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Abstract

Two alternative approaches to the solution of discrete ordinate transport are
considered in the context of general unstructured grids. The more traditional approach
considered is the solution of a lower triangular system of equations for the spatial
intensity distribution. Alternatively, the iterative solution of the system of equations
arising from a more general differencing stencil is also considered. Advantages and
disadvantages are considered for both sequential implementation and for spatial domain
based parallelism.

1 Introduction

Numerical solution of the radiative transport equation is important in a number of
applications including fusion energy and combustion. In both cases the radiative transport
calculation is coupled with a solid or fluid mechanics but still requires the majority of the
computational effort. The need for increased spatial resolution for complex engineering
systems also increases the need for an efficient parallel implementation of the radiative
transport calculation on an unstructured, spatially decomposed grid.

The principal objective of this work is to compare iterative and direct formulations for
solving the radiative transport problem. In this work, the ”iterative formulation” refers to
the use of a Krylov iterative matrix solution to evaluate a linear system of equations for
the radiative intensity for a given direction. The ”direct formulation” refers to the use of a
single ordered solution sweep to solve a lower triangular system of equations obtained using
a one sided differencing stencil.

Although the ultimate interest of this work is the parallel implementation of the direct
and iterative formulations, several questions remain regarding the parallel implementation
of the direct formulation on general unstructured finite element grids. Therefore, in the
following sections, the two formulations will be compared directly in serial for a challenging
test case described by Adams [1]. Challenges regarding the parallel implementation of the
direct formulation will be considered on a theoretical basis. The iterative formulation to
be considered here has been previously applied in parallel by Burns [2] and Burns and
Christon [3] and this work will also expand on these earlier efforts.

*This work was performed in part using the ASCI RED parallel supercomputer maintained by the
Massively Parallel Computing Research Laboratory at Sandia National Laboratories in Albuquerque, New
Mexico. Overall support was provided by the U.S. Department of Energy contract DE-AC04-94AL8500.
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1.1 Problem Description

To provide a consistent basis for comparison, consider the solution of the Boltzmann
transport equation for a single time step and single energy band. The appropriate form of
the Boltzmann transport equation for these conditions is given by Adams [1] and may be
written in the form

(1) n-v1+ut1:%,
where .
(2) B = 4—W[(Mt - /'I‘T')G + 47TS]5
and G is the scalar flux
(3) G= [ Id%.

47

In Equations (1) and (2), u, pr, and S are functions of position while the intensity, I,
is a function of both position and the direction Q. If u; # p, then an outer source iteration
loop is required to resolve the dependence of the source term B on the intensity.

The angular directions, 2, in Equations (1) and (2) are discretized using the level
weighted, even moment quadrature set derived by Lathrop and Carlson [4]. Spatial
discretization is provided by an unstructured finite element grid which may is decomposed
across processors in the parallel implementation. The details of the spatial discretization
used for Equation (1)are provided in the next section.

2 Complexity Analysis

The following subsections provide a high level description of the iterative and direct
formulations considered in this work. The important aspects of each formulation are
considered in detail and a theoretical estimate for how the computational work scales is
also provided. Finally, the parallel implementation of each formulation is also discussed.

2.1 Iterative Method

The iterative formulation considered in this work is described in detail by Burns [2] and the
full development will only be summarized here to conserve space. The iterative formulation
is obtained from a Galerkin finite element spatial discretization of Equation (1) with Petrov-
Galerkin weighting [5] used for optically thin elements to preserve diagonal dominance of
the operator. The resulting linear system of equations for each ordinate direction is then
solved using a preconditioned Krylov iterative solution method [6].

An important detail of the formulation descibed by Burns [2] is that the element assem-
bly loop is performed once rather than for each ordinate direction. The element assembly
loop constructs the global advection matrix, mass matrix, and load (cf. Equation(1)) prior
to the ordinate loop. A rotation operation is performed within the ordinate loop to con-
struct the system of equations for the intensity for each ordinate direction. This rotation
operation requires only a small percentage of the time required for the element assembly
loop at the expense of the memory required to store the global mass matrix, etc.

