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Graph Partitioning

* Work-horse of load-balancing community.
* Highly successful model for PDE problems.
* Model problem as a graph:
— vertices = work associated with data (computation)
— edges = relationships between data (communication)
* Goal: Evenly distribute vertex weight while minimizing
weight of cut edges.
- Excellent software available.

— Serial: Chaco (SNL), Jostle (U. Greenwich), METIS (U.
Minn.), Party (U. Paderborn), Scotch (U. Bordeaux)

— Parallel: ParMETIS (U. Minn.), PJostle (U. Greenwich)
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of Graph Models

 Assume symmetric square problems.

— Symmetric = undirected graph.

— Square = inputs and outputs of
operation are same size.

Hexahedral finite
element matrix
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* Do not naturally support: ‘%%%%%%
— Non-symmetric systems. I T

* Require directed or bipartite graph.
 Partition A+AT.

— Rectangular systems.
* Require decompositions for
differently sized inputs and outputs. .
 Partition AAT. Linear programming matrix
for sensor placement
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Metric in Graph Models

* Graph models assume
— Weight of edge cuts = Communication volume.

- But edge cuts only approximate communication

volume.
* Good enough for many * Not good enough for
PDE applications. irregular problems.

Hexahedral finite Xyce ASIC matrix
element matrix
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Graph Partitioning Hypergraph Partitioning
Kernighan, Lin, Schweikert, Fiduccia, Alpert, Kahng, Hauck, Borriello, Catalyiirek,
Mattheyes, Simon, Hendrickson, Leland, Aykanat, Karypis, et al.
Kumar, Karypis, et al.

Vertices: computation. Vertices: computation.
Edges: two vertices. Hyperedges: two or more vertices.
Edge cuts approximate Hyperedge cuts accurately
communication volume. measure communication volume.

Assign equal vertex weight while |Assign equal vertex weight while
minimizing edge cut weight. minimizing hyperedge cut weight.
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» Greater expressiveness = Greater applicability.

— Structurally non-symmetric systems
* circuits, biology
— Rectangular systems
 linear programming, least-squares methods
— Non-homogeneous, highly connected topologies
 circuits, nanotechnology, databases
« Accurate communication model =

lower application communication costs.

» Several serial hypergraph partitioners available.

— hMETIS (Karypis) — PaToH (Catalyurek)
— Mondriaan (Bisseling)

- Parallel partitioners needed for large, dynamic problems.
— Zoltan PHG (Sandia) — Parkway (Trifunovic)
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* View hypergraph as matrix (Catalyurek & Aykanat)

— Vertices == columns
— Edges == rows

- Communication volume associated with edge e:

CV, = (# processors in edge e) - 1

 Total communication volume = ECVe
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Data Layout

» 2D data layout within hypergraph partitioner.
— Does not affect the layout returned to the application.
— Vertex/hyperedge broadcasts to only sqrt(P) processors.

— Maintain scalable memory usage.
* No “ghosting” of off-processor neighbor info.
 Differs from parallel graph partitioners and Parkway.

— Design allows comparison of
1D and 2D distributions.
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Recursive Bisection

* Recursive bisection approach:
— Partition data into two sets.

— Recursively subdivide each set
into two sets.

— Only minor modifications

needed to allow P # 2", /
* Implementation:
— Split both the data and '/

processors into two sets.

— Solve branches in parallel. l Si i
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* Multilevel hypergraph partitioning (Catalyurek, Karypis)
— Analogous to multilevel graph partitioning
(Bui&Jones, Hendrickson&Leland, Karypis&Kumar).
— Contraction: reduce HG to smaller representative HG.
— Coarse partitioning: assign coarse vertices to partitions.
— Refinement: improve balance and cuts at each level.

Initial HG Final Partition
X
Q &
> &
Y o
CRN €
Partitioning
Coarse HG Coarse Partition

Multilevel Partitioning V-cycle
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Contraction

* Merge pairs of “similar” vertices: matching.
* Greedy maximal weight matching heuristics.

* We use:

— Heavy connectivity matching (Aykanat &
Catalyurek)
* Inner-product matching (Bisseling)
* First-Choice (Karypis)
— Match columns (vertices) with greatest inner
product = greatest similarity in connectivity.
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arallel Matching in 2D Data Layout

- On each processor:

— Broadcast subset of vertices (“candidates”)
along processor row.

— Compute (partial) inner products of received
candidates with local vertices.

— Accrue inner products in processor column.

— Identify best local matches for received
candidates.

— Send best matches to candidates’ owners.

— Select best global match for each owned
candidate.

— Send “match accepted” messages to
processors owning matched vertices.

* Repeat until all unmatched vertices have
been sent as candidates.
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Coarse Partitioning

- Gather coarsest hypergraph to each

Processor.

— Gather edges to each processor in
column.

— Gather vertices to each processor in
row.

- Compute different coarse partitions
on each processor.
 Compute best over all processors.
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Refinement

* For each level in V-cycle:

— Project coarse partition to finer
hypergraph.

— Use local optimization (KL/FM) to
improve balance and reduce cuts.

« Compute “root” processor in each
processor column: processor with most
nonzeros.

* Root processor computes moves for
vertices in processor column.

* All column processors provide cut
information; receive move information.
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- Experiments on 3.06GHz Xenon Myrinet cluster.
« Compared Zoltan PHG to

— Parkway hypergraph partitioner
— ParMETIS graph partitioner

* Test problems:

— Tramonto 2DLipidFMat: 4K x 4K; 5.5M nonzeros
— Xyce ASIC Stripped: 680K x 680K; 2.3M nonzeros
— Cage14 Electrophoresis: 1.5M x 1.5M; 27M nonzeros
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Decomposition Quality

* 64 partitions; p=1, 2, 4, 8, 16, 32, 64
« Cut metric normalized w.r.t. Zoltan with p = 1.
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 Much better decomposition quality with hypergraphs.

Zoltan

Parkway ParMETIS
2DLipidFMat

Zoltan
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Partitioning Time (seconds)

Parallel Performance
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* 64 partitions; p=1, 2, 4, 8, 16, 32, 64

« Execution time can be higher with hypergraphs, but not always.
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Decomposition Quality
* Processor configurations: 1x64, 2x32, 4x16, 8x8, 16x4, 32x2,

64x1.
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Parallel Performance
* Processor configurations 1x64, 2x32, 4x16, 8x8, 16x4, 32x2,

64x1.
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Summary and Future Work

- Hypergraph partitioning offers effective partitioning for
irregular problems.
— Supports wide range of applications.
— Accurate communication metric results in lower
application communication volume.
* Future work:
— Incremental partitioning for dynamic applications.
* Faster partitioning.
* Minimize data migration.
— Multicriteria partitioning.
« Support multiphase simulations.
— 2D Matrix partitioning.
« 2D Cartesian

» 2D Recursive
* Fine-grained
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- Zoltan web site
— http://www.cs.sandia.gov/Zoltan

For more information...

* Download available March 2006: Zoltan 2.0.
— Open-source, LGPL.

* Email:
— kddevin@sandia.gov




