID of the object whose children are requested.

Upon return, an array of global 1Ds of al children of this object.
Upon return, an array of local IDs of all children of this object.

Upon return, an array of integers indicating whether or not each child is currently assigned to
this processor. A value of 1 indicatesit is assigned to this processor; avalue of O indicatesit is
assigned to some other processor. For children that have been further refined, it isignored unless
weights are assigned to interior nodes of the tree.

Upon return, an array containing the number of vertices for each object.
Upon return, an array of global IDs of the vertices of each object. If the number of vertices for
objects 0 through i-1 is N, then the vertices for object i are in verticesfN*num gid entries:
(N+num_vert[i])*num_gid_entries]
Upon return, avalue indicating what type of refinement was used to create the children. This
determines how the children will be ordered. The values currently supported are:
ZOLTAN_TRI_BISECT Bisection of triangles.
ZOLTAN_QUAD_ QUAD Quadrasection of quadrilaterals.
ZOLTAN_HEX3D_OCT Octasection of hexahedra.
ZOLTAN_OTHER_REF All other forms of refinement.
ZOLTAN_IN_ORDER Traverse the children in the order in which they are provided.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (16 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

in_vertex Upon return, an array of global IDs of the vertex through which to enter each element in the user
provided traversal. It isrequired only if the user is providing the order for the children of this
element (i.e., ref_type==ZOLTAN_IN_ORDER) but does not provide the order for the children
of at least one of those children.

out_vertex Upon return, an array of global I1Ds of the vertex through which to exit each element in the user
provided traversal. The same provisions hold asfor in_vertex.
ierr Error code to be set by function.
C. typedef void ZOLTAN_CHILD_WEIGHT_FN (void *data, int num_gid_entries,

int num_lid_entries, ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int wgt_dim,
float *obj_wgt, int *ierr);
FORTRAN: SUBROUTINE Get_Child_Weight(data, num gid_entries, num lid entries, global_id, local_id,
wgt_dim, obj_wgt, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_CHILD_WEIGHT_FN query function returns the weight of an object. Interior nodes of the refinement
tree aswell asthe leaves are allowed to have weights.

Function Type: ZOLTAN_CHILD WEIGHT_FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID_ENTRIES.

global_id The global ID of the object whose weight is requested.

local_id Thelocal ID of the object whose weight is requested.

wgt_dim The number of weights associated with an object (typicaly 1), or O if weights are not requested.
Thisvaue is set through the parameter OBJ WEIGHT DIM.

obj_wgt Upon return, an array containing the object's weights. If wgt_dim=0, the return value of
obj_wgtsis undefined and may be NULL.

ierr Error code to be set by function.

Border Object Functions (currently not used)

C. typedef int ZOLTAN_NUM _BORDER_OBJ FN (void *data, int nbor_proc, int *ierr);

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (17 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

FORTRAN: FUNCTION Get_Num_Border_Obj(data, nbor_proc, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_BORDER_OBJ_FN query function returns the number of objects sharing a processor subdomain
border (in the communication graph of the application) with a given processor.

Function Type: ZOLTAN_NUM_BORDER_OBJ_FN_TYPE
Arguments:
data Pointer to user-defined data
nbor_proc The processor 1D of the processor for which the number of border objects should be returned.
ierr Error code to be set by function.
Returned Value:
int The number of objects sharing a processor subdomain border with processor nbor_proc.
C: typedef void ZOLTAN_BORDER_OBJ_LIST_FN (void *data, int num_gid_entries,

int num_lid_entries, int nbor_proc, ZOLTAN ID PTR global_ids, ZOLTAN ID PTR local_ids,
int wgt_dim, float * obj_wgts, int *ierr);

FORTRAN: SUBROUTINE Get_Border_Obj_List(data, num _gid entries, num lid_entries, nbor_proc,
global ids, local_ids, wgt_dim, obj_wagts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan INT), INTENT(IN) :: num_gid entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: loca_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan _INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data X)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_BORDER_OBJ_LIST_FN query function fills two arrays with information about the objects currently
assigned to the processor that share a processor subdomain border (in the communication graph of the application) with a
given processor. Both arrays are allocated (and subsequently freed) by Zoltan; their sizeis determined by acall to a
ZOLTAN NUM BORDER OBJ FN query function to get the array size. For certain Zoltan algorithms, either a
ZOLTAN_BORDER_OBJ LIST_FN query function or a

ZOLTAN FIRST BORDER OBJ FN/ZOLTAN NEXT BORDER OBJ FN query-function pair must be

registered; however, both query options need not be provided.

Function Type: ZOLTAN BORDER OBJ LIST FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (18 of 21) [7/29/2004 12:29:20 PM]

Zoltan User's Guide: General Zoltan Query Functions

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value

over all processors of the parameter NUM_LID_ENTRIES.

nbor_proc The processor 1D of the processor for which border objects should be returned.
global_ids Upon return, an array of unique global IDsfor all objects assigned to the processor that share a
subdomain border with nbor_proc.
local_ids Upon return, an array of local 1Ds, the meaning of which can be determined by the application,
for al objects assigned to the processor that share a subdomain border with nbor_proc.
wgt_dim The number of weights associated with an object (typically 1), or O if weights are not requested.
Thisvaueis set through the parameter OBJ WEIGHT DIM.
obj_wgts Upon return, an array of object weights. Weights for object i are stored in
obj_wgtg[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, obj_wgtsis undefined and may be
NULL.
ierr Error code to be set by function.
C. typedef int ZOLTAN_FIRST_BORDER_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, int nbor_proc, ZOLTAN ID PTR first_global_id,
ZOLTAN ID PTR first_local_id, int wgt_dim, float *first_obj_wagt, int *ierr);
FORTRAN: FUNCTION Get_First_Border_Obj(data, num_gid_entries, num _lid_entries, nbor_proc,

first_global _id, first_local_id, wgt_dim, first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Border_Obj

<type-data>, INTENT(IN) :: data

INTEGER(Zoltan _INT), INTENT(IN) :: num_gid entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim

REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_BORDER_OBJ_FN guery function initializes an iteration over objects assigned to the processor
that share a processor subdomain border with a given processor. It returns the global and local 1Ds of the first object on
the processor along the specified subdomain border. Subsequent callstoaZOLTAN NEXT BORDER OBJ FN query

function iterate over and return other objects along the requested subdomain border. This query-function pair frees the
application from having to build an array of objects (asin ZOLTAN BORDER OBJ LIST FN) and allows Zoltan to
obtain only as much information about objects as it needs. For some algorithms, either a

ZOLTAN BORDER OBJ LIST FN query function or a

ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN query-function pair must be
registered; however, both query options need not be provided.

Function Type:
Arguments:
data

ZOLTAN_FIRST BORDER_OBJ FN_TYPE

Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum

value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalue isthe maximum value

nbor_proc
first_global id

over all processors of the parameter NUM_LID _ENTRIES.

The processor 1D of the processor for which border objects should be returned.

The returned value of the global ID for the first object; the valueisignored if there are no
objects along the border.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (19 of 21) [7/29/2004 12:29:21 PM]

Zoltan User's Guide: General Zoltan Query Functions

first_local_id The returned value of the local ID for the first object; the value isignored if there are no objects
along the border.
wgt_dim The number of weights associated with an object (typicaly 1), or O if weights are not requested.
Thisvaue is set through the parameter OBJ WEIGHT DIM.
first_obj_wgt Upon return, the first object's weights; an array of sizewgt_dim. Undefined if wgt_dim=0.
ierr Error code to be set by function.
Returned Value:
1 If first_global_id and first_local_id contain valid IDs of the first object along the processor
border.
0 If no objects are avail able along this processor border.
C: typedef int ZOLTAN_NEXT_BORDER_OBJ FN (void *data, int num_gid_entries,

int num_lid_entries, ZOLTAN ID PTR global_id, ZOLTAN ID PTR local_id, int nbor_proc,
ZOLTAN ID PTR next_global_id, ZOLTAN ID PTR next_local_id, int wgt_dim,
float * next_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_Next_Border_Obj(data, num _gid_entries, num lid entries, global_id, local _id,
nbor_proc, next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan _INT) :: Get_Next_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan _INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL (Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_BORDER_OBJ_FN query function is an iterator function which, when given an object assigned to
the processor and a neighboring processor ID, returns the next object assigned to the processor that shares a subdomain
border with the neighboring processor. Thefirst object of the iteration is provided by a

ZOLTAN_FIRST BORDER_OBJ FN query function. This query-function pair frees the application from having to

build an array of objects (asin ZOLTAN BORDER OBJ LIST FN) and allows Zoltan to obtain only as much
information about objects asit needs. For some agorithms, either aZOLTAN BORDER OBJ LIST FN query
functionor aZOLTAN FIRST BORDER OBJ FN/ZOLTAN_NEXT_BORDER_OBJ_FN query-function pair
must be registered; however, both query options need not be provided.

Function Type: ZOLTAN_NEXT_BORDER_OBJ FN _TYPE
Arguments:
data Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvaue isthe maximum
value over al processors of the parameter NUM_GID _ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM _LID ENTRIES.

global _id The global ID of the previous abject.

local_id Thelocal ID of the previous object.

nbor_proc The processor 1D of the processor for which border objects should be returned.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (20 of 21) [7/29/2004 12:29:21 PM]

Zoltan User's Guide: General Zoltan Query Functions

next_global_id
next_local_id
wgt_dim
next_obj_wgt
ierr

Returned Value:
1

0

The returned value of the global ID for the next object; the value isignored if there are no more
objects along the border.

The returned value of thelocal ID for the next object; the value isignored if there are no more
objects along the border.

The number of weights associated with an object (typically 1), or O if weights are not requested.
Thisvaueis set through the parameter OBJ WEIGHT DIM.

Upon return, the weights for the next object; an array of size wgt_dim. Undefined if wgt_dim=0.
Error code to be set by function.

If next_global_id and next_local_id contain valid IDs of the next object along the processor
border.

If no more objects are available along this processor border.

[Table of Contents | Next: Migration Query Functions | Previous. Application-Registered Query Functions]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_lb.html (21 of 21) [7/29/2004 12:29:21 PM]

Zoltan User's Guide: Migration Query Functions

Zoltan User's Guide | Next | Previous

Migration Query Functions

The following query functions must be registered to use any of the migration tools described in Migration Functions:

ZOLTAN OBJ SIZE FNor ZOLTAN OBJ SIZE MULTI FN
ZOLTAN PACK OBJ FN or ZOLTAN PACK OBJ MULTI FN
ZOLTAN_UNPACK OBJ FN or ZOLTAN UNPACK OBJ MULTI FN

The"MULTI_" versions of the packing/unpacking functions take lists of 1Ds as input and pack/unpack datafor all objects
in the lists. Only one function of each type must be provided (e.g., either aZOLTAN_PACK_OBJ_FN or

ZOLTAN_PACK_OBJ MULTI_FN, but not both).

Optional, additional query functions for migration may also be registered; these functions are called at the beginning,
middle, and end of migration in Zoltan Migrate.

ZOLTAN PRE_MIGRATE_PP FN
ZOLTAN MID MIGRATE PP FN
ZOLTAN_POST MIGRATE PP FN

For backward compatibility with previous versions of Zoltan, the following functions may be used with
Zoltan Help Migrate.

ZOLTAN PRE_MIGRATE_FN
ZOLTAN_MID_MIGRATE FN
ZOLTAN POST MIGRATE_FN

C typedef int ZOLTAN_OBJ_SIZE_FN(
void *data,
int num_gid_entries,
int num _lid_entries,
ZOLTAN ID PTR global_id,
ZOLTAN ID PTRlocal_id,
int *ierr);
FORTRAN: FUNCTION Obj_Size(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Obj_Size
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id, local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_FN query function returns the size (in bytes) of the data buffer that is needed to pack al of a
single abject's data.

Function Type: ZOLTAN_OBJ_SIZE FN_TYPE
Arguments:
data Pointer to user-defined data.
num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum

value over all processors of the parameter NUM_GID _ENTRIES.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (1 of 12) [7/29/2004 12:29:24 PM]

Zoltan User's Guide: Migration Query Functions

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID_ENTRIES.
global_id Pointer to the global 1D of the object.
local_id Pointer to thelocal 1D of the abject.
ierr Error code to be set by function.
Returned Value:
int The size (in bytes) of the required data buffer.
C: typedef void ZOLTAN_OBJ_SIZE_MULTI_FN (
void *data,

int num_gid_entries,

int num_lid_entries,

int num_ids,

ZOLTAN ID PTR global_ids,

ZOLTAN ID PTR local_ids,

int *sizes,

int *ierr);

FORTRAN: SUBROUTINE Obj_Size Multi(data, num _gid entries, num_lid_entries, num _ids, global_ids,

local_ids, sizes, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids, local_ids
INTEGER(Zoltan _INT), INTENT(OUT), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_MULTI_FN query function is the multiple-ID version of ZOLTAN OBJ SIZE FN. For a
list of objects, it returns the per-objects sizes (in bytes) of the data buffers needed to pack object data.

Function Type: ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE
Arguments:
data Pointer to user-defined data.
num gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.
num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID_ENTRIES.
num_ids The number of objects whose sizes are to be returned.
global_ids An array of global IDs of the objects. The ID for the i-th object beginsin

global_ids[i*num_gid_entries].
An array of local IDs of the objects. The ID for the i-th object beginsin

local_ids local_ids[i*num lid_entries].
sizes Upon return, array of sizes (in bytes) for each object in the ID lists.
ierr Error code to be set by function.
Returned Value:
int The size (in bytes) of the required data buffer.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (2 of 12) [7/29/2004 12:29:24 PM]

Zoltan User's Guide: Migration Query Functions

C typedef void ZOLTAN_PACK_OBJ_FN (
void *data,
int num_gid_entries,
int num _lid_entries,
ZOLTAN ID PTR global_id,
ZOLTAN ID PTRlocal_id,
int dest,
int size,
char *buf,
int *ierr);
FORTRAN: SUBROUTINE Pack_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, dest, size,
buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: dest, size
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PACK_0OBJ_FN query function allows the application to tell Zoltan how to copy all needed datafor a
given object into a communication buffer. The object's data can then be sent to another processor as part of data
migration. It may also perform other operations, such as removing the object from the processor's data structure. This
routineiscalled by Zoltan Migrate for each object to be sent to another processor.

Function Type: ZOLTAN_PACK _OBJ FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asingle local ID. Thisvalue isthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.

global _id The global ID of the object for which data should be copied into the communication buffer.

local_id Thelocal ID of the object for which data should be copied into the communication buffer.

dest The destination partition (i.e., the partition to which the object is being sent)

size The size (in bytes) of the communication buffer for the specified object (as returned by the
ZOLTAN OBJ SIZE FN query function).

buf The starting address of the communication buffer into which the object's data should be packed.

ierr Error code to be set by function.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (3 of 12) [7/29/2004 12:29:24 PM]

Zoltan User's Guide: Migration Query Functions

C:

FORTRAN:

typedef void ZOLTAN_PACK_OBJ_MULTI_FN (

void *data,

int num_gid_entries,

int num _lid_entries,

int num_ids,

ZOLTAN ID PTR global_ids,

ZOLTAN ID PTR local_ids,

int *dest,

int *sizes,

int *idx,

char *buf,

int *ierr);
SUBROUTINE Pack_Obj_Multi(data, num_gid_entries, num_lid_entries, num_ids, global_ids,
local_ids, dest, sizes, idx, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: dest
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan_User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ MULTI_FN query function isthe multiple-ID version of aZOLTAN PACK OBJ FN. It
allows the application to tell Zoltan how to copy all needed datafor a given list of objectsinto a communication buffer.

Function Type:
Arguments:
data

ZOLTAN_PACK_OBJ _FN_MULTI_TYPE

Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum

value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asingle local ID. Thisvalue isthe maximum value

num_ids
global ids

local_ids
dest
sizes

idx

buf
ierr

over all processors of the parameter NUM_LID _ENTRIES.

The number of objects to be packed.

An array of global 1Ds of the objects. The ID for the i-th object beginsin

global_idgi*num gid_entries].

An array of local 1Ds of the objects. The ID for thei-th object beginsin
local_idgi*num_lid_entrieg].

An array of destination partition numbers (i.e., the partitions to which the objects are being sent)
An array containing the per-object sizes (in bytes) of the communication buffer for each object.
For each object, an index into the buf array giving the starting location of that object's data. Data
for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf{idx[i] +sizeq[i]-1]. Because
Zoltan adds some tag information to packed data, idx[i] !'= sum[j=0,i-1](sizeg[|]).

The address of the communication buffer into which the objects' data should be packed.

Error code to be set by function.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (4 of 12) [7/29/2004 12:29:24 PM]

Zoltan User's Guide: Migration Query Functions

C typedef void ZOLTAN_UNPACK_OBJ_FN (
void *data,
int num_gid_entries,
ZOLTAN ID PTR global_id,
int size,
char *buf,
int *ierr);
FORTRAN: SUBROUTINE Unpack_Obj(data, num gid entries, global_id, size, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN) :: size
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_UNPACK _OBJ_FN query function alows the application to tell Zoltan how to copy all needed datafor a
given object from a communication buffer into the application's data structure. This operation is needed as the final step of
importing objects during data migration. The query function may also perform other computation, such as building
request lists for related data. Thisroutineis called by Zoltan _Migrate for each object to be received by the processor.

(Note: alocal ID for the object is not included in this function, asthelocal ID islocal to the exporting, not the importing,
processor.)

Function Type: ZOLTAN_UNPACK_OBJ FN_TYPE
Arguments:
data Pointer to user-defined data.

num_gid entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

global id The global ID of the object whose data has been received in the communication buffer.

size The size (in bytes) of the object's data in the communication buffer.

buf The starting address of the communication buffer for this object.

ierr Error code to be set by function.

C: typedef void ZOLTAN_UNPACK_OBJ MULTI_FN (
void *data,
int num_gid_entries,
int num_ids,
ZOLTAN ID PTR global_ids,
int *sizes,
int *idx,
char *buf,
int *ierr);

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (5 of 12) [7/29/2004 12:29:24 PM]

Zoltan User's Guide: Migration Query Functions

FORTRAN: SUBROUTINE Unpack_Obj_Multi(data, num_gid_entries, num _ids, global_ids, sizes, idx, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ MULTI_FN query function isthe multiple-ID version of a
ZOLTAN UNPACK OBJ FN. It alowsthe application to tell Zoltan how to copy all needed datafor agiven list of

objects from a communication buffer into the application's data structure.

Function Type: ZOLTAN _UNPACK 0OBJ MULTI FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalue isthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_ids The number of objects to be unpacked.
global_ids An array of_globaJ IDs of th_e objects. The ID for the i-th object beginsin
- global_ids[i*num_gid_entries].
sizes An array containing the per-object sizes (in bytes) of the communication buffer for each object.
idx For each object, an index into the buf array giving the starting location of that object's data. Data

for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf[idx[i] +sizeq[i]-1] . Because
Zoltan adds some tag information to packed data, idx[i] !'= sum[j=0,i-1](sizeg[j]).

buf The address of the communication buffer from which data is unpacked.
ierr Error code to be set by function.
C: typedef void ZOLTAN_PRE_MIGRATE_PP_FN (
void *data,

int num_gid_entries,

int num _lid_entries,

int num_import,

ZOLTAN ID PTR import_global ids,
ZOLTAN ID PTR import_local_ids,
int *import_procs,

int *import_to_part,

int num_export,

ZOLTAN ID PTR export_global_ids,
ZOLTAN ID PTR export_local_ids,
int *export_procs,

int *export_to_part,

int *ierr);

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (6 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

FORTRAN: SUBROUTINE Pre_Migrate PP(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TYPE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_PP_FN query function performs any pre-processing desired by the application. If itis
registered, it is called at the beginning of the Zoltan Migrate routine. The arguments passed to Zoltan_Migrate are

made available for use in the pre-processing routine.

Function Type:
Arguments:
data
num_gid_entries

num _lid entries

num_import
import_global _ids

import_local_ids
import_procs

import_to_part

num_export
export_global _ids
export_local_ids
export_procs
export_to_part
ierr

Default:

ZOLTAN_PRE_MIGRATE_PP_FN_TYPE

Pointer to user-defined data.
The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.
The number of objects that will be received by this processor.

An array of num_import global 1Ds of objects to be received by this processor. This array may
be NULL, asthe processor does not necessarily need to know which objects it will receive.

An array of num_import local 1Ds of objects to be received by this processor. This array may be
NULL, asthe processor does not necessarily need to know which objectsit will receive.

An array of size num_import listing the processor | Ds of the source processors. This array may
be NULL, as the processor does not necessarily need to know which objects iswill receive.

An array of size num_import listing the partitions to which objects will be imported. This array
may be NULL, asthe processor does not necessarily need to know from which objectsit will
receive.

The number of objects that will be sent from this processor to other processors.

An array of num_export global 1Ds of objects to be sent from this processor.

An array of num_export local 1Ds of objects to be sent from this processor.

An array of size num_export listing the processor 1Ds of the destination processors.
An array of size num_export listing the partitions to which objects will be sent.
Error code to be set by function.

No pre-processing isdoneif aZOLTAN_PRE_MIGRATE_PP_FN isnot registered.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (7 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

C:

FORTRAN:

typedef void ZOLTAN_MID_MIGRATE_PP_FN (

void *data,

int num_gid_entries,

int num _lid_entries,

int num_import,

ZOLTAN ID PTR import_global_ids,

ZOLTAN ID PTR import_local_ids,

int *import_procs,

int *import_to_part,

int num_export,

ZOLTAN ID PTR export_global_ids,

ZOLTAN ID PTR export_local_ids,

int *export_procs,

int *export_to_part,

int *ierr);
SUBROUTINE Mid_Migrate PP(data, num gid entries, num lid_entries, num_import,
import_global _ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local _ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan _INT), INTENT(IN) :: hum_import, num_export
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL (Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_PP_FN query function performs any processing desired by the application between the
packing and unpacking of objects being migrated. If it isregistered, it is called after export objects are packed in
Zoltan_Migrate; imported objects are unpacked after the ZOLTAN_MID_MIGRATE_PP_FN query function is called.