In parallel, for a spatially decomposed grid, each processor can construct the portion
of the coefficient matrix corresponding to its sub-domain without any interprocessor
communication. The work required for this element loop, as well as for the rotation
operation described above, scales as the number of elements in the grid, N,. Interprocessor
communication occurs only during the vector inner products and matrix vector products
required by the Krylov solver [7] [6].
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In general the number of Krylov iterations required to evaluate the intensity for each
ordinate direction will increase as N°. It has been shown for a simple three dimensional
case that b = 0.26 to 0.36 for a number of non symmetric Krylov solvers' using diagonal
preconditioning [2]. As a result, for a fixed number of elements on each processor, the
amount of work per processor will increase as the number of processors increase, e.g.,
the global problem size increases. This algorithmic inefficiency does not arise from the
parallel implementation of the iterative formulation but rather from the nature of Krylov
based solvers. Indeed, for reasonable sub-domain size, the interprocessor communication
for the iterative formulation accounts for a few percent of the overall execution time [2].
Nevertheless, the inherent non scalability of Krylov methods is the principal drawback to
the iterative formulation.

2.2 Direct Method

The Upwind Corner Balance (UCB) formulation described by Adams [1] is used as a typical
example of a one sided differencing stencil for this work. As for the iterative formulation,
the development of the direct formulation will only be summarized here to conserve space.
Some details of the implementation of the UCB stencil peculiar to the present work will be
emphasized.

The UCB algorithm evaluates the intensity at each corner of each element in the grid.
Therefore, the UCB algorithm will involve N, times as many unknowns as the iterative
formulation for the same grid where N, is the number of vertices per element, e.g., N, = 4
for quadrilateral elements and N, = 8 for hexahedral elements. The intensity at a given
element corner depends only on the intensities which lie "upwind” of the corner relative to
the ordinate direction. Therefore the intensities at each element corner may be evaluated
by sweeping through the mesh along the ordinate direction without explicitly forming a
system of equations and resorting to a Krylov solver.

To calculate the corner intensities for a given element a number of element areas and
volumes need to be evaluated [1]. As the UCB algorithm is implemented here, these
geometric quantities are evaluated ”on the fly” rather than being precalculated and stored.
Precalculating these quantities might accelerate the direct formulation but this approach
would require the storage of 16 floating point values for each quadrilateral and 44 floating
point values for each hexahedral element. It will be shown in the following sections that
the calculation of the element geometry requires approximately 10% of the computation
time for a two dimensional grid while gathering element data from the global storage takes
as much as 40% of the compute time. Therefore, precalculating and storing the element
geometry may not be cost effective.

To order the elements for each solution sweep it is necessary to evaluate the element-
to-element connectivity graph for each ordinate. It is possible for cycles to occur in
this connectivity graph for general unstructured finite element grids. This prevents the
determination of unique upwind dependencies necessary for the solution sweep for an
ordinate direction. Therefore, it is necessary to break these cycles when they occur,
for example, by using intensities from a previous source iteration. In the current
implementation, cycles are not considered and only cycle free grids are employed.

Two principal complications arise in the parallel implementation of the direct formula-
tion using spatial domain based parallelism. The first of these is the inherently sequential

! Gauss-Seidel, stabilized biconjugate gradient, conjugate gradient squared
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Fic. 1. Coarse grid for two dimensional test problem. Five regions with four node quadrilateral
elements throughout.

nature of the solution sweep. Since information propagates through the mesh along the or-
dinate direction, downstream processors cannot do useful work until the sweep propagates
through all upstream processor sub-domains. The second complication is the identification
of cycles in a spatially decomposed element connectivity graph.

To alleviate the first of these complications, at least partially, the UCB algorithm
implemented in this work is designed to sweep in all ordinate directions simultaneously.
Thus all processors whose spatial sub-domain includes a portion of the global domain
boundary will be able to perform useful work from the start while only the interior
processors must wait for the sweeps to propagate through the grid.

