
Topics on Measuring Real Power Usage on High

Performance Computing Platforms

James H. Laros III #1, Kevin T. Pedretti #

Suzanne M. Kelly #, John P. Vandyke #, Kurt B. Ferreira #

Courtenay T. Vaughan #, Mark Swan ∗

Sandia National Laboratories
1
jhlaros@sandia.gov

∗ Cray Inc.

Abstract—Power has recently been recognized as one of the
major obstacles in fielding a Peta-FLOPs class system. To reach
Exa-FLOPs, the challenge will certainly be compounded. In this
paper we will discuss a number of High Performance Computing
power related topics. We first describe our implementation of a
scalable power measurement framework that has enabled us to
examine real power use (current draw). [Using this framework,
samples were obtained at a per-node (socket) granularity, at
frequencies of up to 100 samples per second.] Additionally, we
describe how we applied this capability to implement power
conserving measures on our Catamount Light Weight Kernel,
where we achieved an 80% improvement. This ability has enabled
us to quantify the amount of energy used by applications and
to contrast application energy use between a Light Weight and
General Purpose operating system. Finally, we show application
energy use increases proportionally with the increase in run-time
due to operating system noise. Areas of future interest will also
be discussed.

I. INTRODUCTION

Power has become, and will likely remain, one of the pri-

mary considerations in architecting High Performance Com-

puting (HPC) platforms. The following is a selected list of

recent capability class platforms1 and corresponding power

requirements.

• Red Storm, Sandia National Laboratories 2.506 Mega-

Watts[1], [2]

• Blue Gene/L Lawrence Livermore National Laboratories

2.330 Mega-Watts[3], [2]

• Jaguar, Oak Ridge National Laboratories 6.951 Mega-

Watts[4], [2]

• Road Runner, Los Alamos National Laboratories 2.483

Mega-Watts[5], [2]

While these platforms represent a range of theoretical peak

performance per watt, it is clear the amount of power required

to achieve capability class performance is substantial and

growing. Projections for multi-PetaFLOPs platforms can ex-

1Systems designed to support applications that use a significant fraction of
the total resource in support of a single cooperating application.

ceed tens of Mega-Watts. These facts provide clear motivation

for investigation in this area.

Power is proportional to the product of the Capacitance,

Frequency and Voltage squared. Manipulated individually or in

combination, these factors affect power usage. Over time, in-

creasing CPU frequencies have necessitated voltage increases.

Leakage currents have grown in proportion to the increase

in processor frequencies, number of transistors, and decrease

in die size. To address these issues, industry has made a

conscious decision to continue to increase the number of

transistors (in accordance with Moore’s Law) by delivering

multi-core sockets while keeping frequencies static, or in

many cases lowering them (on a per core basis). While the

sum performance continues to increase, exploiting the perfor-

mance requires greater levels of parallelism. This direction has

presented challenges to the HPC community in many areas

but provides some opportunity for power savings as we will

discuss.

The first step in addressing any issue is the ability to

quantify the problem. The Cray XT line of hardware provides

a rare opportunity for instrumentation and measurement that

will be discussed in Section II. Once able to see effect, we set

out to affect a change. The results of our modification of the

Catamount[6] Light Weight Kernel (LWK) operating system

and comparisons to Compute Node Linux (CNL)2 are outlined

in Section III. In addition to observing operating system power

draw, this work has allowed us to characterize application

power use. In Section IV we will discuss our observations

related to HPC applications. In Section V we apply these

methods in an effort to analyze the effects of operating system

noise on application power usage.

We feel this work has provided a new capability and

perspective on a field that is being actively researched. Sec-

tion VI compares and contrasts related research efforts. This

new window has afforded a unique view that has answered

questions and posed many more. Sections VII and VIII will

present some concluding remarks and outline future work in

2Cray Inc custom port of Linux, part of the Cray Linux Environment
(CLE)TM

this area.