The arguments passed to Zoltan Migr ate are made available for use in the processing routine.

Function Type:
Arguments:

data

ZOLTAN_MID_MIGRATE_PP_FN_TYPE

Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum

value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asinglelocal ID. Thisvalueisthe maximum value

num_import

over all processors of the parameter NUM_LID_ENTRIES.
The number of objects that will be received by this processor.

import_global_ids Anarray of num_import global 1Ds of objects to be received by this processor. This array may

be NULL, as the processor does not necessarily need to know which objectsit will receive.

import_local_ids An array of num_import local 1Ds of objects to be received by this processor. This array may be

import_procs

import_to_part

num_export

NULL, asthe processor does not necessarily need to know which objectsit will receive.

An array of size num_import listing the processor 1Ds of the source processors. This array may
be NULL, asthe processor does not necessarily need to know which objects iswill receive.
An array of size num_import listing the partitions to which objects will be imported. This array
may be NULL, as the processor does not necessarily need to know from which objects it will
receive.

The number of objects that will be sent from this processor to other processors.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (8 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

export_global_ids Anarray of num_export global 1Ds of objects to be sent from this processor.
export_local_ids An array of num_export local 1Ds of objects to be sent from this processor.

export_procs An array of size num_export listing the processor IDs of the destination processors.
export_to_part An array of size num_export listing the partitions to which objects will be sent.
ierr Error code to be set by function.

Default:

No processing isdoneif aZOLTAN_MID_MIGRATE_PP_FN isnot registered.

C: typedef void ZOLTAN_POST_MIGRATE_PP_FN (

void *data,

int num_gid_entries,

int num_lid_entries,

int num_import,

ZOLTAN_ID PTR import_global_ids,
ZOLTAN ID PTR import_local _ids,
int *import_procs,

int *import_to_part,

int num_export,

ZOLTAN ID PTR export_global_ids,
ZOLTAN ID PTR export_local_ids,
int *export_procs,

int *export_to_part,

int *ierr);

FORTRAN: SUBROUTINE Post_Migrate PP(data, num_gid_entries, num _lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global _ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan INT), DIMENSION(*) or REAL (Zoltan FLOAT),
DIMENSION(*) or REAL(Zoltan DOUBLE), DIMENSION(*) or TY PE(Zoltan User Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_PP_FN query function performs any post-processing desired by the application. If itis
registered, it is called at the end of the Zoltan Migrate routine. The arguments passed to Zoltan Migrate are made

available for use in the post-processing routine.

Function Type: ZOLTAN_POST _MIGRATE PP FN TYPE
Arguments:
data Pointer to user-defined data.

num_gid_entries The number of array entries used to describe asingle global ID. Thisvalueisthe maximum
value over all processors of the parameter NUM_GID ENTRIES.

num_lid_entries The number of array entries used to describe asingle local ID. Thisvalue isthe maximum value
over all processors of the parameter NUM_LID _ENTRIES.
num_import The number of objects that will be received by this processor.

import_global ids Anarray of num_import global 1Ds of objects to be received by this processor. This array may
be NULL, asthe processor does not necessarily need to know which objectsit will receive.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (9 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

import_local_ids An array of num_import local 1Ds of objects to be received by this processor. This array may be
NULL, asthe processor does not necessarily need to know which objectsit will receive.

import_procs An array of size num_import listing the processor IDs of the source processors. This array may
be NULL, asthe processor does not necessarily need to know which objects iswill receive.

import_to part An array of size num_import listing the partitions to which objects will be imported. This array
may be NULL, as the processor does not necessarily need to know from which objectsit will
receive.

num_export The number of objects that will be sent from this processor to other processors.

export_global_ids Anarray of num_export global 1Ds of objects to be sent from this processor.
export_local _ids An array of num_export local 1Ds of objects to be sent from this processor.

export_procs An array of size num_export listing the processor 1Ds of the destination processors.
export_to_part An array of size num_export listing the partitions to which objects will be sent.
ierr Error code to be set by function.

Default:

No post-processing isdone if aZOLTAN_POST_MIGRATE_PP_FN isnot registered.

C: typedef void ZOLTAN_PRE_MIGRATE_FN (

void *data,

int num_gid_entries,

int num_lid_entries,

int num_import,

ZOLTAN ID PTR import_global ids,
ZOLTAN ID PTR import_local_ids,
int *import_procs,

int num_export,

ZOLTAN ID PTR export_global_ids,
ZOLTAN ID PTR export_local_ids,
int *export_procs,

int *ierr);

FORTRAN: SUBROUTINE Pre_Migrate(data, num_gid_entries, num _lid_entries, num_import,
import_global _ids, import_local_ids, import_procs, num_export, export_global _ids, export_local_ids,
export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_FN query function performs any pre-processing desired by applications using
Zoltan Help Migrate. Itsfunction isanalogousto ZOLTAN PRE MIGRATE PP _FEN, but it cannot be used with

Zoltan Migrate.

Function Type: ZOLTAN_PRE_MIGRATE_FN_TYPE
Arguments:
All arguments are analogousto thosein ZOLTAN PRE MIGRATE PP FN.

Partition-assignment arguments import_to_part and export_to_part are not included, as
processor and partitions numbers are considered to be the samein Zoltan Help Migrate.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (10 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

Default:
No pre-processing isdone if aZOLTAN_PRE_MIGRATE_FN is not registered.

C: typedef void ZOLTAN_MID_MIGRATE_FN (

void *data,

int num_gid_entries,

int num_lid_entries,

int num_import,

ZOLTAN ID PTR import_global ids,

ZOLTAN ID PTR import_local_ids,

int *import_procs,

int num_export,

ZOLTAN ID PTR export_global_ids,

ZOLTAN ID PTR export_local_ids,

int *export_procs,

int *ierr);
FORTRAN: SUBROUTINE Mid_Migrate(data, num_gid_entries, num_lid_entries, num_import,

import_global _ids, import_local_ids, import_procs, num_export, export_global _ids, export_local_ids,
export_procs, ierr)

<type-data>, INTENT(INOUT) :: data

INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries

INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export

INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_FN query function performs any mid-migration processing desired by applications using
Zoltan Help Migrate. Itsfunction isanalogousto ZOLTAN MID MIGRATE PP FN, but it cannot be used with

Zoltan Migrate.

Function Type: ZOLTAN_MID_MIGRATE_FN_TYPE
Arguments:
All arguments are analogous to thosein ZOLTAN MID MIGRATE PP FN.

Partition-assignment arguments import_to _part and export_to_part are not included, as
processor and partitions numbers are considered to be the samein Zoltan Help Migrate.

Default:
No processing isdoneif aZOLTAN_MID_MIGRATE_FN isnot registered.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (11 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Migration Query Functions

C typedef void ZOLTAN_POST_MIGRATE_FN (

void *data,

int num_gid_entries,

int num _lid_entries,

int num_import,

ZOLTAN ID PTR import_global ids,
ZOLTAN ID PTR import_local_ids,
int *import_procs,

int num_export,

ZOLTAN ID PTR export_global_ids,
ZOLTAN ID PTR export_local_ids,
int *export_procs,

int *ierr);

FORTRAN: SUBROUTINE Post_Migrate(data, num _gid_entries, num_lid_entries, num_import,
import_global _ids, import_local_ids, import_procs, num_export, export_global _ids, export_local_ids,
export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan _INT), INTENT(IN) :: num_gid_entries, num_lid entries
INTEGER(Zoltan _INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan _INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL (Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_ DOUBLE), DIMENSION(*) or TY PE(Zoltan_User_Data x)
wherexis 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_FN query function performs any post-processing desired by applications using
Zoltan_Help _Migrate. Itsfunction isanalogousto ZOLTAN _POST _MIGRATE_PP_FN, but it cannot be used with

Zoltan Migrate.

Function Type: ZOLTAN_POST_MIGRATE_FN_TYPE
Arguments:
All arguments are analogous to thosein ZOLTAN POST MIGRATE PP FN.

Partition-assignment arguments import_to_part and export_to_part are not included, as
processor and partitions numbers are considered to be the same in Zoltan_Help _Migrate.

Default:
No post-processing isdoneif aZOLTAN_POST_MIGRATE_FN isnot registered.

[Table of Contents | Next: Zoltan Parameters and Output Levels | Previous. Load-Balancing Query Functions]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_query_mig.html (12 of 12) [7/29/2004 12:29:25 PM]

Zoltan User's Guide: Algorithms

Zoltan User's Guide | Next | Previous

Zoltan Parameters and Output Levels

The behavior of Zoltan is controlled by several parameters and debugging-output levels. These parameters can be set by
callsto Zoltan Set Param. Reasonable default values for all parameters are specified by Zoltan. Many of the parameters

are specific to individual algorithms, and are listed in the descriptions of those algorithms. However, the parameters
below have meaning across the entire library.

General Parameters

The following parameters apply to the entire Zoltan library. While reasonable default values for al parameters are
specified by Zoltan, applications can change these values through callsto Zoltan Set Param.

Parameters:

NUM_GID _ENTRIES The number of unsigned integers that should be used to represent a global identifier (ID).
Values greater than zero are accepted.

NUM_LID ENTRIES The number of unsigned integers that should be used to represent alocal identifier (1D).
Vaues greater than or equal to zero are accepted.

DEBUG LEVEL An integer indicating how much debugging information is printed by Zoltan. Higher values
of DEBUG_LEVEL produce more output and potentially slow down Zoltan's computations.
Theleast output is produced when DEBUG _LEVEL=0. DEBUG_LEVEL primarily
controls Zoltan's behavior; most agorithms have their own parameters to control their output
level. Values used within Zoltan are listed below.
Note: Because some debugging levels use processor synchronization, all processors should
use the same value of DEBUG _LEVEL.

DEBUG_PROCESSOR Processor number from which trace output should be printed when DEBUG _LEVEL is5.

DEBUG_MEMORY Integer indicating the amount of low-level debugging information about memory-allocation
should be kept by Zoltan's Memory Management utilities. Valid valuesare 0, 1, 2, and 3.

OBJ WEIGHT_DIM The number of weights associated with an object. If this parameter is zero, al objects have
equal weight. Some a gorithms may not support multiple (multidimensional) weights.

EDGE WEIGHT _DIM The number of weights associated with an edge. If this parameter is zero, all edges have
equal weight. Many algorithms do not support multiple (multidimensional) weights.

TIMER The timer with which you wish to measure time. Valid choices are wall (based on
MPI_Wtime), cpu (based on the ANSI C library function clock), and user. The resolution
may be poor, as low as 1/60th of a second, depending upon your platform.

USE MACHINE_DESC Currently unused; will be used when heterogeneous computers are supported.
MACHINE_DESC FILE Currently unused; will be used when heterogeneous computers are supported.
Default Values:

NUM_GID_ENTRIES=1

NUM_LID_ENTRIES=1

DEBUG_LEVEL =1

DEBUG_PROCESSOR=0

DEBUG_MEMORY =1

OBJ WEIGHT DIM = 0

EDGE_WEIGHT DIM =0

TIMER = wall

USE_MACHINE_DESC =0

MACHINE_DESC FILE = /etc/local/Zoltan_Machine_Desc

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html (1 of 2) [7/29/2004 12:29:26 PM]

Zoltan User's Guide: Algorithms

Debugging Levels in Zoltan

The DEBUG_LEVEL parameter determines how much debugging information is printed to stdout by Zoltan. It isset by a
call to Zoltan Set Param. Higher values of DEBUG_LEVEL produce more output and can slow down Zoltan's
computations, especially when the output is printed by one processor at atime. The least output is produced when
DEBUG_LEVEL =0.

Descriptions of the output produced by Zoltan for each value of DEBUG_LEVEL are included below. For agiven
DEBUG_LEVEL valuen, all output for values less than or equal to n is produced.

Some high debugging levels use processor synchronization to force processors to write one-at-a-time. For example,
when DEBUG_LEVEL is greater than or equal to eight, each processor writesitslist in turn so that the lists from all
processors are not jumbled together in the output. This synchronization requires all processors to use the same value of
DEBUG_LEVEL.

DEBUG_LEVEL Output Produced
0 Quiet mode; no output unless an error or warning is produced.
Vaues of al parameters set by Zoltan Set Param and used by Zoltan.
Timing information for Zoltan's main routines.
Timing information within Zoltan's algorithms (support by algorithms is optional).

g b wWDN PP

Trace information (enter/exit) for major Zoltan interface routines (printed by the processor specified
by the DEBUG_PROCESSOR parameter).

Trace information (enter/exit) for major Zoltan interface routines (printed by all processors).

More detailed trace information in major Zoltan interface routines.

List of objects to be imported to and exported from each processor. *

© o0o~NO®

10 Maximum debug output; may include algorithm-specific output. *
1 Qutput may be serialized; that is, one processor may have to complete its output before the next processor is allowed
to begin itsoutput. This serialization is not scalable and can significantly increase execution time on large number of
processors.

[Table of Contents | Next: Load-Balancing Algorithms | Previous: Migration Query Functions]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_param.html (2 of 2) [7/29/2004 12:29:26 PM]

Zoltan User's Guide: Algorithms

Zoltan User's Guide | Next | Previous

Load-Balancing Algorithms

The following dynamic load-balancing algorithms are currently included in the Zoltan library:
Recursive Coordinate Bisection (RCB)

Recursive I nertial Bisection (RIB)

Hilbert Space-Filling Curve (HSFC)

Refinement Tree Based Partitioning (REFTREE)

ParMETIS (PARMETIS)
Jostle (JOSTLE)
Octree Partitioning (OCTPART)

The parenthetical string is the parameter value for LB METHOD parameter; the parameter is set through a call to

Zoltan Set Param.

For further analysis and discussion of the algorithms, see [Hendrickson and Devine].

Load-Balancing Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each load-balancing
method is controlled by parameters specific to partitioning which are also set by callsto Zoltan Set Param. Many of

these parameters are specific to individual partitioning algorithms, and are listed in the descriptions of the individual
algorithms. However, several have meaning across multiple partitioning algorithms. These |oad-bal ancing parameters are
described below. Unless indicated otherwise, these parameters apply to both Zoltan LB Partition and

Zoltan LB Balance.

Parameters.
LB METHOD

NUM_GLOBAL_PARTITIONS

NUM_LOCAL_PARTITIONS

RETURN_LISTS

The load-balancing algorithm used by Zoltan is specified by this parameter.
Valid values are

"RCB" (for recursive coordinate bisection),

"RIB" (for recursive inertial bisection),

"HSFC" (for Hilbert space-filling curve partitioning),
"PARMETIS" (for any of the methodsin the PaArMETIS

library),
"JOSTLE" (for any of the methods in the Jostle library),

"OCTPART" (for octree partitioning),
"REFTREE" (for refinement tree based partitioning), and
"NONE" (for no load-balancing).

Thetotal number of partitions to be generated by a call to
Zoltan LB Partition. Integer values greater than zero are accepted. Not valid

for Zoltan LB Balance.

The number of partitions to be generated on this processor by acall to

Zoltan LB Partition. Integer values greater than zero are accepted. Not valid
for Zoltan LB Balance.

Thelistsreturned by callsto Zoltan LB Partition or Zoltan LB Balance.
Valid values are "IMPORT" (to return only information about objects to be
imported to a processor), "EXPORT" (to return only information about objects
to be exported from a processor), "ALL" (to return both import and export
information) and "NONE" (to return neither import nor export information).

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html (1 of 2) [7/29/2004 12:29:26 PM]

Zoltan User's Guide: Algorithms

REMAP Within Zoltan_LB_Partition or Zoltan_L B_Balance, renumber partitions to

maximize overlap between the old decomposition and the new decomposition
(to reduce data movement from old to new decompositions). Valid values are
"0" (no remapping) or "1" (remapping). Requests for remapping are ignored
when, in the new decomposition, a partition is spread across multiple
processors or partition sizes are specified using Zoltan LB Set Part Sizes.

IMBALANCE_TOL The amount of load imbalance the partitioning algorithm should deem
acceptable. The load on each processor is computed as the sum of the weights
of objectsit is assigned. Theimbalance is then computed as the maximum load
divided by the average load. An value for IMBALANCE_TOL of 1.2 indicates
that 20% imbalance is OK; that is, the maximum over the average shouldn't
exceed 1.2.

MIGRATE_ONLY_PROC_CHANGESIf thisvalueis set to TRUE (non-zero), Zoltan's migration functions will
migrate only objects moving to new processors. They will not migrate objects
for which only the partition number has changed; the objects' processor
numbers must change as well. If thisvalueis set to FALSE (zero), Zoltan's
migration functions will migrate all objects with new partition or processor
assignments.

AUTO MIGRATE If thisvalueis set to TRUE (non-zero), Zoltan will automatically perform the
datamigration during callsto Zoltan LB Partition or Zoltan LB Balance.
A full discussion of automatic migration can be found in the description of the
migration interface functions.

Default Values:
LB METHOD = RCB
NUM_GLOBAL_PARTITIONS = Number of processors specified in
Zoltan Create.
NUM_LOCAL PARTITIONS=1
RETURN_LISTS=ALL
REMAP =1
IMBALANCE TOL =11
MIGRATE_ONLY_PROC_CHANGES=1
AUTO_MIGRATE = FALSE

[Table of Contents | Next: Recursive Coordinate Bisection (RCB) | Previous. Zoltan Parameters and Output L evel]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg.html (2 of 2) [7/29/2004 12:29:26 PM]

Zoltan User's Guide: RCB

Zoltan User's Guide | Next | Previous

Recursive Coordinate Bisection (RCB)

An implementation of Recursive Coordinate Bisection (RCB) due to Steve Plimpton of Sandia National Laboratoriesis
included in Zoltan. RCB was first proposed as a static |oad-balancing algorithm by Berger and Bokhari, but is attractive as
a dynamic load-balancing al gorithm because it implicitly produces incremental partitions. In RCB, the computational
domain isfirst divided into two regions by a cutting plane orthogonal to one of the coordinate axes so that half the work
load isin each of the sub-regions. The splitting direction is determined by computing in which coordinate direction the set
of objectsismost elongated, based upon the geometric locations of the objects. The sub-regions are then further divided
by recursive application of the same splitting algorithm until the number of sub-regions equals the number of processors.
Although this algorithm was first devised to cut into a number of sets which is a power of two, the set sizesin a particular
cut needn't be equal. By adjusting the partition sizes appropriately, any number of equally-sized sets can be created. If the
parallel machine has processors with different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan
implementation of RCB has several parameters which can be modified by the Zoltan Set Param function.

Information about the sub-regions generated by RCB can be obtained by an application through callsto
Zoltan RCB Box. Thisfunction is not required to perform load balancing; it only provides auxiliary information to an

application.

Method String:
Parameters.
RCB_OVERALLOC

RCB_REUSE

RCB_OUTPUT LEVEL
CHECK_GEOM

KEEP_CUTS

AVERAGE_CUTS

RCB_LOCK_DIRECTIONS

RCB_SET_DIRECTIONS

RCB

The amount by which to over-allocate temporary storage arrays for objects within the
RCB algorithm when additional storage is due to changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

Flag to indicate whether to use previous cuts asinitial guesses for the current RCB
invocation.

0 =don't use previous cuts; 1 = use previous cuts.

Flag controlling the amount of timing and diagnostic output the routine produces.

0 =no output; 1 = print summary; 2 = print data for each processor.

Flag controlling the invocation of input and output error checking.

0 =don't do checking; 1 = do checking.

Should information about the cuts determining the RCB decomposition be retained? It
costs a bit of time to do so, but thisinformation is necessary if the application wants to
obtain the bounding box of a partition (viacallsto Zoltan_RCB_Box) or add more
objects to the decomposition (viacallsto Zoltan LB Point PP _Assign or to
Zoltan LB Box PP Assign).

0 =don't keep cuts; 1 = keep cuts.

When set to one, coordinates of RCB cutting planes are computed to be the average of
the coordinates of the closest object on each side of the cut. Otherwise, coordinates of
cutting planes may equal those of one of the closest objects.

0 =don't average cuts; 1 = average cuts.

Flag that determines whether the order of the directions of the cuts is kept constant
after they are determined the first time RCB is called.

0 =don't lock directions; 1 = lock directions.

If thisflag is set, the order of cutsis changed so that all of the cutsin any direction are
done as a group. The number of cutsin each direction is determined and then the value
of the parameter is used to determine the order that those cuts are made in. When 1D
and 2D problems are partitioned, the directions corresponding to unused dimensions
areignored.

0 =don't order cuts; 1 = Xyz; 2 = xzy; 3 =yzX; 4 = yxz; 5 = zxy; 6 = zyX;

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rch.html (1 of 3) [7/29/2004 12:29:27 PM]

Zoltan User's Guide: RCB

RCB_RECTILINEAR BLOCKS Flag controlling the shape of the resulting regions. If this option is specified, then
when acut is made, al of the dots located on the cut are moved to the same side of the
cut. The resulting regions are then rectilinear. When these dots are treated as a group,
then the resulting load balance may not be as good as when the group of dots is split
by the cut.

0 = move dots individually; 1 = move dots in groups.

