Using GPUs as CPUs for
Engineering Applications:
Challenges and Issues

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
for the United States Department of Energy’s National Nuclear Security Administration National

under contract DE-AC04-94AL85000. Laboratories

_
%‘ Outline of the Talk

1. A Brief Discussion of Some Sandia
Applications.

Some Important Application Kernels.
Use of 32-bit arithmetic in Engineering Apps.
Simulating Double with Single.

How | hope to leverage GPUs.
Final Thoughts and Summary.

_cnm-buul\)

Sandia
National
Laboratories

il '
}. Sandia Applications

Sandia is primarily an Engineering Lab:
- Structures, Fluids, Electrical...
- and Contributing Physics.
- Coupling of Physics is primary focus of computing efforts.
= Some Apps use Explicit Methods:
- Pronto: 3D Transient Solid Dynamics Code.
- CTH:3D Eulerian Shock Code.
= Strong focus on Implicit codes:
- SALINA (Structures)
ALEGRA (ALE Shock code)
SIERRA (Fluids and Interactions)
Xyce (Electrical)
- ...and more.
= | will focus mostly on the implicit codes.

= One basic assumption:
- GPU will be viewed as a co-processor.
- | will not emphasize related issues, but are critically important.

Sandia
National
Laboratories

% Common Implicit Code Characteristics

= Unstructured:
- Grids are used, stitched together, but
- Global irregularity is significant.
- Most data structures assume arbitrary connectivity.
- Most tools implicitly assume significant regularity.
= Finite Element/Volume/Difference:
- Most apps discretize continuum via these methods.

- We will discuss this issue later (as opportunity for 32-bit
use).

- Xyce circuit modeling is exception: Inherently discrete.
= Models are 1-3D, Nonlinear, both Steady/Transient.
= Solvers are a critical technology component:
- Often considered “3rd-party”.
- Typically consume 50% or (much) more of run-time.
- Direct (sparse) solvers often used.
- Preconditioned iterative methods often and increasingly used.
- The core is a sparse linear solver.
Sandia
[s,

Problem Definition

>

= A frequent requirement for scientific and
engineering computing is to solve:
Ax = b
where Ais a known large (sparse) matrix,
b is a known vector,
X is an unknown vector.

= Goal: Find x.
= Methods: Preconditioned Krylov methods.

= The Conjugate Gradient (CG) method is simplest of
these.

= CG is only appropriate for symmetric (Hermitian).
= Still serves as reasonable prototype for initial study.
= With some exceptions we will note.

Sandia
National
Laboratories

% Other Types of Solver Problems

= Nonlinear problems: f(u) = O:
- ux)u(x)’ - sin(x)cos(x) = 0.
= Eigenvalue problems: Ax = \x.

1 -2 1][1 1
0 -2 2|1|=0]1
2 -1 1)1 1
= Many variations.

= Sparse matrix multiplication: Basic op for all above.

= Linear solver often basic component for all.

= [terative linear solvers important on parallel
machines.

= Bottom line:
Study of Sparse Iterative solver makes sense.

Sandia
National
Laboratories

>

[terative Methods

= Given an initial guess for x, called x9, (x? = Ois
acceptable) compute a sequence x/, i = 1,2, ... such
that each X’ is “closer” to x.

= Definition of “close”:

Suppose X = x exactly for some value of /.

Then r = b - Ax’ = 0 (the vector of all zeros).

And norm(r) = sqrt(ddot(r, r)) = 0 (a number).

Forany x/, let ¥ = b - Ax’

If norm(r) = sqgrt(ddot(r, r))is small (< 1.0E-6 say) then
we say that x’is close to x.

The vector ris called the residual vector.

Sandia
National
Laboratories

P
zﬁi The CG Method

I =0, x"7=0;r"=>b Agiven by user;
while norm(r) > tol {

[++
rtr-1 = ddot(r-’, r-’);
if (/=1)p'=r-;
else {
b = rtr- /rtri-2;
=1+ 0,
}

Ap = sparsemv(A,p),
a = rtr-'/ ddot(p’,Ap’);
X1 =x; X =x"1+a*;
r-l=r; r=r-1-a*Ap’;
}
x =x'; // When norm(r)<= tol, stop and set x to x’

Sandia
National
Laboratories

e '
% This might look familiar...

= Paper: Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid (J. Bolz, I. Farmer, E. Grinspun, P.
Schroder), July 2003 ACM TOG, 22:3.

= Bolz, et. al. describe efficient implementations of all three
kernels:
- Vector updates: Trivial, very fast.
- Dot Products: Use 2D layout, recursive 2-by-2 to 1 reduction.
- Matrix-vector multiply:
- Compressed-row-by-compressed-row.
- Rows ordered by decreasing density.
- Diagonal handled separately.
- Fragment program handles a row.

- Limitations on row density (up to 200):

- Not a major practical limitation but annoying for bullet-
proof implementations.