3 Two Dimensional Serial Test Case

In this section results are presented for a challenging two dimensional test case described by
Adams [1]. The test problem geometry is summarized in Figure 1. The geometry consists of
a two dimensional domain with five regions. The left most region has a positive generation
rate with a moderate optical thickness and isotropic scattering, i.e., .7 ;. The large region
in the upper right corner is very optically thick and also scatters radiation isotropically. A
streaming region connects the generating region and the large thick region resulting in a
step change in absorptivity of six orders of magnitude at the exit of the streaming region.
The remaining regions are strongly absorbing non scattering regions. Adams proposed the
coarse grid shown to increase the difficulty of the test problem rather than to provide a
mesh independent solution.

A simple minded source iteration is employed here in which Equations (1) and (2) are
solved iteratively until the maximum relative change in the nodal scalar flux satisfies the
criteria . -
(4) max lw

<1,
€1Gzn + €9

1<i<N,

where the superscript n is the source iteration counter, i is the node number, and N, is
the number of nodes in the mesh. No source iteration acceleration schemes are used for
either the iterative or the direct formulation. The UCB corner values for the scalar flux
were mapped onto the nodes using a volume average for the purposes of evaluating the
convergence but the unmapped corner values were used in calculating the right hand side
of Equation (1). For the convergence results discussed below e; = 1075 and e; = 10710,
Figure 2 shows the results obtained from both the iterative and direct formulation for
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FiG. 2. Coarse grid solution for two dimensional test problem - (a) iterative solution for scalar
fluz, (b) iterative solution for the log of the scalar fluz, [-9.0, 2.0]x 0.5 (c) direct solution for the
scalar fluz, (d) direct solution for the log of the scalar fluz [-9.0, 2.0]% 0.5

the coarse grid shown in Figure 1. Figure 2 shows both the scalar flux values, G, and the log
of the scalar flux predicted by both formulations. Both of the formulations predict the same
qualitative result although the direct formulation predicts a maximum scalar flux more than
twice that of the iterative formulation. This is to be expected given the differences between
the two formulations and the extremely coarse grid used. The iterative formulation also
allows the solution to go very slightly negative (O(—107?))in the lower right hand corner of
the grid whereas the UCB direct formulation remains positive. Both formulations predict
the minimum scalar flux in the strongly absorbing lower right hand region of the grid.

The iterative formulation results shown in Figure 2a and 2b were obtained using the
row sum lumped form of the mass matrix resulting from the absorption term in Equation
(1). While the source iteration converged using the consistent mass matrix, the resulting
scalar flux solution demonstrated severe spatial oscillations in the optically thick region.
The lumped mass matrix, however, provided a smooth and reasonable solution as shown
in Figure (2).

As expected, the compute time per source iteration for the direct formulation scales as
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the number of elements in the mesh while the compute time for the iterative formulation
increases faster than the number of elements. Both formulations require approximately the
same time per source iteration for N, = 120 elements, i.e., the grid shown in Figure 1, but
the iterative formulation requires approximately 13 times as long as the direct formulation
for N, = 30,720. It should not be assumed, however, that both formulations require the
same number of source iterations. A detailed study of source iteration convergence and
acceleration techniques, however, is beyond the scope of this work.

Approximately 40% of the compute time per source iteration for the direct formulation
is required to gather the element data, e.g., vertex locations, intensities, etc., from the
global storage and to scatter the updated element corner intensities back to global storage.
Calculating the element geometry, e.g., interface areas and corner volumes, and updating
the element corner intensities requires approximately 10% and 20% of the compute time
respectively for the direct formulation. These fractions are independent of the number of
elements in the global grid.

As described in the complexity analysis, the amount of time taken by the Krylov matrix
solution for the iterative formulation increases as the number of elements increases. At
N, = 120 the Krylov matrix solve requires approximately 50% of the compute time per
source iteration for the iterative formulation. This fraction increases to approximately 98%
of the compute time for N, = 30,720. The rate at which the compute time for the Krylov
matrix solution increases is a function of the solver type and matrix preconditioning.

3.1 Effect of Krylov Solver and Preconditioning

The rate at which the number of Krylov iterations increased with the number of elements
for the two dimensional test problem was determined by successively doubling the grid
shown in Figure 1. Four successive grid doublings were employed to obtain the results
described below. Similar data is also shown by Burns [2] using diagonal preconditioning
for a three dimensional problem with spatial domain decomposition.