Default:
RCB_OVERALLOC=1.0
RCB_REUSE=0
RCB_OUTPUT_LEVEL =0
CHECK_GEOM =1
KEEP_CUTS=0
AVERAGE_CUTS=0
RCB_LOCK_DIRECTIONS=0
RCB_SET_DIRECTIONS=0
RCB_RECTILINEAR BLOCKS=0

Required Query Functions:
ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FN or
ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair

ZOLTAN NUM_GEOM FN
ZOLTAN GEOM MULTI FN or ZOLTAN GEOM FN

C. int Zoltan_RCB_Box (
struct Zoltan_Struct * zz,
int part,
int *ndim,
double *xmin,
double *ymin,
double *zmin,
double * xmax,
double *ymax,
double * zmax);
FORTRAN: FUNCTION Zoltan_RCB_Box(zz, part,ndim, xmin, ymin, zmin, Xmax, ymax, Zmax)
INTEGER(Zoltan_INT) :: Zoltan_RCB_Box
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan _INT), INTENT(IN) :: part
INTEGER(Zoltan _INT), INTENT(OUT) :: ndim
REAL (Zoltan_ DOUBLE), INTENT(OUT) :: xmin, ymin, zmin, xmax, ymax, Zmax

In many settings, it is useful to know a partition's bounding box generated by RCB. This bounding box describes the
region of space assigned to a given partition. Given an RCB decomposition of space and a partition number,
Zoltan_RCB_Box returns the lower and upper corners of the region of space assigned to the partition. To use this routine,
the parameter KEEP_CUT S must be set to TRUE when the decomposition is generated. This parameter will cause the
sequence of geometric cuts to be saved, which is necessary for Zoltan_ RCB_Box to do itsjob.

Arguments:
z Pointer to the Zoltan structure created by Zoltan Create.
part Partition number of partition for which the bounding box should be returned.
ndim Upon return, the number of dimensions in the partitioned geometry.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rch.html (2 of 3) [7/29/2004 12:29:27 PM]

Zoltan User's Guide: RCB

Xmin, ymin, zmin Upon return, the coordinates of the lower extent of bounding box for the partition. If the
geometry istwo-dimensional, zminis-DBL_MAX. If the geometry is one-dimensional, yminis
-DBL_MAX.
Xmax, ymax, zmax Upon return, the coordinates of the upper extent of bounding box for the partition. If the
geometry istwo-dimensional, zmax is DBL_MAX. If the geometry is one-dimensional, ymax is
DBL_MAX.
Returned Value:

int Error code.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous. Load-Balancing Algorithms]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rch.html (3 of 3) [7/29/2004 12:29:27 PM]

Zoltan User's Guide: RIB

Zoltan User's Guide | Next | Previous

Recursive Inertial Bisection (RIB)

An implementation of Recursive Inertial Bisection (RIB) isincluded in Zoltan. RIB was proposed as a load-balancing
algorithm by Williams and later studied by Taylor and Nour-Omid, but itsorigin is unclear. RIB is similar to RCB in that
it divides the domain based on the location of the objects being partitioned by use of cutting planes. In RIB, the
computational domain isfirst divided into two regions by a cutting plane orthogonal to the longest direction of the domain
so that half the work load isin each of the sub-regions. The sub-regions are then further divided by recursive application
of the same splitting algorithm until the number of sub-regions equals the number of processors. Although this algorithm
was first devised to cut into a number of setswhich isa power of two, the set sizesin aparticular cut needn't be equal. By
adjusting the partition sizes appropriately, any number of equally-sized sets can be created. If the parallel machine has
processors with different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan implementation of
RIB has several parameters which can be modified by the Zoltan Set Param function.

Method String:
Parameters.
RIB_OVERALLOC

RIB_OUTPUT LEVEL
CHECK_GEOM

KEEP_CUTS

AVERAGE_CUTS

Default:

Required Query Functions:

RIB

The amount by which to over-allocate temporary storage arrays for objects within the
RIB agorithm when additional storage is due to changesin processor assignments.

1.0 = no extra storage alocated; 1.5 = 50% extra storage; etc.

Flag controlling the amount of timing and diagnostic output the routine produces.

0 =no output; 1 = print summary; 2 = print data for each processor.

Flag controlling the invocation of input and output error checking.

0 = don't do checking; 1 = do checking.

Should information about the cuts determining the RIB decomposition be retained? It
costs a bit of timeto do so, but thisinformation is necessary if application wantsto add
more objects to the decomposition viacalsto Zoltan LB Point PP _Assign or to
Zoltan LB Box PP Assign.

0 =don't keep cuts; 1 = keep cuts.

When set to one, coordinates of RIB cutting planes are computed to be the average of the
coordinates of the closest object on each side of the cut. Otherwise, coordinates of
cutting planes may equal those of one of the closest objects.

0 = don't average cuts; 1 = average cuts.

RIB_OVERALLOC = 1.0
RIB_OUTPUT LEVEL =0
CHECK_GEOM =1
KEEP_CUTS=0
AVERAGE_CUTS=0

ZOLTAN_NUM OBJ FN

ZOLTAN OBJ LIST FN or
ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair

ZOLTAN_ NUM_GEOM FN
ZOLTAN_GEOM MULTI FN or ZOLTAN GEOM FN

[Table of Contents | Next: Hilbert Space-Filling Curve Partitioning | Previous: Recursive Coordinate Bisection (RCB)]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_rib.html [7/29/2004 12:29:27 PM]

Zoltan User's Guide: HSFC

Zoltan User's Guide | Next | Previous

Hilbert Space Filling Curve (HSFC)

The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensionsinto the interval [0,1]. The
Hilbert functions that map [0, 1] to normal spatial coordinates are also provided. (The one-dimensional inverse Hilbert
curve is defined here as the identity function, f(x)=x for all x.)

The HSFC partitioning algorithm seeks to divide [0,1] into P intervals each containing the same weight of objects
associated to these intervals by their inverse Hilbert coordinates. N bins are created (where N > P) to partition [0,1]. The
weights in each bin are summed across all processors. A greedy algorithm sums the bins (from left to right) placing a cut
when the desired weight for current partition interval is achieved. This process is repeated as needed to improve
partitioning tolerance by atechnique that maintains the same total number of bins but refines the bins previously
containing a cut.

HSFC returns an warning if the final imbalance exceeds the user specified tolerance.

This code implements both the point assign and box assign functionality. The point assign determines an appropriate
partition (associated with a specific group of processors) for anew point. The box assign determines the list of processors
whose associated subdomains intersect the given box. In order to use either of these routines, the user parameter
KEEP_CUTS must be turned on. Both point assign and box assign now work for points or boxes anywhere in space even
if they are exterior to the original bounding box. If a partition is empty (due to the partition being assigned zero work), it
isnot included in the list of partitions returned by box assign. Note: the original box assign algorithm was not rigorous
and may have missed partitions. This version is both rigorous and fast.

The Zoltan implementation of HSFC has one parameter that can be modified by the Zoltan Set Param function.

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in the Octree partitioner and on the BSFC
partitioning implementation by Andrew C. Bauer, Department of Engineering, State University of New Y ork at Buffalo,
as his summer project at SNL in 2001. The box assign algorithm is loosely based on the papers by Lawder referenced both
in the developers guide and the code itself. NOTE: This code can be trivially extended to any space filling curve by
providing the tables implementing the curve's state transition diagram. The only dependance on the curve is through the
tables and the box assign algorithm will work for all space filling curves (if we have their tables.)

Please refer to the Zoltan Developers Guide, Appendix: Hilbert Space Filling Curve (HSFC) for more detailed
information about these algorithms.

Method String: HSFC
Parameters:
KEEP_CUTS Information about cuts and bounding box is necessary if the application wants to add more objects

to the decomposition viacallsto Zoltan LB Point PP Assign or to
Zoltan LB Box PP Assign.
0 =don't keep cuts; 1 = keep cuts.

Default:
KEEP_CUTS=0
Required Query
Functions:
ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FNor ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair
ZOLTAN NUM GEOM FN

ZOLTAN_GEOM MULTI FN or ZOLTAN GEOM FN

[Table of Contents | Next: Refinement Tree Partitioning | Previous. Recursive Inertial Bisection]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_hsfc.html [7/29/2004 12:29:27 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_hsfc.html

Zoltan User's Guide: Refinement Tree Based Partition

Zoltan User's Guide | Next | Previous

Refinement Tree Partitioning (REFTREE)

The refinement tree based partitioning method is due to William Mitchell of the National Institute of Standards and
Technology [Mitchell]. It is closely related to the Octree and Space-Filling Curve methods, except it uses the tree that

represents the adaptive refinement process that created the grid. This tree is constructed through the tree-based query
functions.

Each node of the refinement tree corresponds to an element that occurred during the grid refinement process. The first
level of the tree (the children of the root of the tree) correspondsto the initial coarse grid, one tree node per initial
element. It is assumed that the initial coarse grid does not change through the execution of the program, except that the
local IDs, assignment of elements to processors, and weights can change. If any other aspect of the coarse grid changes,
then the Zoltan structure should be destroyed and recreated. The children of anode in the tree correspond to the elements
that were created when the corresponding element was refined. The children are ordered such that a traversal of the tree
creates a space-filling curve within each initial element. If the initial elements can be ordered with a contiguous path
through them, then the traversal creates a space-filling curve through all the elements. Each element has a designated "in"
vertex and "out" vertex, with the out vertex of one element being the same as the in vertex of the next el ement in the path,
in other words the path goes through a vertex to move from one element to the next (and does not go out the same vertex
it camein).

The user may allow Zoltan to determine the order of the coarse grid elements, or may specify the order, which might be
faster or produce a better path. If the user provides the order, then the in/out vertices must also be supplied. Similarly, the
user may specify the order and in/out vertices of the child elements, or allow Zoltan to determine them. If the user knows
how to provide a good ordering for the children, this may be significantly faster than the default general agorithm.
However, accelerated forms of the ordering algorithm are provided for certain types of refinement schemes and should be
used in those cases. See ZOLTAN CHILD LIST FN. If the user always specifies the order, then the vertices and in/out

vertices are not used and do not have to be provided.

Weights are assigned to the nodes of the tree. These weights need not be only on the leaves (the elements of the final
grid), but can aso be on interior nodes (for example, to represent work on coarse grids of a multigrid algorithm). The
default weights are 1.0 at the leaves and 0.0 at the interior nodes, which produces a partition based on the number of
elementsin each partition. Aninitial tree traversal is used to sum the weights, and a second traversal to cut the
gpace-filling curve into appropriately-sized pieces and assign elements to partitions. The number of partitionsis not
necessarily equal to the number of processors.

The following limitations should be removed in the future.
« For multicomponent weights, only the first component is used.

» Heterogeneous architectures are not supported, in the sense that the computational load is equally divided over the
processors. A vector of relative partition sizesis used to determine the weight assigned to each partition, but they are
currently al equal. In the future they should be input to reflect heterogeneity.

Method String: REFTREE
Parameters.

REFTREE HASH S ZE The size of the hash table to map from global IDsto refinement tree nodes. Larger values
require more memory but may reduce search time.

Default:
REFTREE_HASH_SIZE = 16384
Required Query
Functions:
ZOLTAN NUM COARSE OBJ FN
ZOLTAN COARSE OBJ LIST FNor
ZOLTAN FIRST COARSE OBJ FN/ZOLTAN NEXT COARSE OBJ FN pair

ZOLTAN NUM CHILD FN

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html (1 of 2) [7/29/2004 12:29:28 PM]

Zoltan User's Guide: Refinement Tree Based Partition

ZOLTAN CHILD LIST FN
ZOLTAN CHILD WEIGHT_FN

[Table of Contents | Next: ParMETIS | Previous: Hilbert Space-Filling Curve Partitioning]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_reftree.html (2 of 2) [7/29/2004 12:29:28 PM]

Zoltan User's Guide: ParMETIS Interface

Zoltan User's Guide | Next | Previous

ParMETIS

ParMETISisaparallel library for graph partitioning (for static load balancing) and repartitioning (for dynamic load
balancing) developed at the University of Minnesota by Karypis, Schloegel and Kumar [Karypis and Kumar]. PaArMETIS

istherefore strictly speaking not a method but rather a collection of methods. In the Zoltan context, ParMETIS isa
method with many sub-methods. Zoltan provides an interface to al the ParMETIS (sub-)methods. The user selects which
ParMETIS method to use through the parameter PARMETIS METHOD. Most of the ParMETIS methods are based on
either multilevel Kernighan-Lin partitioning or a diffusion algorithm. The names of the PaArMETIS methods used by
Zoltan are identical to those in the ParMETIS library. For further information about the various ParMETIS methods and

parameters, please consult the ParMETIS User's Guide.

Graph partitioning is a useful abstraction for load balancing. The main ideais to represent the computational application
as aweighted graph. The nodes or verticesin the graph correspond to objectsin Zoltan. Each object may have aweight
that normally represents the amount of computation. The edges or arcsin the graph usually correspond to communication
costs. In graph partitioning, the problem is to find a partitioning of the graph (that is, each vertex isassigned to one out of
k possible sets called partitions) that minimizes the cut size (weight) subject to the partitions having approximately equal
size (weight). In repartitioning, it is assumed that a partitioning already exists. The problem isto find a good partitioning
that isalso "similar" in some sense to the existing partitioning. This keeps the migration cost low. All the problems
described above are NP-hard so no efficient exact algorithm is known. We remark that in Zoltan 1.*, the number of
partitions is always the same as the number of MPI processes (which is normally equal to the number of processors).

We give only abrief summary of the various PaArMETIS methods here; for more details see the ParMETIS documentation.
The methods fall into three categories:

1. Part* - Perform graph partitioning without consideration of theinitial distribution.
2. AdaptiveRepart (ParMETIS 3) and Repart* (ParMETIS 2) - Incremental agorithms with small migration cost.

3. Refine* - Refines agiven partitioning (balance). Can be applied multiple times to reduce the communication cost
(cut weight) if desired.

Asarule of thumb, use one of the Part* methods if you have a poor initial balance and you are willing to spend some time
doing migration. One such case is static load balancing; that is, you need to balance only once. Use AdaptiveRepart or the
Repart* methods when you have a reasonably good load balance that you wish to update incrementally. These methods
are well suited for dynamic load balancing (for example, adaptive mesh refinement). A reasonable strategy isto call
PartkK way once to obtain agood initial balance and later update this balance using AdaptiveRepart (Repart* in ParMetis
2.0).

Zoltan is currently compatible with ParMETIS versions 3.1 and 2.0. There is no guarantee that Zoltan will work correctly
if you have a different version of ParMETIS on your computer. (ParMETIS 3.0 will work with Zoltan in most cases, but is
not officialy supported. ParMETIS 3.1 is highly recommended. The 2.0 version will soon become obsolete and may not
be supported in future Zoltan versions.) The ParMETIS source code can be obtained from the ParMETIS home page. Asa
courtesy service, arecent, compatible version of the ParMETIS source code is distributed with Zoltan. However,
ParMETIS isacompletely separate library. If you do not wish to install ParMETIS, it is possible to compile Zoltan
without any referencesto ParMETIS (when you 'make’ Zoltan, comment out the PARMETIS_LIBPATH variablein the
configuration file Ultilities/Config/Config.< platform>).

Note that Zoltan ignores the imbal ance tolerance parameter IMBALANCE_TOL when ParMETIS 2.0 is used (the default
value 1.05 isused), whileIMBALANCE_TOL works correctly with ParMETIS 3.0. Zoltan supports the multiconstraint
feature of ParMETIS 3 through multiple object weights (see OBJ WEIGHT_DIM).

The graph given to Zoltan/ParMETIS must be symmetric. Any self edges (loops) will be ignored. Multiple edges between
apair of verticesis not allowed. All weights must be non-negative. The graph does not have to be connected.

Method String: PARMETIS
Parameters:

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (1 of 2) [7/29/2004 12:29:28 PM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

Zoltan User's Guide: ParMETIS Interface

PARMETIS METHOD

PARMETIS OUTPUT_LEVEL

PARMETIS COARSE_ALG
PARMETIS SEED
PARMETIS ITR

USE_OBJ SIZE

CHECK_GRAPH

SCATTER_GRAPH

Default values:

Required Query Functions:
For al submethods:

Only PartGeom & PartGeomKway:

All but PartGeom:

The ParMETIS method to be used; currently nine are available.

PartKway - multilevel Kernighan-Lin partitioning

PartGeom - space filling curves (coordinate based)

PartGeomKway - hybrid method based on PartKway and PartGeom (needs both
graph data and coordinates)

AdaptiveRepart - adaptive repartitioning (only in ParMETIS 3.0 and higher)
RepartLDiffusion - diffusion algorithm (local)

RepartGDiffusion - diffusion algorithm (global)

RepartRemap - multilevel partioning with remap seeking to minimize migration cost
RepartMLRemap - similar to RepartRemap but with additional multilevel
refinement

RefineKway - refine the current partitioning (balance)

The method names are case insensitive.

Amount of output the load-balancing algorithm should produce.

0 =no output, 1 = print timing info. Turning on more bits displays more information
(for example, 3=1+2, 5=1+4, 7=1+2+4).

Coarse agorithm for PartKway. 1 = serial, 2 = parallel. (ParMETIS 2 only)

Random seed for ParMETIS.

Ratio of interprocessor communication timeto redistribution time. A high value will
emphasi ze reducing the edge cut, while a small value will try to keep the change in
the new partition (distribution) small. This parameter is only used by
AdaptiveRepart. A value of between 100 and 1000 is good for most problems.

Use (or not use) the available information about object sizes to estimate migration
cost. This parameter is currently only relevant for AdaptiveRepart.

Level of error checking for graph input: O = no checking, 1 = on-processor checking,
2 = full checking. (CHECK _GRAPH==2 isvery slow and should be used only
during debugging).

Scatter graph data by distributing contiguous chunks of objects (vertices) of roughly
equal sizeto each processor before calling the partitioner. 0 = don't scatter; 1 =
scatter only if all objects are on a single processor; 2 = scatter if at least one
processor owns no objects (recommended to avoid abug in PArMETIS 2.0); 3=
aways scatter.

PARMETIS METHOD = RepartGDiffusion
PARMETIS OUTPUT LEVEL =0
PARMETIS COARSE_ALG =2

PARMETIS SEED = 15

PARMETIS ITR = 100

USE OBJ SIZE=1

CHECK_GRAPH =1

SCATTER GRAPH =1

ZOLTAN_NUM_ OBJ FN

ZOLTAN OBJ LIST FNor
ZOLTAN _FIRST OBJ FN/ZOLTAN NEXT_OBJ _FN pair

ZOLTAN NUM GEOM FN
ZOLTAN_GEOM MULTI FN or ZOLTAN GEOM FN

ZOLTAN NUM EDGES MULTI FNor ZOLTAN NUM EDGES FN
ZOLTAN EDGE_LIST MULTI FNor ZOLTAN EDGE_LIST FN

[Table of Contents | Next: Jostle |

Previous: Refinement Tree Partitioning]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (2 of 2) [7/29/2004 12:29:28 PM]

Zoltan User's Guide: Jostle Interface

Zoltan User's Guide | Next | Previous

Jostle

Jostleisalibrary for graph (mesh) partitioning and load balancing developed at the University of Greenwich, London,
UK, by Chris Walshaw [Jostle, Walshaw]. The parallel version of Jostle is sometimes called pjostle. In the Zoltan context,

the name Jostle always refers to the parallel version of the library. The main algorithm used in Jostle is based on
multilevel graph partitioning, and a diffusion-type method is available for repartitioning. Hence the Jostle library is very
similar to ParMETIS. Seethe ParMETIS section for a brief description of graph partitioning as a model for load

balancing.

At present, only the most common Jostle options are supported by Zoltan. These are briefly described below. For further
details, see the documentation available from the Jostle home page. Other options may be added to Zoltan upon request.

Note that Jostle is not distributed with Zoltan. If you wish to use Jostle within Zoltan, you must first obtain alicense for
Parallel Jostle and install it on your system. The licenseis currently free for academic use. Zoltan has been tested only
with parallel Jostle version 1.2.* and may be incompatible with other versions.

Method String: JOSTLE

Parameters:
JOSTLE_OUTPUT_LEVEL Amount of output Jostle should produce. (integer)
JOSTLE_THRESHOLD Threshold at which the graph contraction phase is stopped. (integer)

JOSTLE_GATHER THRESHOLD Duplicate coarse graph on all processors when there are fewer than this number of
nodes. (integer)

JOSTLE_MATCHING Matching algorithm for graph contraction. (Valid values are "local" and "global".)

JOSTLE_REDUCTION When reduction is turned off, Jostle performs a diffusion-type algorithm instead of
multilevel graph partitioning. (Valid values are "on" and "off".)

JOSTLE_CONNECT Make a disconnected graph connected before partitioning. (Valid values are "on"
and "off".)

CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 = on-processor
checking, 2 = full checking. (CHECK_GRAPH==2 isvery slow and should be
used only during debugging).

SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects (vertices) of

roughly equal size to each processor before calling the partitioner. O = don't scatter;
1 = scatter only if all objects are on asingle processor; 2 = scatter if at least one
processor owns no objects; 3 = always scatter.

Default values: See the Jostle documentation. See our ParMETIS section for the last two
parameters.

