
A Solver-Independent API
for multi-DOF Applications
using Trilinos

M.A. Heroux
Distinguished Member of the Technical Staff,
Computational Math/Algorithms Department,
Sandia National Laboratories, Albuquerque, NM, USA
E-mail: maherou@sandia.gov

Abstract: Many applications, including fully-coupled reacting flows and multiscale
applications, simultaneously resolve multiple degrees of freedom (DOFs). Simultane-
ously, preconditioning techniques, such as segregated preconditioners for fully-coupled
problems, separate variables for efficient sub-operator resolution via fast single DOF
solver capabilities such as multigrid or direct solvers that would be ineffective or too
expensive if applied to the full problem.

In this paper we present an application programmer interface (API) illustrating
solver-neutral programming techniques via abstract interfaces, along with Trilinos-
specific adapters for these interfaces. Furthermore, we show how to use Trilinos to build
highly-parallel, sophisticated multi-DOF preconditioners. For concrete examples, we
focus on the application Tramonto, a molecular density functional theories code used
for modeling inhomogeneous fluids and EMU, a peridynamics modeling code used
to predict the deformation and failure of bodies and structures and dynamic loading.
However, the basic principles are easily translated to other important problem domains.

Keywords: parallel solvers; object-oriented programming; inhomogeneous fluids;
Schur complement; iterative methods.

Reference to this paper should be made as follows: Heroux, M.A. (2006) ‘A Solver-
Independent API for multi-DOF Applications using Trilinos’, Int. J. Computational
Science and Engineering, Vol. 1, Nos. 1/2/3, pp.64–74.

Biographical notes: Michael A. Heroux, PhD., is a Distinguished Member of the
Technical Staff at Sandia National Laboratories. Prior to joining Sandia, he worked
for Cray Research and Silicon Graphics, specializing parallel numerical linear algebra,
large-scale parallel applications and high-performance parallel computer architecture.
Presently his work involves leading the Trilinos solver project at Sandia, working on
solvers for scientific and engineering applications and on future parallel computer ar-
chitectures and languages.

1 INTRODUCTION

Many scientific and engineering applications have the so-
lution of large linear systems of equations Ax = b as a
basic kernel, where A is a known often sparse matrix, b
is a known vector and x is unknown. Many libraries are
available to solve these types of problems. Some of the
more popular are PETSc(Balay et al. (1998b,a, 1997)),
hypre(Falgout (2006)) and Aztec(Tuminaro et al. (1999)),
three collections of scalable preconditioned solvers; Su-
perLU(Li and Demmel (2003)), MUMPS(Amestoy et al.
(2003)) and UMFPACK(Davis (2003)), three general-

purpose sparse direct solver libraries; and of course LA-
PACK(Anderson et al. (1995)), a large set of dense solvers.
Many other solver libraries are available. A comprehensive
survey can be found in Dongarra and Eijkhout (2004).

In this article we focus on two aspects of integrating
solver libraries into an application. First is the develop-
ment of an abstract application-specific interface to solvers,
which we call the solver API. This API is not dependent
on any specific solver, but instead describes the applica-
tion’s view of how information will be exchanged with the
solver, and what functionality is required from the solver.

Copyright c© 200x Inderscience Enterprises Ltd.

1

The second focus of this article is a description of how to
use Trilinos, Heroux (2004c), a collection of solvers with
particular capabilities for multi-DOF problems, to provide
sophisticated segregated preconditioned iterative methods.
In particular, we show how advanced features of the Trili-
nos package Epetra, Heroux (2004b)–which supports par-
allel construction and use of distributed matrices, graphs
and vectors–can make implementation of complex multi-
operator preconditioned solvers straight-forward.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses design issues for an application-specific,
solver-generic API, and illustrates such an interface by
example using an interface developed for the inhomoge-
neous fluid modeling code Tramonto, Frink and Salinger
(2000a,b). Section 3 presents some of the important classes
in the Trilinos package Epetra, which supports the con-
struction and use of parallel distributed memory linear
algebra. Section 4 illustrates how specific solvers can be
integrated into the solver API. Finally in Section 5 we sum-
marize our discussion.

2 An Application-Specific, Solver-Generic Interface

Many scientific and engineering applications require the
solution of an implicit system of linear equations. These
applications often utilize third-party solver libraries, espe-
cially in parallel environments, since many good solvers
exist that, even though considered “general-purpose,” are
very effective for specific types of problems. At the same
time, even a single specific application often needs access
to a suite of solvers to effectively address the full range of
its generated problems. These facts make an application-
specific, solver-generic interface attractive.

2.1 Solver API Requirements

In this section, we present and discuss five general top-
ics related to the solver API: (i) a documented abstract
interface, (ii) application-centric naming conventions, (iii)
support for data reuse, (iv) granularity of abstraction and
(v) a default solution capability. In our experience these
topics represent the important issues the solver API must
address.

Documented Abstract Interface In our experience,
many if not most application-solver interfaces are buried
within the application and are typically just lines of code
in a larger function, and difficult to identify and isolate
conceptually. One important advantage of a solver API is
the ability to clearly document how a solver is used by the
application. This improves code readability and maintain-
ability, and enables easy insertion of new solver technology
in the future with little or no modification to the applica-
tion.

Another advantage of a documented solver API is the
opportunity for solver developers to independently provide

new solver capabilities that are readily used within the
application. This loose coupling of the application and
solver increases flexibility for all developers.

Function and Argument Naming Conventions An-
other important opportunity in providing an application-
specific solver API is the ability to write function and argu-
ment names in terms that the application developer under-
stands, without learning the language of solver developers.
Not only does this convention improve the usability and
maintainability of the API, but working solver adapters
(solvers that are accessible through the API) also illus-
trate how application data is translated into data needed
by the solver, making easier the integration of new solvers
in the future. Furthermore, the exercise of developing the
function and argument names for the solver API highlights
the important application features that can be exploited by
the solver.

Application Data Reuse Many applications solve a
family of related systems of equations. For example, a non-
linear finite-element application typically generates a se-
quence of sparse linear systems whose matrices have a com-
mon sparsity pattern. In this case, structure-only data and
computations, such as communication patterns for sparse
matrix-vector multiplication in an iterative solver, can be
computed once and reused by subsequent solves. In other
situations, some matrix coefficient values may not change
from one solve to another. Not all solvers are prepared
to take advantage of such reuse, however the solver API
should expose these opportunities since they represent a
significant opportunity for reducing computational costs.

Granularity of Abstraction One danger of fine-grain
abstraction is the runtime overhead introduced by virtual
function calls and, even more importantly, the potential
loss of compiler optimizations. This is not an issue for
most functions in the solver API since they are either
called infrequently or perform a large task when called.
Initialization and solve functions are examples, respec-
tively. However, functions that support the insertion of
matrix coefficients must be carefully designed in order to
avoid catastrophic runtime overheads, an issue that is well-
documented (for example in Driesen and Holzle (1996)). If
the solver API contains a function to insert or sum into a
single matrix coefficient, then great care must be taken
to design how matrix values are collected and assimilated.
There is a variety of techniques to address this, includ-
ing use of templates and the C++ Standard Template li-
brary Stroustrup (2000), or commonly used aggregation
techniques to increase granularity.

