
Using GPUs as CPUs for
Engineering Applications:

Challenges and Issues

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Outline of the Talk

1. A Brief Discussion of Some Sandia
Applications.

2. Some Important Application Kernels.
3. Use of 32-bit arithmetic in Engineering Apps.
4. Simulating Double with Single.
5. How I hope to leverage GPUs.
6. Final Thoughts and Summary.

Sandia Applications
Sandia is primarily an Engineering Lab:
– Structures, Fluids, Electrical…
– and Contributing Physics.
– Coupling of Physics is primary focus of computing efforts.

Some Apps use Explicit Methods:
– Pronto: 3D Transient Solid Dynamics Code.
– CTH:3D Eulerian Shock Code.

Strong focus on Implicit codes:
– SALINA (Structures)
– ALEGRA (ALE Shock code)
– SIERRA (Fluids and Interactions)
– Xyce (Electrical)
– …and more.

I will focus mostly on the implicit codes.
One basic assumption:
– GPU will be viewed as a co-processor.
– I will not emphasize related issues, but are critically important.

Common Implicit Code Characteristics

Unstructured:
– Grids are used, stitched together, but
– Global irregularity is significant.
– Most data structures assume arbitrary connectivity.
– Most tools implicitly assume significant regularity.

Finite Element/Volume/Difference:
– Most apps discretize continuum via these methods.
– We will discuss this issue later (as opportunity for 32-bit

use).
– Xyce circuit modeling is exception: Inherently discrete.

Models are 1-3D, Nonlinear, both Steady/Transient.
Solvers are a critical technology component:
– Often considered “3rd-party”.
– Typically consume 50% or (much) more of run-time.
– Direct (sparse) solvers often used.
– Preconditioned iterative methods often and increasingly used.
– The core is a sparse linear solver.

Problem Definition

A frequent requirement for scientific and
engineering computing is to solve:

Ax = b
where A is a known large (sparse) matrix,

b is a known vector,
x is an unknown vector.

Goal: Find x.
Methods: Preconditioned Krylov methods.
The Conjugate Gradient (CG) method is simplest of
these.
CG is only appropriate for symmetric (Hermitian).
Still serves as reasonable prototype for initial study.
With some exceptions we will note.

Other Types of Solver Problems

Nonlinear problems: f(u) = 0:
– u(x)u(x)’ – sin(x)cos(x) = 0.

Eigenvalue problems: Ax = λx.

Many variations.
Sparse matrix multiplication: Basic op for all above.
Linear solver often basic component for all.
Iterative linear solvers important on parallel
machines.

Bottom line:
Study of Sparse Iterative solver makes sense.

1 2 1 1 1
0 2 2 1 0 1
2 1 1 1 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Iterative Methods

Given an initial guess for x, called x0, (x0 = 0 is
acceptable) compute a sequence xi, i = 1,2, … such
that each xi is “closer” to x.
Definition of “close”:
– Suppose xi = x exactly for some value of i.
– Then ri = b - Axi = 0 (the vector of all zeros).
– And norm(ri) = sqrt(ddot(ri, ri)) = 0 (a number).
– For any xi, let ri = b - Axi

– If norm(ri) = sqrt(ddot(ri, ri)) is small (< 1.0E-6 say) then
we say that xi is close to x.

– The vector r is called the residual vector.

The CG Method
i = 0; xi-1 = 0; ri-1 = b; A given by user;
while norm(ri) > tol {

i ++;
rtri-1 = ddot(ri-1, ri-1);
if (i=1) pi= ri-1;
else {

bi = rtri-1/rtri-2;
pi = ri-1 + bi*pi-1;

}
Api = sparsemv(A,pi);
ai = rtri-1/ ddot(pi,Api);
xi-1 = xi; xi = xi-1 + ai*pi;
ri-1 = ri; ri = ri-1 - ai*Api;

}
x = xi; // When norm(ri)<= tol, stop and set x to xi

Three primary kernels:

• Dot product (reduction).

• Vector update.

• Sparse matrix-vector multiply.

This might look familiar…

Paper: Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid (J. Bolz, I. Farmer, E. Grinspun, P.
Schröder), July 2003 ACM TOG, 22:3.
Bolz, et. al. describe efficient implementations of all three
kernels:
– Vector updates: Trivial, very fast.
– Dot Products: Use 2D layout, recursive 2-by-2 to 1 reduction.
– Matrix-vector multiply:

•Compressed-row-by-compressed-row.
•Rows ordered by decreasing density.
•Diagonal handled separately.
•Fragment program handles a row.
•Limitations on row density (up to 200):

– Not a major practical limitation but annoying for bullet-
proof implementations.

