Sandia

Exceptional service in the national interest @ National
Laboratories

Resilient Programming Models

Michael A. Heroux

Collaborators: Sandia National Laboratories
James Elliott

Mark Hoemmen
Keita Teranishi

5%, U.S. DEPARTMENT OF y @ 374

VN / VA !)

Q‘k 3 EN ERGY /// v‘ ,Q--ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
= National Nuclear Security Administation Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Our Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

Sandia
I Natonal
Laboratories

Four Resilient Programming Models

= Relaxed Bulk Synchronous (rBSP)
= Skeptical Programming. (SP)

= Local-Failure, Local-Recovery (LFLR)

= Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]

Performance Variability is a >

Resilience Issue

* First impact of unreliable HW?

— Vendor efforts to hide it.
— Slow & correct vs. fast & wrong.
— Variable vs. fast & hot or slow & cool.

* Result;
— Unpredictable timing.
— Non-uniform execution across cores.

* Blocking collectives:
—1. = maxi{ti}

* Also called “Limpware”:
— Haryadi Gunawi, University of Chicago

Sandia
National _
Laboratories

|deal:
equal work +
equal data access =>
equal execution time.
Reality:

= Lots of variation.

= Variations increasing.

— http://www.anl.gov/events/lights-case-limping-hardware-tolerant-systems

rBSP: Reducing synchronization costs e,
“Underlapping” Domain Decomposition

Ichitaro Yamazaki, Sivasankaran Rajamanickam, Erik G. Boman,
Mark Hoemmen, Michael A. Heroux, and Stanimire Tomov. 2014.
Domain decomposition precon ditioners for communication-

avoiding krylov methods on a hybrid CPU/GPU cluster.

In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC '14).
0 | |EEE Press, Piscataway, NJ, USA, 933-944. DOI=10.1109/SC.2014.81
http://dx.doi.org/10.1109/SC.2014.81

(a) Adjacency Graph of Local Submatrix. (b) Local Submatrix

What is Needed to Support Latency ..
Tolerance?

Laboratories

MPI 3 (SPMD):

= Asynchronous global and neighborhood collectives.

= A “relaxed” BSP programming model:

= Start a collective operation (global or neighborhood).
= Do “something useful”.
= Complete the collective.

= The pieces are coming online.
= With new algorithms we can recover some scalability

10

Speed up by reducing latency sensitivity ™

52
48
44
40
36
32

S o8

g,

wn
20

—5— CA-GMRES(5,15,30), 1GPU/MPI ||
.......................... —+~— CA-GMRES(5,15,30), 3GPUs/MPI ||
—H— GMRES(30)

24 36 48 60 72 84 96 108 120
Number of GPUs

Skeptical Programming)

Laboratories
| might not have a reliable digital machine

» Expect rare faulty computations

» Use analysis to derive cheap “detectors” to filter large errors
» Use numerical methods that can absorb bounded error

Algorithm 1: GMRES algorithm GMRES

for/ =1 to do

._ j—1 .
ri=b—Ax [Theoretical Bounds on the \
q, ==r/[[r[l, Arnoldi Process
for 7 =1 to restart do
wo i Aq, ™ Iwoll = Ayl < A2,z
fori—1 to j do = [woll < [[All2 = [|AllF
hij = i " Wiy From isometry of orthogonal projections,
W, 1= Wi — hy 5q,

ond _ hijl < |Allp)

hivig = 1wl

Qi1 = W/hjp .
Find y = min|[Hyy — ||blle],| * h;; form Hessenberg Matrix

Evaluate convergence criteria » Bound only computed once, valid for entire solve
Optionally, compute x; = Q;
end

end

Evaluating the Impact of SDC in Numerical Methods
J. Elliott, M. Hoemmen, F. Mueller, SC’13

What is Needed for)
Skeptical Programming?
= Skepticism.

= Meta-knowledge:
= Algorithms,
= Mathematics,
" Problem domain.

"= Nothing else, at least to get started.

= FEM ideas:

= |nvariant subspaces.
= Conservation principles.
= More generally: pre-conditions, post-conditions, invariants.

13

Enabling Local Recovery from Local @,
Faults

= Current recovery model: [
Local node failure, D T TR L W
global kill/restart. N

0

= Different approach: oel

" App stores key recovery data in persistent {...- S
local (per MPI rank) storage (e.g., buddy;s-
NVRAM),
and registers recovery function.

= Upon rank failure:

= MPI brings in reserve HW, assigns to failed
rank, calls recovery fn.

= App restores failed process state via its
persistent data (& neighbors’?).

= All processes continue.

14

Motivation for LFLR:

= Current practice of Checkpoint/
Restart is global response to single
node (local) failure

= Kill all processes (global terminate), then
restart

= Dependent on Global File system

= SCR (LLNL) is fast, but adheres global
recovery

= Single node failures are predominant
= 85% on LLNL clusters (Moody et al. 2010)
" 60-90% on Jaguar/Titan (ORNL)

= Need for scalable, portable and

application agnostic solution
= Local Failure Local Recovery Model (LFLR)

Sandia
"1 National
Laboratories

SANDIA REPORT

SAND2014-15076
Unlimited Release
Printed June 2014

Report for the ASC CSSE L2 Milestone
(4873) — Demonstration of Local Failure
Local Recovery Resilient Programming
Model

Keita Teranishi and Michasl A. Heroux

Sancia Nationaf Laboaniorios Is & muS-program iabortory managed and oporatid by Sandia Corporation,

Agproved for pUbiic rekass; Ruthar dissamination Unimikd.