The main contributions of this work are:

1) A scalable mechanism for fine-grained, high frequency

measurement of power on a Peta-FLOPs class system.

2) A description of how this capability was used to signif-

icantly reduce idle power in a LWK operating system.

3) The ability to quantify and visualize the energy usage of

individual applications (on a per node, or per job, basis).

4) A demonstration of how power usage scales with the

effects of operating system noise.

II. INSTRUMENTATION

A. Hardware

Unlike typical commodity hardware, the Cray XT3/4/5 node

boards provide interfaces that can be exploited to measure real

power usage (current draw) over time. Each node board has

an embedded processor called an L0. The L0 has the ability to

interface with many on board components. For this effort, we

will specifically leverage the i2c serial bus interface from the

L0 to the Voltage Regulator Modules (VRM) (Each processor

socket has an associated VRM). In addition to an L0 on each

node board, every Cray XT cabinet has an embedded processor

at the cabinet level called the L1. Each L1 acts as a parent

responsible for all the L0 components in the cabinet. At the

top of the Reliability Availability and Serviceability (RAS)

hardware hierarchy is the System Management Workstation

(SMW) which in turn provides the parent role for all the L1’s

in the system. Our goal is to collect per socket current draw

measurements from each associated VRM. This foundation

should provide sufficient scalability for the collection of power

data.

The following figure (Figure 1) is a depiction of the CRMS

hardware hierarchy. A single SMW appears at the top of

the hierarchy. The 2nd level of the hierarchy depicts the L1

controllers at the cabinet level.3 The 3rd level depicts the L0

controllers. Each L0 controller physically exists on a node

board. The figure depicts an L0 on a compute node board

responsible for four nodes and the associated VRM’s.

B. Software

While the ability to exploit the hardware (collect cur-

rent draw data) is not currently a feature provided by the

Cray Reliability Availability and Serviceability Management

System (CRMS), the existing software infrastructure can be

leveraged to provide the desired instrumentation.

The CRMS consists of a number of persistent daemons

which communicate in a hierarchical manner to provide a

wide range of control and monitoring capabilities. We have

augmented the base CRMS software with a probing daemon

that runs on each L0 and a single coalescence daemon that runs

on the SMW. (See Figure 1) The probing daemon registers

a callback with the event loop executing in the main L0

daemon process (part of the standard CRMS) to interrogate

the VRM at a specific bus:device location (corresponding to

3The ellipses indicates additional devices at this level and at the L0 level

Fig. 1. CRMS Hardware Hierarchy

each individual processor socket). The results of a series of

timed probes are combined and communicated through the

event routers to the coalescence daemon on the SMW, which

outputs the results. The output is a formatted flat file with

timestamped hexadecimal current and voltage values for each

CPU socket monitored (results are per socket not per core).

By leveraging the existing hardware and software founda-

tion of the CRMS in this way we have been able to achieve

a per socket collection granularity at a frequency of up to

100 samples per second4. The accuracy of each sample is

approximately +/-2 amperes. While the accuracy of the sample

is not as precise as we would like, the data remains extremely

valuable for general magnitude observations and has proven to

be quite valuable for relative comparisons. This is in contrast

with most other platforms where measuring current draw is

typically limited to insetting a meter between a power cable

and energy source which results in a very coarse measurement

capability at best. (It should be noted, we can also obtain

current draw for the Network Interface Controller (Seastar) but

we have observed a constant current draw for this device. This

information is useful to quantify the total power used but does

not vary depending on usage. The current draw measurements

include memory controller activity but not power used by the

memory banks themselves.) The granularity and frequency of

this sampling capability has enabled us to observe real power

usage in new and powerful ways.

