
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Software Design for
Scientific Applications

Karen Devine
Scalable Algorithms Department

Sandia National Laboratories

Erik Boman, Mike Heroux, Andrew Salinger (SNL)
Robert Heaphy (Respec Engineering)

Software Design for
Scientific Applications

• Why distribute software?
• Challenges in software design and distribution
• Ideas for simplifying software design

– Component design
– Interface design
– Software quality practices

• Challenges that remain

Distributing Software:
Why bother?

• For your C.V.:
– Greater visibility in research community.
– Greater impact than only writing a paper.

• For the strength of your research program:
– Wider group of reviewers of efforts.
– Greater opportunity for collaboration.

• For altruistic reasons:
– Contribution to scientific community.
– Personal satisfaction in seeing your work used.

Distributing Software:
Why bother?

• Because your funding source told you to.

– “Successful applicants of Enabling Technologies must
ensure that source code is fully and freely available for
use and modification throughout the scientific
computing community via a preapproved open source
process.” -- DOE SciDAC CFP 2005.

– “SDCI funds software activities for enhancing scientific
productivity and for facilitating research and education
collaborations through sharing of data, instruments, and
computing and storage resources. The program requires
open source software development.” -- NSF SDCI CFP
2007.

Challenges of
Scientific Software Development

• Managing customer expectations.
– Many funding sources.
– Long-term vs. short-term goals.

• Users: a mixed blessing
– Unpaid testers and debuggers.
– Contribute to greater exposure, collaboration.
– Have needs and their own deadlines.

Time Challenges
• Research vs. Software Development

– Need to publish to gain tenure, advance in career.
– Software development takes time, and production (or even

semi-production) quality development takes LOTS of time.

• Staffing: “Let the grad students do it.”
– High turnover results in intellectual loss.

• “It takes a year to get back up to speed after a student graduates.”
– Students often have little experience working in team

environments.
– Students need individual research achievements while

contributing to team.

Technology Challenges
• Developing high-quality software isn’t easy.

– Careful design needed.
– Maintainability is important.
– Robustness takes time, testing.
– Portability to wide range of architectures.
– Extensibility to new architectures.

Component Design
• Construct applications from smaller software “parts.”
• “Tinker-toy parallel computing” -- B. Hendrickson
• Components provide …

– Services applications commonly need.
– Support for wide range of applications.
– Easy-to-use interfaces.
– Data abstraction.

• Components avoid …
– Prescribed data structures
– Heavy framework
– Limited freedom for application developers.

Hasbro, Inc.

Dynamic load balancing
• Zoltan (Sandia)

ODE solvers
• Sundials (LLNL)

Linear/Nonlinear solvers
• Trilinos (Sandia)
• PETSc (Argonne)

Visualization
• VTK (Kitware, Inc.)

Mesh adaptivity
• FMDB (Rensselaer)
• MeshSim (Simmetrix, Inc.)
• Pyramid (JPL)

Communication
• UPS (LANL)

Optimization
• DAKOTA (Sandia)
• TAO (Argonne)

Component Examples

 A
 P
 P
 L
 I
 C
 A
 T
 I
 O
 N

Element Level Fill
Material Models

Sensitivities

Variable Manager
Discretization Library

Remeshing

UQ Solver

Nonlinear Solver
Time Integration

Optimization

Objective Function

Mesh Database

Mesh Tools

I/O Management

Input File Parser
Utilities

UQ (non-invasive)
Parameter Studies

Solution Control

Mesh I/O
Optimization

Geometry Database

Discretizations

Derivative Tools

Adjoints

UQ / PCE
Propagation Constraints

Error Estimates

Continuation

Constrained Solves

Sensitivity Analysis
Stability Analysis

Components for Sandia’s
Rapid Development of Production

Applications
(A. Salinger et al., 2008)V&V, Calibration

Parameter List

Feature Extraction
Embedded Verification

Visualization
PostProcessing

Data Reduction

Adaptivity

Model Reduction

Memory ManagementSystem Models

MultiPhysics Coupling

OUU, Reliability
Computational Steering

Communicators

MultiCore
Parallelization Tools

Partitioning
Load Balancing

Analysis Tools
 (black-box)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
 (embedded)

Matrix Partitioning

Inline Meshing

MMS Source Terms

Grid Transfers
Mesh Quality

Mesh Database

Solution Database

Runtime Compiler

Derivatives

Advantages of Component Design
• For users:

– Smaller learning curve than large framework.
– Easy to add to existing applications.
– “Expert” implementations instead of “roll-your-own.”
– Enable comparisons of different algorithms.
– Time and cost saving.