Required Query Functions:
ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FN or
ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair
ZOLTAN NUM EDGES MULTI FNorZOLTAN NUM EDGES FN
ZOLTAN EDGE LIST MULTI FNor ZOLTAN EDGE LIST FN

[Table of Contents | Next: Octree Partitioning | Previous: ParMETIS]

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_jostle.html [7/29/2004 12:29:28 PM]

http://www.gre.ac.uk/jostle/
http://www.gre.ac.uk/jostle/
http://www.gre.ac.uk/jostle/

Zoltan User's Guide: Octree Partitioning

Zoltan User's Guide | Next | Previous

Octree Partitioning (OCTPART)

The Octree Partitioning algorithm is based upon work in load balancing for parallel mesh generation at Rensselaer
Polytechnic Institute [Flaherty, Loy et al.]. It wasimplemented in Zoltan by Luis Gervasio, Department of Computer

Science, Rensselaer Polytechnic Institute, as his summer project in 1998 [Gervasio]. An octreeis a spatial decomposition

of the computational domain in which the root of the tree, representing the entire domain, is recursively divided by two in
each coordinate direction (producing eight or four "child" octantsin 3D or 2D, respectively) until each subregion holds at
most an application-specified number of objects. These subregions are represented by the leaves of the octree. The octree
data structure iswidely used in mesh generation and adaptive mesh refinement [Bachmann et al., Shephard and Georges).
The octree resulting from such a spatial decomposition of the domain can be used to partition an application's work
[Edwards, Pilkington and Baden, Warren and Salmon]. To partition an octree, atraversal of the treeisused to definea
global ordering on the leaves of the octree. This global ordering is often referred to as a Space-Filling Curve (SFC). The
leaves of the octree can be easily assigned to processorsin a manner which equally distributes work by assigning slices of
the ordered list to processors. Different tree-traversal algorithms produce different global orderings or SFCs, with some
SFCs having better connectivity and partition quality properties than others. Currently, Morton Indexing (i.e., Z-curve),
Grey Code, and Hilbert SFCs are supported. Morton Indexing and Grey Code SFCs are the ssimplest (and currently, the
fastest) of the SFC agorithms, but they produce lower-quality partitions than the Hilbert SFC.

Method String: OCTPART
Parameters:
OCT _DIM Specifies whether the 2D or 3D Octree algorithms should be used. The 3D algorithms can

be used for 2D problems, but much memory will be wasted to alow for a non-existent
third dimension. Similarly, a 2D algorithm can be used for 3D surface meshes provided
that the surface can be projected to the xy-plane without overlapping points.
2 = use 2D dgorithm; 3 = use 3D a gorithm.

OCT_METHOD The SFC to be used.
0 = Morton Indexing; 1 = Grey Code; 2 = Hilbert.

OCT_MINOBJECTS The minimum number of objectsto allow in aleaf octant of the octree. These objects will
be assigned as a group to a processor, so this parameter hel ps define the granularity of the
load-balancing problem. Values greater than or equal to one are allowable.

OCT_MAXOBJECTS The maximum number of objectsto alow in aleaf octant of the octree. These objects will
be assigned as a group to a processor, so this parameter hel ps define the granularity of the
load-balancing problem. Values greater than or equal to one are allowable.

OCT _OUTPUT _LEVEL Amount of output the load-balancing algorithm should produce.

0 = no statistics; 1 = statistics summary; 2 = debugging information; 3 = datafor
generating plots.

Default:
OCT DIM=3
OCT_METHOD =2
OCT_MINOBJECTS= 10
OCT_MAXOBJECTS= 40
OCT_OUTPUT_LEVEL =0

Required Query Functions:
ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FNor ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN
pair
ZOLTAN NUM GEOM FEN
ZOLTAN GEOM MULTI FNorZOLTAN GEOM FN

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_oct.html (1 of 2) [7/29/2004 12:29:29 PM]

Zoltan User's Guide: Octree Partitioning

[Table of Contents | Next: Ordering | Previous: Jostle]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_alg_oct.html (2 of 2) [7/29/2004 12:29:29 PM]

Zoltan User's Guide: Ordering Algorithms

Zoltan User's Guide | Next | Previous

Ordering Algorithms

NOTE: The ordering module in Zoltan has not yet been extensively tested and should be treated as an experimental
feature of the Zoltan version 1.5 release. The interface (API) may change in future versions.
The following ordering algorithms are currently included in the Zoltan library:

Nested dissection by METIS/ParMETIS (NODEND)

The parenthetical string is the parameter value for ORDER_METHOD parameter; the parameter is set through a call to
Zoltan_Set Param.

Ordering Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each ordering method is
controlled by parameters specific to ordering which are also set by callsto Zoltan Set Param. Many of these parameters

are specific to individual ordering algorithms, and are listed in the descriptions of the individual algorithms. However,
several have meaning across multiple ordering algorithms. These parameters are described below.

Parameters:
ORDER METHOD The order algorithm used by Zoltan is specified by this parameter. Valid values are

"NODEND" (for nodal nested dissection by ParMETIS or METIS),
"METIS" (same as NODEND with ORDER_TYPE =local),
"PARMETIS" (same as NODEND with ORDER_TY PE = global), and
"NONE" (for no load-balancing).

ORDER _TYPE "LOCAL" or "GLOBAL". If LOCAL is selected, then each processor constructs alocal
(sub-)graph. All inter-processor edges are simply ignored. The ordering arrays returned, rank
and iperm, are local permutation vectorsin this case.

ORDER_START_INDEX The start index for the permutation vectors rank and iperm. Valid values are 0 and 1.
REORDER If thisvalueis set to TRUE (non-zero), Zoltan assumes that the lists of local and global ids are
given asinput to Zoltan_Order. Otherwise, the id lists will be populated by Zoltan_Order.
The permutation of the ids will be the one produced by calling the query functions.

Default Values:
ORDER_METHOD = NODEND
ORDER TYPE = GLOBAL
ORDER_START_INDEX =0
REORDER = FALSE

[Table of Contents | Next: Nested dissection by ParMETIS | Previous. Octtree Algorithm]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_order.html [7/29/2004 12:29:29 PM]

Zoltan User's Guide: Nested Dissection by ParMETIS

Zoltan User's Guide | Next | Previous

Nested Dissection by METIS/ParMETIS

Nested Dissection (ND) is a popular method to compute fill-reducing orderings for sparse matrices. It can also be used for
other ordering purposes. The algorithm recursively finds a separator (bisector) in a graph, orders the nodes in the two
subsets first, and nodes in the separator last. In METIS/ParMETIS, the recursion is stopped when the graph is smaller than
acertain size, and some version of minimum degree ordering is applied to the remaining graph.

METIS computes alocal ordering of the objects on each processor, while ParMETIS performs a global ordering of all the
objects. ParMETIS currently (versions 2.0 and 3.0) requires that the number of processorsis a power of two.

The generic name for this method is NODEND. If GRAPH_TYPE=GLOBAL ParMETISiscalled, but if it isLOCAL,
METIS s caled. Alternatively, the user can simply set ORDER_METHOD to METIS or PARMETIS.

Order_Method String: NODEND or METISor PARMETIS
Parameters:
See ParMETIS. Note that the PARMETIS options are ignored when METIS is called.

Required Query

Functions:
ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FNorZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN
pair
ZOLTAN NUM EDGES MULTI FNorZOLTAN NUM EDGES FN
ZOLTAN EDGE LIST MULTI FNorZOLTAN EDGE LIST FN

[Table of Contents | Next: Data Services and Utilities| Previous. Ordering Algorithms]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_order_parmetis.html [7/29/2004 12:29:29 PM]

Zoltan User's Guide: Data Services

Zoltan User's Guide | Next | Previous

Data Services and Utilities

Within Zoltan, several utilities are provided to simplify both application development and development of new algorithms
inthelibrary. They are separate from the Zoltan library so that applications can use them independently of Zoltan, if
desired. They are compiled separately from Zoltan and can be archived in separate libraries. Instructions for building the

utilities and applications using them are included below; individual library names are listed in the following
documentation for each package.

The packages available are listed below.

Memory Management Utilities
Unstructured Communication Utilities
Distributed Directory Utility

Building Utilities

The utilities provided with Zoltan have their own Makefiles and can be built separately from Zoltan. If the user builds the
Zaltan library, the utility libraries are built automatically and copied to the appropriate Zoltan/Obj_<platform> directory,
where <platform> is specified through the ZOLTAN_ARCH environment variable. Zoltan and the utilities share the
Utilities/Config/Config.<platform> files specifying compilation paths for various architectures. If, however, auser
wishes to use these utilities without using Zoltan, he must build the libraries separately.

The structure and use of Makefiles for the utilities are similar to Zoltan's makefiles; atop-level makefile includes rules for

building each utility's library. Object files and the utility libraries are stored in a subdirectory Obj_<platform>, where
<platform> is atarget architecture supported with a Utilities/Config/Config.<platform> file. The command for compiling

aparticular utility follows:
gmake ZOLTAN_ARCH=<platform> <library_name>

where <library_name> is the name of the utility library, and <platform> is the target architecture (corresponding to
Utilities/Config/Config.<platform>). The <library_name> for each utility isincluded in the following documentation for
the utilities.

Building Applications

The utilities are designed so that they can easily be used separately from Zoltan in applications. To enable type-checking
of arguments, the function-prototypes file for a utility should be included in al application source code files that directly
access the utility. The application must also link with the appropriate utility library (and any other libraries on which the
utility depends). Library and function-prototype file names for each utility are listed in the following documentation for
the utilities.

[Table of Contents | Next: Memory Management Utilities | Previous: Nested Dissection by ParMETIS]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util.html [7/29/2004 12:29:30 PM]

Zoltan User's Guide: Memory Management Utilities

Zoltan User's Guide | Next | Previous

Memory Management Utilities

This package consists of wrappers around the standard C memory allocation and deall ocation routines which add
error-checking and debugging capabilities. These routines are packaged separately from Zoltan to alow their independent
use in other applications. A Fortran90 interfaceis not yet available.

Sour ce code location: Utilities’Memory

Function prototypesfile: Utilities’Memory/zoltan_mem.h or include/zoltan_mem.h
Library name: libzoltan_mem.a

Other librariesused by thislibrary: libmpi.a. (See note below.)

Routines:

Zoltan Array Alloc: Allocates arrays of dimension n, n=0,1,...,4
Zoltan Malloc: Wrapper for system malloc.
Zoltan_Calloc: Wrapper for system calloc.
Zoltan Realloc: Wrapper for system realloc.
Zoltan Free: Frees memory and sets the pointer to NULL.
Zoltan_Memory Debug: Setsthe debug level used by the memory utilities; see the description below.
Zoltan Memory Stats. Prints memory debugging statistics, such as memory leak information.
Zoltan Memory Usage: Returns user-specified information about memory usage (i.e. maximum
memory used, total memory currently allocated).

Usein Zoltan:

The memory management utility routines are used extensively in Zoltan and in some individual
algorithms. Zoltan devel opers use these routines directly for most memory management, taking
advantage of the error checking and debugging capabilities of the library.

Rather than call Zoltan Memory Debug directly, applications using Zoltan can set the
DEBUG MEMORY parameter used by this utility through callsto Zoltan Set Param.

Noteon MPI usage:

MPI is used only to abtain the processor number (through a call to MPI_Comm_rank) for print
statements and error messages. If an application does not link with MPI, the memory utilities should be
compiled with -DZOLTAN_NO_MPI; all output will then appear to be from processor zero, evenif itis
actually from other processors.

double*Zoltan_Array_Alloc(char * file, int line, int n, int d1, int d2, ..., int dn, int size);

The Zoltan_Array_Alloc routine dynamically allocates an array of dimensionn,n=0, 1, ..., 4 withsize (d1 x d2 X ... X
dn). It isintended to be used for 2, 3 and 4 dimensional arrays; Zoltan Malloc should be used for the simpler cases. The

memory alocated by Zoltan_Array_Alloc is contiguous, and can be freed by asingle call to Zoltan Free.

Arguments:
file A string containing the name of the file calling the function. The _ FILE _ macro can be passed
asthis argument. This argument is useful for debugging memory allocation problems.
line The line number within file of the call to the function. The __ LINE__ macro can be passed as
this argument. This argument is useful for debugging memory allocation problems.
n The number of dimensionsin the array to be alocated. Valid valuesare0, 1, 2, 3, or 4.
di, dz, ..., dn The size of each dimension to be allocated. One argument is included for each dimension.
size The size (in bytes) of the data objects to be stored in the array.
Returned Value:

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (1 of 5) [7/29/2004 12:29:31 PM]

Zoltan User's Guide: Memory Management Utilities

double * A pointer to the starting address of the n-dimensional array, or NULL if the allocation fails.
Example:
int** x=(int **) Zoltan_Array Alloc(__FILE _, LINE , 2,5, 6, sizeof (int));
Allocates atwo-dimensional, 5x6-element array of integers.

double*Zoltan_Malloc(int n, char * file, int line);

The Zoltan_Malloc function is awrapper around the standard C malloc routine. It allocates a block of memory of size n
bytes. The principle advantage of using the wrapper isthat it allows memory leaks to be tracked viathe
DEBUG_MEMORY variable (set in Zoltan_Memory Debug).

A macro ZOLTAN_MALLOC isdefined in zoltan_mem.h. It takes the argument n, and addsthe _ FILE __ and
__LINE__ macrosto the argument list of the Zoltan_Malloc call:

#define ZOLTAN_MALLOC(n) Zoltan_Malloc((n), _FILE_, _LINE_)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory alocation call.

Arguments:
n The size (in bytes) of the memory-allocation request.
file A string containing the name of the file calling the function. The __FILE___ macro can be passed
asthis argument. This argument is useful for debugging memory allocation problems.
line The line number within file of the call to the function. The _ LINE___ macro can be passed as
this argument. This argument is useful for debugging memory allocation problems.
Returned Value:
double * A pointer to the starting address of memory alocated. NULL isreturned if n =0 or the routine
is unsuccessful.
Example:

struct Zoltan_Struct *b = (struct Zoltan_Struct *) ZOLTAN_MAL L OC(sizeof(struct
Zoltan_Struct));

Allocates memory for one Zoltan_Struct data structure.

double *Zoltan_Calloc(int num, int size, char * file, int line);

The Zoltan_Calloc function is awrapper around the standard C calloc routine. It allocates a block of memory of size num
* gize bytes and initializes the memory to zeros. The principle advantage of using the wrapper isthat it allows memory
leaks to be tracked viathe DEBUG_MEMORY variable (set in Zoltan_Set Memory Debug).

A macro ZOLTAN_CALLOC isdefined in zoltan_mem.h. It takes the arguments num and size, and addsthe __ FILE__
and __LINE__ macrosto the argument list of the Zoltan_Calloc call:

#define ZOLTAN_CALLOC(num, size) Zoltan_Calloc((num), (size), _ FILE_ , _LINE_)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
num The number of elements of the following size to allocate.
size The size of each element. Hence, the total alocation isnum* size bytes.
file A string containing the name of the file calling the function. The__FILE__ macro can be passed
asthis argument. This argument is useful for debugging memory allocation problems.
line The line number within file of the call to the function. The _ LINE___ macro can be passed as
this argument. This argument is useful for debugging memory allocation problems.
Returned Value:

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (2 of 5) [7/29/2004 12:29:31 PM]

Zoltan User's Guide: Memory Management Utilities

double * A pointer to the starting address of memory alocated. NULL isreturned if n =0 or the routine
is unsuccessful.

Example:
int*b=(int*) ZOLTAN_CALLOC(10, sizeof(int));
Allocates memory for 10 integers and initializes the memory to zeros.

double *Zoltan_Realloc(void *ptr, int n, char *file, int line);

The Zoltan_Realloc function is a"safe" version of realloc. It changes the size of the object pointed to by ptr to n bytes.
The contents of ptr are unchanged up to a minimum of the old and new sizes. Error tests ensuring that nis a positive
number and that space is available to be allocated are performed.

A macro ZOLTAN_REALL OC isdefined in zoltan_mem.h. It takes the arguments ptr and n, and addsthe __ FILE___
and __LINE__ macrosto the argument list of the Zoltan_Realloc call:
#define ZOLTAN_REALLOC(ptr, n) Zoltan_Realloc((ptr), (n), __FILE_, LINE_)

Using this macro, the devel oper gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
ptr Pointer to allocated memory to be re-sized.
n The size (in bytes) of the memory-allocation request.
file A string containing the name of the file calling the function. The __FILE___ macro can be passed
asthis argument. This argument is useful for debugging memory allocation problems.
line The line number within file of the call to the function. The _ LINE___ macro can be passed as
this argument. This argument is useful for debugging memory allocation problems.
Returned Value:
double * A pointer to the starting address of memory alocated. If the routine is unsuccessful, NULL is
returned and * ptr is unchanged.
Example:

int n = sizeof(struct Zoltan_Struct);

int*b=(int*) ZOLTAN MALLOC (n));

b=(int*) ZOLTAN_REALLOC (b, 2*n);
Reallocates memory for b from length n to length 2*n.

void Zoltan_Free(void **ptr, char * file, int line);

The Zoltan_Free function calls the system's "free" function for the memory pointed to by *ptr. Note that the argument to
this routine has an extralevel of indirection when compared to the standard C "free" call. This alows the pointer being
freed to be set to NULL, which can help find errors in which a pointer is used after it is deallocated. Error checking is
performed to prevent attemptsto free NULL pointers. When Zoltan_Freeis used with the DEBUG_MEMORY options
(setin Zoltan Memory Debug), it can help identify memory leaks.

A macro ZOLTAN_FREE isdefined in zoltan_mem.h. It takes the argument ptr, and addsthe FILE _and _LINE
macros to the argument list of the Zoltan_Free call:

#define ZOLTAN_FREE(ptr) Zoltan_Free((void **)(ptr), _FILE , LINE)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory alocation call.

Arguments:

ptr Address of apointer to the memory to be freed. Upon return, ptr isset to NULL.
Example:

ZOLTAN_FREE(& X);

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (3 of 5) [7/29/2004 12:29:31 PM]

Zoltan User's Guide: Memory Management Utilities

Frees memory associated with the variable x; upon return, x isNULL.

Debugging Memory Errors

One important reason to use the memory-management utilities wrappers around the system memory routinesisto
facilitate debugging of memory problems. Various amounts of information can about memory allocation and deallocation
are stored, depending on the debug level set through acall to Zoltan Memory Debug. Thisinformation is printed either

when an error or warning occurs, or when Zoltan Memory Statsis called. We have found values of one and two to be
very helpful in our development efforts. The routine Zoltan_Memory Usage can be called to return user-specified
information about memory utilization to the user's program.

void Zoltan_Memory_Debug(int new_level);

The Zoltan_Memory_Debug function setsthe level of memory debugging to be used.

Arguments:
new_|level Integer indicating the amount of debugging to use. Valid options include:

0 -- No debugging.
1 -- The number of callsto Zoltan Malloc and Zoltan Free aretallied, and
can be printed by acall to Zoltan Memory Stats.
2-- Alist of al callsto Zoltan Malloc which have not yet been freed is kept.
Thislistisprinted by Zoltan Memory Stats (useful for detecting memory
leaks). Any callsto Zoltan_Free with addresses not in thislist trigger warning
messages. (Note that allocations that occurred prior to setting the debug level to
2 will not bein thislist and thus can generate spurious warnings.)
3 -- Information about each allocation is printed as it happens.

Default:

Memory debug level is 1.

void Zoltan_Memory_Stats();

The Zoltan_Memory_Stats function prints information about memory allocation and deallocation. The amount of
information printed is determined by the debug level set through acall to Zoltan Memory Debug.

Arguments:
None.

int Zoltan_Memory_Usage(int type);

The Zoltan_Memory_Usage function returns information about memory utilization. The memory debug level (set
through acall to Zoltan_Set Memory Debug) must be at least 2 for this function to return non-zero values.

Arguments:
type Integer to request type of information required. These integers are defined in zoltan_mem.h.
Valid optionsinclude:

ZOLTAN_MEM_STAT TOTAL -- The function will return the current total
memory allocated via Zoltan's memory allocation routines.
ZOLTAN_MEM_STAT _MAXIMUM -- The function will return the maximum
total memory allocated via Zoltan's memory allocation routines up to this point.

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (4 of 5) [7/29/2004 12:29:31 PM]

Zoltan User's Guide: Memory Management Utilities

Default:
type = ZOLTAN_MEM_STAT _MAXIMUM
Returned Value:
int The number in bytes of the specific requested memory statistic.
Example:

total = Zoltan_Memory_Usage (ZOLTAN_MEM_STAT _TOTAL);

[Table of Contents | Next: Unstructured Communication Utilities | Previous. Utilities)]

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_mem.html (5 of 5) [7/29/2004 12:29:31 PM]

Zoltan User's Guide: Communication Utilities

Zoltan User's Guide | Next | Previous

Unstructured Communication Utilities

The unstructured communication package provides a simple interface for doing complicated patterns of point-to-point
communication, such as those associated with data remapping. This package consists of afew simple functions which
create or modify communication plans, perform communication, and destroy communication plans upon completion. The
package is descended from software first developed by Steve Plimpton and Bruce Hendrickson, and has proved useful in a
variety of different applications. For this reason, it is maintained as a separate library and can be used independently from
Zoltan.

In aprototypical usage of the unstructured communication package each processor has some objects to send to other
processors, but no processor knows what messagesit will receive. A call to Zoltan Comm_Create produces a data

structure called a communication plan which encapasulates the basic information about the communication operation. The
plan does not know anything about the types of objects being transferred, only the number of them. So the same plan can
be used repeatedly to transfer different types of data aslong as the number of objectsin the transfers remains the same.
The actua size of objectsisn't specified until the call to Zoltan Comm_ Do which performs the data transfer.

The plan which is produced by Zoltan Comm_ Cr eate assumes that all the objects are of the same size. If thisis not true,
then acall to Zoltan Comm_Resize can specify the actual size of each object, and the plan is augmented appropriately.
Zoltan Comm_Resize can be invoked repeatedly on the same plan to specify varying sizes for different data transfer
operations.

Although afriendlier interface may be added in the future, for now the data to be sent must be passed to

Zoltan Comm_ Do as a packed buffer in which the objects are stored consecutively. This probably requires the
application to pull the data out of native data structures and place in into the buffer. The destination of each object is
specified by the proclist argument to Zoltan Comm_Create. Some flexibility is supported by alowing proclist to
contain negative values, indicating that the corresponding objects are not to be sent. The communication operations allow
for any object to be sent to any destination processor. However, if the objects are grouped in such away that all those
being sent to a particular processor are consecutive, the time and memory of an additional copy is avoided.