Default General Solver The primary purpose of the
solver API is to support multiple special-purpose solver
capabilities. At the same time, there may be problems
that do not need or have a special-purpose solver. For ex-
ample, small problems or those for which no sophisticated

2

approach exists fall into this category. Furthermore, even
when using a special-purpose solver is desired, problems of
convergence or correctness of formulation may dictate that
an alternative solver be available to the application. All of
these issues illustrate the need for a default general solver.
This solver is available via the solver API and constructs
the linear system as a global problem with the matrix A
stored as a single matrix object. In addition, the default
general solver provides the ability to use direct methods
for smaller problems, and can make debugging easier.

2.2 A Sample Solver API

To illustrate the ideas mentioned above, we introduce
a specific solver API, written in C++, developed for
Tramonto. Tramonto (see Frink (2006); Heroux et al.
(2006a,b)) is a molecular density functional theories appli-
cation used to solve a variety of inhomogeneous fluid prob-
lems. The Tramonto solver API is a good example because
it exhibits all of the attributes of interest for this article
and is used in production mode by Tramonto, providing
Trilinos and other solvers to Tramonto users. Tramonto
solves its problems over a one, two or three dimensional
mesh with tens to hundreds of DOFs per mesh node. All
DOFs are solved fully-coupled within a nonlinear iteration
loop. However, the characteristics of each DOF can vary
greatly depending on a variety of factors.

The fundamental solver API, referred to as the Ba-
sic Linear Problem Manager, with a class name of
BasicLinProbMgr, provides both the basic solver API and
concrete solution capabilities that are general purpose.
The BasicLinProbMgr class functions are fully operational
but are declared virtual so that they can be reimplemented
by a derived class. We discuss one derived class: the
Hard Sphere Linear Problem Manager, with the class name
HardSphereLinProbMgr. HardSphereLinProbMgr inherits
from BasicLinProbMgr, providing a reimplementation of
some functions, but reusing many of the more general-
purpose functions. HardSphereLinProbMgr is a special-
ized solver that takes advantage of certain structure and
numerical properties in order to produce a much more ro-
bust and efficient solver (see Heroux et al. (2006a,b)).

The Basic Linear Problem Manager has seven types of
functions:

1. Construction/Destruction (Table 1): Simple functions
to create and delete an instance of BasicLinProbMgr.
As the single constructor argument might sug-
gest, Tramonto uses a single-program-multiple-data
(SPMD) parallel model, implemented using the Mes-
sage Passing Interface (MPI) Snir et al. (1998). Func-
tions are:

2. Block Structure setup (Table 2): Information about
number of DOFs per node, which nodes are owned
by the calling processor, and additionally which are
“ghost” nodes. The specific functions are:

3. Insertion functions (Table 3): Matrix and vector val-
ues that the application computes and submits for

BasicLinProbMgr(MPI Comm comm)
This MPI communicator will be used by the solver
manager and libraries.
virtual BasicLinProbMgr()
Simple destructor.

Table 1: Constructor/Destructor

setNumDofPerNode(int numDofPerNode)
Number of degrees of freedom per node.
setOwnedNodeList(int numOwnedNodes, int *
ownedNodeList)
List of Node IDs owned by the calling processor.
setBoxNodeList(int numBoxNodes, int *
boxNodeList)
Tramonto terminology for the nodes needed for
stencil operations, etc., includes owned nodes and
“ghost” nodes.
virtual finalizeBlockStructure()
Signals to BasicLinProbMgr that submission of
structural information is done and that any re-
quired preprocessing can be completed. This func-
tion is virtual because derived classes such as
HardSphereLinProbMgr will want to perform the
structure setup differently.

Table 2: Block Structure Setup

inserting or summing into the global linear system.
The term PhysicsID, used as a root word in several
arguments lists, is a Tramonto term for the labels
that identify each DOF in the model. All of these
functions are virtual because derived classes such
as HardSphereLinProbMgr will want to perform the
value setup differently. Also, note that there are sev-
eral virtual insertMatrixValue() functions, each
supporting a particular convenient way for Tramonto
to insert matrix coefficients.

4. Linear solver functions (Table 4): There are three
functions needed to solve the linear problem, shown
in Table 4.

5. Nonlinear solver support functions (Table 5): Non-
linearities are very difficult to solve for some classes
of Tramonto problems. To address this, continuation
methods are used from the Trilinos LOCA package
(see Salinger et al. (2001)). In addition to the linear
solver functions, the following functions are needed
by LOCA to abstractly support continuation. Note
that Tramonto stores vector data types as an array of
pointers, e.g., double **b, where b[i] is the array of
right-hand-side values associated with the i’th DOF.

6. Extraction functions (Table 6): Since the control of
linear problem construction is taken over by the prob-
lem manager, the application needs functions to access
coefficient information, primarily for diagnostics and
the ability to modify existing values.

3

virtual initializeProblemValues()
Function that must be called each time prior to
starting matrix, lhs and rhs value insertion (usu-
ally once per nonlinear iteration). This function
indicates that non-structural data should be reset.
virtual insertRhsValue(int
ownedPhysicsID, int ownedNode, double
value)
Insert rhs value based on ownedNode and owned-
PhysicsID.
virtual insertMatrixValue (int
ownedPhysicsID, int ownedNode, int
boxPhysicsID, int boxNode, double value)
Insert single matrix coefficient into system.
virtual insertMatrixValues (int
ownedPhysicsID, int ownedNode, int
boxPhysicsID, int *boxNodeList, double
*values, int numEntries)
Insert matrix coefficients for a given row, where
columns are all from the same physics type at dif-
ferent nodes.
virtual insertMatrixValues (int
ownedPhysicsID, int ownedNode, int
*boxPhysicsIDList, int boxNode, double
*values, int numEntries)
Insert matrix coefficients for a given row, where
columns are from different physics types at the
same node.
virtual finalizeProblemValues()
Signals to BasicLinProbMgr that submission of
value information is done and that any required
preprocessing can be completed.

Table 3: Insertion Functions

virtual setupSolver(int *solverOptions,
double *solverParams)
Pass options and parameters to the solver setup.
This function does any necessary preprocessing to
make the solver more efficient.
virtual solve()
Actual solver invocation. Requires no parameters.
virtual getSolverStatus(double
*solverStatus)
After the solve() function has completed, this
function allows the application to get more detailed
information about the success of the solution pro-
cess.

Table 4: Linear Solver Functions

7. Support functions (Table 7): These functions help for
debugging and for external analysis. The first func-
tion writes the matrix out to an ASCII text file in
the Matrix-Market format, a file with three columns
where each line of the file contains the row, column
and value for a matrix coefficient, R. Pozo (2006).
The right-hand-side and left-hand-side are written out

virtual setRhs(double **b)
Set all right hand side vectors at once.
virtual setLhs(double **x)
Set all left hand side vectors at once.
virtual applyMatrix(const double **x,
double **b)
Apply global linear operator, b = Ax.
virtual importR2C(const double **xOwned,
double **xBox)
Fill the arrays xBox[i] with xOwned[i] for all
physics types i, i.e., fill in ghost values on each
processor.

