
Toward Resilient Algorithms and Applications

Michael A. Heroux, SNL

Collaborator: Mark Hoemmen

SAND Number: 2013-3039C

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

For this Talk: Assumptions about Future Systems

• Resilience will be an issue.
• Engineering resilience into the system will be expensive?

– Development cost.
– Power consumption.
– Performance degradation.

• Possible fault mitigation strategies:
– Retain reliability levels of today’s systems, e.g. SCR.
– Permit faults to percolate up to user level:

• What is the default behavior?
• What are the fault management models?

Reliability: Progress and Regress

We have the privilege of thinking of a computer as a
reliable, digital machine.

- Today’s typical user

3

“. . . I remarked to Dennis [Ritchie] that easily half the
code I was writing in Multics was error recovery code.
He said, ‘We left all that stuff out. If there’s an error,
we have this routine called panic, and when it is
called, the machine crashes, and you holler down the
hall, “Hey, reboot it.” ’ ”
– Tom van Vleck, Multics developer, circa 1973

Progress: Users’ View of the System Now

• “All nodes up and running.”
• Certainly nodes fail, but invisible to user.
• No need for me to be concerned.
• Someone else’s problem.

4

Regress: Users’ View of the System
Future

• Nodes in one of four states.
1.  Dead.
2.  Dying (perhaps producing faulty results).
3.  Reviving.
4.  Running properly:

a)  Fully reliable or…
b)  Maybe still producing an occasional bad result.

5

Fault Terminology

Fault

Soft Hard

Transient Sticky Persistent

Abnormal
operation

Failure

Relative to current
level of abstraction.

A fault happens inside a function.
It may or may not produce correct

output as a result.

A failure is a fault that
"leaks out," so the function

misbehaves from an
outside perspective.

"Soft" faults do not interrupt the
program immediately. User code
can detect them via introspection. "Hard" faults interrupt the program.

The program that suffers them
cannot detect them directly.

Dotted outline:
Beyond our

scope

Key:

Reliability Model

• Can’t reason about code behavior without a model
• Current model: “Fail-stop”

–  System tries to detect all soft faults
–  Turn all detected soft faults into hard faults

• Our basic model: “Sandbox”
–  Isolate unreliable computation in a box
– Reliable code invokes box as a function

• Additional desired features of a model
– Detection: report faults to application
–  Transience: refresh / recompute unreliable data periodically
–  Embed into type system: compiler can help you reason

• Our challenge goal:
•  Turn all detected hard faults into soft faults

Hard Error Futures

• C/R will continue as dominant approach:
– Global state to global file system OK for small systems.
– Large systems: State control will be localized, use SSD.

• Checkpoint-less restart:
– Requires full vertical HW/SW stack co-operation.
– Very challenging.
– Stratified research efforts not effective.

Resilience Trends Today: An X86 Analogy

Global checkpoint restart

• Preserve the illusion:

–  reliable digital machine.
–  CP/R model: Exploit latent properties.

• SCR: Improve performance 50-100%.
• NVRAM, etc.
• More tricks are still possible.
• End game predicted many times.

Resilient applications

•  Expose the reality:

–  Fault-prone analog machine.
–  New fault-aware approaches.

•  New models:
–  Programming, machine, execution.

•  New algorithms:
–  Relaxed BSP.
–  LFLR.
–  Selective reliability.

•  Published June 1980
•  Sequential ISA.
•  Preserved today.
•  Illusion:

–  Out of order exec.
–  Branch prediction.
–  Shadow registers.
–  …

•  Cost: Complexity, energy.

Sequential X86 Illusion discarded

Resilience Problems: Already Here, Already Being
Addressed, Algorithms & Co-design Are Key

• Already impacting performance: Performance variability.
– HW fault prevention and recovery introduces variability.
– Latency-sensitive collectives impacted.
– MPI non-blocking collectives + new algorithms address this.

• Localized failure:
– Now: local failure, global recovery.
– Needed: local recovery (via persistent local storage).
– MPI FT features + new algorithms: Leverage algorithm reasoning.

• Soft errors:
– Now: Undetected, or converted to hard errors.
– Needed: Apps handle as performance optimization.
– MPI reliable messaging + PM enhancement + new algorithms.

• Key to addressing resilience: algorithms & co-design.
10

Resilience Issues Already Here

Brian van Straalen, DOE Exascale Research
Conference, April 16-18, 2012. Impact of persistent
ECC memory faults.

•  First impact of unreliable HW?
–  Vendor efforts to hide it.
–  Slow & correct vs. fast & wrong.

• Result:
–  Unpredictable timing.
–  Non-uniform execution across cores.

• Blocking collectives:

– tc = maxi{ti}

11

Latency-tolerant Algorithms + MPI 3:
Recovering scalability

Up is good	

Hiding global communication latency in the GMRES algorithm on massively parallel machines, 	

P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012,	

ExaScience Lab Intel Labs Europe	

12

What is Needed to Support Latency Tolerance?

• MPI 3 (SPMD):
– Asynchronous global and neighborhood collectives.

• A “relaxed” BSP programming model:
– Start a collective operation (global or neighborhood).
– Do “something useful”.
– Complete the collective.

• The pieces are coming online.
• With new algorithms we can recover some scalability.

Enabling Local Recovery from Local Faults

• Current recovery model:
Local node failure,
global kill/restart.

• Different approach:
– App stores key recovery data in

persistent local (per MPI rank)
storage (e.g., buddy, NVRAM),
and registers recovery function.

– Upon rank failure:
• MPI brings in reserve HW, assigns

to failed rank, calls recovery fn.
• App restores failed process state via

its persistent data (& neighbors’?).
• All processes continue.