All the functions in the unstructured communication library return integer error codes identical to those used by Zoltan. A
Fortran90 interface is not yet available.

Sour ce code location: Utilities’Communication

Function prototypesfile: Utilities/Communication/zoltan_comm.h or
include/zoltan_comm.h

Library name: libzoltan_comm.a

Other librariesused by thislibrary: libmpi.a, libzoltan mem.a.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (1 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Communication Utilities

High Level Routines:

Zoltan Comm_Create: computes acommunication plan for sending objects to destination processors.
Zoltan Comm_Do: uses acommunication plan to send data objects to destination processors.

Zoltan Comm_Do Reverse: performsthe reverse (opposite) communication of Zoltan Comm_Do.
Zoltan Comm_Resize: augments the plan to allow objects to be of variable sizes.
Zoltan_Comm_Destroy: free memory associated with a communication plan.

L ow Level Routines:

Zoltan_Comm_Exchange Sizes: updates the sizes of the messages each processor will receive.
Zoltan Comm_Invert Map: given aset of messages each processor wants to send, determines the set

of messages each processor needs to receive.
Zoltan Comm_Sort_Ints: sortsan array of integer values.

Zoltan_Comm_Info: returnsinformation about a communication plan.
Zoltan Comm_Invert Plan: given acommunication plan, converts the plan into a plan for the reverse
communication.

Usein Zoltan:
The Zoltan library uses the unstructured communication package in its migration tools and in some of
the load-balancing algorithms. For example, in Zoltan_Migrate, Zoltan_Comm_Createis used to

develop a communication map for sending objects to be exported to their new destination processors.
The sizes of the exported objects are obtained and the communication map is augmented with acall to
Zoltan Comm_Resize. The datafor the objectsis packed into a communication buffer and sent to the

other processors through a call to Zoltan Comm_Do. After the received objects are unpacked, the
communication plan is no longer needed, and it is deallocated by acall to Zoltan_Comm_Destroy.

Zoltan devel opers use the package whenever possible, asimprovements made to the package (for
example, support for heterogeneous architectures) automatically propagate to the algorithms.

int Zoltan_Comm_Create(struct Zoltan_Comm_Obj **plan, int nsend, int * proclist, MPI_Comm comm, int tag, int
*nreturn);

The Zoltan_Comm_Create function sets up the communication plan in the unstructured communication package. Its
input is acount of objectsto be sent to other processors, alist of the processors to which the objects should be sent
(repetitions are allowed), and an MPI communicator and tag. It allocates and builds a communication plan that describes
to which processors data will be sent and from which processors data will be received. It also computes the amount of
datato be sent to and received from each processor. It returns the number of objects to be received by the processor and a
pointer to the communication plan it created. The communication plan is then used by callsto Zoltan Comm Do to

perform the actual communication.

Arguments:
plan A pointer to the communication plan created by Zoltan_Comm_Create.
nsend The number of objects to be sent to other processors.
proclist An array of size nsend of destination processor numbers for each of the objects to be sent.
comm The MPI communicator for the unstructured communication.
tag A tag for MPI communication.
nreturn Upon return, the number of objects to be received by the processor.
Returned Value:
int Error code.

int Zoltan_Comm_Do(struct Zoltan_ Comm_QObj *plan, int tag, char *send_data, int nbytes, char * recvbuf);

The Zoltan_Comm_Do function performs the communication described in a communication plan built by
Zoltan Comm_Create. Using the plan, it takes a buffer of object data to be sent and the size (in bytes) of each object's

datain that buffer and sends the data to other processors. Zoltan_Comm_Do also receives object data from other

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (2 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Communication Utilities

processors and stores it in areceive buffer. The receive buffer must be allocated by the code calling Zoltan_Comm_Do
using the number of received objects returned by Zoltan Comm_Create or Zoltan Comm_Resize. If the objects have

variable sizes, then Zoltan Comm_Resize must be called before Zoltan_Comm_Do.

Arguments:
plan A pointer to acommunication plan built by Zoltan Comm_Cr eate.
tag An MPI message tag.
send_data A buffer filled with object data to be sent to other processors.
nbytes The size (in bytes) of the datafor one object, or the scale factor if the objects have variable
sizes. (See Zoltan_Comm_Resize for more details.)
recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
int Error code.

int Zoltan_Comm_Do_Reverse(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, int *sizes, char
*recvbuf);

The Zoltan_Comm_Do_Rever se function performs communication based on a communication plan built by
Zoltan Comm_Create. But unlike Zoltan Comm_Do, this routine performs the reverse of the communication pattern.
Specifically, al sendsin the plan are treated as receives and vice versa. Zoltan_Comm_Do_Reverseis particularly well

suited to return updated data objects to their originating processors when the objects were initialy transferred via
Zoltan Comm Do.

Arguments:
plan A pointer to acommunication plan built by Zoltan Comm_Cr eate.
tag An MPI message tag to be used by this routine.
send_data A buffer filled with object data to be sent to other processors.
nbytes The size (in bytes) of the data associated with an object, or the scale factor if the objects have
variable sizes.
sizes If not NULL, thisinput array specifiesthe size of all the data objects being transferred. This
argument is passed directly to Zoltan Comm_Resize. This array has length equal to the nsend
value passed to Zoltan_Comm_Create. But note that for Zoltan_Comm_Do_Rever se this
array describes the sizes of the values being received, not sent.
recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
int Error code.

int Zoltan_Comm_Resize(struct Zoltan Comm_Obj *plan, int *sizes, int tag , int *total_recv_size);

If the objects being communicated are of variable sizes, then the plan produced by Zoltan_Comm_Create isincomplete.

This routine allows the plan to be augmented to alow for variable sizes. Zoltan_Comm_Resize can be invoked
repeatedly on the same plan to specify different object sizes associated with different data transfers.

Arguments:
plan A communication plan built by Zoltan Comm_Cr eate.
sizes Aninput array of length equal to the nsend argument in the call to Zoltan Comm_Create
which generated the plan. Each entry in the array is the size of the corresponding object to be
sent. If sizesisNULL (on al processors), the objects are considered to be the same size. Note
that the true size of a message will be scaled by the nbytes argument to Zoltan Comm_Do.
tag A message tag to be used for communication within this routine, based upon the communicator

in plan.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (3 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Communication Utilities

total_recv_size Sum of the sizes of the incoming messages. To get the actual size (in bytes), you need to scale
by the nbytes argument to Zoltan Comm_Do.
Returned Value:
int Error code.

int Zoltan_Comm_Destroy(struct Zoltan_Comm_Obj ** plan);

The Zoltan_Comm_Destr oy function frees all memory associated with a communication plan created by
Zoltan Comm_Create.

Arguments:
plan A pointer to acommunication plan built by Zoltan_Comm_Create. Upon return, plan is set to
NULL.
Returned Value:
int Error code.

int Zoltan_Comm_Exchange _Sizes(int *sizes to, int * procs_to, int nsends, int self_msg, int *sizes from, int
*procs_from, int nrecvs, int *total_recv_size, int my_proc, int tag, MPI_Comm comm);

Thisroutineis used by Zoltan Comm_Resize to update the sizes of the messages each processor is expecting to receive.

The processors already know who will send them messages, but if variable sized objects are being communicated, then
the sizes of the messages are recomputed and exchanged via this routine.

Arguments:
Sizes to Input array with the size of each message to be sent. Note that the actual number of bytesin the
message is the product of this value and the nbytes argument to Zoltan_Comm_Do.
procs _to Input array with the destination processor for each of the messages to be sent.
nsends Input argument with the number of messages to be sent. (Length of the procs_to array.)
self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0) within the
procs _to and lengths to arrays.
sizes from Returned array with the size of each message that will be received. Note that the actual number
of bytesin the message is the product of this value and the nbytes argument to
Zoltan Comm Do.
procs from Returned array of processors from which datawill be received.
nrecvs Returned value with number of messages to be received. (Ilength of procs fromarray.)
total_recv _size Thetotal size of all the messages to be received. As above, the actual number of byteswill be
scaled by the nbytes argument to Zoltan_Comm_Do.
my_proc The processor's ID in the comm communicator.
tag A message tag which can be used by this routine.
comm MPI Communicator for the processor numbering in the procs arrays.
Returned Value:
int Error code.

int Zoltan_Comm_Invert_Map(int *lengths to, int * procs_to, int nsends, int self_msg, int ** lengths_from, int **
procs_from, int * nrecvs, int my_proc, int nprocs, int out_of _mem, int tag, MPI_Comm comm);

The Zoltan_Comm_Invert_Map function isalow level communication routine. It is useful when a processor knows to
whom it needs to send data, but not from whom it needs to receive data. Each processor providesto this routine a set of
lengths and destinations for the messages it wants to send. The routine then returns the set of lengths and origins for the
messages a processor will receive. Note that by inverting the interpretation of to and fromin these arguments, the routine
can be used to do the opposite: knowing how much data to receive and from which processors, it can compute how much

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (4 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Communication Utilities

datato send and to which processors.

Arguments:
lengths to

procs to
nsends

self_msg

lengths_from

procs from
nrecvs

my_proc
nprocs

out_of mem

tag
comm

Returned Value;

int

Input array with the number of valuesin each of the messages to be sent. Note that the actual
size of each valueis not specified until the Zoltan Comm_Do routine isinvoked.

Input array with the destination processor for each of the messages to be sent.

Input argument with the number of messages to be sent. (Length of the lengths to and procs to
arrays.)

Input argument indicating whether a processor has data for itself (=1) or not (=0) within the
procs _to and lengths to arrays.

Returned array with lengths of messages to be received.

Returned array of processors from which datawill be received.

Returned value with number of messages to be received (lengths of lengths from and
procs_fromarrays).

The processor's ID in the comm communicator.

Number of processorsin the comm communicator.

Sinceit has abarrier operation, thisroutine is a convenient time to tell all the processors that one
of them isout of memory. Thisinput argument is 0 if the processor is OK, and 1 if the processor
hasfailed in amalloc call. All the processors will return with acode of COMM_MEMERR if
any of them is out of memory.

A message tag which can be used by this routine.

MPI Communicator for the processor numbering in the procs arrays.

Error code.

int Zoltan_Comm_Sort_Ints(int *vals sort, int *vals _other, int nvals);

Asits name suggests, the Zoltan_Comm_Sort_I nts function sorts a set of integers viathe quicksort algorithm. The
integers are reordered from lowest to highest, and a second array of integersis reordered in the same fashion. This second
array can be used to return the permutation associated with the sort operation.

Arguments:
vals sort
vals other
nvals

Returned Value;

int

The array of integersto be sorted. Thisarray is permuted into sorted order.
Another array of integers which is permuted identically to vals_sort.
The number of valuesin the two integer arrays.

Error code.

int Zoltan_Comm_Info(struct Zoltan_ Comm_Obj *plan, int *nsends, int *send_procs, int *send_lengths, int
*send _nvals, int *send_max_size, int *send_list, int *nrecvs, int *recv_procs, int *recv_lengths, int *recv_nvals, int
*recv_total_size, int *recv_list, int *self msg)

Zoltan_Comm_Info returns information about a communication plan. All arguments, except the plan itself, may be
NULL; values are returned only for non-NULL arguments.

Arguments:
plan

nsends

send_procs

send_lengths

send nvals

Communication data structure created by Zoltan Comm_Cr eate.

Upon return, the number of processors to which messages are sent; does not include
self-messages.

Upon return, alist of processors to which messages are sent; self-messages are included.
Upon return, the number of values to be sent to each processor in send_procs.

Upon return, the total number of valuesto send.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (5 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Communication Utilities

send_max_size Upon return, the maximum size of a message to be sent; does not include self-messages.
send_list Upon return, the processor assignment of each value to be sent.
nrecvs Upon return, the number of processors from which to receive messages; does not include
self-messages.
recv_procs Upon return, alist of processors from which messages are received; includes self-messages.
recv_lengths Upon return, the number of values to be received from each processor in recv_procs.
recv_nvals Upon return, the total number of valuesto receive.
recv_total size Upon return, the total size of itemsto be received.
recv_list Upon return, the processor assignments of each value to be received.
self_msg Upon return, the number of self-messages.
Returned Value:
int Error code.

int Zoltan_Comm_Invert_Plan(struct Zoltan_Comm_Obj **plan)

Given acommunication plan, Zoltan_Comm_Invert_Plan atersthe plan to make it the plan for the reverse
communication. Information in the input plan is replaced by information for the reverse-communication plan. All receives
in the reverse-communication plan are blocked; thus, using the inverted plan does not produce the same results as

Zoltan Comm_ Do Reverse. If an error occurs within Zoltan_Comm_Invert_Plan, the original plan is returned

unaltered.

Arguments:
plan Communication data structure created by Zoltan Comm_Cr eate; the contents of this plan are
irretrievably modified by Zoltan_Comm_Invert_Plan.
Returned Value:
int Error code.

[Table of Contents | Next: Distributed Directory Utility | Previous. Memory Management Utilities]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_comm.html (6 of 6) [7/29/2004 12:29:32 PM]

Zoltan User's Guide: Memory Management Utilities

Zoltan Users's Guide | Next | Previous

Distributed Directory Utility

The owner (i.e. the processor number) of any computational object is subject to change during load balancing. An
application may use this directory utility to manage its objects locations. A distributed directory balances the load (in
terms of memory and processing time) and avoids the bottle neck of a centralized directory design.

This distributed directory module may be used alone or in conjunction with Zoltan's load balancing capability and
memory and communication services. The user should note that external names (subroutines, etc.) which prefaced by
Zoltan DD _ are reserved when using this module.

The user initially creates an empty distributed directory using Zoltan DD _Create. Then global ID (GID) information is
added to the directory using Zoltan DD_Update. The directory maintains the GID's basic information: local 1D (optional),
partition (optional), arbitrary user data (optional), and the current data owner. Zoltan DD _Update is also called after data
migration or refinements. Zoltan DD_Find returns the directory information for alist of GIDs. A selected list of GIDs
may be removed from the directory by Zoltan DD_Remove. When the user has finished using the directory, its memory
is returned to the system by Zoltan DD_Destroy.

An object isknown by its GID. Hashing provides very fast lookup for the information associated with a GID in atwo step
process. The first hash of the GID yields the processor number owning the directory entry for that GID. The directory
entry owner remains constant even if the object (GID) migrates in time. Second, a different hash algorithm of the GID
looks up the associated information in directory processor's hash table. The user may optionaly register their own (first)
hash function to take advantage of their knowledge of their GID naming scheme and the GID's neighboring processors.
See the documentation for Zoltan DD_Set Hash Fn for more information. If no user hash function is registered, Zoltan's

Zoltan Hash will be used. This modul€e's design was strongly influenced by the paper "Communication Support for
Adaptive Computation" by Pinar and Hendrickson.

Some users number their GIDs by giving the first "n" GIDs to processor 0, the next "n" GIDs to processor 1, and so forth.
The function Zoltan DD_Set Neighbor_Hash Fnl will provide efficient directory communication when these GIDs stay
closeto their origin. The function Zoltan_DD_Set Neighbor_Hash_Fn2 alows the specification of ranges of GIDsto

each processor for more flexibility. The source code for DD_Set Neighbor Hash Fnl and DD _Set Neighbor Hash Fn2

provide examples of how a user can create their own "hash” functions taking advantage of their own GID naming
convention.

Theroutine Zoltan DD _Print will print the contents of the directory. The companion routine Zoltan DD _Stats prints out

asummary of the hash table size, number of linked lists, and the length of the longest linked list. This may be useful when
the user creates their own hash functions.

A Fortran90 interface is not yet available.

Sour ce code location: Utilities/DDirectory

Function prototypesfile: Utilities/DDirectory/zoltan_dd.h or include/zoltan_dd.h
Library name: libzoltan _dd.a

Other librariesused by thislibrary: libmpi.a, libzoltan_mem.a, libzoltan_comm.a

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (1 of 5) [7/29/2004 12:29:33 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html

Zoltan User's Guide: Memory Management Utilities

Routines;

Zoltan DD Create: Allocates memory and initializes the directory.

Zoltan_DD_Destroy: Terminate the directory and frees its memory.

Zoltan DD Update: Adds or updates GIDs directory information.

Zoltan DD Find: Returns GIDs information (owner, local 1D, etc.)

Zoltan_DD_Remove: Eliminates selected GIDs from the directory.

Zoltan_DD_Stats: Provides statistics about hash table & linked lists.

Zoltan DD Print: Displaysthe contents (GIDs, etc) of each directory.

Zoltan_DD_Set Hash Fn: Registersauser's optional hash function.

Zoltan DD Set Neighbor Hash Fnl: Hash function with constant number of GIDs per processor.
Zoltan DD _Set Neighbor Hash Fn2: Hash function with variable number of GID's per processor.

Data Stuctures:

struct Zoltan_DD_Struct: State & storage used by all DD routines. Users should not modify any
internal valuesin this structure. Users should only pass the address of this structure to the other routines
in this package.

Usein Zoltan:

int Zoltan_DD_Create (struct Zoltan DD_Struct **dd, MPI_Comm comm, int num_gid_entries, int num _lid_entries, int
user_length, int table_length, int debug_level);

Zoltan_DD_Create allocates and initializes memory for the Zoltan_DD_Struct structure. It must be called before any
other distributed directory routines. MPI must be initialized prior to calling this routine.

The Zoltan_DD_Struct must be passed to al other distributed directory routines. The MPI Comm argument designates the
processors used for the distributed directory. The MPI Comm argument is duplicated and stored for later use.

The user can set the debug level argument in the Zoltan_DD_Cr eate to determine the modul€'s response to multiple
updates for any GID within one update cycle. If the argument is set to 0, all multiple updates are ignored (but the last
determines the directory information.) If the argument is set to 1, an error is returned if the multiple updates represent
different owners for the same GID. If the debug level is 2, an error return and an error message are generated if multiple
updates represent different owners for the same GID. If the level is 3, an error return and an error message are generated
for amultiple update even if the updates represent the same owner for aGID.

Arguments:
dd Structure maintains directory state and hash table.
comm MPI comm duplicated and stored specifying directory processors.
num _gid entries Length of GID.
num_lid_entries Length of local 1D or zero to ignore loca 1Ds.
user_length Length of user defined data field (optional, may be zero).
table length Length of hash table (zero forces default value).
debug_level Legal vauesrangein [0,3]. Sets response to various error conditions where 3 is the most
verbose.
Returned Value:
int Error code.

void Zoltan_DD_Destroy (struct Zoltan_DD_Struct **dd);

This routine frees all memory allocated for the distributed directory. No calls to any distributed directory functions using
this Zoltan_DD_Struct are permitted after calling this routine. MPI is necessary for this routine only to free the previously
saved MPI comm.

Arguments:

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (2 of 5) [7/29/2004 12:29:33 PM]

Zoltan User's Guide: Memory Management Utilities

dd Directory structure to be deall ocated.
Returned Value:
void NONE

int Zoltan_DD_Update (struct Zoltan DD_Struct *dd, ZOLTAN ID PTR gid, ZOLTAN ID_PTRIlid,
ZOLTAN_ID PTR user, int *partition, int count);

Zoltan_DD_Updatetakesalist of GIDs and corresponding lists of optional local IDs, optional user data, and optional
partitions. This routine updates the information for existing directory entries or creates a new entry (filled with given data)
if aGID isnot found. NULL lists should be passed for optional arguments not desired. This function should be called
initially and whenever objects are migrated to keep the distributed directory current.

The user can set the debug level argument in Zoltan_DD_Cr eate to determine the modul€'s response to multiple updates
for any GID within one update cycle.

Arguments:
dd Distributed directory structure state information.
gid List of GIDsto update (in).
lid List of corresponding local 1Ds (optional) (in).
user List of corresponding user data (optional) (in).
partition List of corresponding partitions (optional) (in).
count Number of GIDsin update list.

Returned Value:
int Error code.

int Zoltan_DD_Find (Zoltan_DD_DDirectory *dd, ZOLTAN ID PTR gid, ZOLTAN ID PTRIid,ZOLTAN ID PTR
data, int *partition, int count, int * owner);

Given alist of GIDs, Zoltan_DD_Find returns corresponding lists of the GIDs owners, local 1Ds, partitions, and optional
user data. NULL lists must be provided for optional information not being used.

Arguments:
dd Distributed directory structure state information.
gid List of GIDswhose information is requested.
lid Corresponding list of local 1Ds (optional) (out).
data Corresponding list of user data (optional) (out).
partition Corresponding list of partitions (optional) (out).
count Count of GIDsin abovelist.
owner Corresponding list of data owners (out).
Returned Value:
int Error code.

int Zoltan_DD_Remove (struct Zoltan DD_Struct *dd, ZOLTAN_ID_PTR gid, int count);

Zoltan_DD_Removetakesalist of GIDs and removes al of their information from the distributed directory.

Arguments:
dd Distributed directory structure state information.
gid List of GIDsto eliminate from the directory.
count Number of GIDsto be removed.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (3 of 5) [7/29/2004 12:29:33 PM]

Zoltan User's Guide: Memory Management Utilities

Returned Value:
int Error code.

void Zoltan_DD_Set Hash_Fn (struct Zoltan DD _Struct *dd, unsigned int (*hash) (ZOLTAN ID_PTR, int, unsigned
int));

Enables the user to register a new hash function for the distributed directory. (If thisroutineis not called, the default hash
function Zoltan_Hash will be used automatically.) This hash function determines which processor maintains the
distributed directory entry for agiven GID. Inexperienced users do not need this routine.