Table 5: Nonlinear Solver Support Functions

virtual double getMatrixValue (int
ownedPhysicsID, int ownedNode, int
boxPhysicsID, int boxNode)
Get a matrix entry.
virtual getRhs(double **b)
Get all right hand side vectors at once.
virtual getLhs(double **x)
Get all left hand side vectors at once.

Table 6: Extraction Functions

as an ASCII file of floating point numbers, compatible
with MATLAB, The Mathworks (2006).

virtual writeMatrix(const char *filename,
const char *matrixName, const char
*matrixDescription
Write matrix to specified filename using Matrix
Market (i,j,value) format.
virtual writeRhs(const char *filename)
Write right hand side to specified filename in
Matlab-compatible format.
virtual writeLhs(const char *filename)
Write left hand side to specified filename in
Matlab-compatible format.

Table 7: Support Functions

2.3 Special-purpose Solver API: Hard Spheres

The solver API discussed in Section 2.2 is specific to Tra-
monto, but general purpose from the solver perspective.
In our work with Tramonto, we have developed very spe-
cific algorithms for certain classes of problems. One such
class of problems is hard spheres. Hard sphere models are
used to predict the density of atomic fluids near surfaces.
Accurate density profiles require a nonlocal density model
such that the density at each node near a surface is a func-
tion of nearby densities. Nonlocal density variables are
auxiliary to the problem, but are retained for easier con-
struction of the coefficient matrix of the global problem.
For a given problem with N grid points, a sample one di-
mensional hard sphere problem will have 11N unknowns,

4

i.e., 11 DOFs per node. However, 10 of these DOFs are
associated with nonlocal densities while only one is associ-
ated with the primitive density at each node. Furthermore,
the relationship between the nonlocal densities themselves
is very simple, if properly ordered.

The block structure of a hard sphere matrix after proper
reordering is:

A =
(

A11 A12

A21 A22

)
, (1)

where

A11 =
(

I 0
X I

)
. (2)

In our example, A11 is of dimension 10N and A22 of di-
mension N . Immediately we see that

A−1
11 =

(
I 0
−X I

)
. (3)

Thus, the Schur complement S of A with respect to A22

is S = A22−A21A
−1
11 A12 and is easily computed since A−1

11

is readily constructed. Therefore, by proper ordering, we
can efficiently and directly eliminate 10N variables, leaving
only the Schur complement system to be solved by some
other implicit solver.

Without going into further details of the algorithms
used to solve hard sphere problems, which can be learned
from Heroux et al. (2006a,b), we can immediately see that
any solver wishing to take advantage of the special behav-
ior of nonlocal densities must first learn, from the applica-
tion, which DOFs are associated with the nonlocal densi-
ties. This information must be given prior to submission
of matrix entries and is part of the Type 2 functions in
Section 2.2.

One of the key design features of object-oriented pro-
gramming is inheritance, the ability of one class to
inherit the functionality and data members from an-
other. We use inheritance in the solver APIs as follows:
BasicLinProbMgr provides an implementation of all func-
tions described in Section 2.2. HardSphereLinProbMgr in-
herits from BasicLinProbMgr and therefore automatically
inherits all of the functions and data of BasicLinProbMgr.
In addition, HardSphereLinProbMgr defines several new
functions that allow the application to provide the
special information needed to identify nonlocal den-
sity DOFs. Furthermore, HardSphereLinProbMgr rede-
fines several functions that were previously defined by
BasicLinProbMgr in order to take advantage of the special
structure found in hard sphere problems.

Specifically, HardSphereLinProbMgr provides the
three Type 2 functions found in Table 8. In
addition, the HardSphereLinProbMgr class rede-
fines the functions: finalizeBlockStructure(),
initializeProblemValues(), insertMatrixValue(),
finalizeProblemValues(), setupSolver(), solve(),
writeMatrix() and applyMatrix(). These functions
have the same argument list as in BasicLinProbMgr but
now function differently to take advantage of the special
structure found in hard sphere problems.

setIndNonLocalDensityIDs(int
numIndNonLocalDensity, int *physicsIDs)
Define independent non-local density (upper block of
A11).
setDepNonLocalDensityIDs(int
numDepNonLocalDensity, int *physicsIDs)
Define dependent non-local density (lower block of
A11).
setPrimitiveDensityIDs(int
numPrimitiveDensity, int *physicsIDs)
Define primitive density (A22 block).

Table 8: HardSphereLinProbMgr-specific Functions

It is worth noting that only a few lines of applica-
tion code differ between using the BasicLinProbMgr and
HardSphereLinProbMgr. Specifically these differences oc-
cur when the HardSphereLinProbMgr constructor is called
and when the three special functions are called to define
the nonlocal and primitive densities. All of these functions
are called once in the very beginning of the application
run. After these setup steps, the application will use a
BasicLinProbMgr and HardSphereLinProbMgr identically
through the same function calls.

2.4 Further Details of the Tramonto Interface

Tramonto is written in C. As a result, although the API
we described is object-oriented and written in C++, we
provide a simple wrapper layer to minimize the impact on
Tramonto. Since C does not support object-orientation
directly, we create a set of functions as illustrated here:

void * dft_basic_lin_prob_mgr_create(MPI_Comm comm) {
dft_BasicLinProbMgr * linprobmgr_ =

new dft_BasicLinProbMgr(comm);
return((void *)linprobmgr_);

}

void dft_linprobmgr_destruct(void * linprobmgr) {
dft_BasicLinProbMgr * linprobmgr_ =

(dft_BasicLinProbMgr *) linprobmgr;
delete linprobmgr_;

}

int dft_linprobmgr_setnumdofpernode
(void * linprobmgr, int numdofpernode) {

dft_BasicLinProbMgr * linprobmgr_ =
(dft_BasicLinProbMgr *) linprobmgr;

return(linprobmgr_->setNumDofPerNode(numdofpernode));
}

The first function listed above creates a new instance
of the BasicLinProbMgr class. Then the function casts
the pointer to void * and returns it to Tramonto. The
destructor and other functions accept the linprobmgr
pointer as first argument, immediately casting it back to
the correct class type. Using this approach, strong type-
checking is lost for the class instantiation because of the
object cast-to-void-pointer step. However, this approach
allows Tramonto functions to remain as C implementations
and make the use of C++ more transparent. Note that,
other than constructors and destructors, the solver API
functions return integer codes. These codes are used to

5

pass error conditions back to Tramonto. The exact values
returned are documented in the solver API.