We have closely monitored the impact our instrumentation

has had on CRMS. At 100 samples per second we have

seen little impact on the L0. Likewise, no adverse impact

on communication between the L0’s and L1 controllers, or

between the L1’s and the SMW has been observed. We have

tested this instrumentation on up to 5 XT cabinets (480 nodes)

and have observed no scaling issues. With this said, until tested

at larger scale we cannot confirm functionality beyond what

4data included in this paper reflects a sampling frequency range from 1 to
100 samples per second

we have reported.

III. IDLE POWER DRAW

The LinuxTMcommunity has long been concerned with

power saving measures particularly in the mobile computing

sector. Linux has been quick to leverage architectural features

of microprocessors to reduce power consumption during idle

cycles. The HPC community makes great use of Linux on

many of their platforms but LWK’s are often used to deliver

the maximum amount of performance at extreme scale (Red

Storm and Blue Gene/L, for example). To achieve greater

performance at scale, LWK’s often have a selective feature

set when compared to general purpose operating systems like

Linux. As a result, LWK’s are a prime area for investigating

opportunities for power savings as long as performance is not

affected. In the area of idle power usage Linux serves as an

established benchmark. Our first goal will be to match or beat

the idle current draw of Linux.

Once in place, we applied the previously described instru-

mentation to examine the current draw of our Catamount

LWK. Catamount is the most recent generation of a long

line of LWK operating systems designed and developed at

Sandia National Labs (Performance at scale, a key design point

from the start). Our initial findings were not surprising. As we

suspected, but could not previously quantify, idle cycles were

consuming current as Catamount busily awaits new work.

One of the advantages of most LWK’s (Catamount is not an

exception) is the relative simplicity of the operating system.

The last two versions of Catamount (Catamount Virtual Node

(CVN) and Catamount N-Way(CNW))5 have supported multi-

core sockets. The architecture of Catamount is such that there

are only two regions the operating system enters during idle

cycles. We first addressed the region where cores greater than

0 (in a zero based numbering scheme) enter during idle.

(We will call core 0 the master core and cores greater than

0 slave cores.) We modified Catamount to individually halt

slave cores when idle and awaken immediately when signaled

by the master core. The result was a significant savings in

current draw. As the number of cores per socket increase the

savings will likely increase on Capability platforms. Capability

class applications are typically memory and/or communication

bound. Adding more cores, generally, provides little benefit

and applications often run on one or two of the available cores.

It should be emphasized that each slave core enters and returns

from the halt state independently, resulting in very granular

control on multi and many core architectures. After these very

positive results, we then modified the region of the operating

system the master core enters during idle. While the master

core is interrupted on every timer tick (the slaves are not) we

still observed significant additional power savings during idle

periods.

5The name Catamount will generally be used throughout this document
unless the more specific names CVN and CNW are nessary to point out and
important distinction. Further specific information about Catamount can be
found in [6]

Figure 2 depicts measurements obtained running three ap-

plications (HPL[7], PALLAS[8] and HPCC[9]) on a Dual Core

AMD Opteron Processor6 using CNL. Figure 3, in contrast,

illustrates the results obtained when executing the same three

applications on the same CPU using Catamount. (In our testing

we typically compare results using the same exact hardware

in an attempt to limit variability of measured results.)

Fig. 2. Compute Node Linux (CNL)

Fig. 3. Catamount Virtual Node (CVN)

The most noticeable difference between the two graphs is

the idle power wattage. CNL uses approximately 40W when

idle in contrast to Catamount which uses approximately 10W

(prior to our operating system modifications Catamount used

approximately 60W). Later results obtained on quad core

AMD Opteron7 sockets showed nearly identical idle power

6AMD Opteron 280 AMD Dual-Core Opteron 2.4GHz 2M Cache Socket
940 OSA280FAA6CB

7AMD Opteron Budapest 2.2 GHz socket AM2

wattage use for both CNL and Catamount8(delta within accu-

racy of measurement). On this particular dual core architecture

the instructions MONITOR and MWAIT are not supported. Both

instructions are supported on the quad core architecture used

in subsequent testing. Linux can be configured to poll, halt or

use MONITOR/MWAIT during idle. It is possible that what

we are observing in Figure 2 is a polling loop which in Linux

is optimized to conserve power. Later observations on the

quad core architecture were likely the result of CNL exploiting

MONITOR/MWAIT. Regardless, these results are intended to

show the ability to observe and contrast. These measurements

have demonstrated our first goal of equaling the idle power

savings of Linux.