Experienced users may elect to create their own hash function based on their knowledge of their GID naming scheme. The
user's hash function must have calling arguments compatible with Zoltan Hash. Consider that a user has defined a hash

function, myhash, as

unsigned int myhash(ZOLTAN ID_PTR gid, int length, unsigned int naverage)

{
return *gid / naverage ; /* GID length assumed to be 1 ; naverage = total_GIDS/nproc */
}

Then the call to register this hash function is:
Zoltan_ DD_Set Hash (myhash) ;

NOTE: This hash function might group the gid's directory information near the gid's owning processor's neighborhood,
for an appropriate naming scheme.

Arguments:
dd Distributed directory structure state information.
hash Name of user's hash function.

Returned Value:
void NONE

void Zoltan_DD_Stats (struct Zoltan_DD_Struct *dd);

This routine prints out summary information about the local distributed directory. It includes the hash table length,
number of GIDs stored in the local directory, the number of linked lists, and the length of the longest linked list. The
debug level (set by an argument to Zoltan_DD_Cr eate controls this routine's verbosity.

Arguments:

ad Distributed directory structure for state information
Returned Value:

void NONE

int Zoltan_DD_Set_Neighbor_Hash_Fn1 (struct Zoltan_DD_Struct *dd, int size);

This routine associates the first size GIDsto proc 0, the next size to proc 1, etc. It assumes the GIDs are consecutive
numbers. It assumes that GIDs primarily stay near their original owner. The GID length is assumed to be 1. GIDs outside
of the range are evenly distributed among the processors via modulo(number of processors). Thisisamodel for the user
to develop their own similar routine.

Arguments:

dd Distributed directory structure state information.

size Number of consecutive GIDs associated with a processor.
Returned Value:

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (4 of 5) [7/29/2004 12:29:33 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html
file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_services_hash.html

Zoltan User's Guide: Memory Management Utilities

int Error code.

int Zoltan_DD_Set_Neighbor_Hash_Fn2 (struct Zoltan_DD_Struct *dd, int *proc, int *low, int *high, int n);

This routine allows the user to specify a beginning and ending GID "numbers" per directory processor. It assumes that
GIDs primarily stay near their original owner. It requires that the numbers of high, low, & proc entriesare al n. It
assumesthe GID length is 1. It isamodel for the user to develop their own similar routine. Users should note the
registration of a cleanup routine to free local static memory when the distributed directory is destroyed. GIDs outside the
range specified by high and low lists are evenly distributed among the processors via modulo (number of processors).

Arguments:

dd Distributed directory structure state information.

proc List of processor ids labeling for corresponding high, low value.

low List of low GID limits corresponding to proc list.

high List of high GID limits corresponding to proc list.

n Number of elementsin the above lists. Should be humber of processors!
Returned Value:

int Error code.

int Zoltan_DD_Print (struct Zoltan_DD_Struct *dd);

This utility displays (to stdout) the entire contents of the distributed directory at one line per GID.

Arguments:

dd Distributed directory structure state information.
Returned Value:

int Error code.

User's Notes

Because Zoltan places no restrictions on the content or length of GIDs, hashing does not guarantee a balanced distribution
of objectsin the distributed directory. Note a so, the worst case behavior of a hash table lookup isvery bad (essentialy
becoming alinear search). Fortunately, the average behavior is very good! The user may specify their own hash function
viaZoltan DD_Set Hash Fn to improve performance.

This software module is built on top of the Zoltan Communications functions for efficiency. Improvementsto the
communications library will automatically benefit the distributed directory.

FUTURE:

The C99 capability for variable length arrays would significantly simplify many of these following
routines. (It eliminates the malloc/free calls for temporary storage. This helps prevent memory leaks.)
Other C99 features may also improve code readability. The "inling" capability can potentially improve
performance.

The distributed directory should be implemented via threads. However, MPI is not fully thread aware, yet.

[Table of Contents | Next: Examples of Zoltan Usage | Previous: Unstructured Communication Utilities)

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_util_dd.html (5 of 5) [7/29/2004 12:29:33 PM]

Zoltan User's Guide: Examples

Zoltan User's Guide | Next | Previous

Examples of Zoltan Usage

Examples for each part of the Zoltan library are provided:
General use of Zoltan
L oad-balancing calling sequence
Data migration calling sequences
Query functions for asimple application

[Table of Contents | Next: General Usage Example | Previous: Distributed Data Directories]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples.html [7/29/2004 12:29:33 PM]

Zoltan User's Guide: General Usage Examples

Zoltan User's Guide | Next | Previous

General Usage Example

An example of general Zoltan usage isincluded below. In this example, Zoltan_Initializeis called using the argc and
argv arguments to the main program. Then a pointer to a Zoltan structure is returned by the call to Zoltan Create. In this
example, all processors will be used by Zoltan, asMPI_COMM_WORLD ispassed to Zoltan Create asthe
communicator.

Severa application query functions are then registered with Zoltan through callsto Zoltan Set Fn. Parameters are set
through callsto Zoltan Set Param. The application then performsin computations, including making callsto Zoltan
functions and utilities.

Before its execution ends, the application frees memory used by Zoltan by calling Zoltan Destroy.

/* Initialize the Zoltan library */
struct Zoltan_Struct *zz;
fl oat version;

Zoltan Initialize(argc, argv, &version);
zz = Zoltan_Creat e(VPl _COVWM WORLD) ;

/* Register query functions. */
Zol tan_Set _Fn(zz, ZOLTAN NUM GEOM FN TYPE,

(void (*)()) user_return_di nension, NULL);
Zol tan_Set Fn(zz, ZOLTAN_GEOM FN_TYPE,

(void (*)()) user_return_coords, NULL);
Zoltan_Set Fn(zz, ZOLTAN NUM OBJ FN TYPE,

(void (*)()) user_return_numnode, NULL);
Zoltan_Set Fn(zz, ZOLTAN OBJ_LIST_FN TYPE,

(void (*)()) user_return_owned _nodes, NULL);

/* Set sone Zoltan paraneters. */
Zol tan_Set _Paran(zz, "debug_level", "4");

/* Performapplication conputations, call Zoltan, etc. */

/* Free Zoltan data structure before ending application. */
Zol tan_Destroy (&zz);

Typical calling sequence for general usage of the Zoltan library.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_init.ntml (1 of 2) [7/29/2004 12:29:34 PM]

Zoltan User's Guide: General Usage Examples

! Initialize the Zoltan library
type(Zoltan_Struct), pointer :: zz
real (Zol tan_FLOAT) version

i nteger(Zoltan_INT) ierr

i é.rr = Zoltan_Initialize(version) ! without argc and argv
zz => Zol tan_Creat e(MPl _COVM WORLD)

! Regi ster | oad-bal ancing query functions.
! omit data = C NULL

ierr = Zoltan_Set _Fn(zz, ZOLTAN NUM GEOM FN TYPE, user _return_di nmensi on)
ierr = Zoltan _Set _Fn(zz, ZOLTAN GEOMVI FN TYPE, user _return_coords)

ierr = Zoltan_Set Fn(zz, ZOLTAN NUM OBJ FN TYPE, user_return_num node)
ierr = Zoltan_Set_Fn(zz, ZOLTAN OBJ_ LI ST_FN TYPE,

user _return_owned_nodes)

| Set sone Zoltan paraneters.
ierr = Zoltan Set Paran(zz, "debug_level", "4")

! Performapplication conputations, call Zoltan, etc.

! Free Zoltan data structure before endi ng application.
call Zoltan_Destroy(zz)

Fortran version of general usage example.

[Table of Contents | Next: Load-Balancing Example | Previous. Examplesof Library Usage]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_init.ntml (2 of 2) [7/29/2004 12:29:34 PM]

Zoltan User's Guide: Load-Balancing Examples

Zoltan User's Guide | Next | Previous

Load-Balancing Example

An example of the typical calling sequence for load balancing using Zoltan in afinite element application is shown in the
figure below. An application first selects aload-balancing algorithm by setting the LB_ METHOD parameter with

Zoltan Set Param. Next, other parameter values are set by callsto Zoltan Set Param. After some computation, load
balancing isinvoked by calling Zoltan LB Partition. The results of the load balancing include the number of nodes to

be imported and exported to the processor, lists of globa and local 1Ds of the imported and exported nodes, and source
and destination processors of the imported and exported nodes. A returned argument of Zoltan LB Partition istested to

see whether the new decomposition differs from the old one. If the decompositions differ, some sort of datamigrationis
needed to establish the new decomposition; the details of migration are not shown in this figure but will be addressed in

the migration examples. After the data migration is completed, the arrays of information about imported and exported
nodes returned by Zoltan_LB_Partition arefreed by acall to Zoltan_ LB _Free Part.

char *I b_net hod;

int new, num.inp, numexp, *inp_procs, *exp_procs;
int *inp_to_part, *exp_to_part;

int numgid entries, numlid_entries;

ZOLTAN I D PTR i np_gl obal _i ds, exp_gl obal _ids;
ZOLTAN ID PTR inp_l ocal _ids, exp_local ids;

/* Set | oad-bal anci ng nmet hod. */
read | oad bal ancing info frominput file(& b_method);
Zoltan_Set Param(zz, "LB METHOD', |b_nethod);

/* Reset sone | oad-bal ancing paraneters. */
Zol tan_Set Paran(zz, "RCB_Reuse", "TRUE");

/* Perform conputations */

/* Perform|oad bal anci ng */
Zoltan_ LB Partition(zz, &ew, &um gid _entries, ¨id_entries,
&um i np, & np_gl obal _ids, & np_l ocal _ids, & np_procs, & np_to_part,
&num exp, &exp_gl obal _i ds, &xp_| ocal _i ds, &Xxp_procs, &xp_to_part);
if (new

performdata migration(...);

/* Free nmenory allocated for |oad-balancing results by Zoltan library */
Zoltan LB Free Part (& np_global ids, & np_local _ids, & np_procs,

& np_to _part);

Zoltan LB Free Part (&exp_gl obal ids, &exp |ocal ids, &exp_procs,
&exp_to_part);

Typical calling sequence for performing load balancing with the Zoltan library.

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_Ib.html (1 of 2) [7/29/2004 12:29:34 PM]

Zoltan User's Guide: Load-Balancing Examples

character(len=3) |b_nethod

| ogi cal new

i nteger(Zoltan_I NT) num.inp, numexp
integer(Zoltan_INT) numgid entries, numlid entries

integer(Zoltan_INT), pointer :: inp_procs(:), exp_procs(:)
integer(Zoltan_ INT), pointer :: inp_global _ids(:), exp_global ids(:)
gl obal |Ds

integer(Zoltan_INT), pointer :: inp_local ids(:), exp_local ids(:)

| ocal 1Ds

integer(Zoltan_ INT) ierr

I Set | oad- bal anci ng net hod.
I b_method = "RCB"
ierr = Zoltan_Set Paran(zz, "LB METHOD', |b_nethod)

I Reset sone | oad-bal anci ng paraneters
ierr = Zoltan _Set Param(zz, "RCB Reuse", "TRUE")

! Perform conputations

! Perform | oad bal anci ng

ierr = Zoltan_ LB Partition(zz,new,numgid entries,numlid entries, &
num.i np, i np_gl obal _ids,inp_local _ids, &
i mp_procs,inp_to_part, &
num exp, exp_gl obal _ids, exp_l ocal _ids, &
exp_procs, exp_to_part)

if (new) then

performdata_mgration(...)
endi f

! Free menory allocated for |oad-balancing results by Zoltan library
ierr = Zoltan LB Free_ Part (inp_global _ids, inp_local _ids, inp_procs,
inp_to_part);
ierr = Zoltan LB Free Part (exp_gl obal _ids, exp_local _ids, exp_procs,
exp_to_part);

Fortran version of the load-balancing example.

[Table of Contents | Next: Migration Examples | Previous: General Usage Example]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_Ib.html (2 of 2) [7/29/2004 12:29:34 PM]

Zoltan User's Guide: Migration Examples

Zoltan User's Guide | Next | Previous

Migration Examples

Data migration using Zoltan's migration tools can be accomplished in two different ways:

auto-migration, or
user-guided migration.

The choice of migration method depends upon the complexity of the application's data. For some applications, only the
objects used in balancing must be migrated; no auxiliary data structures must be moved. Particle simulations are examples
of such applications; load balancing is based on the number of particles per processor, and only the particles and their data
must be moved to establish the new decomposition. For such applications, Zoltan's auto-migration tools can be used.
Other applications, such as finite element methods, perform load balancing on, say, the nodes of the finite element mesh,
but nodes that are moved to new processors also need to have their connected elements moved to the new processors, and
migrated elements may also need "ghost" nodes (i.e., copies of nodes assigned to other processors) to satisfy their
connectivity requirements on the new processor. This complex data migration requires a more user-controlled approach to
data migration than the auto-migration capabilities Zoltan can provide.

Auto-Migration Example

In the figure below, an example of the load-balancing calling sequence for a particle simulation using Zoltan's

auto-migration tools is shown. The application requests auto-migration by turning on the AUTO_MIGRATE option
through acall to Zoltan Set Param and registers functions to pack and unpack a particle's data. During the call to

Zoltan LB Partition, Zoltan computes the new decomposition and, using callsto the packing and unpacking query

functions, automatically migrates particles to their new processors. The application then frees the arrays returned by
Zoltan LB Partition and can continue computation without having to perform any additional operations for data

migration.

/* Tell Zoltan to automatically nigrate data for the application. */
Zoltan_Set Param(zz, "AUTO M GRATE", "TRUE");

/* Register additional functions for packing and unpacking data */
/* by migration tools. */
Zoltan_Set _Fn(zz, ZOLTAN OBJ_SI ZE FN TYPE,

(void (*)()) user _return_particle data_size, NULL);
Zoltan_Set _Fn(zz, ZOLTAN PACK OBJ_FN TYPE,

(void (*)()) user_pack_particle_data, NULL);
Zoltan_Set _Fn(zz, ZOLTAN UNPACK OBJ_FN TYPE,

(void (*)()) user_unpack particle_data, NULL);

/* Perform conputations */

/* Perform | oad bal anci ng AND autonatic data migration! */
Zoltan LB Partition(zz, &ew, &um gid entries,¨id _entries,
&um i np, & np_gl obal _i ds, & np_l ocal _i ds, & np_procs, & np_to_part,
&um exp, &exp_gl obal _i ds, &xp_l ocal _i ds, &xp_procs, &xp_to_part);

/* Free nmenory allocated for |oad-balancing results by Zoltan */
Zoltan LB Free Part (& np_global ids, & np_local _ids, & np_procs,

& np_to _part);
Zoltan LB Free Part (&exp_gl obal ids, &exp |ocal ids, &exp_procs,

&exp_to_part);

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (1 of 3) [7/29/2004 12:29:35 PM]

Zoltan User's Guide: Migration Examples

Typical calling sequence for using the migration tools auto-migration capability with the dynamic
load-balancing tools.

User-Guided Migration Example

In the following figure, an example of user-guided migration using Zoltan's migration tools for afinite element
application is shown. Several migration steps are needed to completely rebuild the application's data structures for the new
decomposition. On each processor, newly imported nodes need copies of elements containing those nodes. Newly
imported elements, then, need copies of "ghost" nodes, nodes that are in the element but are assigned to other processors.
Each of these entities (nodes, elements, and ghost nodes) can be migrated in separate migration steps using the functions
provided in the migration tools. First, the assignment of nodes to processors returned by Zoltan LB Partition is

established. Query functions that pack and unpack nodes are registered and Zoltan Migrateis called using the nodal
decomposition returned from Zoltan LB Partition. Zoltan Migr ate packs the nodes to be exported, sends them to other

processors, and unpacks nodes received by a processor. The packing routine migrate node _pack includes with each node
alist of the element IDs for elements containing that node. The unpacking routine migrate_node_unpack examines the list
of element IDsand builds alist of requests for el ements the processor needs but does not already store. At the end of the
nodal migration, each processor has alist of element IDs for elements that it needs to support imported nodes but does not
already store. Through acall to Zoltan Invert Lists, each processor computes the list of elementsit has to send to other

processors to satisfy their element requests. Packing and unpacking routines for elements are registered, and
Zoltan Migrate isagain used to move element data to new processors. Requests for ghost nodes can be built within the

element packing and unpacking routines, and callsto Zoltan Invert Listsand Zoltan Migrate, with node packing and

unpacking, satisfy requests for ghost nodes. In al three phases of migration, the migration tools handle communication;
the application is responsible only for packing and unpacking data and for building the appropriate request lists.

/* Assunme Zoltan returns a deconposition of the */

/* nodes of a finite el ement nmesh. */

Zoltan LB Partition(zz, &ew, &umgid_entries, ¨id_entries,
&um i np, & np_gl obal _i ds, & np_l ocal _i ds, & np_procs, & np_to_part,
&num exp, &exp_gl obal _i ds, &xp_l ocal _i ds, &Xxp_procs, &xp_to_part);

/* Mgrate the nodes as directed by the results of Zoltan_LB Partition. */
/* Wil e unpacki ng nodes, build list of requests for elenents needed */
/* to support the inported nodes.*/
Zoltan_Set Fn(zz, ZOLTAN OBJ_SIZE FN TYPE,
(void (*)()) migrate_node_size, NULL);
Zoltan_Set _Fn(zz, ZOLTAN PACK OBJ_FN TYPE,
(void (*)()) mgrate_pack_node, NULL);
Zoltan_Set Fn(zz, ZOLTAN_ UNPACK OBJ_FN TYPE,
(void (*)()) migrate_unpack _node, NULL);
Zoltan M grate(zz, num.inport,inp_global _ids,inp_local _ids,inp_procs,inp_to_part,
num export, exp_gl obal _ids, exp_Il ocal _ids, exp_procs,exp_to_part);

/* Prepare for mgration of requested el enents. */
Zoltan_Set Fn(zz, ZOLTAN PACK OBJ_FN TYPE,

(void (*)()) migrate_pack_el enent, NULL);
Zoltan_Set _Fn(zz, ZOLTAN UNPACK OBJ_FN TYPE,

(void (*)()) mgrate_unpack_el enent, NULL);
Zoltan_Set Fn(zz, ZOLTAN OBJ_SI ZE_FN TYPE,

(void (*)()) migrate_elenment _size, NULL);

/* Fromthe request lists, a processor knows which elenments it needs */

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (2 of 3) [7/29/2004 12:29:35 PM]

Zoltan User's Guide: Migration Examples

/* to support the inported nodes; it nust conpute which elements to */

/* send to other processors. */

Zoltan Invert Lists(zz, NumElt Requests, Elt_Requests_d obal I Ds,
Elt Requests Local IDs, Elt Requests Procs, Elt_ Requests to Part,
&um t mp_exp, & np_exp_gl obal _ids,
& np_exp_l ocal _ids, & np_exp_procs, & np_exp_to_part);

/* Processor now knows which elenents to send to other processors. */
/* Send the requested el ements. Wil e unpacking el enents, build */
/* request lists for "ghost" nodes needed by the inported el ements. */
Zoltan Mgrate(zz, NumElt_Requests, Elt_Requests_G obal _IDs,
Elt _Requests_Local IDs, Elt_Requests_Procs, Elt_Request_to_Part,
num t nmp_exp_objs, tnp_exp_gl obal _ids,
tnp_exp_l ocal _ids, tnp_exp_procs, tnp_exp_to_part);

/* Repeat process for "ghost" nodes. */

Typical calling sequence for user-guided use of the migration toolsin Zoltan.

[Table of Contents | Next: Query-Function Examples | Previous. L oad-Balancing Example]

file:/lIE|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_mig.html (3 of 3) [7/29/2004 12:29:35 PM]

Zoltan User's Guide: Query-Functon Examples

Zoltan User's Guide | Next | Previous

Query-Function Examples

Examples of query functions provided by a simple application are included below. The general-interface examples
include a smple implementation of ZOLTAN_GEOM FN and ZOLTAN_OBJ LIST_FN query functions and variants
of the simple implementation that exploit local identifiers and data pointers. Migration examples for packing and
unpacking objects are also included. Robust error checking is not included in the routines; application devel opers should
include more explicit error checking in their query functions.

General Interface Examples

Basic example
User-defined data pointer

Migration Examples

Packing and unpacking functions

All the examples use a mesh data structure consisting of nodes in the mesh. these nodes are the objects passed to Zoltan.
A nodeis described by its 3D coordinates and a global ID number that is unique across all processors. Thetype
definitions for the mesh and node data structures used in the examples are included below.

/* Node data structure. */

/* A node consists of its 3D coordi nates and */

/* an I D nunber that is unique across all processors. */
struct Node_Type {

doubl e Coordi nates[3];

int dobal I D Num

b

/* Mesh data structure. */

/* Mesh consists of an array of nodes and */

/* the nunber of nodes owned by the processor. */
struct Mesh_Type {

struct Node_Type Nodes[MAX_NODES] ;

i nt Nunber Owned;

b

Data types for the query-function examples.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (1 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

I Node data structure.
I A node consists of its 3D coordinates and
! an I D nunber that is unique across all processors.
type Node_ Type
real (Zoltan DOUBLE) :: Coordi nates(3)
integer(Zoltan_ INT) :: dobal I D Num
end type Node Type

I Mesh data structure.
! Mesh consists of an array of nodes and
! the nunber of nodes owned by the processor.
type Mesh_Type
type(Node_Type) :: Nodes(MAX NODES)
i nteger(Zoltan_INT) :: Nunber_ Owned
end type Mesh_Type

Data types for the Fortran query-function examples.

General Interface Query Function Examples

In the following examples, ZOLTAN OBJ LIST FN and ZOLTAN GEOM FN query functions are implemented for
an application using the mesh and node data structures described above. The nodes are the objects passed to Zoltan.

