
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Parallel Hypergraph Partitioning
for Irregular Problems
Karen Devine, Erik Boman, Robert Heaphy
Sandia National Laboratories, Albuquerque

kddevin@sandia.gov

Umit Çatalyürek
Ohio State University, Columbus

Rob Bisseling
Utrecht University, The Netherlands

Graph Partitioning
• Work-horse of load-balancing community.
• Highly successful model for PDE problems.
• Model problem as a graph:

– vertices = work associated with data (computation)
– edges = relationships between data (communication)

• Goal: Evenly distribute vertex weight while minimizing
weight of cut edges.
• Excellent software available.

– Serial: Chaco (SNL), Jostle (U. Greenwich), METIS (U.
Minn.), Party (U. Paderborn), Scotch (U. Bordeaux)

– Parallel: ParMETIS (U. Minn.), PJostle (U. Greenwich)

Hexahedral finite
element matrix

Limited Applicability
of Graph Models

• Assume symmetric square problems.
– Symmetric = undirected graph.
– Square = inputs and outputs of

operation are same size.

• Do not naturally support:
– Non-symmetric systems.

• Require directed or bipartite graph.
• Partition A+AT.

– Rectangular systems.
• Require decompositions for

differently sized inputs and outputs.
• Partition AAT. Linear programming matrix

 for sensor placement

Approximate Communication
Metric in Graph Models

•Graph models assume
– Weight of edge cuts = Communication volume.

•But edge cuts only approximate communication
volume.
•Good enough for many
PDE applications.

Hexahedral finite
element matrix

•Not good enough for
irregular problems.

Xyce ASIC matrix

Another Option:
Hypergraph Models

Assign equal vertex weight while
minimizing hyperedge cut weight.

Assign equal vertex weight while
minimizing edge cut weight.

Hyperedge cuts accurately
measure communication volume.

Edge cuts approximate
communication volume.

Hyperedges: two or more vertices.Edges: two vertices.

Vertices: computation.Vertices: computation.

Hypergraph Partitioning
Alpert, Kahng, Hauck, Borriello, Çatalyürek,

Aykanat, Karypis, et al.

Graph Partitioning
Kernighan, Lin, Schweikert, Fiduccia,

Mattheyes, Simon, Hendrickson, Leland,
Kumar, Karypis, et al.

A A

Impact of
Hypergraph Partitioning

• Greater expressiveness ⇒ Greater applicability.
– Structurally non-symmetric systems

• circuits, biology
– Rectangular systems

• linear programming, least-squares methods
– Non-homogeneous, highly connected topologies

• circuits, nanotechnology, databases
• Accurate communication model ⇒

lower application communication costs.

• Several serial hypergraph partitioners available.
– hMETIS (Karypis) – PaToH (Çatalyürek)
– Mondriaan (Bisseling)

• Parallel partitioners needed for large, dynamic problems.
– Zoltan PHG (Sandia) – Parkway (Trifunovic)

1 2

3

45

 6

Matrix Representation
• View hypergraph as matrix (Çatalyürek & Aykanat)

– Vertices == columns
– Edges == rows

• Communication volume associated with edge e:
 CVe = (# processors in edge e) - 1

• Total communication volume =

x

x**y

x****y

x***=y

x**y

x***y

!

CV
e

e

"

Data Layout
• 2D data layout within hypergraph partitioner.

– Does not affect the layout returned to the application.
– Vertex/hyperedge broadcasts to only sqrt(P) processors.
– Maintain scalable memory usage.

• No “ghosting” of off-processor neighbor info.
• Differs from parallel graph partitioners and Parkway.

– Design allows comparison of
1D and 2D distributions.

Recursive Bisection
• Recursive bisection approach:

– Partition data into two sets.
– Recursively subdivide each set

into two sets.
– Only minor modifications

needed to allow P ≠ 2n.
• Implementation:

– Split both the data and
processors into two sets.

– Solve branches in parallel.