These results also provided our first look at what we have

termed Application Power Signatures (see Section IV). Each

application has a characteristic signature. While small differ-

ences in the signature can be observed (even when running the

same application on a different operating system) the signature

is easily recognized.

A few more subtle points should be made. Without the

ability to examine power usage at this level we could only

guess that Catamount was inefficient during idle periods

and we could not quantify the efficiency. Additionally, we

would not have been able to easily measure the effect of

our modifications and determine, definitively, when or if we

reached our goal. Likewise, when using CNL, we could make

the assumption that CNL benefits from power saving features

of Linux but without this capability we would not have

recognized the difference in power use between the two CPU

architectures.

Using the information obtained we can make some simple

calculations for a hypothetical system. For the purposes of this

calculation we make the following assumptions: a 13,000 node

(dual core), 80% utilized, 20% idle, ignoring downtime. The

idle node hours for this system over a year would be:

(1300nodes ∗ 0.2) ∗ (365 days/year ∗ 24hours/day)

= 22.776 ∗ 106 node hours/year (1)

If we calculate the idle Kilo-Watt hours saved based on 50W

per node (the delta between the pre-modified Catamount idle

wattage and the modified Catamount idle wattage) we get:

(22.776 ∗ 106 node hours/year ∗ 50Watts/node) ÷ 1000

= 1.1388 ∗ 106 KW hours/year (2)

Assuming 10 cents per Kilo-Watt hour based on Department

of Energy averages for 2008[10] we can calculate real dollar

savings for this hypothetical system.

8CVN was enhanced to support more than two cores, the resulting Cata-
mount version was named CNW. Unless otherwise specified all results shown
after Figure3 were obtained running on CNW

(1.1388 ∗ 106 KW hours/year ∗ 10 cents/KW hour)

÷ 100 cents/dollar = 113880dollars/year (3)

For a capability system using a figure of 80% utilization

in the way we have characterized is probably very optimistic.

Capability systems are typically intended to support one to

several large applications at one time which tends to drive

the total resource utilization numbers down. Additionally,

this calculation does not consider idle cores resulting from

applications that use less than the maximum cores available

per node (as previously discussed). In the case of dual core

sockets half of the resource could remain idle (in power saving

mode) when the system is considered to be 100% utilized. In

the case of quad core sockets three fourths of the resource

could potentially remain idle. Figure 4 illustrates incremental

power usage on a quad core socket when a short HPL job

is executed on one, two, three and four cores of a quad core

node.

Fig. 4. Catamount N-Way Per Core Power Utilization

Even though our measurements are on a per node basis we

can see the incremental rise in power usage when additional

cores are enlisted. These results provide both a nice illustration

of per core savings and a confirmation that our operating

system modifications properly handle per core idle states.

In addition, we have not considered the 30-40% additional

power savings as a result of not having to remove the addi-

tional heat generated by higher idle wattages. By exploiting

power saving measures, as we have illustrated, significant

savings can be realized by targeting idle cores alone.

IV. APPLICATION POWER SIGNATURES

Application Power Signature is a term we have applied to

the measured power usage of an application over the duration

of that application. The term signature is used since each

application exhibits a repeatable and somewhat distinct shape

when graphed. We have found that a user knowledgeable

of the application flow can easily distinguish phases of the

application simply by viewing the signature. While simply

graphing the resulting data can be useful, we have extended

this by calculating the energy used over the duration of the

application. We call this application energy. To calculate this

metric we simply calculate the area under the curve. To

accomplish this we enhanced our post processing code to

approximate the definite integral using the trapezoidal rule.