Through acall to Zoltan_Set Fn, the function user_return_owned_nodesisregistered asthe ZOLTAN OBJ LIST FN
guery function. It returns global and local identifiers for each node owned by a processor.

The function user_return_coordsisregisteredasan ZOLTAN GEOM FN query function. Given the global and local
identifiers for anode, this function returns the node's coordinates. All the examples exploit the local identifier to quickly
locate nodal data. If such an identifier is not available in an application, a search using the global identifier can be
performed.

The Basic Example includes the simplest implementation of the query routines. In the query routines, it uses global
application data structures and a local numbering scheme for the local identifiers. The User-Defined Data Pointer
Example uses only local application data structures; this model is useful if the application does not have global data

structures or if objects from more than one data structure are to be passed to Zoltan. Differences between the latter
example and the Basic Example are shown in red.

Basic Example

In the simplest example, the query functions access the application data through a global data structure (Mesh)
representing the mesh. Inthecallsto Zoltan Set Fn, no pointers to application data are registered with the query
function (i.e., the data pointer isnot used). A node'slocal identifier is an integer representing the index in the
Mesh.Nodes array of the node. The local identifier is set to theindex'svaluein user_return_owned nodes. Itisused to
access the global Mesh.Nodes array in user_return_coords.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (2 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

/* in application's programfile */
#i ncl ude "zol tan. h"

/* Declare a global Mesh data structure. */
struct Mesh_Type Mesh;

mai n()

{

/* Indicate that |ocal and global IDs are one integer each. */
Zol tan_Set Paran{zz, "NUM G D ENTRI ES', "1");:

Zoltan_Set Param(zz, "NUM LID ENTRI ES", "1");

/* Register query functions. */

/* Do not register a data pointer with the functions; */
/* the gl obal Mesh data structure will be used. */
Zoltan_Set Fn(zz, ZOLTAN GEOM FN TYPE,

(void (*)()) user_return_coords, NULL);
Zoltan_Set Fn(zz, ZOLTAN OBJ_LIST_FN _TYPE,

(void (*)()) user_return_owned nodes, NULL);

voi d user_return_owned_nodes(voi d *dat a,
int numgid entries, int nhumlid_entries,
ZO.TAN I D PTR gl obal _ids, ZO.TAN ID PTR I ocal _i ds,

int wgt _dim float *obj wgts,

int *ierr)
r
int i;
/* return gl obal node nunbers as global ids. */
/* return index into Nodes array for local ids. */
for (i = 0; i < Mesh.Nunber_ Omned; i++){
global ids[i*numgid entries] = Mesh. Nodes[i].d obal I D Num
local _ids[i*numlid entries] =i;
}
*ierr = ZOLTAN_CK;
}

void user_return_coords(void *data,
int numgid entries, int nhumlid_entries,
ZOLTAN I D PTR gl obal _id, ZO.TAN ID PTR | ocal _id,

doubl e *geom vec, int *ierr)

{
/* use local _id to index into the Nodes array. */
geom vec[0] = Mesh. Nodes[| ocal _id[0]]. Coordi nat es[0];
geom vec|[1] = Mesh. Nodes[|l ocal _id[0]]. Coordi nates[1];
geom vec[2] = Mesh. Nodes[| ocal _id[0]]. Coordi nates[2];
*ierr = ZOLTAN CK;

}

Example of general interface query functions (simplest implementation).

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (3 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

I in application's programfile

nmodul e d obal _Mesh_Dat a

! Declare a global Mesh data structure
type(Mesh_Type) :: Mesh

end nodul e

program query_exanple_1
use zol tan

I Indicate that |local and global |Ds are one integer each.
ierr = Zoltan_Set Param(zz, "NUM G D ENTRIES', "1");
ierr = Zoltan _Set Param(zz, "NUM LID ENTRIES', "1");

! Register query functions.

! Do not register a data pointer with the functions;
! the global Mesh data structure will be used.
[
[

err = Zoltan_Set Fn(zz, ZOLTAN OBJ LI ST_FN TYPE,
user _return_owned_nodes)

end progr am

subroutine user_return_owned_nodes(data, &

numgid entries, numlid entries, &

gl obal _ids, local _ids, wgt_dim obj_wgts, ierr)
use zoltan
use d obal Mesh Dat a

I return gl obal node nunbers as gl obal _ids.
I return index into Nodes array for |ocal _ids.
doi =1, Mesh%unber Omned
gl obal _ids(1+(i-1)*numgid_entries) = &
Mesh%Nodes(i) %3 obal | D_Num
local _ids(1+(i-1)*numlid_entries) =i
end do
ierr = ZOLTAN X
end subroutine

gl obal _id, local _id, geomvec, ierr)
use zol tan
use d obal Mesh _Dat a

I use local_id to index into the Nodes array.
geomvec(1l: 3) = Mesh¥%odes(Il ocal _i d(1)) % Coor di nat es
ierr = ZOLTAN K

end subroutine

err = Zoltan_Set_Fn(zz, ZOLTAN GEOM FN TYPE, user _return_coords)

integer(Zoltan_INT) :: data(l) ! dumry declaration, do not use
integer(Zoltan_INT), intent(in) :: numgid_entries, numlid_entries
integer(Zoltan_INT), intent(out) :: global _ids(*), local _ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim

real (Zoltan_FLOAT), intent(out) :: obj_wgts(*)

integer(Zoltan_INT), intent(out) :: ierr

i nteger i

subroutine user_return_coords(data, numgid _entries, numlid_entries,

integer(Zoltan_INT) :: data(l) ! dumry declaration, do not use
integer(Zoltan_INT), intent(in) :: numgid_entries, numlid_entries
integer(Zoltan_INT), intent(in) :: global _id(*), local_id(*)

real (Zoltan_DOUBLE), intent(out) :: geomvec(*)

integer(Zoltan_INT), intent(out) :: ierr

&

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (4 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

Fortran example of general interface query functions (simplest implementation).
User-Defined Data Pointer Example

In this example, the address of alocal mesh data structure is registered with the query functions for use by those
functions. This change eliminates the need for a global mesh data structure in the application. The address of the local
datastructureisincluded as an argument in callsto Zoltan Set Fn. Thisaddressisthen usedin
user_return_owned _nodes and user_return_coords to provide data for these routines. It iscast to the Mesh_Type data
type and accessed with local identifiers asin the Basic Example. Differences between this example and the Basic
Example are shown in red.

This model is useful when the application does not have a global data structure that can be accessed by the query

functions. It can also be used for operations on different data structures. For example, if an application had more than
one mesh, load balancing could be performed separately on each mesh without having different query routines for each
mesh. Callsto Zoltan Set Fn would define which mesh should be balanced, and the query routines would access the

mesh currently designated by the Zoltan Set Fn calls.

/* in application's programfile */
#i ncl ude "zol tan. h"

mai n()

/* declare a | ocal mesh data structure. */
struct Mesh_Type nesh;

/* Indicate that |ocal and global I1Ds are one integer each. */
Zoltan_Set Param(zz, "NUM A D ENTRIES', "1");

Zol tan_Set Paran(zz, "NUM LID ENTRIES', "1");

/* Register query functions. */
/* Register the address of mesh as the data pointer. */
Zoltan_Set _Fn(zz, ZOLTAN GEOM FN TYPE,
(void (*)()) user_return_coords, &nesh);
Zol tan_Set _Fn(zz, ZOLTAN OBJ_LIST_FN TYPE,

(void (*)()) user_return_owned nodes, &mresh);

void user _return_owned _nodes(voi d *dat a,
int numgid entries, int nhumlid entries,
ZOLTAN I D PTR gl obal _ids, ZO.TAN ID PTR | ocal _i ds,
int wgt_dim float *obj_wgts,
int *ierr)

t
int i;

/* cast data pointer to type Mesh Type. */

struct Mesh_Type *ptr = (struct Mesh_Type *) data;

/* return gl obal node nunbers as global ids. */

[* return index into Nodes array for local ids. */

for (i = 0; i < ptr->Nunber_Omed; i++) {
global _ids[i*num gid entries] = ptr->Nodes[i].d obal | D Num
local _ids[i*numlid entries] = i;

}

*ierr = ZOLTAN CK;

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (5 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

voi d user_return_coords(void *data,
int numgid entries, int numlid_entries,
ZOLTAN I D PTR gl obal _id, ZOLTAN ID PTR | ocal _id,
doubl e *geomvec, int *ierr)

{

/* cast data pointer to type Mesh _Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) dat a;

/* use local _id to address the requested node. */
geom vec[0] ptr->Nodes[l ocal _id[0]]. Coordi nates[O0];
geom vec[1] ptr->Nodes[l ocal id[0]]. Coordinates[1];
geom vec| 2] ptr->Nodes[l ocal _id[0]]. Coordi nates[?2];
*ierr = ZOLTAN CK;

Example of general interface query functions using the application-defined data pointer.

/[* included in file zoltan _user _data.f90 */
I User defined data type as wrapper for Mesh
type Zoltan_User Data 1
type(Mesh_type), pointer :: ptr
end type Zoltan_User Data_1

I in application's programfile

program query_exanpl e_3

use zoltan

I declare a local nesh data structure and a User_Data to point to it.
type(Mesh_Type), target :: nesh

type(Zoltan_User _Data 1) data

I Indicate that |local and global |Ds are one integer each.
ierr = Zoltan_Set_Paran(zz, "NUM G D ENTRIES', "1");
ierr Zoltan_Set Param(zz, "NUM LID ENTRI ES", "1");

! Regi ster query functions.

I Use the User _Data variable to pass the nesh data

data%ptr => nesh

ierr = Zoltan Set Fn(zz, ZOLTAN GEOM FN TYPE, user _return_coords,
dat a)

ierr = Zoltan_Set _Fn(zz, ZOLTAN OBJ_ LI ST_FEN TYPE,

user _return_owned_nodes, data)

end progr am

subroutine user_return_owned_nodes(data, &

numgid entries, numlid_entries, &

gl obal _ids, local __ids, wgt_dim obj_wgts, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: numgid_entries, numlid_entries
integer(Zoltan_INT), intent(out) :: global _ids(*), local _ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real (Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
i nteger i

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (6 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

type(Mesh_Type), pointer :: Mesh

I extract the mesh fromthe User_ Data argunent
Mesh => dat a%ptr

! return global node nunbers as gl obal i ds.
I return index into Nodes array for |ocal ids.
do i =1, Mesh%\unber Omned
global ids(1+(i-1)*numgid entries) = &
Mesh%Nodes(i) %3 obal | D Num
local _ids(1+(i-1)*numlid entries) =i
end do
ierr = ZOLTAN K
end subroutine

subroutine user_return_coords(data, global _id, local _id, &
geomvec, ierr)

use zoltan

type(Zoltan_User Data 1) :: data

integer(Zoltan_INT), intent(in) :: numgid entries, numlid_entries
integer(Zoltan_INT), intent(in) :: global _id(*), local _id(*)

real (Zoltan_DOUBLE), intent(out) :: geomvec(*)

integer(Zoltan_INT), intent(out) :: ierr

type(Mesh_Type), pointer :: Mesh

I extract the nmesh fromthe User_Data argunent
Mesh => dat a%ptr

I use local_id to index into the Nodes array.
geomvec(1l:3) = Mesh¥%odes(Il ocal _i d(1)) % Coor di nat es
ierr = ZOLTAN X

end subroutine

Fortran example of general interface query functions using the application-defined data pointer.

Migration Examples
Packing and Unpacking Data

Simple migration query functions for the Basic Example are included below. These functions are used by the migration
tools to move nodes among the processors. The functions user_size node, user_pack _node, and user_unpack node are
registered through callsto Zoltan Set Fn. Query function user_size node returns the size (in bytes) of data representing
asingle node. Query function user_pack node copies a given node's data into the communication buffer buf. Query
function user_unpack _node copies a data for one node from the communication buffer buf into the Mesh.Nodes array on
its new processor.

These query routines are simple because the application does not dynamically allocate memory for each node. Such
dynamic allocation would have to be accounted for inthe ZOLTAN_OBJ SIZE FN, ZOLTAN PACK OBJ FN, and

ZOLTAN_UNPACK_OBJ EN routines.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (7 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

mai n()

/* Register mgration query functions. */
/* Do not register a data pointer with the functions; */
/* the global Mesh data structure will be used. */
Zoltan_Set _Fn(zz, ZOLTAN OBJ_SI ZE FN TYPE,

(void (*)()) user_size_node, NULL);
Zoltan_Set Fn(zz, ZOLTAN PACK OBJ_FN TYPE,

(void (*)()) user_pack_node, NULL);
Zol tan_Set Fn(zz, ZOLTAN UNPACK OBJ_FN TYPE,

(void (*)()) user_unpack _node, NULL);

i nt user_size node(void *data,
int numgid entries, int numlid entries,
ZOLTAN I D PTR global _id, ZOLTAN ID PTR local _id, int *ierr)

/* Return the size of data associated with one node. */

/* This case is sinple because all nodes have the sane size. */
*ierr = ZOLTAN CK;
return(sizeof (struct Node Type));

}

voi d user _pack_node(voi d *dat a,
int numgid entries, int nhumlid entries,
ZOLTAN I D PTR gl obal _id, ZOLTAN ID PTR | ocal _id,
int dest_proc, int size, char *buf, int *ierr)

{
/* Copy the specified node's data into buffer buf. */
struct Node_Type *node_buf = (struct Node_Type *) buf;

*ierr = ZOLTAN CK;

node_buf - >Coor di nat es[0]
node_buf - >Coor di nat es[1] Mesh. Nodes| | ocal
node_buf - >Coor di nat es|[2] Mesh. Nodes|[| ocal

Mesh. Nodes[| ocal _i

i

i

node_buf->3 obal | D Num = Mesh. Nodes[| ocal _id

0]]. Coordi nates[0] ;
0]]. Coordi nates[1];
0
]

]]. Coordi nat es[2] ;

d
d
d
[0]].dG obal I D Num

[
[
[
0
}

voi d user_unpack _node(void *data, int numgid entries,
ZOLTAN I D PTR gl obal _id, int size,
char *buf, int *ierr)

/* Copy the node data in buf into the Mesh data structure. */
int i;
struct Node_Type *node_buf = (struct Node_Type *) buf;

*ierr = ZOLTAN CK;

i = Mesh. Nunber Ownned;

Mesh. Nurmber _Owmned = Mesh. Nunmber _Owned + 1;

Mesh. Nodes[i]. Coor di nat es[0] node_buf - >Coor di nat es[0] ;
Mesh. Nodes[i]. Coordi nat es[1] node_buf - >Coor di nat es[1] ;
Mesh. Nodes[i]. Coor di nat es[2] node_buf - >Coor di nat es[2] ;
Mesh. Nodes[i].d obal I D Num = node_buf->3 obal | D Num

Example of migration query functions for the Basic Example.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (8 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: Query-Functon Examples

[Table of Contents | Next: FORTRAN Interface | Previous: Migration Examples]|

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_examples_query.html (9 of 9) [7/29/2004 12:29:37 PM]

Zoltan User's Guide: FORTRAN Interface

Zoltan User's Guide | Next | Previous

FORTRAN Interface

The Fortran interface for Zoltan is a Fortran 90 interface designed similar to the Fortran 90 Bindings for OpenGL
[Mitchell]. Thereisno FORTRAN 77 interface; however, FORTRAN 77 applications can use Zoltan by adding only a

few Fortran 90 statements, which are fully explained in the section on FORTRAN 77, provided that vendor-specific
extensions are not heavily used in the application. This section describes how to build the Fortran interface into the Zoltan
library, how to call Zoltan from Fortran applications, and how to compile Fortran applications that use Zoltan. Note that
the capitalization used in this section is for clarity and need not be adhered to in the application code, since Fortran is case
insensitive.

Compiling Zoltan

Compiling Applications

FORTRAN API

FORTRAN 77

System Specific Remarks

[Table of Contents | Next: FORTRAN--Compiling Zoltan | Previous: Query-Function Examples

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran.html [7/29/2004 12:29:37 PM]

Zoltan User's Guide: FORTRAN -- Compiling Zoltan

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Zoltan

To include the Fortran interface in the Zoltan library, usethe YES FORTRAN parameter in the make statement; for
example

gmake YES FORTRAN=1 ZOLTAN_ARCH=<platform> zoltan
Before compiling the library, make sure that the application's zoltan user_data.f90 has been placed in the Zoltan/fort/
directory.

[Table of Contents | Next: FORTRAN--Compiling Applications | Previous. FORTRAN Interface]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_zoltan.html [7/29/2004 12:29:37 PM]

Zoltan User's Guide: FORTRAN--Compiling Applications

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Applications

To compile a Fortran application using the Zoltan library, the module information files must be made available to most
compilers during the compilation phase. Module information files are files generated by the compiler to provide module
information to program units that USE the module. They usually have suffixes like .mod or .M. The module information
filesfor the modulesin the Zoltan library are located in the Obj_<platform> subdirectory. Most Fortran 90 compilers
have a compile line flag to specify directories to be searched for module information files, typically "-1"; check the

documentation for your compiler. If your compiler does not have such aflag, you will have to copy the module
information files to the directory of the application (or use symboalic links).

The Fortran interface is built into the same library file as the rest of Zoltan, which is found during the compiler link phase
with -lzoltan. Thus an example compilation line would be

90 -I<path to Zoltan>/Obj_< platform> application.f90 -lzoltan

[Table of Contents | Next: FORTRAN API | Previous. FORTRAN--Compiling Zoltan

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_apps.html [7/29/2004 12:29:37 PM]

Zoltan User's Guide: FORTRAN API

Zoltan User's Guide | Next | Previous

FORTRAN API

The Fortran interface for each Zoltan Interface Function and Application-Registered Query Function is given aong with
the C interface. This section contains some general information about the design and use of the Fortran interface.

Names

Zoltan module
Numeric types
Structures

Global and local IDs
Query function data

Names

All procedure, variable, defined constant and structure names are identical to those in the C interface, except that in
Fortran they are case insensitive (either upper or lower case letters can be used).

Zoltan module

MODULE zoltan provides accessto al entitiesin Zoltan that are of use to the application, including kind type parameters,
named constants, procedures, and derived types. Any program unit (e.g., main program, module, external subroutine) that
needs access to an entity from Zoltan must contain the statement

USE zoltan
near the beginning.

Numeric types

The correspondence between Fortran and C numeric types is achieved through the use of kind type parameters. In most
cases, the default kind for a Fortran type will match the corresponding C type, but thisis not guaranteed. To insure
portability of the application code, it is highly recommended that the following kind type parameters be used in the
declaration of all variables and constants that will be passed to a Zoltan procedure:

IC |Fortran

lint INTEGER(KIND=Zoltan_INT)
|float |REAL (KIND=Zoltan_FLOAT)
double |REAL (KIND=Zoltan_DOUBLE)

Note that "KIND=" is optional in declaration statements. The kind humber for constants can be attached to the constant,
e.g., 1.0 Zoltan DOUBLE.

Structures

For any struct in the C interface to Zoltan, e.g. Zoltan _Struct, thereis a corresponding derived type in the Fortran
interface. Variables of thistype are declared as demonstrated below:

TYPE(Zoltan_Struct) :: zz

In the Fortran interface, the internal components of the derived type are PRIVATE and not accessible to the application.
However, the application simply passes these variables around, and never needs to access the internal components.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html (1 of 2) [7/29/2004 12:29:38 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/dev_html/dev_lb_structs.html#Zoltan_Struct

Zoltan User's Guide: FORTRAN API

Global and local IDs

While the C implementation uses arrays of unsigned integers to represent global and local IDs, the Fortran interface uses

arrays of integers, as unsigned integers are not available in Fortran. Thus, each ID isrepresented as an array (possibly of
size 1) of integers. Applications that use other data types for their IDs can convert between their data types and Zoltan'sin
the application-registered query functions.

Query function data

Zoltan Set Fn allows the application to pass a pointer to data that will subsequently be passed to the query function
being registered. From Fortran thisis an optional argument, or can be one of several types. In the simplest cases, an
intrinsic array containing the data will be sufficient. For these cases, data can be an assumed size array of type
INTEGER(Zoltan_INT), REAL(Zoltan_FLOAT) or REAL (Zoltan_DOUBLE). When the argument is omitted in the call
to the registration function, a data argument will still be passed to the query function. This should be declared as an
assumed size array of type INTEGER(Zoltan_INT) and never used.

For more complicated situations, the application may need to pass data in a user-defined type. The strong type checking of
Fortran does not allow passing an arbitrary type without modifying the Fortran interface for each desired type. So the
Fortran interface provides atype to be used for this purpose, Zoltan_User _Data_1. Since different types of data may
need to be passed to different query functions, four such types are provided, using the numerals 1, 2, 3 and 4 as the last
character in the name of the type. These types are defined by the application in zoltan_user_data.fo0. If not needed, they
must be defined, but can be almost empty asin fort/zoltan_user_data.f90.

The application may use these types in any appropriate way. If desired, it can define these types to contain the
application's data and use the type throughout the application. But it is anticipated that in most cases, the desired type
already existsin the application, and the Zoltan_User _Data_x typeswill be used as "wrapper types," containing one or
more pointers to the existing types. For example,

TY PE mesh
I an existing data type with whatever defines amesh
END TY PE mesh

TYPE Zoltan User Data 2
TY PE(mesh), POINTER :: ptr
END TYPE Zoltan_User_Data 2
The application would then set the pointer to the data before calling Zoltan_Set Fn:

TY PE(mesh) :: meshdata

TYPE(Zoltan_User_Data 2) :: query_data

TYPE(Zoltan_Struct) :: zz

INTEGER(Zoltan _INT), EXTERNAL :: num_obj_func ! not required for module procedures

query_data%ptr => meshdata
ierr = Zoltan_Set Fn(zz,ZOLTAN_NUM_OBJ FN_TYPE,num_obj_func,query_data)

Note that the existing data type must be available when Zoltan_User _Data x is defined. Therefore it must be defined
either in zoltan_user_data.f90 or in amodule that is compiled before zoltan_user_data.f90 and USEd by MODULE
zoltan_user_data. For an example that uses a wrapper type, see fdriver/zoltan_user_data.fo0.