14

Local Recovery from Local Faults Advantages

• Enables fundamental algorithms work to aid fault recovery:
– Straightforward app redesign for explicit apps.
– Enables reasoning at approximation theory level for implicit apps:

• What state is required?
• What local discrete approximation is sufficiently accurate?
• What mathematical identities can be used to restore lost state?

– Enables practical use of many exist algorithms-based fault tolerant
(ABFT) approaches in the literature.

15

What is Needed for
Local Failure Local Recovery (LFLR)?

• LFLR realization is non-trivial.
• Programming API (but not complicated).
• Lots of runtime/OS infrastructure.

– Persistent storage API (frequent brainstorming outcome).
• Research into messaging state and recovery.
• New algorithms, apps re-work.
• But:

– Can leverage global CP/R logic in apps.

• This approach is often considered next step in beyond

CP/R.

Resilient Algorithms:
A little reliability*, please.

*A system is reliable if it behaves correctly often
enough that you don’t have an automated,
sophisticated way to handle failures. 17

Every calculation matters

•  Small PDE Problem: ILUT/GMRES
•  Correct result:35 Iters, 343M

FLOPS
•  2 examples of a single bad op.
•  Solvers:

–  50-90% of total app operations.
–  Soft errors most likely in solver.

•  Need new algorithms for soft errors:
–  Well-conditioned wrt errors.
–  Decay proportional to number of errors.
–  Minimal impact when no errors.

Description Iters FLOPS Recursive
Residual
Error

Solution Error

All Correct
Calcs

35 343M 4.6e-15 1.0e-6

Iter=2, y[1] +=
1.0
SpMV incorrect
Ortho subspace

35

343M

6.7e-15

3.7e+3

Q[1][1] += 1.0
Non-ortho
subspace

N/C N/A 7.7e-02 5.9e+5

18

Soft Error Resilience

•  New Programming Model Elements:
•  SW-enabled, highly reliable:

•  Data storage, paths.
•  Compute regions.

•  Idea: New algorithms with minimal
usage of high reliability.

•  First new algorithm: FT-GMRES.
•  Resilient to soft errors.
•  Outer solve: Highly Reliable
•  Inner solve: “bulk” reliability.

•  General approach applies to many
algorithms.

FT-GMRES Algorithm
“Unreliably” computed.
Standard solver library call.
Majority of computational cost.

Captures true linear operator issues, AND
Can use some “garbage” soft error results.

Selective reliability enables “running through” faults

20

Desired properties of FT methods

• Converge eventually
– No matter the fault rate
– Or it detects and indicates failure
– Not true of iterative refinement!

• Convergence degrades gradually as fault rate
increases
– Easy to trade between reliability and extra work

• Requires as little reliable computation as possible
• Can exploit fault detection if available

– e.g., if no faults detected, can advance aggressively

21

Selective Reliability Programming

• Standard approach:

–  System over-constrains reliability

–  “Fail-stop” model

– Checkpoint / restart

–  Application is ignorant of faults

• New approach:

–  System lets app control reliability

–  Tiered reliability

–  “Run through” faults

–  App listens and responds to faults

22	

What is Needed for Selective Reliability?

• A lot, lot.
• A programming model.
• Algorithms.
• Lots of runtime/OS infrastructure.
• Hardware support?

• Containment domains a good start.
– Need a “Drive fast, I feel lucky” mode for execution

within a CD.

High reliability mode: Default or not?

24

• Charon: Device simulation code.
• SLOCCOUNT (tool from David A. Wheeler).

– Charon physics: 191,877 SLOC.
– Charon + nevada framework 414,885 SLOC
– Charon_TPL 4,022,296 SLOC

• Library dependencies:
– 25 Trilinos package.
– 15 other TPLs.

• Expose faults to applications? NO!
– Means libraries/compilers/runtime must handle

them.
– Are we preparing for this?

Charon Complexity

Strawman Resilient Exascale System

• Best possible global CP/R:
–  Maybe, maybe not.
–  Multicore permitted simpler cores.
–  Resilient apps may not need more reliable CP/R.

•  “Thanks, but we’ve outgrown you.”

• Async collectives:
–  Workable today.
–  Make robust. Educate developers.
–  Expect big improvements when apps adapt to relaxed BSP.

• Support for LFLR:
– Next milestone.
–  FT in MPI: Didn’t make into 3.0…

• Selective reliability.
• Containment domains.
•  Lots of other clever work: e.g., flux-limiter, UQ, …

Conclusions

• Preserving the illusion of computers as reliable digital
devices is expensive:
–  Engineering, TCO, …
–  Also: Performance variability.

• Asyncronous approaches can mitigate some variability.
• Preserving global CP/R is expensive:

–  Engineering, infrastructure.
–  Analogy: Sequential x86.

• We should permit faults to occur during execution:
– If runtime/power costs are high for hiding them and
– We have a means to select reliability levels.

Conclusions

• Algorithms can handle soft errors:
– Detection is straight-forward in many cases.
– Majority of computation can occur in low-reliability mode.
– We can even make use of garbage results.

• Make highly reliable data/computation the default.
–  Low reliability should be a performance optimization.
–  Inter-node activities (i.e., MPI) should be highly reliable.

• Future programming, machine, execution models:
–  Help apps reason about and express fault-resilient algorithms.
–  Give us markup for reliability attributes: Data and computation.
–  Give us tools for fine-grain state checkpoint, app-driven state recovery.

• Long-term goal: Make hard faults into soft faults.
–  Resilience tools and introspection could greatly reduce failures.