The following graphs (Figures 5 and 6) depict the data

collected while running HPCC on Catamount and CNL. HPCC

was executed using the same input file on the same physical

hardware. Each run used 16 processors (four nodes, four cores

per node).

Fig. 5. HPCC on Catamount, Application Power Signature and Application
Energy

Fig. 6. HPCC on CNL, Application Power Signature and Application Energy

In the upper right hand corner of each graph is the energy

used by the application (on a single node, all four cores).

Again, notice the similarity of the signatures regardless of the

underlying operating system. In this case HPCC finished more

quickly on Catamount than CNL. HPCC and other applications

have been shown to execute more quickly on Catamount[11].

It is not surprising that an application that takes longer to

execute, given similar power draw during execution, will

consume more power. In this case HPCC ran 16% faster on

Catamount. The amount of energy used by HPCC is 13% less

using Catamount than CNL. We also tested HPCC on quad

core nodes using two cores per node (HPCC ran 15% faster

on Catamount and used 13% less power) and on dual core

nodes using two cores per node (HPCC ran 10% faster on

Catamount and used 10% less power). The salient point is that

performance is not only important in reducing the run time of

an application but also in increasing the power efficiency of

that application. Additionally, without the ability to examine

real power use at this granularity the power efficiency of an

application could not be as precisely quantified.

In the next Section (V) we will further analyze application

energy by introducing operating system noise. Additionally,

we will discuss plans for applying these concepts in Section

VIII.

V. POWER AND NOISE

Operating system interference, also referred to as noise or

jitter, is caused by asynchronous interruption of the application

by the system software on the node. This interruption can

occur for a variety of reasons from the periodic timer “tick”

commonly used by many commodity operating systems to

keep track of time to the scheduling points used to replace the

currently running process with another task or kernel daemon.

The detrimental side effects of operating system interference

on HPC systems have been known and studied, primarily qual-

itatively, for nearly two decades [12], [13]. Previous investiga-

tions have suggested the global performance cost of noise is

due to the variance in the time it takes processes to participate

in collective operations, such as MPI_Allreduce. LWK’s,

like Catamount, are essentially noise-less in comparison to

general-purpose operating systems like Linux. Previous work

has shown that operating system noise can have substantial

impact on the performance of HPC applications [14]. In addi-

tion, this work shows the impact varies by application, some

showing relatively no impact in noisy environments while

others exhibit exponential slowdowns. While many aspects

of the impact of noise on run time performance are well

understood, the impact of noise in terms of power usage is

not. Specifically, we set out to answer if power usage in noisy

environments scales linearly (or otherwise) with the increase

in application run time.

To evaluate the impact of noise we use the kernel-level noise

injection framework built into the Catamount LWK [14]. This

framework provides the ability to direct the operating system

to inject various per-job noise patterns during application

execution. The available parameters for generating the noise

patten include: the frequency of the noise (in Hz), the duration

of each individual noise event (in us), the set of participating

nodes, and a randomization method for noise patterns across

nodes (not employed for this analysis). The noise is generated

(simulated) using a timer interrupt on core 0 of the partic-

ipating nodes. When the interrupt is generated, Catamount

interrupts the application and spins in a tight busy-wait loop

for the specified duration. The purpose of separately specifying

the frequency and duration of each noise event is to simulate

various types of noise that occur on general purpose operating

systems. Catamount provides an ideal environment for these

studies due to its extremely low native noise signature.

In the following analysis we focused on a single application

(SAGE). We chose SAGE based on our initial studies and the

previous analysis done in [14]. SAGE, SAIC’s Adaptive Grid

Eulerian hydro-code, is a multi-dimensional, multi-material,

Eulerian hydrodynamics code with adaptive mesh refinement

that uses second-order accurate numerical techniques [15].

