Techniques for Managing Data Distribution in NUMA Systems

Alexander M. Merritt Kevin T. Pedrett] Karsten Schwan

Sandia . |
Natiﬂnal merritt.alex@gatech.edu ktpedre@sandia.gov schwan@cc.gatech.edu
: Center for Experimental Research in Computer Systems Sandia National Laboratories Center for Experimental Research in Computer Systems
Cet=r for Experimenta| Ressarch labﬂratﬂrles College of Computing, Georgia Institute of Technology Albuquerque, NM College of Computing, Georgia Institute of Technology
o s Atlanta, GA Atlanta, GA

Introduction Observations

AMD Opteron 6174 "Magny-Cours" (2.3GHz) HPCCG Stream (Triad)
6000 | | | | | | | | | | | | | | |
) % MCM Socket 0 MCM Socket 1 é) 05 Sehod) Prge Intotlomen (OMP) i R 50000 | - 50000 |
ey - -8 oo | Ttk e M) 2 —
g D % Die 2 % Q g OS Sched / First-Touch (MPI) /
8 D % HTx16 E‘ D |:\5) 40000 - 40000
- S— 9 2 2
é 2 30000 |- . % 30000 [
= = 8 3000 | % %
Z' % E‘ 6.4 GT/s 10.4 GB/s per dif % 8 o g ;% g
g () % N Diel Die3 § () 3 E 2000 17 0 | 0 / 1
Sl)& - = (> 0S Sched / First-Touch (OMP) —+—i 0S Schd
= = W OS Sched / Page Interleave (OMP) OS Sched /
g =) -l o000 |- Ao EmTouh (M) o000 |- o
BaCkground 0]]]]]]]] 0]]]]]]]]]]]] 0]]]]]]]
1 2 4 8 12 16 20 24 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14
. . . .]] Number of Threads Number of Threads Number of Threads
* Application developers increasingly use hybrid programming
models: threading within a node, MPI between nodes. Methods Discussion
* Threading models assume shared UMA and avoid intra-address
space data distribution. | | | First-Touch * Current methods are static and only improve performance for specific pHase
* Supercomputing hardware becoming Ies-slunlforr.n. rlnore corles 7nd Default allocation strategy in Linux kernel. Pages allocated in characteristics:
deeper NUMA latencies (diagram above): latencies limit scalability NUMA domain where first access is observed. No migration is - first-touch with thread pinning is most beneficial for STREAM, but is a
_ _ performed. scalability limiter for HPCCG
Motivation - next-touch with thread pinning is most beneficial for HPCCG
. . . Interleaving
* Magny-Cours the basis for Sandia/LANL "Cielo" supercomputer e . .
Jny- / percomp Kernel-supported page interleaving among domains (numactl) * The Linux process scheduler is unaware of thread/data affinities. This is ¢vident
* QOperating system process scheduler unaware of affinity between
thread and data BIOS-supported cacheline interleaving among domains (MMU) with HPCCG: even with MPI (turquoise) where state is replicated and alldcated
x Programmer req.uired to explicitly manage memory distribution locally, the scheduler will still shuffle tasks among cores (wide error barg).
e . J o Next-Touch
within address space. Methods for doing so are primitive and . . . L
P J P Kernel patch [Goglin 2009]. madvise() system call enhanced to * "Pin Asc" indicates threads were pinned to cores using Linux-logical IDs (gray).

intrusive.
* Application runtime phases influence memory access behavior.
Static intra-address space memory distribution policies not adaptive.

Dynamic Runtime Migration

Proposal

Current One page table
PrOposal One page table per domain
per address space per address space
" N " " N A
* Automate memory distribution to account for application phases
- Periodically profile application at runtime to observe access patterns un e -
* Provide transparency to application; no recompiling Domain Feges Cores| Domain
Core 4 Core 4
Core 5 - Page / Core 5
= ore o Core O
TeChnlque NUMA Eorez g Table gg;z; NUMA
Domain 557 o3 (<3) Page | — T} Cores DoTain
e roe = Al Core S
* Use the page table! — Ele S —— —
* Need source and destination domain, frequency of memory accesses Numa giig E Table M~ E; NUMA
* Each memory page representgd by page table entry | ? [cores S Page - .
- Processor updates access bit. But only one bit per page across domains Core 6 < Table \ Core 0
. Core 1 Core 1
* Solution: duplicate page tables to increase access bits, and install Doma [core Core2 | prnain
appropriate page table in CPU core's cr3 register when thread scheduled. > [Cores Cored] 3
* Implementation in Kitten Lightweight kernel (coming soon)
: Tlmeoriginal

Optimizations

Normal Execution

* Use of large pages \ // //

Linear allocation of page table entries ‘ProfiIeIFaster ExecIProfiIeIFaster ExecIProfiIeIFaster Exec

A

* Widen access bit to a saturating counter i e visualization and detection . _
} Timeoptimized ° 01 23456 789 10T1h1 12d13 14 15 16 17 18 19 20 21 22 23 during instrumentation ° 01 2 3 456 7 8 9 1041 1213 14 15 16 17 18 19 20 21 22 23
rea ea
/| Y- L. g% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
e

A\
/N A" &R for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

National Nuclear Security Administration

Virtual Address Space (2 MiB page number)

Virtual Address Space (2 MiB page number)

trap pages on access using page table protection bits.

180

160

140

120

100

80

60

40

20

220

200

180

160

140

120

100

80

60

40

Their mapping may change, giving different performance results. In our gase,
core IDs 1-12 correlated to NUMA domains 0-1, saturating memory bandwidth
using only 4 threads.

Benchmark Phases

HPCCG Thread Data Locality * Pintool, a dynamic binary instrumentation tool, alloyfs us to capture

each memory access: address, access type, etc.
* For our purposes, a phase relates only to memory gccess patterns.
* Visualizing application phases enables developers to identify

behavioral patterns.

HPCCG (left two)

Page Access Intensity (low to high)

* Linear system solver using the conjugate gradient gnethod. Important
representative compute kernel for HPC codes at Sahdia
* Phase 1: main thread allocates and initializes all daka
S T e PEREES * Phase 2: fork threads, perform computation

HPCCG Thread Data Locality STREAM THhread Data Locality

480
460
440

STREAM (right) o p—— ;

420
400
380
360
340
320
300
280
260
240
220
200
180

* Synthetic parallel (OpenMP)
memory bandwidth benchmark
* One phase: spawn & compute

Future
* Examine additional codes
— * Automate application phase

Page Access Intensity (low to high)

160
140
120
100

80

Virtual Address Space (2 MiB page number)

60

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Page Access Intensity (low to high)