Use of the solver API in Tramonto has greatly simplified
both the use of a general solver, which was the only solver
capability originally available in Tramonto, and the intro-
duction of new specialized solvers. Because all solver data
is passed between the application and solver via the solver
API, it is very clear which parts of the application deal with
solver data. Furthermore, introducing a new specialized
solver requires only a few extra lines of code in Tramonto,
needed to (i) instantiate the specialized problem manager
instead of the basic problem manager and (ii) pass any
additional information needed by the specialized problem
manager. All other solver API calls remain unchanged.
The following code fragment shows how Tramonto instanti-
ates either a BasicLinProbMgr or HardSphereLinProbMgr
instance:

if (Type_func != HS) {
/* Build arrays indnonlocaleq, depnonlocaleq, densityeq arrays

containing PhysicIDs of the independent and dependent
nonlocal density, and primitive density DOFs, respectively.
These are simply loops executed one time. Omitted here for
brevity. */

/* Create an instance of a Hard Sphere Linear Problem manager */
LinProbMgr_manager = dft_hardsphere_lin_prob_mgr_create

(MPI_COMM_WORLD);
dft_hardsphere_lin_prob_mgr_setindnonlocalequationids

(LinProbMgr_manager, Nindnonlocal, indnonlocaleq);
dft_hardsphere_lin_prob_mgr_setdepnonlocalequationids

(LinProbMgr_manager, Ndepnonlocal, depnonlocaleq);
dft_hardsphere_lin_prob_mgr_setdensityequationids

(LinProbMgr_manager, Ndensity, densityeq);
}
else { /* Default is basic manager */

LinProbMgr_manager = dft_basic_lin_prob_mgr_create(MPI_COMM_WORLD);
}
/* This call and all remaining solver API calls are identical

regardless of which problem manager was instantiated. */
dft_linprobmgr_setnumdofpernode(LinProbMgr_manager, numPhysicsIDs);

After our initial development of a specialized Hard
Sphere Linear Problem Manager, we continued algorithms
research and development for Tramonto and developed new
specialized problem managers. Without going into detail,
we next developed a specialized manager for polymer chain
problems. These problem have a very complex block struc-
ture with tens to hundreds of DOFs per node. The details
can be found in Heroux et al. (2006a,b). What is worth
noting here is that introducing the new specialized prob-
lem manager into Tramonto required on the following ad-
ditional code fragment and no other changes, inserted just
before the ”else” statement in the previous code fragment:

else if (Type_poly == CMS) {

/* Build arrays geq, ginveq, cmseq, and densityeq arrays
containing PhysicIDs of the "G", "G inverse", "CMS field" and
primitive density DOFs, respectively.
These are simply loops executed one time. Omitted here for
brevity. */

/* Create an instance of a Polymer Linear Problem manager */
LinProbMgr_manager = dft_poly_lin_prob_mgr_create(MPI_COMM_WORLD);
/* Define DOF information needed by this manager */
dft_poly_lin_prob_mgr_setgequationids

(LinProbMgr_manager, Ng, geq);
dft_poly_lin_prob_mgr_setginvequationids

(LinProbMgr_manager, Nginv, ginveq);
dft_poly_lin_prob_mgr_setcmsequationids

(LinProbMgr_manager, Ncms, cmseq);

dft_poly_lin_prob_mgr_setdensityequationids
(LinProbMgr_manager, Ndensity, densityeq);

}

2.5 Solver APIs for Other Applications

Although the solver API discussed in Sections 2.2 and 2.3 is
very specifically written for Tramonto, it can be easily un-
derstood what would differ when developing a solver API
for another application. We have used this same basic ap-
proach for EMU Silling (2006), a Fortran 95 peridynamics
modeling code used to predict the deformation and failure
of bodies and structures and dynamic loading. The EMU
solver API is remarkably similar to Tramonto’s. The basic
seven types of functions are very similar, although EMU
does not presently need continuation methods or the cor-
responding Type 5 functions. The Type 2 functions are
essentially identical. Type 3 functions are different be-
cause of how EMU generates its nonzero coefficients, but
the differences are only in argument names and organiza-
tion of the arrays. Type 4 functions, related to configuring
and calling the solver are quite similar. Type 6 and 7 func-
tions, extraction and write functions, are also very similar.
Of course, in all of these functions the terminology changes
to match that of EMU.

3 Epetra Concepts and AztecOO

Prior to discussing specific solvers that implement the
solver API of Section 2, we must first discuss some features
of the Trilinos package Epetra (Heroux (2004b)). Epetra
is a collection of linear algebra classes that support the
construction and use of vectors, multivectors, graphs, ma-
trices and linear operators. Epetra is intended for parallel,
distributed memory architectures and supports the con-
struction of distributed memory objects in parallel with
minimal inconvenience for the user, by which we mean
that Epetra insolates the user from as many details of
parallel distributed memory computations as possible with
the constraint that performance not be greatly impacted.
Furthermore, Epetra has a very flexible data distribution
capability that supports placement of vector, graph and
matrix entries anywhere on the parallel machine. This ca-
pability is especially useful in the context of multi-physics
applications.

In this section we proceed with a bottom-up ap-
proach, introducing in order Epetra Comm, Epetra Map,
Epetra Vector, Epetra MultiVector, Epetra CrsGraph,
Epetra CrsMatrix, Epetra RowMatrix and finally
Epetra Operator. We also mention AztecOO, since its
use illustrates the role of the implicit linear solver.

3.1 Epetra Comm

Epetra does not directly depend on the MPI parallel pro-
gramming model a priori. Instead it uses an abstract
class called Epetra Comm to encapsulate parallel machine
details. Epetra SerialComm and Epetra MpiComm inherit

6

from the base Epetra Comm class and provide serial and
MPI implementations of the Epetra Comm interface, re-
spectively. An Epetra Comm instance is needed to cre-
ate most other Epetra objects and the functions found in
Epetra Comm are very similar to MPI functions. Epetra is
strongly a single-program-multiple-data (SPMD) parallel
programming model. Epetra Comm reflects this fact.

3.2 Epetra Map

The Epetra Map class encodes information about the lay-
out of linear algebra objects on the parallel machine. The
primary content of an Epetra Map on each processor is a
list of global IDs (signed integers called GIDs) that are
in some way managed by the processor. The standard
Epetra Map of 100 GIDs from 0 to 99 on three processors
would put GIDs 0 through 33 on PE 0, 34 through 66 on
PE 1, and 67 through 99 on PE 3. This Epetra Map would
be constructed with the following C++ statement, run as
part of a three-processor MPI job:

Epetra_MpiComm comm(MPI_COMM_WORLD);
Epetra_Map map(100, 0, comm);

Beyond this simple use case, Epetra Maps can be much
more complex. In particular, the list of GIDs assigned to
each processor does not need to be contiguous or start at
zero, nor do GIDs need to be uniquely owned. Both of
these features are important for multi-physics problems.
For future reference, we refer to an Epetra Map whose
GIDs appear only once in the map, i.e., are not repeated
anywhere on any processor, as 1-to-1 maps.

3.3 Epetra Vector

The Epetra Vector class supports the construction and
use of distributed dense vectors. An Epetra Vector is
constructed by using an existing Epetra Map argument:

Epetra_MpiComm comm(MPI_COMM_WORLD);
Epetra_Map map(100, 0, comm);
Epetra_Vector x(map);

The Epetra Vector constructed above will have the
same size on each processor as the Epetra Map object
used to construct it. Furthermore, the GIDs in the
Epetra Map are associated with the corresponding entries
of the Epetra Vector.

3.4 Epetra MultiVector

The Epetra MultiVector class is very similar to the
Epetra Vector and supports the construction and use of
a collection of distributed dense vectors all with the same
length. An Epetra MultiVector is constructed by using
an existing Epetra Map argument and an integer declaring
how many vectors are part of the multivector:

Epetra_MpiComm comm(MPI_COMM_WORLD);
Epetra_Map map(100, 0, comm);
Epetra_Vector x(map, 5);

The Epetra MultiVector constructed above will have
the same size on each processor as the Epetra Map object
used to construct it and contain 5 Epetra Vectors. Fur-
thermore, the GIDs in the Epetra Map are associated with
the corresponding rows of the Epetra MultiVector.