Sandia
National
Laboratories

>

CG Performance

Kernel\Processor GeForce FX Pentium-M 1.6GHz
500MHz (This Laptop)

Dot Product 172 MFLOPS 159 MFLOPS

Vector Update 718 (Implied) 68 MFLOPS

Sparse MV 62 MFLOPS 116 MFLOPS

Total CG 98 MFLOPS 109 MFLOPS

Performance

* GeForce FX results computed from Bolz, et. al. (Single precision)
* Pentium-M results from Cygwin/GCC 3.3.3 (Double precision).
e Encouraging results! (I think).
e From Pat Hanrahan’s talk:
o ATI Radeon 9800XT 1.5x faster than GeForce FX for vector update.
* X800 2x faster than 9800XT

*NV40?

Sandia
National
Laboratories

% CG Solver Performance Observations

= GPU results appear to be “generalizable” ...

= But are also “Wind at our back” results:
- Problem size, layout tightly constrained.
- How do we write general-purpose code that works for all
Sizes?
- Seems like writing assembler.
= Choice of details avoid recursive preconditioners.
- Bolz, et. al. also discuss Multigrid, but use Jacobi smoother.

- No clear path to implementing recursive preconditioners:
Gauss-Seidel, ILU, etc.

= Memory size (up to 256MB) allows healthy problem size:
- Unpreconditioned CG requires 72n words storage.
- 4n words - vectors,
- 7n words - matrix values, 7n words - matrix indices/pntrs
- Max problem dimension: 3.5M equations.

- However, CG is simplest algorithm. ILU-GMRES more
common, much more involved, much more memory.

= Then there’s the issue of FP precision...

Sandia
National
Laboratories

% Use of Single Precision: Background

= 20-30 years ago, single precision was commonly used in
scientific/engineering apps.
= Single precision persists in pockets:
- LS-DYNA still has SP capability, accumulates into DP.
- SP FFTs are still very common, e.g., seismic calculations.

= Most other apps have migrated to DP:
- Literature is fairly silent about which apps phases need DP.

- Lots of anecdotal information. Tough problems really need DP or
higher.

- General attitude has been “use the highest precision that has
reasonable cost.”

- Going back to SP would be difficult.
= Mixed precision has been and is being used:
- Construct preconditioner in DP, store and apply in SP.
- Course grid solves (smaller condition number).
- These approaches rely on ability to have SP, DP co-mingled.

Sandia
National
Laboratories

% Double Precision is Required

= In my opinion, going back to SP is not attractive.

= DP has allowed us to advance modeling capabilities.
- We do not want to take a step back.
- In fact, we want more precision in many cases.

= Solvers need DP (and higher) regularly:

- Ill-conditioned problems need the mantissa bits to
avoid (or at least delay) severe cancellation.

- SP exponent bits are too few (DP are more than needed)
to handle range of values for many problems.

= |t seems like native DP on GPUs is not near-term.
= So how about simulated DP?

Sandia
National
Laboratories

_ '
% Simulated DP

= Two approaches:
- Single-single.
- True simulated double.
= Single-single:
- Uses two SP numbers to store the upper/lower
mantissa bits.

- Exponent is not split: Same exponent range as SP.
= True simulated double:

- Double the size of SP.

- Has larger exponent range.

Sandia
National
Laboratories

. ' f.*‘)
* Lessons from Simulated Double-Double, Quad *=*

= Software techniques are used frequently to provide
double-double and quad precision on modern CPUs.

= Number of packages to facilitate use.

= Some lessons from simulated double-double on
CPUs:

- Portable simulated double-double is about an order of
magnitude slower than double.

- Add takes 19 DP ops, Mult takes 25+ DP ops.
- Temporal locality keeps cost down.

- A Fused Mult-add (FMAD) HW instruction can cut this in
half.

= True simulated quad:

- Is significantly more costly, especially if FMAD
available.

- Has better round off properties, larger exponent.

* Reference: Design, Implementation and Testing of Extended and Mixed Precision BLAS, @ Sandia

X. Li, J. Demmel, D. Bailey, G. Henry, et. al., ACM TOMS, 28:2, 2002. National
Laboratories

g '
% True Simulated Double is Needed

= Some articles suggest adding FMAD to GPU.
= My concern:
- Range of single is TE+/-38.

- We often see numbers near the limit of this range in
our computations.

= Assertion: True Simulated Double needed:
- More bits are needed for exponent.

- But we don’t need as many as IEEE DP:
- 1E+/-308 is overkill.

Sandia
National
Laboratories

i '
% GPUs for other parts of Eng Apps

= Many FEM/FVM applications “strip mine” the loading
of local element stiffness matrices into working sets.

= This approach seems a natural fit for GPUs.

= Difficulty: At the end of load phase, nodal values
must be scattered into global sparse matrix.

= |t appears that scatter ops are hard to perform on
GPUs.

= |f so, there are two approaches to address scatter
problem:
- Add scatter to GPUs.

- Reorganize apps to be node-oriented (instead of
element oriented). <= This will never happen.

Sandia
National
Laboratories

Other Issues

>

= |In papers | have read, nobody reports time to
load/unload graphics memory. Why not?