• For developers:
– Reduced dependencies between components eases effort of

working in teams.
• Separation of efforts for team members allows individual contribution

with reduced conflicts.
– Enable software reuse.

• For all: Migration path to emerging architectures.
– Multicore, Cell, GPU, etc.
– Implement new algorithms in components; users get benefits

“for free.”

Connecting Components
• Connect either through a framework like CCA…

– Common Component Architecture (Bernholdt,
Armstrong, Kumfert, et al.)

– Environment that facilitates software
interoperability, programming language
interoperability, and dynamic composability.

– http://www.cca-forum.org

• … or manually through individual interfaces.
– Classes, tools, interfaces.

 Input File

Mesh Tools

Utilities

PostProcessing

Analysis Tools
 (black-box)

Composite Physics

Linear Algebra

Analysis Tools
 (embedded)

Mesh Database

Local Fill

Discretizations

Derivative Tools

Physics Fill

Rapid Development of
Production Applications

Interfaces between
Components

ITAPS
Interfaces

Trilinos’
Stratimikos

Model Evaluator

Dakota

Application
Interface

Finite
Element
Interface

XML

<Scalar>

Mesh File

Mesh I/O
Interface

Interface Design
• Goals:

– Broad application support
– Interoperability
– Ease of use in new or existing applications

• Abstraction:
– Identification of needed features
– Removal of details
– Management of complexity
– Important for usability, maintainability, backward compatibility

• Implementation strategies:
– Callback functions
– Object-oriented design
– Interoperable interfaces

Zoltan Toolkit
• Parallel dynamic load balancing and data
services for dynamic, unstructured and/or
adaptive applications.

Particle-based cell simulation

Linear solvers &
Preconditioners

Adaptive mesh
refinement

Finite element simulations

Contact detection & crash simulations

Zoltan Interface
• Zoltan data abstraction:

– “Objects” with unique names (and, optionally, weights
and/or coordinates) to be partitioned.

– Objects can have (weighted) dependencies to other
objects.

• Zoltan: Data-structure neutral design.
– Supports wide range of applications and data

structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Zoltan Callback Interface
• Application interface:

– Zoltan calls back to the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
• Registers function pointers with Zoltan.

– Small extra costs in memory and function-call overhead.

• Once query functions are implemented, application can
access all Zoltan functionality.

• Easy-to-use.
– Provides separation between toolkit and application data

structures.
– Requires no extensive application coding.
– Allows developers to retrofit old applications or build new

ones.

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
callback function

pointers
(Zoltan_Set_Fn)

Move data
(Zoltan_Migrate)

Repartition
(Zoltan_LB_Partition)

COMPUTE

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call callback functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing callback

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking callback

functions for imports.

ZOLTAN

Another Example: Trilinos
• Trilinos is an evolving infrastructure to
support component software development.

– M. Heroux, PI, and many others.
– Fundamental atomic unit of software is a package.
– Provides a common abstract solver interface.
– Specifies requirements and suggested practices for

package Software Quality.
– Allows package developers to focus only on things

that are unique to their package.

Abstraction in Trilinos
• Core set of distributed vector, graph, matrix and

communication classes (Epetra package). E.g.,
– Epetra_CrsMatrix: Compressed-row sparse matrix.
– Epetra_MultiVector: Dense matrix.
– Epetra_Comm: Interprocessor communication.

• More than 25 packages of preconditioners and linear,
nonlinear & eigensolvers built on top of Epetra.

• Consistent interface:
– Applications using Epetra classes can access all solvers.
– Class interfaces largely unchanged (except for additions) since

initial design.
• Enabling research:

– Underlying implementation almost completely rewritten since
initial design.

– Algorithms for emerging architectures (e.g., multicore) can be
delivered through these interfaces.

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1•fh

Algorithms

physics

computation

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain decomp.
Mortar methods

Time domain
Space domain

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

• Beyond a “solvers” infrastructure
• Natural expansion of capabilities to

satisfy application and research needs

• New in Trilinos v9: Automatic differentiation,
Discretization methods, Inline Meshing, …, Zoltan

Evolving
Trilinos Infrastructure

Interoperable Interfaces:
ITAPS

• Interoperable Tools for Advanced
Petascale Simulations (L. Diachin, PI)

• ITAPS Goals
– Improve SciDAC applications’ ability to

take advantage of state-of-the-art
meshing and geometry tools.