3.5 Epetra CrsGraph

The Epetra CrsGraph class supports the construction of
the nonzero pattern or “skeleton” of one or more sparse
matrices. The “Crs” signifies a compressed row storage
bias such that entries in the graph are stored contigu-
ously by row. Of course, the transpose is implicitly col-
umn oriented, so it is possible to support column oriented
operations with the same class. The importance of the
Epetra CrsGraph class is that it supports the one-time
construction of structural information that can used across
multiple Epetra matrices or across multiple uses of the
same Epetra matrix where the values change from use to
use. Both situations are common and important.

A Epetra CrsGraph object has four Epetra Map objects
associated with it:

rowMap On each processor, the GIDs of the rows that
will be managed at least in part by the processor. A
rowMap is typically 1-to-1, meaning that GIDs appear
only once in the map.

colMap On each processor, the GIDs of the columns that
will be managed at least in part by the processor. A
colMap is typically not 1-to-1 when constructed on
more than one processor.

domainMap On each processor, the distribution of
Epetra Vector and Epetra MultiVector objects
that will be used as domain vectors for matrices built
using this Epetra CrsGraph object. Note that this
Epetra Map must be 1-to-1. It is also often the same
as the rowMap, but not always.

rangeMap On each processor, the distribution of
Epetra Vector and Epetra MultiVector objects
that will be used as range vectors for matrices built
using this Epetra CrsGraph object. Note that this
Epetra Map must be 1-to-1. It is also often the same
as the rowMap and domainMap but not always.

3.6 Epetra CrsMatrix

Related to the Epetra CrsGraph is the Epetra CrsMatrix.
This class supports the construction of sparse matrices
with a row-oriented bias such that matrix entries are stored
contiguously by row. Epetra CrsMatrix objects can be
constructed by passing in an existing Epetra CrsGraph
object, and then filled against the pre-determined graph
structure. Or the Epetra CrsGraph can be implicitly con-
structed “on-the-fly” as part of the matrix value insertion
process. An Epetra CrsMatrix object has the same four
maps as an Epetra CrsGraph, with the same meaning.
Continuing to elaborate on the concepts of the four maps,

7

let us consider the following 8-by-8 matrix:

A =

8 −3 −2 −1 0 0 0 0
−4 9 −4 −3 0 0 0 0
−2 −3 8 −3 −2 −1 0 0
−2 −3 −4 9 −4 −3 0 0

0 0 −2 −3 8 −3 −2 −1
0 0 −2 −3 −4 9 −4 −3
0 0 0 0 −2 −3 8 −3
0 0 0 0 −2 −3 −4 9

. (4)

Standard Matrix and Vector Distribution A stan-
dard distribution of this matrix on two processors (2 PEs)
would give all entries for the first four rows to PE 0 and
all entries for the last four rows to PE 1. In the stan-
dard case, we would also partition any vectors used with
this matrix, e.g., for computing y = Ax, using rowMap
as the rangeMap (the map for y) and as the domainMap
(the map for x). Thus, rowMap, colMap, domainMap and
rangeMap would be:

PE 0 PE 1
rowMap {0, 1, 2, 3} {4, 5, 6, 7}
colMap {0, 1, 2, 3, 4, 5} {4, 5, 6, 7, 2, 3}

domainMap {0, 1, 2, 3} {4, 5, 6, 7}
rangeMap {0, 1, 2, 3} {4, 5, 6, 7}

A pseudo-code fragment to construct this matrix with
the standard distribution is as follows:

Epetra_MpiComm comm(MPI_COMM_WORLD);
if (comm.MyPID()==0)

rowMapGids[] = {0, 1, 2, 3};
else

rowMapGids[] = {4, 5, 6, 7};

Epetra_Map map(-1, rowMapGids, 0, comm);

Epetra_CrsMatrix A(Copy, map, 0);
for (int i=0; i<map.NumMyElements(); i++)

// Insert values/indices for a row
// (details omitted)
A.InsertGlobalValues(rowMapGids[i], ...)

// Signal completion of Insert process.
A.FillComplete(); // Matrix now ready to use.

Note that in the above code fragment, when
A.FillComplete() is executed, colMap is implicitly con-
structed using the set of column IDs submitted, and
domainMap and rangeMap are implicitly set equal to
rowMap.

Now suppose that we happen to want a different layout
for the domain and range vectors and define them to be:

PE 0 PE 1
domainMap {0, 2, 4, 6} {1, 3, 5, 7}
rangeMap {1, 3, 5, 7} {0, 2, 4, 6}

In this case, we replace the call to A.FillComplete()
with A.FillComplete(domainMap, rangeMap). As long
as the domainMap contains a single instance of each
GID in the colMap and rangeMap contain a single
instance of each GID in the rowMap, the call to
A.FillComplete(domainMap, rangeMap) will construct a
communication pattern to perform parallel matrix compu-
tations involving A.

Block Matrix and Vector Distribution The matrix
A in Equation 4 was designed to mimic a 4-node, 2-DOF
problem, as indicated by the partitioning. The ordering
of A in Equation 4 is considered node-first, i.e., all equa-
tions associated with a node are listed first. An alternative
ordering, more amenable to segregated preconditioning is
to order equations DOF-first, followed by partitioning the
DOFs into separate matrices. In this case the matrix is
effectively permuted to:

Ã =

8 −2 0 0 −3 −1 0 0
−2 8 −2 0 −3 −3 −1 0

0 −2 8 −2 0 −3 −3 −1
0 0 −2 8 0 0 −3 −3

−4 −4 0 0 9 −3 0 0
−2 −4 −4 0 −3 9 −3 0

0 −2 −4 −4 0 −3 9 −3
0 0 −2 −4 0 0 −3 9

. (5)

Keeping the global IDs the same as in Equation 4, a
pseudo-code fragment to construct this matrix collected
in four submatrices is as follows:

Epetra_MpiComm comm(MPI_COMM_WORLD);

if (comm.MyPID()==0) {
rowMapGids1[] = {0, 2};
rowMapGids2[] = {1, 3}; }

else {
rowMapGids1[] = {4, 6};
rowMapGids2[] = {5, 7}; }

Epetra_Map map1(-1, rowMapGids1, 0, comm);
Epetra_Map map2(-1, rowMapGids2, 0, comm);

Epetra_CrsMatrix A11(Copy, map1, 0);
Epetra_CrsMatrix A12(Copy, map1, 0);
Epetra_CrsMatrix A21(Copy, map2, 0);
Epetra_CrsMatrix A22(Copy, map2, 0);
for (int i=0; i<map.NumMyElements(); i++) {

// Insert values/indices for a row
// Put into A11, A12, A21 or A22
// as appropriate (details omitted)
A11.InsertGlobalValues(rowMapGids[i], ...) }

// Signal completion of Insert process.
// Matrices now ready to use.