[Table of Contents | Next: FORTRAN 77 | Previous. FORTRAN--Compiling Applications

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_api.html (2 of 2) [7/29/2004 12:29:38 PM]

Zoltan User's Guide: FORTRAN 77

Zoltan User's Guide | Next | Previous

FORTRAN 77

Thereisno FORTRAN 77 interface for Zoltan; however, an existing FORTRAN 77 application can be compiled by a
Fortran 90 compiler provided it does not use vendor specific extensions (unless the same extensions are supported by the
Fortran 90 compiler), and the application can use Zoltan's Fortran 90 interface with aminimal amount of Fortran 90
additions. This section provides details of the Fortran 90 code that must be added.

When building the Zoltan library, use the file fort/zoltan_user_data.fo0 for zoltan_user_data.f90. This assumes that
DATA inacal toZOLTAN SET FN iseither omitted (you can omit arguments that are labeled OPTIONAL in the
Fortran API) or an array of type INTEGER, REAL or DOUBLE PRECISION (REAL*4 and REAL*8 might be
acceptable). If amore complicated set of datais required (for example, two arrays), then it should be made available to the
guery functions through COMMON blocks.

To get access to the interface, each program unit (main program, subroutine or function) that calls a Zoltan routine must
begin with the statement

USE ZOLTAN
and this should be the first statement after the program, subroutine or function statement (before the declarations).

The pointer to the Zoltan structure returned by ZOLTAN CREATE should be declared as

TYPE(ZOLTAN_STRUCT), POINTER :: ZZ
(you can use a name other than ZZ if you wish).

To create the structure, use a pointer assignment statement with the call to ZOLTAN CREATE:
ZZ =>7Z0LTAN CREATE(COMMUNICATOR)

Note that the assignment operator is"=>". If ZZ is used in more than one procedure, then put it ina COMMON block. It
cannot be passed as an argument unless the procedure interfaces are made "explicit.” (Let's not go there.)

The eight import and export arrays passed to ZOLTAN LB PARTITION (and other procedures) must be pointers. They
should be declared as, for example,

INTEGER, POINTER :: IMPORT_GLOBAL_IDS(?)

Note that the double colon after POINTER is required, and the dimension must be declared as"(:)" with acolon. Like ZZ,
if they are used in more than one procedure, pass them through a COMMON block, not as an argument.

Except in the unlikely event that the default kinds of intrinsic types do not match the C intrinsic types, you do not haveto
use the kind type parameters Zoltan_INT, etc. It is aso not necessary to include the INTENT attribute in the declarations
of the query functions, so they can be simplified to, for example,

SUBROUTINE GET_OBJ LIST(DATA, GLOBAL_IDS, LOCAL_IDS, WGT_DIM, OBJ WGTS, IERR)
INTEGER DATA(*),GLOBAL_IDS(*),LOCAL_IDS(*) WGT_DIM,IERR
REAL OBJ WGTS(*)

to be more consistent with a FORTRAN 77 style.

[Table of Contents | Next: FORTRAN--System-Specific Remarks | Previous. FORTRAN API

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_77.html [7/29/2004 12:29:38 PM]

Zoltan User's Guide: FORTRAN--System-Specific Remarks

Zoltan User's Guide | Next | Previous

FORTRAN: System-Specific Remarks

System-specific details of the FORTRAN interface are included below.

The mention of specific products, trademarks, or brand names is for purposes of identification only.
Such mention is not to be interpreted in any way as an endoresement or certification of such products
or brands by the National Institute of Standards and Technology or Sandia National Laboratories. All
trademarks mentioned herein belong to their respective owners.

MPICH
Pacific Sierra
NA Software

MPICH

Asof version 1.1.2, the MPICH implementation of MPI is not completely "Fortran 90 friendly." Only one problem was
encountered during our tests: the reliance on command line arguments. MPICH uses command line arguments during the
start-up process, even if the application does not. Command line arguments are not standard in Fortran, so although most
compilers offer it as an extension, each compiler has its own method of handling them. The problem arises when one
Fortran compiler is specified during the build of MPICH and another Fortran compiler is used for the application. This
should not be a problem on systems where there is only one Fortran compiler, or where multiple Fortran compilers are
compatible (for example, FORTRAN 77 and Fortran 90 compilers from the same vendor). If your program can get past
the call to MPI_Init, then you do not have this problem.

To solve this problem, build MPICH in such away that it does not include the routines for iargc and getarg (I have been
able to do this by using the -f95nag flag when configuring MPICH), and then provide your own versions of them when
you link the application. Some versions of these routines are provided in fdriver/farg_*.

Pacific Sierra

Pacific Sierra Research (PSR) Vastf90 is not currently supported due to bugs in the compiler with no known workarounds.
It is not known when or if this compiler will be supported.

NASoftware

N.A.Software FortranPlus is not currently supported due to problems with the query functions. We anticipate that this
problem can be overcome, and support will be added soon.

[Table of Contents | Next: Backward Compatibility | Previous. FORTRAN 77

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_fortran_sys.html [7/29/2004 12:29:38 PM]

Zoltan User's Guide: Backward Compatilibity

Zoltan User's Guide | Next | Previous

Backward Compatibility with Previous Versions of Zoltan

As new features have been added to Zoltan, backward compatibility with previous versions of Zoltan has been
maintained. Thus, users of previous versions of Zoltan can upgrade to a new version without changing their application
sour ce code. Modifications to application source code are needed only if the applications use new Zoltan functionality.

Enhancements to the Zoltan interface are described bel ow.

Versions 1.5 and higher
Versions 1.3 and higher

Backward Compatibility: Versions 1.5 and higher

The ahility to generate more partitions than processors was added to Zoltan in version 1.5. Thus, Zoltan's partitioning and
migration routines were enhanced to return and use both partition assignments and processor assignments. New interface
and query functions were added to support this additional information. All former Zoltan parameters apply to the new
functions as they did to the old; new parameters NUM_GLOBAL PARTITIONSand NUM_LOCAL_PARTITIONS apply

only to the new functions.

Thetable below lists the Zoltan function that uses both partition and processor information, along with the analogous
function that returns only processor information. Applications requiring only one partition per processor can use either
version of the functions.

Function with Partition and Processor info (v1.5 and Function with only Processor info (v1.3 and
higher) higher)

Zoltan LB_Partition Zoltan LB _Balance

Zoltan_LB_Point PP_Assign Zoltan LB_Point_Assign

Zoltan_LB_Box PP _Assign Zoltan_LB_Box_Assign

Zoltan Invert Lists Zoltan Compute Destinations
Zoltan_Migrate Zoltan_Help _Migrate

ZOLTAN PRE MIGRATE PP EN ZOLTAN PRE MIGRATE EN

ZOLTAN MID MIGRATE PP EN ZOLTAN MID MIGRATE FN

ZOLTAN POST MIGRATE PP EN ZOLTAN POST MIGRATE EN

To continue using the v1.3 partition functions, no changes to C or Fortran90 applications are needed. Zoltan interfaces
from versions earlier than 1.3 are also still supported (see below), requiring no changes to application programs.

To use the new v1.5 partitioning functions:

» Cusersmust includefile zoltan.h in their applications and edit their applications to use the appropriate new
functions.
« Fortran90 users must put user-defined data types in zoltan_user_data.f90 and edit their applications to use the

appropriate new functions. The new partitioning functions do not work with user-defined data typesin
Ib_user_const.fo0.

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (1 of 3) [7/29/2004 12:29:39 PM]

Zoltan User's Guide: Backward Compatilibity

Backward Compatibility: Versions 1.3 and higher

Versions of Zoltan before version 1.3 used a different naming convention for the Zoltan interface and query functions. All
functionsin Zoltan v.1.3 and above are prefixed with Zoltan_; earlier versions were prefixed with LB _.

Zoltan versions 1.3 and above maintain backward compatibility with the earlier Zoltan interface. Thus, applications
that used earlier versions of Zoltan can continue using Zoltan without changing their sour ce code.
Only two changes are needed to build the application with Zoltan v.1.3 and higher:

« All Zoltan include files are now in directory Zoltan/include. Thus, application include paths must point to this
directory.
(Previoudly, include fileswere in Zoltan/lb.)

« Applicationslink with Zoltan now by specifying only -lzoltan.
(Previousdly, applications had to link with -1zoltan -Izoltan_comm -lzoltan_mem.)
Whileit is not necessary for application devel opers to modify their source code to use Zoltan v.1.3 and above, those who
want to update their source code should do the following in their application sourcefiles:
« Replace Zoltan calls and constants (LB_*) with new names. The new names can be found through the index
below.
« Cprograms: Include file zoltan.h instead of Ibi_const.h.
« F90 programs:. Put user-defined data typesin file zoltan_user_data.f90 instead of Ib_user_const.fo0.

Backward Compatilibity Index for Interface and Query Functions

Namein Earlier Zoltan Versions | Namein Zoltan Version 1.3 and higher

LB_BORDER_OBJ LIST_FN ZOLTAN_BORDER OBJ LIST EN

LB _Balance Zoltan LB Balance
LB_Box_Assign Zoltan LB Box Assign
LB_CHILD_LIST_FN ZOLTAN CHILD LIST EN
LB_CHILD WEIGHT_FN ZOLTAN CHILD WEIGHT EN

LB_COARSE_OBJ LIST_FN ZOLTAN_COARSE OBJ LIST FN

LB_Compute_Destinations Zoltan_Compute Destinations
LB Create Zoltan Create

LB_Destroy Zoltan_Destroy
LB_EDGE_LIST_FN ZOLTAN EDGE LIST EN
LB _Evd Zoltan LB Eval

LB_FIRST_BORDER_OBJ FN ZOLTAN_FIRST BORDER OBJ FN

LB_FIRST_COARSE_OBJ FN ZOLTAN_FIRST _COARSE OBJ FEN

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (2 of 3) [7/29/2004 12:29:39 PM]

Zoltan User's Guide: Backward Compatilibity

LB_FIRST_OBJ FN

ZOLTAN_FIRST OBJ EN

LB_Free Data

Zoltan LB Free Data

LB_GEOM_FN

ZOLTAN_GEOM_EN

LB_Help_Migrate

Zoltan Help Migrate

LB Initialize

Zoltan Initialize

LB_MID_MIGRATE_FN

ZOLTAN MID_MIGRATE EN

LB_NEXT_BORDER_OBJ FN

ZOLTAN_NEXT BORDER OBJ FN

LB_NEXT_COARSE_OBJ FN

ZOLTAN NEXT COARSE OBJ EN

LB_NEXT_OBJ FN

ZOLTAN_NEXT OBJ EN

LB_NUM_BORDER_OBJ FN

ZOLTAN_NUM_BORDER OBJ EN

LB_NUM_CHILD_FN

ZOLTAN NUM CHILD EN

LB_NUM_COARSE_OBJ FN

ZOLTAN_NUM_COARSE OBJ FN

LB_NUM_EDGES FN

ZOLTAN_NUM_EDGES FEN

LB_NUM_GEOM_FN

ZOLTAN NUM GEOM_FEN

LB_NUM_OBJ FN

ZOLTAN_NUM_OBJ EN

LB_OBJ LIST_FN

ZOLTAN OBJ LIST EN

LB_OBJ SIZE_FN

ZOLTAN OBJ SIZE FN

LB_PACK_OBJ FN

ZOLTAN_PACK_OBJ EN

LB_POST_MIGRATE_FN

ZOLTAN_POST MIGRATE EN

LB_PRE_MIGRATE_FN

ZOLTAN PRE MIGRATE EN

LB_Point_Assign

Zoltan LB Point Assign

LB_Set Fn

Zoltan Set Fn

LB Set <lb fn type> Fn

Zoltan Set <zoltan fn type> Fn

LB_Set_Method

Zoltan Set Param with parameter LB_METHOD

LB_Set Param

Zoltan Set Param

LB_UNPACK_OBJ FN

ZOLTAN _UNPACK OBJ FN

[Table of Contents | Next: References | Previous. Fortran--System-Specific Remarks]

file:/l/E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_backward.html (3 of 3) [7/29/2004 12:29:39 PM]

Zoltan User's Guide: References

Zoltan User's Guide | Next | Previous

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

"ALEGRA -- A Framework for Large Strain Rate Physics."
http://sherpa.sandia.qov/9231home/al egra/alegra-frame.html

S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton and C. Vaughan. "Transient Solid
Dynamics Simulations on the Sandia/lntel Teraflop Computer.” Proceedings of SC'97, San Jose, CA, November,
1997. (Finalist for the Gordon Bell Prize.)

P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. "Robust geometrically based automatic
two-dimensional mesh generation.” Intl. J. Numer. Meths. Engrg., 24 (1987) 1043-1078.

M. Berger and S. Bokhari. "A partitioning strategy for nonuniform problems on multiprocessors.” |[EEE Trans.
Computers, C-36 (1987) 570-580.

K. Devine, G. Hennigan, S. Hutchinson, A. Salinger, J. Shadid, and R. Tuminaro. "High Performance MP
Unstructured Finite Element Simulation of Chemically Reacting Flows." Proceedings of SC'97, San Jose, CA,
November, 1997. (Finalist for the Gordon Bell Prize.)

H.C. Edwards. A parallel infrastructure for scalable adaptive finite element methods and its application to least
squares C\(inf) collocation. Ph.D. Dissertation, Univ. of Texas at Austin, May, 1997.

J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco and L. Ziantz. "Adaptive local refinement with octree
load-balancing for the parallel solution of three-dimensional conservation laws." J. Parallel Distrib. Comput., 47
(1998) 139-152.

L. Gervasio. "Fina Report." Summer project report, Internal Memo, Department 9103, Sandia National
Laboratories, August, 1998.

B. Hendrickson and K. Devine. "Dynamic load balancing in computational mechanics." Comp. Meth. Appl. Mech.
Engrg., v. 184 (#2-4), p. 485-500, 2000.

B. Hendrickson and R. Leland. "The Chaco user's guide, version 2.0." Tech. Rep. SAND 94-2692, Sandia
National Laboratories, Albuquerque, NM, October, 1994. http://www.cs.sandia.gov/CRF/chac.html

G. Karypisand V. Kumar. "ParMETIS: Parallel graph partitioning and sparse matrix ordering library." Tech. Rep.
97-060, Department of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

R. Loy. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional
conservation laws. Ph. D. Dissertation, Dept. of Computer Science, Rensselaer Polytechnic Institute, May 1998.

S. Mitchell and S. Vavasis. "Quality mesh generation in three dimensions.” Proc. 8th ACM Symposium on
Computational Geometry, ACM (1992) 212-221.

W. F. Mitchell. "A Fortran 90 Interface for OpenGL: Revised January 1998" NISTIR 6134 (1998).
http://math.nist.gov/~mitchell/papers/nistir6134.ps.qz

W. F. Mitchell. "The K-way Refinement Tree Partitioning Method for Adaptive Grids."
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz

"MPSalsa: Massively Parallel Numerical Methods for Advanced Simulation of Chemically Reacting Flows."
http://www.cs.sandia.qov/CRF/M PSal sa/

A. Patraand J. T. Oden. "Problem decomposition for adaptive hp-finite element methods.” J. Computing Systems
in Engrg., 6 (1995).

J. Pilkington and S. Baden. "Partitioning with space-filling curves." Tech. Rep. CS94-349, Dept. of Computer
Science and Engineering, Univ. of California, San Diego, CA, 1994,

M. Shephard and M. Georges. "Automatic three-dimensional mesh generation by the finite octree technique.” Intl.
J. Numer. Meths. Engrg., 32 (1991) 709-749.

V. E. Taylor and B. Nour-Omid. "A Study of the Factorization Fill-in for a Parallel Implementation of the Finite
Element Method."” Intl. J. Numer. Meths. Engrg., 37 (1994) 3809-3823.

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_refs.html (1 of 2) [7/29/2004 12:29:40 PM]

http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz
http://www.cs.sandia.gov/CRF/MPSalsa/

Zoltan User's Guide: References

21. C. Washaw. "JOSTLE mesh partitioning software", http://www.gre.ac.uk/jostle/

22. C. Washaw, M. Cross, and M. Everett. "Parallel Dynamic Graph Partitioning for Adaptive Unstructured
Meshes', J. Par. Dist. Comp., 47(2) 102-108, 1997.

23. M. Warren and J. Salmon. "A parallel hashed octree n-body algorithm." Proc. Supercomputing “93, Portland, OR,
November 1993.

24. R. D. Williams. "Performance of dynamic load balancing al gorithms for unstructured mesh calculations.
Concurrency, Practice, and Experience, 3(5), 457-481, 1991.

[Table of Contents | Next: Index of Interface and Query Functions | Previous: Backward Compatibility]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_refs.html (2 of 2) [7/29/2004 12:29:40 PM]

http://www.gre.ac.uk/jostle/

Zoltan User's Guide: Index

Zoltan User's Guide | Previous

Index of Interface and Query Functions

ZOLTAN BORDER OBJ LIST FN
ZOLTAN CHILD LIST FN
ZOLTAN CHILD WEIGHT FN
ZOLTAN COARSE OBJ LIST FN
Zoltan Compute Destinations

Zoltan Create

Zoltan Destroy

ZOLTAN EDGE LIST FN
ZOLTAN EDGE LIST MULTI FN
ZOLTAN FIRST BORDER OBJ FN
ZOLTAN FIRST COARSE OBJ FN
ZOLTAN FIRST OBJ FN
ZOLTAN GEOM FN

ZOLTAN GEOM MULTI FN
Zoltan Help Migrate
Zoltan_Initialize

Zoltan Invert Lists

Zoltan LB Balance

Zoltan LB Box_Assign

Zoltan LB Box PP Assign

Zoltan LB Eval

Zoltan LB _Free Data

Zoltan LB Partition

Zoltan LB Point Assign

Zoltan LB _Point PP_Assign

Zoltan LB Set Part Sizes

ZOLTAN MID MIGRATE FN
ZOLTAN MID MIGRATE PP FN
Zoltan Migrate

ZOLTAN NEXT BORDER OBJ FN
ZOLTAN NEXT COARSE OBJ FN
ZOLTAN NEXT OBJ FN
ZOLTAN NUM BORDER OBJ FN
ZOLTAN NUM CHILD FN
ZOLTAN NUM COARSE OBJ FN
ZOLTAN NUM EDGES FN
ZOLTAN NUM EDGES MULTI FN
ZOLTAN NUM GEOM FN
ZOLTAN NUM OBJ FN

ZOLTAN OBJ LIST FN

ZOLTAN OBJ SIZE FN

Zoltan Order

ZOLTAN PACK OBJ FN
ZOLTAN PARTITION FN
ZOLTAN PARTITION MULTI FN

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_index.html (1 of 2) [7/29/2004 12:29:40 PM]

Zoltan User's Guide: Index

ZOLTAN POST MIGRATE FN
ZOLTAN POST MIGRATE PP FN
ZOLTAN PRE MIGRATE FN
ZOLTAN PRE MIGRATE PP FN
Zoltan RCB_Box

Zoltan Set Fn

Zoltan Set <zoltan fn_type> Fn
Zoltan Set Param

ZOLTAN UNPACK OBJ FN

[Table of Contents | Previous. References| Zoltan Home Page]

file:///E|/nflcode/Zoltan.bugfix/docs/Zoltan_html/ug_html/ug_index.html (2 of 2) [7/29/2004 12:29:40 PM]

file:///E|/nf/code/Zoltan.bugfix/docs/Zoltan_html/Zoltan.html

	Local Disk
	Zoltan User's Guide
	Zoltan User's Guide: Introduction
	Zoltan User's Guide: Release Notes
	Zoltan User's Guide: Library Usage
	Zoltan User's Guide: Interface
	Zoltan User's Guide: General Zoltan Interface
	Zoltan User's Guide: Load-Balancing Interface
	Zoltan User's Guide: Augmenting a Decomposition
	Zoltan User's Guide: Migration Interface
	Zoltan User's Guide: Ordering Interface
	Zoltan User's Guide: Query Functions
	Zoltan User's Guide: General Zoltan Query Functions
	Zoltan User's Guide: Migration Query Functions
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: RCB
	Zoltan User's Guide: RIB
	Zoltan User's Guide: HSFC
	Zoltan User's Guide: Refinement Tree Based Partition
	Zoltan User's Guide: ParMETIS Interface
	Zoltan User's Guide: Jostle Interface
	Zoltan User's Guide: Octree Partitioning
	Zoltan User's Guide: Ordering Algorithms
	Zoltan User's Guide: Nested Dissection by ParMETIS
	Zoltan User's Guide: Data Services
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Communication Utilities
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Examples
	Zoltan User's Guide: General Usage Examples
	Zoltan User's Guide: Load-Balancing Examples
	Zoltan User's Guide: Migration Examples
	Zoltan User's Guide: Query-Functon Examples
	Zoltan User's Guide: FORTRAN Interface
	Zoltan User's Guide: FORTRAN -- Compiling Zoltan
	Zoltan User's Guide: FORTRAN--Compiling Applications
	Zoltan User's Guide: FORTRAN API
	Zoltan User's Guide: FORTRAN 77
	Zoltan User's Guide: FORTRAN--System-Specific Remarks
	Zoltan User's Guide: Backward Compatilibity
	Zoltan User's Guide: References
	Zoltan User's Guide: Index