CG Performance

Kernel\Processor GeForce FX
500MHz

Pentium-M 1.6GHz
(This Laptop)

Dot Product 172 MFLOPS 159 MFLOPS

Vector Update 718 (Implied) 68 MFLOPS

Sparse MV 62 MFLOPS 116 MFLOPS

Total CG
Performance

98 MFLOPS 109 MFLOPS

• GeForce FX results computed from Bolz, et. al. (Single precision)
• Pentium-M results from Cygwin/GCC 3.3.3 (Double precision).
•Encouraging results! (I think).
• From Pat Hanrahan’s talk:

• ATI Radeon 9800XT 1.5x faster than GeForce FX for vector update.
• X800 2x faster than 9800XT
•NV40?

CG Solver Performance Observations
GPU results appear to be “generalizable” …
But are also “Wind at our back” results:
– Problem size, layout tightly constrained.
– How do we write general-purpose code that works for all

sizes?
– Seems like writing assembler.

Choice of details avoid recursive preconditioners.
– Bolz, et. al. also discuss Multigrid, but use Jacobi smoother.
– No clear path to implementing recursive preconditioners:

Gauss-Seidel, ILU, etc.
Memory size (up to 256MB) allows healthy problem size:
– Unpreconditioned CG requires 72n words storage.

•4n words – vectors,
•7n words – matrix values, 7n words – matrix indices/pntrs

– Max problem dimension: 3.5M equations.
– However, CG is simplest algorithm. ILU-GMRES more

common, much more involved, much more memory.
Then there’s the issue of FP precision…

Use of Single Precision: Background

20-30 years ago, single precision was commonly used in
scientific/engineering apps.
Single precision persists in pockets:
– LS-DYNA still has SP capability, accumulates into DP.
– SP FFTs are still very common, e.g., seismic calculations.

Most other apps have migrated to DP:
– Literature is fairly silent about which apps phases need DP.
– Lots of anecdotal information. Tough problems really need DP or

higher.
– General attitude has been “use the highest precision that has

reasonable cost.”
– Going back to SP would be difficult.

Mixed precision has been and is being used:
– Construct preconditioner in DP, store and apply in SP.
– Course grid solves (smaller condition number).
– These approaches rely on ability to have SP, DP co-mingled.

Double Precision is Required

In my opinion, going back to SP is not attractive.
DP has allowed us to advance modeling capabilities.
– We do not want to take a step back.
– In fact, we want more precision in many cases.

Solvers need DP (and higher) regularly:
– Ill-conditioned problems need the mantissa bits to

avoid (or at least delay) severe cancellation.
– SP exponent bits are too few (DP are more than needed)

to handle range of values for many problems.
It seems like native DP on GPUs is not near-term.
So how about simulated DP?

Simulated DP

Two approaches:
– Single-single.
– True simulated double.

Single-single:
– Uses two SP numbers to store the upper/lower

mantissa bits.
– Exponent is not split: Same exponent range as SP.

True simulated double:
– Double the size of SP.
– Has larger exponent range.

Lessons from Simulated Double-Double, Quad
Software techniques are used frequently to provide
double-double and quad precision on modern CPUs.
Number of packages to facilitate use.
Some lessons from simulated double-double on
CPUs:
– Portable simulated double-double is about an order of

magnitude slower than double.
•Add takes 19 DP ops, Mult takes 25+ DP ops.
•Temporal locality keeps cost down.

– A Fused Mult-add (FMAD) HW instruction can cut this in
half.

True simulated quad:
– Is significantly more costly, especially if FMAD

available.
– Has better round off properties, larger exponent.

• Reference: Design, Implementation and Testing of Extended and Mixed Precision BLAS,
X. Li, J. Demmel, D. Bailey, G. Henry, et. al., ACM TOMS, 28:2, 2002.

True Simulated Double is Needed

Some articles suggest adding FMAD to GPU.
My concern:
– Range of single is 1E+/-38.
– We often see numbers near the limit of this range in

our computations.
Assertion: True Simulated Double needed:
– More bits are needed for exponent.
– But we don’t need as many as IEEE DP:

•1E+/-308 is overkill.