SAGE represents a large class of production applications at

Los Alamos National Laboratory. A large-scale parallel code

written in Fortran 90, SAGE uses MPI for inter-processor com-

munications and routinely runs on thousands of processors for

months at a time. Applications like SAGE have the potential

to be significantly impacted by noise and any proportional

increase in energy.

Table I is a representative sample of our results.

TABLE I
POWER IMPACT OF NOISE

Noise Freq Duration Diff Run-
time

Diff App
Energy
(AVG)

2.5% 10Hz 2500us 4.0% 4.0 %
1% 10Hz 1000us 1.7% 1.9%
2.5% 100Hz 250us 2.6% 2.5%
2.5% 1000Hz 25us 2.6% 2.5%
1% 1000Hz 10us 0.1% 0.1%
10% 10Hz 10000us 21.6% 21.0%

We injected a number of different noise patterns varying

the frequency and duration of the noise. The Noise percentage

(column one) is determined using the following calculation.

((Frequency(Hz)∗Duration(us))÷ (1∗106))∗100 (4)

The frequency of the noise (column two) is how often

a noise event occurs. The duration (column three) is how

long each noise event lasts. The difference in runtime is

shown in column four and is relative to the runtime of the

application with no noise injected. Likewise, the difference in

application energy (column five) is relative to the energy used

by the application without noise injected. The results, with the

exception of row six, are representative of multiple runs on the

same equipment using the same parameters. In addition, we

varied the runtime of the application with consistent results.

The results were obtained using 16 quad core nodes. The

application utilized core 0 only since noise can only be injected

on core 0 using this framework. What we observed is that the

difference in application energy used by applications when

noise is injected is linearly proportional to the difference in

runtime. If we normalize the impact of the injected noise,

even in the most extreme example (again excluding row six)

the impact of noise on both the runtime and the application

energy is approximately 1.5%. We found these results to

be very consistent. We repeated our tests at a larger scale

(48 nodes, again utilizing only core 0) and observed results

consistent with Table I. In an effort to simulate effects seen

at larger scale we introduced a large amount of noise (10%)

while running the same application. The results (row six of

table I) show a larger impact to both runtime and application

energy (approximately 11% when normalized). These results

are significant in the fact that they show the same linearly

proportional increase in application energy for applications

effected by noise. Though Table I shows small percentage

increases in runtime for various noise patters, accompanied

by proportional increases in the percentage of energy used,

these results were obtained at a relatively small scale. The run

time of some applications can increase dramatically at larger

scale in noisy environments.

 200

 400

 600

 800

 1000

 1200

 256 512 1024 2048 4096 8192

P
e

rc
e

n
t

S
lo

w
d

o
w

n
 -

 P
e

rc
e

n
t

In
je

c
te

d

Nodes

POP
SAGE

CTH

 0

 10

 20

 30

 40

 50

 4 16 64 256 1024 4096

Fig. 7. Slowdown at Scale

In Figure 7, we see the measured slowdown of POP, CTH,

and SAGE, at scale. In this figure the Y-axis is the global

accumulation of noise for the application. We compute this

global accumulation by taking the slowdown of the app in a

noisy environment versus a baseline with no OS noise and

subtract the amount of locally injected noise. For example,

if we inject a 2.5% net processor noise signature, as we

did for this figure, and measure a 20% slowdown the global

accumulation of noise would be 17.5%. We see in this figure

that with only 2.5% net processor noise injected the slowdown

for POP exceeds 1200% at scale, and therefore we can project

a proportional increase of 1200% application energy at scale.

The inset of Figure 7 also shows considerable slowdowns for

SAGE and CTH due to noise. While not as dramatic as POP,

the additional impact on application energy projected by our

analysis is proportionally as significant. Further analysis will

need to be accomplished to verify that these results are truly

representative at scale.