Table 1 summarizes the iteration scaling for three solvers - generalized minimal residual
(GMRES), stabilized biconjugate gradient (BiCGStab), and conjugate gradient squared
(CGS) - using diagonal, Neumann, and least squares preconditioning 2. Assuming that
the number of iterations scales as N; = CNg, Table 1 gives values for C' and b for each
solver/preconditioner combination. All of the data shown in Table 1 were obtained using
the AZTEC Krylov matrix solver library developed at Sandia National Laboratories in
Albuquerque, New Mexico.

The data in Table 1 shows that, of the three solvers considered , the BiCGStab
solver requires the fewest number of iterations for a given preconditioner. BiCGStab also
provides the slowest increase in the number of iterations, i.e., lowest value of b, for a given
preconditioner. Per iteration, the GMRES algorithm is the most time consuming of the
three solvers considered. The CGS and BiCGStab algorithms have equivalent compute
times per iteration. Therefore, the BiCGStab algorithm provides the best performance in
terms of the fastest compute time and slowest increase in the number of iterations with
grid size. A similar result was obtained by Burns [2].

The data in Table 1 also shows that preconditioning has a beneficial effect on
the BiCGStab algorithm in terms of the iteration count. The additional cost of the
Neumann and least squares preconditioners, however, tend to negate this benefit and

?Using a Krylov subspace size of 30 for GMRES and a polynomial order of 2 for Neumann and least
squares preconditioning
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preconditioner

solver none || Neumann || least squares
GMRES C=1.40| C=0.54 C=0.69
b= 0.48 b= 0.48 b= 0.46
BiCGStab | C=1.04 || C=0.49 C=0.68
b= 0.45 b= 0.42 b= 0.41
CGS C=137| C=0.52 C=0.62
b= 0.45 b= 0.43 b= 0.43

TABLE 1
Iteration scaling with grid size. Ny = CN?

the overall compute time per Krylov iteration remains relatively unchanged regardless
which preconditioner is used for the problem sizes considered. Neumann preconditioning
provides a slightly faster compute time than diagonal and least squares preconditioning for
N > 30, 720.

A reasonable preconditioning approach may be to combine the iterative and direct
formulations by using an ordered mesh sweep as a preconditioning step for the Krylov
iterative solution. The next section describes a simple implementation of such an approach
for a three dimensional problem running in parallel.

4 Parallel Upwind Preconditioning

The preconditioning formulations employed in the previous section did not take into account
the hyperbolic nature of Equation (1) in the optically thin limit. In this section, a simple
upwind preconditioning formulation is used to explore the possible benefits of a more
intelligent preconditioning scheme on the performance of the iterative formulation. The
preconditioning step used here employs a single ordered Gauss-Seidel sweep through the
system of equations. The initial guess for the Gauss-Seidel sweep is the ratio of the load
vector and the main diagonal of the coefficient matrix so that diagonal preconditioning is
regained if the Gauss-Seidel preconditioning sweep is not employed.

The equation ordering used in the preconditioning sweep is determined for each ordinate
direction based on the inner product of the nodal position corresponding to each equation
and the ordinate direction. The index vector which sorts this list of inner products from
minimum to maximum also represents a crude ordering of the nodes from upstream to
downstream for a given ordinate direction. The hope is that this simple preconditioner
will accelerate the rate at which information propagates through the grid in the ordinate
direction and reduce the rate at which the number of Krylov iterations increases with the
global grid size.

The three dimensional test problem described by Hsu and Farmer [8] and solved in
parallel by Burns and Christon [2][3] is used to demonstrate the performance of the simple
upwind preconditioner. This problem consists of a three dimensional cube with constant
temperature and no scattering, e.g., yu, = ps. The absorption coefficient varies trilinearly
from a minimum of x; = 0.1 at the edges of the cube to u; = 1.0 at the center of the cube
and only a single energy band is considered.

For the results presented here, the cube is discretized using a uniform, orthogonal grid
of NxNxN eight node hexahedral elements. The grid is decomposed into M x M x M non
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overlapping spatial sub-domains each of which are assigned to one of P = M? processors.
All of the data presented below was obtained using the ASCI RED distributed memory,
Multiple Instruction/Multiple Data, message passing super computer supported by the
Massively Parallel Computing Research Laboratory at Sandia National Laboratories in
Albuquerque, New Mexico. Although a structured grid is employed to provide these results,
the formulation used for the iterative formulation described previously assumes a completely
unstructured finite element grid.