A11.FillComplete(); // Same as A11.FillComplete(map1,map1)
A12.FillComplete(map2, map1);
A21.FillComplete(map1, map2);
A22.FillComplete(); // Same as A22.FillComplete(map2,map2)

There are several things worth noting in this example.
First, the order in which global matrix entries are pro-
cessed remains the same as in the previous example. This
is important from an application perspective since the ap-
plication needs to be free from details such as how matrix
entries are being stored. Second, the importance of the
generality of the Epetra Map class, specifically the ability
to use arbitrary integer values to define GIDs and the abil-
ity to specify the domain and range map with a different
GID set than the row or column map, becomes apparent
with this example. Finally, the Epetra CrsMatrix object
A11, A12, A21 and A22 are all distributed across the par-
allel machine such that, if the global Epetra CrsMatrix
object A were well-distributed, so are these submatrices.

The ability to create multiple matrices with a com-
mon GID space is very important for ease-of-use in multi-
physics applications, because we need to view the problem

8

from two levels: (i) the global linear system level which is
the full problem we need to solve and (ii) the sub-problem
level where specialized solver algorithms work on smaller
pieces of the problem. The common GID space supports
exchange of problem data back-and-forth between these
two levels using data transfer functions in Epetra that
greatly simplify the programming effort. In the case of
Tramonto and the PolyLinProbMgr class, the precondi-
tioner that is most effective requires the construction of
dozens to hundreds of distributed Epetra CrsMatrix ob-
jects. That these Epetra CrsMatrix objects share a GID
space is very important.

There are many Epetra classes that we do not
discuss here. In particular there are several other
sparse matrix classes that may be more appropriate for
some applications than Epetra CrsMatrix. In partic-
ular, the Epetra_VbrMatrix, Epetra_FECrsMatrix and
Epetra_FEVbrMatrix classes are appropriate in many sit-
uations. For more details about these classes, and Epetra
performance issues in general, please consult the Epetra
Performance Optimization Guide, Heroux (2005).

The remaining two Epetra classes we will discuss here
are Epetra Operator and Epetra RowMatrix. Both of
these classes are pure virtual classes, meaning they have
no functional code.

3.7 Epetra RowMatrix

Epetra RowMatrix is an interface to all Epetra
sparse matrix classes including Epetra CrsMatrix,
Epetra_VbrMatrix, Epetra_FECrsMatrix and
Epetra_FEVbrMatrix. A class that is a user of sparse
matrices, such as a preconditioner class, does not typically
need to know the details of how a sparse matrix is
stored. Instead access is needed to matrix entries in a
reasonably efficient way. Epetra RowMatrix provides this
kind of read-only capability for any class that inherits
its interface. In particular, Epetra RowMatrix provides
a single function that, when called with a specified row
index, must fill arrays with values and indices from that
row of the matrix. All preconditioners in Trilinos are
implemented using this basic concept. Any matrix class
that can provide a row of matrix coefficients on demand
can easily inherit from the Epetra RowMatrix interface.

3.8 Epetra Operator

Epetra Operator is an even simpler interface than
Epetra RowMatrix. It provides an Apply() func-
tion or an ApplyInverse() function, or both, depend-
ing on the concrete class that inherits its interface.
All Epetra distributed matrix classes inherit from the
Epetra Operator interface because Epetra RowMatrix in-
herits from Epetra Operator. Furthermore, many precon-
ditioners in Trilinos inherit from Epetra Operator, e.g.,
the algebraic preconditioners in IFPACK, Heroux and Sala
(2004), and the multi-level preconditioners in ML, Tumi-
naro and Hu (2004). We will revisit Epetra Operator in

Section 4 when we discuss implementing Schur complement
operators.

3.9 AztecOO

The Trilinos package AztecOO, Heroux (2004a), contains
a class of the same name, AztecOO. This class provides ac-
cess to a variety of preconditioners and iterative solvers for
linear systems of the form Ax = b. In addition AztecOO
provides support for using Epetra objects as matrices, lin-
ear operators and vectors to define the linear problem for
AztecOO. The arguments x and b can be Epetra Vector or
Epetra MultiVector objects. The linear operator A can
be an Epetra RowMatrix or simply an Epetra Operator.
Furthermore, AztecOO accepts a user-built preconditioner
as an Epetra Operator. When AztecOO needs to apply A
to a vector, it calls the Apply() function. When it needs to
apply the preconditioner to a vector it calls the ApplyIn-
verse() function. In this way, AztecOO supports the use of
very complex formulations of A and its preconditioners. In
particular, AztecOO can be used to solve Schur complement
systems where A takes the form of S = A22−A21A

−1
11 A12,

as in Section 2.3. S need not be formed, but supplied via
the Apply() function of an Epetra Operator class. Simi-
larly the preconditioner for S can be provided by the Ap-
plyInverse() function of the same Epetra Operator class.

4 Concrete Solver Implementations

In Section 2 we presented the important features of a solver
API and the particular example of Tramonto to illustrate
our ideas. In Section 3 we discussed important Epetra
classes and how these classes can be used to accept ma-
trix coefficients from the application for insertion into a
single global matrix, or separated into several submatrices
as would be needed for some kinds of segregated precon-
ditioners. In this section we discuss the complement to
the solver API: the concrete solver implementations. The
primary purpose of this section is to show how informa-
tion that is passed to the linear problem manager via the
solver API is parsed for use by the solver. Unlike Section
2, where discussion was very application-specific, in this
section data and terminology will be very solver-specific,
using the classes discussed in Section 3.

4.1 The Schur Epetra Operator Class

To drive this discussion, we consider the hard sphere prob-
lem presented in Section 2.3. The solution strategy for this
problem is to solve the Schur complement system, using
GMRES from AztecOO and taking advantage of the fact
that A−1

11 can be explicitly formed. In order to do this, we
first introduce a new class called Schur Epetra Operator.
This class accepts four arguments to its constructor:

A11 An Epetra Operator representing the A11 block of
the matrix in Equation 1. This Epetra Operator
must provide an implementation of both the Apply()

9

and ApplyInverse() functions. Note that the Apply-
Inverse() function will be used most often as part of
applying S = A22 − A21A

−1
11 A12. Since A−1

11 can be
explicitly formed, we store A−1

11 which, as indicated
by Equation 3, mean negating the off-diagonal terms.
It is also worth noting that the diagonal entries need
not be kept since they are known to be ones.

A12 An Epetra CrsMatrix containing the coefficients of
the A12 block of Equation 1.

A21 An Epetra CrsMatrix containing the coefficients of
the A21 block of Equation 1.

A22 An Epetra Operator representing the A22 block of
the matrix in Equation 1. This Epetra Operator
must provide an implementation of both the Apply()
and ApplyInverse() functions. However, the Apply-
Inverse() function need not be exact. It will be used
by Schur Epetra Operator as part or all of the pre-
conditioner for the Schur complement system. In this
particular example, ApplyInverse() will apply the in-
verse of the diagonal of A22.

Since Schur Epetra Operator is an Epetra Operator,
and will be used with AztecOO to solve the Schur com-
plement system, Schur Epetra Operator must provide an
implementation of both the Apply() and ApplyInverse()
functions. The Apply() function must supply the ac-
tion of S = A22 − A21A

−1
11 A12 on an Epetra Vector or

Epetra MultiVector. The ApplyInverse() function will
be used to supply the preconditioner, so need only be an
approximation to S−1. In our case we approximate S−1 by
first assuming S ≈ A22 and then using Jacobi (diagonal)
scaling of A22. Thus, S−1 ≈ (diag(A22))−1.

