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& Scope of Effort

= Sandia has many engineering applications.

= A large fraction of newer apps are /mplicitin nature:
- Requires solution of many large nonlinear systems.
- Boils down to many sparse linear systems.

= Linear system solves are large fraction of total time.

- Small as 30%.
- Large as 90+%.

= [terative solvers most commonly used.

= [terative solvers have small handful of important
kernels.

= We focus on performance issues for these kernels.

- Caveat: These parts do not make the whole, but are a
good chunk of it...
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}. Problem Definition

= A frequent requirement for scientific and
engineering computing is to solve:
Ax = b
where  Ais a known large (sparse) matrix,
b is a known vector,
X is an unknown vector.

= Goal: Find x.

= Method:
- Use Preconditioned Conjugate Gradient (PCG) method,
- Or one of many variants, e.g., Preconditioned GMRES.
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% Other Types of Problems

= Nonlinear problems: f(u) = O:
- Example: u(x)u(x)’ - sin(x)cos(x) = O.
= Eigenvalue problems: Ax = A\x.

1 -2 111
0 -2 2|1|=0|1
2 -1 1)1 |1

= Many variations.
= Sparse matrix multiplication: Basic op for all above.
= Linear solver often basic component for all.

= [terative linear solvers important on parallel
machines.
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} Classic Prototype: The CG Method

=0 'x-1=0;,r"7=5b Agiven by user;
while norm(r) > tol {
[ ++;
rtri-1 = ddot(r-1, r-1),
if (/=1) pi=r-1;
else {
b = rtr-! /rtr-2;
p=r1 + b*p-i;
}
Ap' = sparsemv(A,p’),
MAp’ = applyPrec(M,Ap’);
a = rtr-’/ ddot(p’, MAp'),
X1 = xi; X = x-1 + a'*pl;
rl=nr: r=r-1-a*MAp
}

X =X // When norm(r)<= tol, stop and set x to x'
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} Three Categories of Operations

= Vector reductions and updates:
- Dot products (ddod.
- Norms (norm).
- AXPYs.
- Multitude of AXPY variations.
= Sparse matrix-dense vector product (sparsemy).
- Compressed Row-oriented.
- Compressed Column oriented.
= Preconditioner:
- Setup (one-time cost):
- Form coarse grid operator, or
- Compute incomplete factorization, or
- Not much.
- Apply: Repeated proportional to sparse MV (applyPrec)
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Vector Reductions and Updates

V '
l Kernel

Reads Writes Mults Adds Bytes Per
Clock
Memory
Bandwth
ddot 2n ] n n 16
norm n 1 n n 8
axpy 2N n n n 24

= Per Clocktick Memory Bandwith Requirement:
- Assumes simultaneous mult/add (two FP ops/clk).
- Number of bytes needed per clk for optimal performance.
= Data window of solver is large:
- Little chance of temporal re-use,
- Except multi-MB cache with small problems.
= Bottom line:
- Optimal vector kernel performance requires lots of bandwidth.
- Any improvements would please us. N—
- A lot is required to satisfy us. @ prtrll
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: ' Coc--- do sequence of SPDOTs (sparse sdots)
' jend = pntr(0)
do 10 J = 0, m-1
Jbgn = jend
Row-based jend = pntr(i+1)
. sum = 0.0
sparse matrix- do 20 i = jbgn, jend-1
. sum = sum + val(i) * x(indx(1))
vector multiply 20 continue
yd) = sum
10 continue
= Notes:

- Written in Fortran (still better than C). Called from C++ wrappers.

— val and indx of length number of nonzeros in matrix.

— pntr, x and y of length matrix dimension.

— val, pntr, indx and y accessed sequentially and used once.

— x accessed indirectly, typically some effective cache use.

- Loop 20 is of average length 10s, regardless of problem size.
= Optimal bandwidth: 3 reads & 1 write per clock

- Assuming simultaneous mult/add and no re-use of x values.

- Some x values will be re-used.

- Some x values will be read into cache and flushed without being used.
= Sparse triangular solve also important:

- Nearly identical kernel.

- Needed for many preconditioners.
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% Sparse MV Observations

= X is the only array that benefits from cache:
- Some temporal re-use from row-to-row.
- Some spatial locality that acts as pre-fetching.
= All other arrays are:
- Accessed sequentially.
- Used once and discarded.
= Sparse column variant has similar properties:
— vy is cacheable. All others not.
= General observations:

- A sophisticated cache memory system is mostly
inappropriate for these kernels.

- Some kind of streamed access with cache bypass would
be very attractive.
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* Preconditioners

= Preconditioners tend to rely on kernels already
mentioned:

- Sparse MV, vector updates, Triangular solves.
= One additional kernel is sparse matrix triple product
for multi-level preconditioners (called RAP):
A- = RAP.
= RAP is part of preconditioner setup:
- Done once per solve.
- Still cost can be substantial.
- This kernel not well-studied (by us).
- Temporal re-use of data is higher than other kernels.

- Spatial re-use also, but probably offset by unused
cache line entries.
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% Where We Are: One Data Point

= Example: AMD Opteron (242)
- 1.6GHz, TMB L2 cache, 3100 BogoMIPS.
- Use DGEMM as practical achievable peak:
.+ 2760 MFLOPS (using Hammer-specific ATLAS BLAS)
- 10X effective bandwidth increase would satisfy us.

Kernel Asymptotic Peak Percent of
MFLOPS DGEMM Peak
ddot 400 14.5%
axpy 300 10.9%
sparsemv 250-310 9.0%-11.2%
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* Observations/Questions

= Sophisticated cache memory systems are greatly
underused by sparse iterative solvers:

- Very few kernels can benefit.
- Even when useful:

- Performance gains from temporal locality can be
offset by unused cache line data.

- Partial cache line fill mode?
- Much of the time it gets in the way.
= We could really use a high bandwidth streaming
memory system.
- Much of our memory traffic is long-array unit-stride.

- Some kind of heavily interleaved memory system that
could bypass cache?
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* Summary

= Many Sandia applications are implicit.

= Implicit apps need (sparse iterative) solvers.

= Sparse iterative solvers:

- Use between 30-90+% of total application run-time.

- Cost is similar across major Sandia frameworks. (e.g.,
SIERRA, NEVADA, XYCE)

= Sparse iterative solver kernels are a challenge:
- Most memory access is sequential one-time use.
- Indirect memory accesses can utilize cache, but...

- Re-use is offset at least somewhat by unused cache-
line entries.

= Any increase in bandwidth is welcome.

= Less aggressive spatial prefetch and streaming
memory capabilities seem attractive.
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