GPUs for other parts of Eng Apps

Many FEM/FVM applications “strip mine” the loading
of local element stiffness matrices into working sets.
This approach seems a natural fit for GPUs.
Difficulty: At the end of load phase, nodal values
must be scattered into global sparse matrix.
It appears that scatter ops are hard to perform on
GPUs.
If so, there are two approaches to address scatter
problem:
– Add scatter to GPUs.
– Reorganize apps to be node-oriented (instead of

element oriented). <= This will never happen.

Other Issues

In papers I have read, nobody reports time to
load/unload graphics memory. Why not?
Has anyone considered a segmented sum algorithm
for sparse matrix-vector multiplication?
– Reference: Segmented Operations for Sparse Matrix

Computation on Vector Multiprocessors, G. Blelloch, M.
Heroux, M. Zagha, CMU Tech report, CMU-CS-93-173,
1993.

To those who are considering “novel” algorithms for
GPUs:
– We have been in similar situations in the past (only 10

years ago).
– General observation: “The best parallel algorithm is

your best parallel implementation of your best serial
algorithm.”

– Example: Domain Decomposition methods.

Segmented Sum MV

How I hope to Leverage GPUs

Trilinos Project: Solvers.
– Linear, Eigen, Nonlinear, Time-dependent, …
– Most C++ class libraries.

Significant investment in templated classes:
– Vector (VectorSpace< OrdinalType, ScalarType > const &VectorSpace)
– OrdinalType: Indexing (int)
– ScalarType: Floating point values (double, float, …)

Next generation of apps will use these templated class libraries.
Templates allows use of any ADT that has “+”, “-”, “*” and
sometimes “/”.
Hope: Use this templating mechanism to utilize GPU data types.
One key feature of our abstract model:
– Ops can migrate to data.
– Details in Vector Reduction/Transformation Operators, R. Bartlett, B.

van Bloemen Waanders and M. Heroux,. ACM Trans. Math. Softw., Vol 30,
Issue 1, 2004.

ARPREC

The ARPREC library uses arrays of 64-bit floating-
point numbers to represent high-precision floating-
point numbers.
ARPREC values behave just like any other floating-
point datatype, except the maximum working
precision (in decimal digits) must be specified before
any calculations are done
– mp::mp_init(200);

Illustrate the use of ARPREC with an example using
Hilbert matrices.
Lately also incorporated GMP library.

Hilbert Matrices

A Hilbert matrix HN is a square N-by-N matrix such
that:

For Example: 1
1

−+
=

ji
H

ijN

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5
1

4
1

3
1

4
1

3
1

2
1

3
1

2
11

3H

Hilbert Matrices

Notoriously ill-conditioned
– κ(H3) ≈ 524
– κ(H5) ≈ 476610
– κ(H10) ≈ 1.6025 x 1013

– κ(H20) ≈ 7.8413 x 1017

– κ(H100) ≈ 1.7232 x 1020

Hilbert matrices introduce large amounts of error

Hilbert Matrices and Cholesky Factorization

With double-precision arithmetic, Cholesky
factorization will fail for HN for all N > 13.
Can we improve on this using arbitrary-precision
floating-point numbers?

Precision Largest N for which Cholesky Factorization is
successful

Single Precision 8
Double Precision 13
Arbitrary Precision (20) 29
Arbitrary Precision (40) 40
Arbitrary Precision (200) 145
Arbitrary Precision (400) 233

Summary

There is low-hanging fruit:
– Seismic processing almost certainly.
– Some explicit calculations.

Proof-of-concept (via CG solver) works for some
implicit calculations :
– Timing results are competitive for SP.
– Limitations on preconditioning are problematic.
– Some kind of “compiler” seems necessary to equal

generality of CPUs. Brook is a good start.
Double precision is necessary for broad acceptance
of GPUs.
– I don’t see the simulation community taking a step

back (some need to go to 128-bit!).

Summary (cont).

True double precision is necessary:
– Single-single is not sufficient (and FMAD is not

needed).
– HW double precision would be great (and GPUs would

have the attention of many more people).
– True Simulated Double is a start, but then performance

is set back.
Scatter capabilities are needed in GPUs in order to
broaden impact to physics portion of engineering
apps, or maybe I am missing something.
What about load/unload time between CPU/GPU
memories?
What about segment sum MV?
I hope to (easily) used GPUs via existing software
libraries.

Summary (cont.)

Please report times for all phases of CPU/GPU use.
Beware novel parallel algorithms.