4.2 Helpful Utilities

Writing complex linear operators such as
Schur Epetra Operator requires handling many data
objects. Most of these object must persist outside of
the immediate scope in which they were created. To
facilitate managing creation, but especially deletion of
these objects, we use the concept of a smart pointer. The
Boost C++ Libraries (see Boost.org (2006)) provide such
a class. However, the Trilinos package Teuchos, Thorn-
quist et al. (2004), provides a Boost-compatible smart
pointer that has a few additional useful features. The
Teuchos::RefCountPtr class supports the declaration of
a templated-type pointer that manage reference counts
and deletion of objects. Of course, languages such as
Java and Python automatically handle garbage collection
as part of the language, but C++, C and Fortran do
not. A Teuchos::RefCountPtr instance can be a simple
attribute of a C++ class and constructed with a null
pointer, then later assigned a non-trivial pointer. Thus,
the line:

Teuchos::RefCountPtr<Epetra_CrsMatrix> A11invMatrix_;

can appear in the class declaration and the following
line:

A11invMatrix_ = Teuchos::rcp(new Epetra_CrsMatrix(Copy,
OperatorRangeMap(), 0));

can appear in the class implementation. In this way,
A11invMatrix_ can persist, be shallow-copied, and be au-
tomatically deleted, without concerns for memory leaks
or access deleted memory. In addition the -> operator is
implemented by Teuchos::RefCountPtr such that expres-
sions like:

A11invMatrix_->InsertGlobalValues(row, 1, &value, &col);

work the same as they would when working with a raw
Epetra CrsMatrix pointer.

Another useful utility in Teuchos is a set of macros that
provide tests for exceptions. In particular, the macro

TEST_FOR_EXCEPT(bool arg);

is a light-weight means of testing pre and post conditions
for functions. For example in the Apply() function of the
Schur Epetra Operator the following preconditions must
be true:

int Schur_Epetra_Operator::Apply(
const Epetra_MultiVector& X,

Epetra_MultiVector& Y) const {
TEST_FOR_EXCEPT(!X.Map().SameAs(OperatorDomainMap()));
TEST_FOR_EXCEPT(!Y.Map().SameAs(OperatorRangeMap()));
TEST_FOR_EXCEPT(Y.NumVectors()!=X.NumVectors());

// Rest of function omitted...
}

Both of the above utilities were used in the implementa-
tion of the Tramonto solver API. In our experience, such
utilities are invaluable for producing high-quality software
in complex environments.

4.3 Implementing the Hard Sphere Linear Prob-
lem Manager

At this point, we finally have all of the neces-
sary elements to discuss the implementation of the
HardSphereLinProbMgr class. Although the level of detail
presented here should suffice for gaining understanding and
using similar techniques for other applications, we omit
some specific information for readability. Readers who are
interested in obtaining the functioning C++ source code
can contact the author directly.

The HardSphereLinProbMgr version of the constructor
and destructor listed in Table 1 will be simple and simi-
lar to BasicLinProbMgr. HardSphereLinProbMgr will in-
herit the BasicLinProbMgr implementation of the first 3
block structure setup functions in Table 2. The functions
found in Table 8, when called by the application, will pro-
vide additional structural information needed to identify
which DOFs belong to which blocks in Equation 1. The
collection of these Type 2 functions provides sufficient in-
formation to form the Epetra Map objects for the rowMap,
domainMap and rangeMap for all four arguments A11,
A12, A21 and A22 needed by Schur Epetra Operator.
The colMap objects will be constructed automatically
by Epetra. These Epetra Maps will be created when
the HardSphereLinProbMgr version of finalizeBlockStruc-
ture() is called.
HardSphereLinProbMgr reimplements all of the matrix

and vector insertion functions in Table 3. Thus, once the

10

Epetra Map objects are constructed, the insertion func-
tions accept matrix and vector values and corresponding
node and physic IDs. Using the MyGID(int GID) func-
tion that is a member function of the Epetra Map class,
it is easy to determine where each matrix value should
be submitted, either to the insertion functions of the
Epetra Operators A11 or A22, or the insertion functions
of the Epetra CrsMatrix objects A12 or A21. This process
will be similar to what was illustrated for the block matrix
in Equation 5 in Section 3.6. Once all values are inserted,
the application will call finalizeProblemValues() which
is also reimplemented by HardSphereLinProbMgr. Calling
this function will prompt the following actions:

1. The finalizeProblemValues() function on
Epetra Operator object A11 will be called, sig-
naling that off-diagonal elements of A11 in Equation 1
(which are the only values kept, as mentioned above)
stored in an Epetra CrsMatrix are completely
entered. Thus, the FillComplete() member func-
tion of Epetra CrsMatrix will be called and the
Epetra Operator A11 completely constructed.

2. The finalizeProblemValues() function on
Epetra Operator object A22 will be called, sig-
naling that all entries of A22 in Equation 1 are
entered. A22 is stored in an Epetra CrsMatrix. In
addition the reciprocal of diag(A22) is kept for use as
part of the preconditioner for S.

3. The FillComplete() member function of
Epetra CrsMatrix will be called for both
Epetra CrsMatrix objects A12 and A21.

4. The constructor for Schur Epetra Operator will be
called, passing A11, A12, A21 and A22 in as argu-
ments.

After these steps are complete, we can create an
AztecOO object and solve the Schur complement sys-
tem using our Schur Epetra Operator object to pro-
vide both the Apply() and ApplyInverse() functions.
HardSphereLinProbMgr reimplements all the linear solver
functions in Table 4 to accomplish this.

Finally, the HardSphereLinProbMgr class reimplements
all functions in Tables 5, 6 and 7. Although not dis-
cussed here, it is possible, since these functions are typ-
ically called infrequently and not critical to overall ap-
plication performance, to carefully implement them in
BasicLinProbMgr and reuse the BasicLinProbMgr im-
plementation in HardSphereLinProbMgr by providing an
auxiliary permutation function that maps GIDs back and
forth between the BasicLinProbMgr ordering and the
HardSphereLinProbMgr ordering.

4.4 Packaging the Solver API

One final topic of interest is how to integrate the solver API
code into the application. Although it is certainly possible
to build the solver API using the application’s own build

environment, this can require a lot of re-design for the ap-
plication, especially if it is a Fortran application such as
EMU. Instead we have found that using the Trilinos tem-
plate package (called NewPackage) is an excellent vehicle
for encapsulating the solver API code, making it compat-
ible with the Trilinos build system but still independent
of Trilinos. Trilinos supports the dynamic registration of
independent packages with the Trilinos build process, so
the solver API can be built as part of building Trilinos
or independently. This approach minimizes the number of
required changes to the application build environment.