… …

Coarse HG

Initial HG Final Partition

Coarse Partition

Contraction Re
fin

em
en

t

Coarse
Partitioning

Multilevel Scheme
• Multilevel hypergraph partitioning (Çatalyürek, Karypis)

– Analogous to multilevel graph partitioning
(Bui&Jones, Hendrickson&Leland, Karypis&Kumar).

– Contraction: reduce HG to smaller representative HG.
– Coarse partitioning: assign coarse vertices to partitions.
– Refinement: improve balance and cuts at each level.

Multilevel Partitioning V-cycle

Contraction
•Merge pairs of “similar” vertices: matching.
•Greedy maximal weight matching heuristics.
•We use:

– Heavy connectivity matching (Aykanat &
Çatalyürek)
• Inner-product matching (Bisseling)
• First-Choice (Karypis)

– Match columns (vertices) with greatest inner
product ⇒ greatest similarity in connectivity.

Parallel Matching in 2D Data Layout
• On each processor:

– Broadcast subset of vertices (“candidates”)
along processor row.

– Compute (partial) inner products of received
candidates with local vertices.

– Accrue inner products in processor column.
– Identify best local matches for received

candidates.
– Send best matches to candidates’ owners.
– Select best global match for each owned

candidate.
– Send “match accepted” messages to

processors owning matched vertices.
• Repeat until all unmatched vertices have

been sent as candidates.

Coarse Partitioning
•Gather coarsest hypergraph to each
processor.
– Gather edges to each processor in

column.
– Gather vertices to each processor in

row.
•Compute different coarse partitions
on each processor.
•Compute best over all processors.

Refinement
• For each level in V-cycle:

– Project coarse partition to finer
hypergraph.

– Use local optimization (KL/FM) to
improve balance and reduce cuts.
• Compute “root” processor in each

processor column: processor with most
nonzeros.
• Root processor computes moves for

vertices in processor column.
• All column processors provide cut

information; receive move information.

Hypergraph Partitioning Results
• Experiments on 3.06GHz Xenon Myrinet cluster.
• Compared Zoltan PHG to

– Parkway hypergraph partitioner
– ParMETIS graph partitioner

• Test problems:
– Tramonto 2DLipidFMat: 4K x 4K; 5.5M nonzeros
– Xyce ASIC Stripped: 680K x 680K; 2.3M nonzeros
– Cage14 Electrophoresis: 1.5M x 1.5M; 27M nonzeros

Tramonto 2DLipidFMat Xyce ASIC Stripped Cage Electrophoresis

Hypergraph Partitioning:
Decomposition Quality

• 64 partitions; p = 1, 2, 4, 8, 16, 32, 64
• Cut metric normalized w.r.t. Zoltan with p = 1.
• Much better decomposition quality with hypergraphs.

Hypergraph Partitioning
Parallel Performance

• 64 partitions; p = 1, 2, 4, 8, 16, 32, 64
• Execution time can be higher with hypergraphs, but not always.
• Zoltan PHG scales as well as or better than graph partitioner.

Zoltan 2D Distribution:
Decomposition Quality

• Processor configurations: 1x64, 2x32, 4x16, 8x8, 16x4, 32x2,
64x1.
• Configuration has little affect on decomposition quality.

Zoltan 2D Distribution:
Parallel Performance

• Processor configurations 1x64, 2x32, 4x16, 8x8, 16x4, 32x2,
64x1.
• Configurations 2x32, 4x16, 8x8 are best.

Summary and Future Work
• Hypergraph partitioning offers effective partitioning for

irregular problems.
– Supports wide range of applications.
– Accurate communication metric results in lower

application communication volume.
• Future work:

– Incremental partitioning for dynamic applications.
• Faster partitioning.
• Minimize data migration.

– Multicriteria partitioning.
• Support multiphase simulations.

– 2D Matrix partitioning.
• 2D Cartesian
• 2D Recursive
• Fine-grained

For more information…
• Zoltan web site

– http://www.cs.sandia.gov/Zoltan

•Download available March 2006: Zoltan 2.0.
– Open-source, LGPL.

• Email:
– kddevin@sandia.gov