Figure 3 compares the performance of the diagonal and upwind preconditioner using
a spatial sub-domain size of 8,000 elements. Figure 3 shows that the simple upwind
preconditioner described above has a distinct impact on the growth of the number of
BiCGStab iterations compared to diagonal preconditioning. A curve fit of the data in
Figure 3a shows that the number of BiCGStab iterations grows as Ny = 0.66N9-33 for
diagonal preconditioning and N;; = 1.34N2-23 for upwind preconditioning. As a result, the
scaled parallel efficiency [3] at P = 125 processors (N, = 10°) rises from 29% for diagonal
preconditioning to 51% for upwind preconditioning.

The most important performance metric, however, is the total solution time which
is expressed as the total wall clock time for solution per ordinate per element in Figure
3b. Although the parallel performance is improved, the total grind time for the upwind
preconditioner does not catch up to that of diagonal preconditioning for this test problem
until the number of elements in the global grid exceeds 500,000.

Although this simple upwind preconditioner reduced the number of BiCGStab iterations
for this three dimensional test problem, this performance may degrade for more challenging
applications. Testing of the upwind preconditioner for the two dimensional test problem
described previously showed that this preconditioning schemes could cause the solver to
diverge as the grid refinement increases. Divergence may be avoided by employing more
than one ordered Gauss-Seidel sweep during the preconditioning sweep. It is not possible
to investigate this breakdown here but it is possible that the large diffusion region in the
two dimensional test problem may be a contributing factor.

Nevertheless, the ability of such a simple minded preconditioning scheme to improve
the parallel performance of the iterative formulation is promising. Poor cache performance
caused by the Gauss-Seidel sweep ordering may account for a significant fraction of the
preconditioner overhead and reordering the coefficient matrix prior to solution my be
beneficial. Additional research along these lines is certainly warranted

5 Observations

This work compared iterative and direct solution formulations for the radiative transport
formulation. The iterative formulation employs a Krylov iterative solver to evaluate
a system of equations resulting from a general spatial discretization of the Boltzmann
radiative transport equation for the directional radiative intensity. The direct formulation
employs a one sided spatial differencing scheme and an ordered solution sweep through the
grid to solve the resulting lower triangular system of equations.

Parallel implementation of the iterative formulation is straight forward and only requires
interprocessor communication to complete the matrix-vector and vector-vector products
required at each iteration of the Krylov solver. The principal drawback of this formulation
is that the number of Krylov iterations required for convergence grows as the number of
elements in the global mesh resulting in a degradation in the scaled parallel performance.

In contrast, the direct formulation requires only a single sweep through the grid to
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obtain the directional intensity for any grid size. Parallel implementation of the direct
formulation is more problematic given the inherently sequential nature of the solution sweep
through a spatially decomposed grid. Also, the direct formulation requires the specification
of an element connectivity graph for each ordinate direction. Cycles may occur in the
connectivity graph for unstructured grids and must be identified for the solution sweep to
proceed. Identifying cycles in a spatially distributed graph poses an additional challenge
for the direct formulation.

Several general observations may be made from the data presented in this work:

The general spatial discretization used for the iterative formulation provides a
reasonable solution when compared to the upwind corner balance formulation
for a challenging two dimensional problem with sharp changes in absorptivity
and a coarse spatial grid.

A stabilized biconjugate gradient solver with diagonal preconditioning provided
the best performance of the solvers and preconditioners considered in terms of
the overall run time and increase in the number of iterations with grid size.

A curve fit of the data showed that the average number of iterations per
ordinate direction for the BiCGStab solver increased as N;; = 0.49N£'42 for
the two dimensional problem and N;; = 0.66 N33 for a less challenging three
dimensional problem.

A simple minded upwind preconditioning formulation showed that a precondi-
tioning method which takes advantage of the hyperbolic nature of the Boltz-
mann radiative transport equation may significantly improve the performance
of the iterative formulation. Additional development is required to provide a
robust preconditioning method.
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