VI. RELATED WORK

Power, as it relates to computers and computation, has been

researched from many perspectives. The use of performance

counters to estimate power efficiency has been researched from

a micro [16], [17] and macro [18] perspective. While estimates

based on performance counters have shown to be useful, we

have shown that scalable fine-grained measurements can be

leveraged at both the micro and macro level to analyze HPC

operating system and application power use. Our work would

strengthen these modeling efforts.

Previous work done in [19] and [20] had similar motivations

to our efforts and targeted similar scale systems. In [20], they

nicely evaluate various methods of measuring power. They

conclude that measuring power at system scale is problematic.

Nodal and very small scale measurements can be accom-

plished using power meters and cabinet level measurements

(very coarse) can be accomplished, but the scalable collection

of samples is not feasible. Both [19] and [20] extrapolate

nodal level measurement to produce larger system power

estimates. Our work has shown that it is possible to collect

scalable, granular, high-frequency power measurements on

HPC platforms. Additionally, our work shows that nodal and

system level measurements can be obtained in-situ. Further,

by enabling collection from all nodes used in an application

we can observe and quantify the additional power effects of

parallel applications rather than extrapolate based on nodal

measurements. By leveraging what will hopefully become a

ubiquitous capability in the future power analysis of both

operating system and applications on HPC systems would be

greatly enhanced.

VII. CONCLUSIONS

Our results have shown that once observation is enabled,

beneficial effects can be achieved with relatively little effort

and subsequently quantified. This capability has provided new

insight into operating system and application analysis. It is our

intent to employ this capability in future efforts (Section VIII)

to increase the efficiency of current and future platforms.

We feel the most important aspect presented in this paper

is the ability to measure the actual current draw at a high

level of granularity and frequency. Without this ability, the

work described would have to be done without the ability to

see effect or quantify results. It is also important to note that

without the underlying hardware capability to measure current

draw the instrumentation would not be possible. It is our hope

that this capability, both hardware and software, will be found

on more platforms in the future.

VIII. FUTURE WORK

This initial work has inspired additional efforts in a num-

ber of related areas. In addition to reducing idle power

consumption, reductions during application execution might

prove valuable. Even on the most well balanced system,

capability class applications experience periods where nodes

are waiting for information from cooperating nodes of the

same application. We are investigating ways for applications

to signal the operating system to enter power saving states

(or lower frequency levels), while blocked, and quickly return

to a running state when prepared to continue. The ability

to measure power draw during these periods will help us

implement, subsequently test and quantify this ability.

We also plan on experimenting with frequency scaling

during application execution. Our primary goal here is to

reduce frequency such that application performance remains

unaffected. If this is not possible, a small impact on application

performance may be acceptable given a large increase in

application power efficiency. Again, the ability to measure our

impact during implementation and testing will be critical to

success in this area.

Finally, we plan to apply our ability to calculate ap-

plication energy to areas such as resource scheduling. For

example, as stated previously, capability class systems are

destined to require huge amounts of power. While running

High Performance Linpack requires a large percentage of the

maximum CPU power, typical applications require less than

75% of maximum power (our estimates are as low as 60%

supported by [21]). A platform that requires a peak power

of 10 Mega-Watts could be scheduled in such a way as to

maintain a maximum power draw of 7.5 Mega-Watts, for

example, with no impact on application performance or run-

time. We could likely maintain an even lower percentage of

peak. Related work has been done in this area for real-time

and embedded systems [22], [23]. Other work [24] targets

similar efforts using dynamic voltage and frequency scaling

(previously mentioned as another area of future interest).

ACKNOWLEDGEMENTS

We would like to thank Sudip Dosanjh, James Ang and

Doug Doerfler for their support of this research. Additionally,

the local Cray staff (Dick Dimock, Jason Repik, Victor Kuhns,

Barry Oliphant, Bob Purdy) and Jeff Sampson, provided

valuable help and hardware insight that assisted these efforts.