– Develop the next generation of meshing
and geometry tools for petascale
computing.

• “Standardization” of mesh and
geometry interfaces.

• Each core data type has an ITAPS interface.
– Geometric data: iGeom – Field data: iField
– Mesh data: iMesh – Relationship data: iRel

Abstraction of
PDE-simulation data hierarchy

• Core Data Types
– Geometric Data: high-level description of the boundaries of

the computational domain; e.g., CAD, image.
– Mesh Data: geometric and topological information

associated with the discrete representation of the domain.
– Field Data: physics variables associated with application

solution. Can be scalars, vectors, tensors; can be
associated with any mesh entity.

• Data Relation Manager
– Controls relationships among the core data types.
– Resolves references between entities in different groups.
– Performs operations depending on multiple core data types.

ITAPS Delivers Technology
through ITAPS Interfaces

Mesh Geometry Relations FieldCommon
Interfaces

Component
Services

Are unified
by

High-Level
Petascale
Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

FMDB (Rensselaer) MOAB (Argonne)
GRUMMP (U. British Columbia) FronTier (SUNY-SB)

Underlying
Implementations

Other Interface Examples
• MapReduce (J. Dean & S. Ghemawat, 2004): callback

– Data abstracted to key/value pairs.
– Operations done through Map and Reduce callbacks.
– Map: processes key/value pair to produce intermediate data.
– Reduce: merges values associated with intermediate keys.
– Used for large-scale data manipulation, machine learning,

clustering, indexing.
• Unix qsort, bsearch: callback mechanism
• PETSc (Gropp, Smith, et al.): object-oriented linear algebra
• C++ Standard Template Library: object-oriented
• MPI Message Passing Interface (Gropp et al.): interoperable

interface

Which interface design to use?
• Abstraction is most important step.

– Logical separations of data and operations.
– Implementation approach is less important.

• Callback:
– Simple to specify.
– Easy to use.

• Object-oriented:
– More elegant, robust abstraction mechanism.
– Greater flexibility.

• Interoperability and standardization:
– Always nice to have.
– Can be implemented with callback or object-oriented

approach.

Software Quality
for Research

• Industry standards can be difficult to apply in research
environments.

– Level of formality too high.
• But we do many things prescribed in formal quality models.

– Project planning: Proposals
• Includes budget, staffing, project goals and milestones,

requirements, approach.
– Design review: peer review of publications.

• American National Standard: Quality Guidelines for
Research

– Twelve page document by ANSI Accredited Standards
Committee 21 on Quality Assurance; ANSI/ASQ Z1.13-1999

– Section 3.5. The research proposal is the project plan.
– Section 3.4. Peer review is “one of the primary mechanisms

for assuring quality in science.”

A Minimalist’s Approach
to Software Quality Engineering

• Seven Easy Steps to improved software development.
– 1. Source Code Control
– 2. Backup System
– 3. Automated testing
– 4. Bug Tracking
– 5. Mailing Lists
– 6. Documentation
– 7. Release Process

• Small, low-burden tools that help manage projects.
• Overcome challenges of turnover, knowledge loss,

working in teams.

1. Source Code Management
• Source management is essential.

– Archive source code with change history.
– Allow concurrent modifications to files.
– Merge changes made by multiple developers.
– Useful for personal files, too!

• CVS: Concurrent Versions System
– Tried and True.
– Easy to use. Free. Ubiquitous.
– Not the fullest in features anymore.
– Nice web-based interface: Bonsai.

• Other options:
– Subversion – SVK
– Mercurial – Monotone
– GIT – darcs
– Bazaar – Codeville

Bonsai “blame mode”

2. Backup System
• Make sure all systems are backed up.

– In particular, make sure source management
repository is backed up!

• Test backups regularly.
• Organization-wide solutions preferred.

– Rely on expertise of system administrators.
– Sharing backup resources can be more efficient for

organization.

3. Automated Testing
• Suite of regression tests run nightly.

– Easier to fix bugs if you catch them right away!
– Especially important for teams.

• Example test systems:
– ACTS (NIST) – DART; CTEST (Kitware)
– Perl script and cron job. – FAST/Exact (SNL)

Unit Testing as a
Way of Life

• TDD: Test Driven Design
(Beck 2002; Astels 2003)

– First, design the test;
then write the software.