= Has anyone considered a segmented sum algorithm
for sparse matrix-vector multiplication?
- Reference: Segmented Operations for Sparse Matrix

Computation on Vector Multiprocessors, G. Blelloch, M.
Heroux, M. Zagha, CMU Tech report, CMU-CS-93-173,

1993.
= To those who are considering “novel” algorithms for
GPUs:
- We have been in similar situations in the past (only 10
years ago).

- General observation: “The best parallel algorithm is
your best parallel implementation of your best serial
algorithm.”

- Example: Domain Decomposition methods.

Sandia
National
Laboratories

Segmented Sum MV

VR 2 35 w2 o8 ol ol 2 e w2 SO o o8 a2l R S B Bl of ol o6 B wB M B 6 B Wb
FLA G = T F T F F F T F F F T F F F T F F T F F F F F F F T F T T F
O\ 2 /A
05(]|0.1()j0.2(f 0.3 J|0.5 T T F F F
_Z _Z
(N ()
02|0.2()10.2| 0.4]|0.4 F F F F T
_Z _Z _Z \
) £) C)
0.3][0.1]J| 0.4 0.4 \03} TIMFE [T F \F
VAL FLAG
0.1J{0.5)]]0.2 0.1 (06) FINF | F || F (T
\< \,
>
0.4 |[0.1]J|0.4]|] 0.6 |[0.3 FIMTINE § F ||| T
N \ <
£)
0.2l 0.3)| 0.5 0.2 || 0.5 FIN FIMTI F || F
B o o

LAST 3 3 6 | 5

PRESENT T T T | F T

Sandia
National
Laboratories

% How I hope to Leverage GPUs

= Trilinos Project: Solvers.
- Linear, Eigen, Nonlinear, Time-dependent, ...
- Most C++ class libraries.

= Significant investment in templated classes:
- Vector (VectorSpace< OrdinalType, ScalarType > const &VectorSpace)

- OrdinalType: Indexing (int)

- ScalarType: Floating point values (double, float, ...)
= Next generation of apps will use these templated class libraries.
= Templates allows use of any ADT that has “+”, “-”, “*” and

sometimes “/”.

= Hope: Use this templating mechanism to utilize GPU data types.
= One key feature of our abstract model:

- Ops can migrate to data.

- Details in Vector Reduction/Transformation Operators, R. Bartlett, B.

van Bloemen Waanders and M. Heroux,. ACM Trans. Math. Softw., Vol 30,
Issue 1, 2004.

Sandia
National
Laboratories

ARPREC

F 7

= The ARPREC library uses arrays of 64-bit floating-
point numbers to represent high-precision floating-
point numbers.

= ARPREC values behave just like any other floating-
point datatype, except the maximum working
precision (in decimal digits) must be specified before
any calculations are done

—-mp::mp init (200) ;
= [[lustrate the use of ARPREC with an example using
Hilbert matrices.

= Lately also incorporated GMP library.

Sandia
National
Laboratories

e '
% Hilbert Matrices

= A Hilbert matrix H, is a square N-by-N matrix such
that:

= For Example: HN.. — .
o+)1

ST
Ho=| 1o 13 74
73 Yo J.

Sandia
National
Laboratories

% Hilbert Matrices

= Notoriously ill-conditioned
— k(H;) = 524
— k(Hs) = 476610
— k(H,y) =~ 1.6025 x 103
— k(Hyy) = 7.8413 x 1017
— k(H,q0) = 1.7232 x 1020

= Hilbert matrices introduce large amounts of error

Sandia
National
Laboratories

— '
}- Hilbert Matrices and Cholesky Factorization

= With double-precision arithmetic, Cholesky
factorization will fail for H, for all N > 13.

= Can we improve on this using arbitrary-precision
floating-point numbers?

Precision Largest N for which Cholesky Factorization is
successful

Single Precision 8

Double Precision 13

Arbitrary Precision (20) 29

Arbitrary Precision (40) 40

Arbitrary Precision (200) 145

Arbitrary Precision (400) 233

Sandia
National
Laboratories

~
* Summary
= There is low-hanging fruit:
- Seismic processing almost certainly.
- Some explicit calculations.
= Proof-of-concept (via CG solver) works for some
implicit calculations :
- Timing results are competitive for SP.
- Limitations on preconditioning are problematic.

- Some kind of “compiler’” seems necessary to equal
generality of CPUs. Brook is a good start.

= Double precision is necessary for broad acceptance
of GPUs.

- | don’t see the simulation community taking a step
back (some need to go to 128-bit!).

Sandia
National
Laboratories

il '
T~

* Summary (cont).

= True double precision is necessary:

- Single-single is not sufficient (and FMAD is not
needed).

- HW double precision would be great (and GPUs would
have the attention of many more people).

- True Simulated Double is a start, but then performance
is set back.

= Scatter capabilities are needed in GPUs in order to
broaden impact to physics portion of engineering
apps, or maybe | am missing something.

= What about load/unload time between CPU/GPU
memories?

= What about segment sum MV?

= | hope to (easily) used GPUs via existing software
libraries.

Sandia
National
Laboratories

g '
% Summary (cont.)

= Please report times for all phases of CPU/GPU use.
= Beware novel parallel algorithms.

Sandia
National
Laboratories