REFERENCES

[1] RedStorm. Sandia National Labs. [Online]. Available:
http://www.cs.sandia.gov/platforms/RedStorm.html

[2] (2008, Nov) Top500. [Online]. Available:
http://www.top500.org/list/2008/11/100

[3] Blue-Gene/L. Lawrence Livermore National Labs. [Online]. Available:
https://asc.llnl.gov/computing resources/bluegenel

[4] Jaguar. Oak Ridge National Laboratories. [Online]. Available:
http://www.nccs.gov/jaguar/

[5] RoadRunner. Los Alamos National Laboratories. [Online]. Available:
http://www.lanl.gov/roadrunner/

[6] S. M. Kelly and R. B. Brightwell, “Software Architecture of the Light
Weight Kernel, Catamount,” in Cray User Group, May 2005.

[7] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart,
“High Performance Linpack HPL,” 1989. [Online]. Available:
http://www.netlib.org/benchmark/hpl/references.html

[8] PALLAS. [Online]. Available:
http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/mpi/219848.htm

[9] HPCC. [Online]. Available: http://icl.cs.utk.edu/hpcc/
[10] DOE Energy Statistics. Department of Energy. [Online]. Available:

http://www.eia.doe.gov/cneaf/electricity/epm/table5 6 a.html
[11] C. T. Vaughan, J. P. VanDyke, and S. M. Kelly, “Application Perfor-

mance under Different XT Operating Systems,” in Cray User Group,
May 2008.

[12] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso,
M. Leibensperger, M. Barnett, F. Rabii, and D. Netterwala, “An OSF/1
UNIX for Massively Parallel Multicomputers,” in Proceedings of the

USENIX Technical Conference, Winter 1993.
[13] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing

Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in Proceedings of SC, 2003.

[14] K. B. Ferreira, R. Brightwell, and P. G. Bridges, “Characterizing
Application Sensitivity to OS Interference Using Kernel-Level Noise
Injection,” in Proceedings of the 2008 ACM/IEEE Conference on Su-

percomputing (Supercomputing’08), November 2008.
[15] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,

and M. Gittings, “Predictive performance and scalability modeling of
a large-scale application,” in Proceedings of the ACM IEEE conference

on Supercomputing, Denver CO, 2001.
[16] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-

Sensitive Systems.” in ACM SIGOPS European Workshop, September
2000.

[17] W. L. Bircher, M. Valluri, J. Law, and L. John, “Runtime Identifica-
tion of Microprocessor Energy Saving Opportunities.” in International

Symposium on Low Power Electronics and Design, pp. 275–280.
[18] W. L. Bircher and L. K. John, “Complete System Power Estimation: A

Trickle-Down Approach Based on Performance Events,” in International

Symposium on Performance Analysis of Systems & Software. University
of Texas at Austin, April 2007.

[19] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy Profiling on
Scientific Applications on Distributed Systems,” in Proceedings of the

19th IEEE International Parallel and Distributed Processing Symposium

IPDPS. University of South Carolina, Columbia SC, 2005.
[20] S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency in High

Performance Computing,” in IEEE International Symposium on Parallel

and Distributed Processing, 2008.
[21] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a

Warehouse-sized Computer,” in The 34th ACM International Symposium

on Computer Architecture, 2007.
[22] H. hung Lin and C.-W. Hsueh, “Power-Aware real-Time Scheduling

using Pinwheel Model and Profiling Technique,” in 11th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and

Applications, Aug 2005.
[23] J. Liu, P. H. Chou, N. Bagherzardeh, and F. Kurdahi, “Power-Aware

Scheduling under Timing Constraints for Mission-Critical Embedded
Systems,” in Proceedings of the 38th conference on Design automation.
Dept. of Electrical & Computer Engineering, University of California at
Irvine, Irvine, CA, 2001.

[24] C. hsing Hsu and W. chun Feng, “Power-Aware Run-Time System for
High-Performance Computing,” in Conference on High Performance

Networking and Computing, 2005.