– Design in small steps.
– http://www.agiledata.org/essays/

tdd.html

Write a test for
desired functionality.

Run the test;
make sure it fails.

Write code that
allows test to pass.

Run all automated tests;
make sure both old and

new tests pass.

Clean up code; make
sure all tests still pass.

4. Issue Tracking
• Maintain database of outstanding and resolved issues.

– Includes descriptions, assignments, priority.
– Provides persistent memory for you and/or your team.

• Bugzilla is free, searchable and easy to use.

5. Mailing Lists
• Archive design discussions and decisions.
• Provide a “history” or “knowledge base” for the project

that remains even when developers and students leave.
• Mailman is a simple option.

6. Documentation

• Tutorials, User’s
Guides, Web pages.

– Simple examples are
most requested feature.

– Instructions for building
and testing.

– Details of usage,
parameters, inputs, etc.

• http://www.cs.sandia.gov/Zoltan

Documentation Tools

• Doxygen (van Heesch)
– Automated

generation of
documentation.

– C, C++, Java,
Python, Fortran,
PHP, C#, et al.

– On-line hyperlinked
documentation as
well as off-line
reference manuals.

– Class structures,
inheritance,
methods, comments.

7. Release Process
• Maintain quality and stability of release.
• Can be a simple checklist.

 Required Activities:
 ___ Update version number in source code:
 Date: Release Version:
 ___ User's Manual OK for release (Date):
 ___ Developer's Manual OK for release (Date):
 ___ Final Testing completed (Date):
 Test Platforms:
 ___ Linux Date: Test Name:
 ___ QED cluster Date: Test Name:
 Test Results Archived (Where):
 ___ Tag code repository:
 Date: Tag:
 ___ Release package created (Date):
 ___ Update documentation and tar file on distribution web site.
 Date:
 Checklist Complete (Date):
 Decision to Release (Certification): (Who) ________, (Date) ________
 Date of actual Release:

Unresolved Challenges:
Post-Delivery Customer Support

• Customer Support after release.
– Training and tutorials.
– Answering questions (phone, email).

• Some programs (e.g., SciDAC) include
outreach in funding.

– Opportunity for impact and new collaborations.
• But after funding ends, how does customer
support continue?

Unresolved Challenges:
Post-Delivery Maintenance

• One of the biggest outstanding challenges in scientific
software development.

• Research proposals focus (by necessity) on new algorithms
and software development.

• How do we support software after release?
– Porting to new architectures.
– Bug fixes and minor enhancements.

• Currently, developers “donate” support time because they
care about the project.

– Not sustainable long term.
• Funding agencies need to develop maintenance strategy.

– Who pays for it? Who does it?
– How do we evaluate and reward those who do it?

“No good deed goes unpunished.”

For More Information…
• SIAM AN08 Minisymposium: 10:30am TODAY

– Software Engineering Challenges in Scientific
Computing

– Mike Heroux, Sandia National Laboratories
– Tim Davis, University of Florida
– Penny Anderson, Mathworks
– Thomas Tysinger, ANSYS, Inc.

• Zoltan web page: http://www.cs.sandia.gov/Zoltan
• Trilinos web page: http://trilinos.sandia.gov
• ITAPS web page: http://www.itaps-scidac.org
• CSCAPES web page: http://www.cscapes.org

Thanks

•S. Attaway (SNL)
•R. Bisseling (Utrecht U.)
•D. Bozdag (Ohio St. U.)
•C. Chevalier (SNL)
•T. Davis (U. Florida)
•J. Flaherty (RPI)
•W. Hart (SNL)
•B. Hendrickson (SNL)
•D. Keyes (Columbia)
•K. Ko (SLAC)
•T. Kolda (SNL)
•G. Kumfert (LLNL)

•L.-Q. Lee (SLAC)
•V. Leung (SNL)
•G. Lonsdale (NEC)
•X. Luo (RPI)
•W. Mitchell (NIST)
•L. Musson (SNL)
•S. Plimpton (SNL)
•L.A. Riesen (SNL)
•J. Shadid (SNL)
•M. Shephard (RPI)
•J. Teresco (Mount Holyoke)
•C. Vaughan (SNL)
•M. Wolf (U. Illinois)

SciDAC CSCAPES Institute (A. Pothen, Purdue U., PI)
SciDAC ITAPS Center (L. Diachin, LLNL, PI)

NNSA ASC Program