() Sancia Nationa Laboratores

15

Every calculation matters

Description FLOPS | Recursive | Solution Error
Residual
Error

All Correct 343M 4.6e-15 1.0e-6
Calcs

lter=2, y[1] +=

1.0 35 343M 6.7e-15 3.7e+3

SpMV incorrect
Ortho subspace

Q[1][11+=1.0 N/C N/A 7.7e-02 5.9e+5
Non-ortho
subspace

Sandia
'I'] National _
Laboratories

Soft Error Resilience

= Small PDE Problem: ILUT/GMRES
= Correct result:35 Iters, 343M FLOPS
= 2 examples of a single bad op.

= Solvers:
= 50-90% of total app operations.
= Soft errors most likely in solver.

= Need new algorithms for soft errors:

= Well-conditioned wrt errors.

= Decay proportional to number of errors.

= Minimal impact when no errors.

 New Programming Model Elements:
« SW-enabled, highly reliable:
« Data storage, paths.
« Compute regions.
» |dea: New algorithms with minimal
usage of high reliability.
« First new algorithm: FT-GMRES.
« Resilient to soft errors.
« Quter solve: Highly Reliable
* Inner solve: “bulk” reliability.
« General approach applies to many
algorithms.

Fault-tolerant linear solvers via selective
reliability,
Patrick G. Bridges, Kurt B. Ferreira,

Michael A. Heroux, Mark Hoemmen E—

arXiv:1206.1390v1 [math.NA] 16

FT-GMRES Algorithm Lk

Input: Linear system Ax = b and initial guess xop
I :=b— Axo, B :=||rol|2, ¢1 := /B
forj=1,2,... until convergence do

Inner solve: Solve for z; in gj = Az;

Vir1 := Az

fori=1,2,...,kdo > Orthogonalize v 1
H(i,]) :== G Vjs1, Vis1 == Vigr — QiH(i,))

end for

Hi+1.7) = [1Viall2
Update rank-revealing decomposition of H(1:/,1:j)

if H(j + 1,) is less than some tolerance then
ey rocovery ststegi “‘ZZ_
Try recovery strategies di

else
Converged; return aftet enu ui uns nerauon
end if
else
Gjs1 = Vjs1 /H(+1,))
end if
yj = argmin |[H(1:j +1,1:/)y — Bes|[2 > GMRES projected problem
Xj =X+ [z1,22,. ..,y > Solve for approximate solution
=== end for -

What is Needed for Selective
Reliability?

= Alot, lot.
= A programming model.

Sandia
’11 National
Laboratories

= Expressing data/code reliability or unreliability.

= Algorithms.
= Basic approaches:
Nest an unreliable algorithm in a reliable version of the same.
Dispatch unreliable task subgraph from reliable graph node.
= |ots of runtime/OS infrastructure.
= Provision of reliable data, paths, execution.
= Portable interfaces to HW solutions.

= Hardware support?

= Special HW components that are
slower and more reliable or

faster and less reliable

18

S=

Q

g3
=%

TASK-CENTRIC/DATAFLOW DESIGN AND
RESILIENCE

Classic HPC Application Architecture i) Moo

Laboratories

o Logically Bulk-Synchronous, SPMD

o Basic Attributes:
o Halo exchange.

o Local compute.
4 o Global collective.
/| Subdomain
/| 1 per MPI process o Halo exchange.

o Strengths:

o Portable to many specific system

architectures. 0 Weaknesses:

o Separation of parallel model

(SPMD) from implementation (e.g., o Not well suited (as-is) to emerging

o Domain scientists write sequential o Unable to exploit functional on-chip
code within a parallel SPMD parallelism.
framework. - _
" o Difficult to tolerate dynamic
o Supports traditional languages)
(Fortran, C). latencies.
o Many more, well known. o Difficult to support task/compute

heterogeneity.

20

Task-centric/Dataflow Application Architecture r) feona

Depehde f_¢les L

o Strengths:

Portable to many specific system
architectures.

Separation of parallel model from
implementation.

Domain scientists write sequential code
within a parallel framework.

Supports traditional languages (Fortran, C).

Similar to SPMD in many ways.

Laboratories

Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

Task: Functionality defined on a patch.

Many tasks on many patches.

Patch
Many per MPI process

o More strengths:

Well suited to emerging manycore
systems.

Can expiloit functional on-chip parallelism.
Can tolerate dynamic latencies.

Can support task/compute heterogeneity.
Resilience can be applied at task level.

21

Resilience & Task-centric/Dataflow @i,
= Relaxed Bulk Synchronous (rBSP)

= Async tasking: Addresses same issues.

= “Porous barriers”:
Tasks contribute portion to global collective, move on.
Come back later to collect global result.

= Skeptical Programming. (SP)
= Skepticism applied at task level.
= Parent task can apply cheap validation test up child’s return.

= Local-Failure, Local-Recovery (LFLR)
= Applied at task level.
= SSD storage available for task-level persistent store.

= Selective (Un)reliability (SU/R)
= Parent task (at some level in the task graph) executes reliably.
= Children are fast, unreliable.
= Parent corrects or regenerates child task if it times out or SDC detected.

- ___
22

Sandia
’11 National
Laboratories

Summary

= Resilience will be an issue, really it will.

= Already is: Performance variability is the result.

= Latency tolerant algorithms are a key.

= LFLR approaches are next step.

= Task-centric/dataflow approaches & resilience: synergistic.

= Big concern:
= Trends in system design: Fewer, more powerful nodes.
= |f node loss is common: Recovery is expensive, hard to do.

23

