Techniques for Managing Data Distribution in NUMA Systems
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* Application developers increasingly use hybrid programming
models: threading within a node, MPI between nodes. Methods Discussion
* Threading models assume shared UMA and avoid intra-address
space data distribution. | | | First-Touch * Current methods are static and only improve performance for specific pHase
* Supercomputing hardware becoming Ies-slunlforr.n. rlnore corles 7nd Default allocation strategy in Linux kernel. Pages allocated in characteristics:
deeper NUMA latencies (diagram above): latencies limit scalability NUMA domain where first access is observed. No migration is - first-touch with thread pinning is most beneficial for STREAM, but is a
_ _ performed. scalability limiter for HPCCG
Motivation - next-touch with thread pinning is most beneficial for HPCCG
. . . Interleaving
* Magny-Cours the basis for Sandia/LANL "Cielo" supercomputer . . . . . e . .
Jny- / percomp Kernel-supported page interleaving among domains (numactl) * The Linux process scheduler is unaware of thread/data affinities. This is ¢vident
* QOperating system process scheduler unaware of affinity between . . . . . . . .
thread and data BIOS-supported cacheline interleaving among domains (MMU) with HPCCG: even with MPI (turquoise) where state is replicated and alldcated
x Programmer req.uired to explicitly manage memory distribution locally, the scheduler will still shuffle tasks among cores (wide error barg).
e . J o Next-Touch
within address space. Methods for doing so are primitive and . . . L . . . .
P J P Kernel patch [Goglin 2009]. madvise() system call enhanced to * "Pin Asc" indicates threads were pinned to cores using Linux-logical IDs (gray).

intrusive.
* Application runtime phases influence memory access behavior.
Static intra-address space memory distribution policies not adaptive.

Dynamic Runtime Migration

Proposal

Current One page table
PrOposal One page table per domain
per address space per address space
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* Automate memory distribution to account for application phases
- Periodically profile application at runtime to observe access patterns un e -
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* Each memory page representgd by page table entry | ? [cores S Page - .
- Processor updates access bit. But only one bit per page across domains Core 6 < Table \ Core 0
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* Solution: duplicate page tables to increase access bits, and install Doma [core Core2 | prnain
appropriate page table in CPU core's cr3 register when thread scheduled. > [Cores Cored] 3
* Implementation in Kitten Lightweight kernel (coming soon)
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Optimizations

Normal Execution
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Virtual Address Space (2 MiB page number)

Virtual Address Space (2 MiB page number)

trap pages on access using page table protection bits.
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Their mapping may change, giving different performance results. In our gase,
core IDs 1-12 correlated to NUMA domains 0-1, saturating memory bandwidth
using only 4 threads.

Benchmark Phases

HPCCG Thread Data Locality * Pintool, a dynamic binary instrumentation tool, alloyfs us to capture

each memory access: address, access type, etc.
* For our purposes, a phase relates only to memory gccess patterns.
* Visualizing application phases enables developers to identify

behavioral patterns.

HPCCG (left two)

Page Access Intensity (low to high)

* Linear system solver using the conjugate gradient gnethod. Important
representative compute kernel for HPC codes at Sahdia
* Phase 1: main thread allocates and initializes all daka
S T e PEREES * Phase 2: fork threads, perform computation

HPCCG Thread Data Locality STREAM THhread Data Locality
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* Synthetic parallel (OpenMP)
memory bandwidth benchmark
* One phase: spawn & compute

Future
* Examine additional codes
— * Automate application phase
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