5 Conclusions

Scientific and engineering applications often require simul-
taneous solution of multiple degrees of freedom. At the
same time, an increasing number of sophisticated precon-
ditioners require a “segregated” view of the linear sys-
tem. In this paper we have described how to develop
an application-specific, solver-generic interface to facili-
tate the design and development of sophisticated solvers
for multi-DOF applications. In particular, we described
a working solver API for the molecular density functional
theories code Tramonto. We then presented important fea-
tures of Trilinos, especially the Epetra, AztecOO and Teu-
chos packages that support construction and use of paral-
lel distributed linear algebra objects for efficient segregated
solvers, especially Schur complement approaches. Next, we
introduced the Schur Epetra Operator class that builds
on top of the Epetra Operator class and provides an effi-
cient parallel distributed memory Schur complement solver
for hard sphere problems. Finally, we sketched out how
the HardSphereLinProbMgr can be implemented using the
BasicLinProbMgr interface and the tools in Trilinos.

The general approach discussed here, although spe-
cific to Tramonto, should illustrate a potential approach
for fully-coupled computational mechanics application,
tightly-coupled multi-scale applications and other problem
areas where tight interaction exists between disparate de-
grees of freedom. In particular, this approach opens up the
possibility of using the increasingly robust preconditioners
from multi-level algorithms research and other low com-
plexity “fast” solvers that, although not appropriate for
the fully coupled systems of equations presented by these
problem areas, can be applied in combination to subprob-
lems. Work in this area includes, for example, that of Sil-
vester et al. (1999), Kay et al. (2002) and Elman et al.
(2003) in CFD.

We expect that, if application developers adopt solver
APIs similar to those mentioned here, advances in solver
algorithm can be more easily integrated into an applica-
tion. Furthermore, solver developers will be more able to
identify the needs of applications.

ACKNOWLEDGMENT

11

The author thanks the MICS and ASC programs under
the Department of Energy. The author also thanks the
anonymous referees who read the manuscript carefully and
offered excellent suggestions for improvement of the text.

REFERENCES

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y.,
and Koster, J. (2003). MUMPS home page.
http://www.enseeiht.fr/lima/apo/MUMPS.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Don-
garra, J., Croz, J. D., Greenbaum, A., Hammarling, S.,
McKenney, A., Ostrouchov, S., and Sorensen, D. (1995).
LAPACK Users’ Guide. SIAM Pub., Philadelphia, PA,
second edition.

Balay, S., Gropp, W., McInnes, L., and Smith, B. (1997).
Efficient management of parallelism in object oriented
numerical software libraries. In Arge, E., Bruaset,
A. M., and Langtangen, H. P., editors, Modern Soft-
ware Tools in Scientific Computing, pages 163–202.
Birkhauser Press.

Balay, S., Gropp, W., McInnes, L., and Smith, B. (1998a).
PETSc 2.0 users manual. Technical Report ANL-95/11
- Revision 2.0.22, Argonne National Laboratory.

Balay, S., Gropp, W., McInnes, L., and Smith, B. (1998b).
PETSc home page. http://www.mcs.anl.gov/petsc.

Boost.org (2006). Boost C++ libraries.
http://www.boost.org/.

Davis, T. (2003). UMFPACK home page.
http://www.cise.ufl.edu/research/sparse/umfpack.

Dongarra, J. and Eijkhout, V. (2004). Freely
available software for linear algebra on the web.
http://www.netlib.org/utk/people/JackDongarra/la-
sw.html.

Driesen, K. and Holzle, U. (1996). The direct cost of vir-
tual function calls in C++. In OOPSLA ’96: Proceed-
ings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applica-
tions, pages 306–323, New York, NY, USA. ACM Press.

Elman, H., Howle, V. E., Shadid, J. N., and Tuminaro,
R. S. (2003). A parallel block multi-level preconditioner
for the 3d incompressible navier-stokes equations. Jour-
nal of Computational Physics, 187(2):504–523.

Falgout, R. (2006). hypre home page.
http://www.llnl.gov/CASC/linear solvers.

Frink, L. J. (2006). Tramonto home page.
http://software.sandia.gov/tramonto.

Frink, L. J. D. and Salinger, A. G. (2000a). Two- and
three-dimensional nonlocal density functional theory for
inhomogeneous fluids i. algorithms and parallelization.
J. Chem. Phys., 159:407–424.

Frink, L. J. D. and Salinger, A. G. (2000b). Two- and
three-dimensional nonlocal density functional theory for
inhomogeneous fluids ii. solvated polymers as a bench-
mark problem. J. Chem. Phys., 159:425–439.

Heroux, M. A. (2004a). Aztecoo home page.
http://software.sandia.gov/Trilinos/packages/aztecoo.

Heroux, M. A. (2004b). Epetra home page.
http://software.sandia.gov/Trilinos/packages/epetra.

Heroux, M. A. (2004c). Trilinos home page.
http://software.sandia.gov/trilinos.

Heroux, M. A. (2005). Epetra Performance Optimization
Guide. Technical Report SAND2005-1668, Sandia Na-
tional Laboratories.

Heroux, M. A., Frink, L. J., and Salinger, A. G. (2006a).
A Schur Complement Based Approach to Solving Den-
sity Functional Theories for Inhomogeneous Fluids on
Parallel Computers. Technical Report SAND2006–2099,
Sandia National Laboratories.

Heroux, M. A., Frink, L. J. D., and Salinger, A. G.
(2006b). Segregated Schur complement approaches to
solving density functional theories for inhomogeneous
fluids on parallel computers. SIAM J. Sci. Comput. Sub-
mitted.

Heroux, M. A. and Sala, M. (2004). Ifpack home page.
http://software.sandia.gov/Trilinos/packages/ifpack.

Kay, D., Loghin, D., and Wathen, A. (2002). A pre-
conditioner for the steady-state navier-stokes equations.
SIAM J. Sci. Comput.

Li, X. and Demmel, J. (2003). SuperLU home page.
http://crd.lbl.gov/ xiaoye/SuperLU/.

R. Pozo (2006). Matrix Market.
http://math.nist.gov/MatrixMarket/.

Salinger, A. G., Bou-Rabee, N. M., Pawlowski, R. P.,
Wilkes, E. D., Burroughs, E. A., Lehoucq, R. B., and
Romero, L. A. (2001). LOCA: A Library of Continua-
tion Algorithms - Theroy and Implementation Manual.
Albuquerque, New Mexico 87185. SAND 2002-0396.

Silling, S. A. (2006). Emu home page.
http://www.sandia.gov/emu/emu.htm.

Silvester, D., Elman, H., Kay, D., and Wathen, A. (1999).
Efficient preconditioning of the linearized Navier-Stokes
equations. Technical Report 352, Manchester, England.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and
Dongarra, J. (1998). MPI-The Complete Reference, Vol-
ume 1, The MPI core. The MIT Press.

12

Stroustrup, B. (2000). The C++ Programming Language.
Addison-Wesley.

The Mathworks (2006). Matlab documentation homepage.
http://www.mathworks.com.

Thornquist, H. K., Bartlett, R. A., Long, K. R., Her-
oux, M. A., and Sala, M. (2004). Teuchos home page.
http://software.sandia.gov/Trilinos/packages/teuchos.

Tuminaro, R. S., Heroux, M. A., Hutchinson, S. A., and
Shadid, J. N. (1999). Official Aztec User’s Guide, Ver-
sion 2.1. Sandia National Laboratories, Albuquerque,
NM 87185.

Tuminaro, R. S. and Hu, J. (2004). Ml
home page. http://www.cs.sandia.gov/ tumi-
naro/ML Description.html.

13

